mm/slab: support slab merge
[deliverable/linux.git] / mm / slab.c
... / ...
CommitLineData
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89#include <linux/slab.h>
90#include <linux/mm.h>
91#include <linux/poison.h>
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
97#include <linux/cpuset.h>
98#include <linux/proc_fs.h>
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
106#include <linux/string.h>
107#include <linux/uaccess.h>
108#include <linux/nodemask.h>
109#include <linux/kmemleak.h>
110#include <linux/mempolicy.h>
111#include <linux/mutex.h>
112#include <linux/fault-inject.h>
113#include <linux/rtmutex.h>
114#include <linux/reciprocal_div.h>
115#include <linux/debugobjects.h>
116#include <linux/kmemcheck.h>
117#include <linux/memory.h>
118#include <linux/prefetch.h>
119
120#include <net/sock.h>
121
122#include <asm/cacheflush.h>
123#include <asm/tlbflush.h>
124#include <asm/page.h>
125
126#include <trace/events/kmem.h>
127
128#include "internal.h"
129
130#include "slab.h"
131
132/*
133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142#ifdef CONFIG_DEBUG_SLAB
143#define DEBUG 1
144#define STATS 1
145#define FORCED_DEBUG 1
146#else
147#define DEBUG 0
148#define STATS 0
149#define FORCED_DEBUG 0
150#endif
151
152/* Shouldn't this be in a header file somewhere? */
153#define BYTES_PER_WORD sizeof(void *)
154#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
155
156#ifndef ARCH_KMALLOC_FLAGS
157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158#endif
159
160#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163#if FREELIST_BYTE_INDEX
164typedef unsigned char freelist_idx_t;
165#else
166typedef unsigned short freelist_idx_t;
167#endif
168
169#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170
171/*
172 * true if a page was allocated from pfmemalloc reserves for network-based
173 * swap
174 */
175static bool pfmemalloc_active __read_mostly;
176
177/*
178 * struct array_cache
179 *
180 * Purpose:
181 * - LIFO ordering, to hand out cache-warm objects from _alloc
182 * - reduce the number of linked list operations
183 * - reduce spinlock operations
184 *
185 * The limit is stored in the per-cpu structure to reduce the data cache
186 * footprint.
187 *
188 */
189struct array_cache {
190 unsigned int avail;
191 unsigned int limit;
192 unsigned int batchcount;
193 unsigned int touched;
194 void *entry[]; /*
195 * Must have this definition in here for the proper
196 * alignment of array_cache. Also simplifies accessing
197 * the entries.
198 *
199 * Entries should not be directly dereferenced as
200 * entries belonging to slabs marked pfmemalloc will
201 * have the lower bits set SLAB_OBJ_PFMEMALLOC
202 */
203};
204
205struct alien_cache {
206 spinlock_t lock;
207 struct array_cache ac;
208};
209
210#define SLAB_OBJ_PFMEMALLOC 1
211static inline bool is_obj_pfmemalloc(void *objp)
212{
213 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
214}
215
216static inline void set_obj_pfmemalloc(void **objp)
217{
218 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
219 return;
220}
221
222static inline void clear_obj_pfmemalloc(void **objp)
223{
224 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
225}
226
227/*
228 * bootstrap: The caches do not work without cpuarrays anymore, but the
229 * cpuarrays are allocated from the generic caches...
230 */
231#define BOOT_CPUCACHE_ENTRIES 1
232struct arraycache_init {
233 struct array_cache cache;
234 void *entries[BOOT_CPUCACHE_ENTRIES];
235};
236
237/*
238 * Need this for bootstrapping a per node allocator.
239 */
240#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
241static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
242#define CACHE_CACHE 0
243#define SIZE_AC MAX_NUMNODES
244#define SIZE_NODE (2 * MAX_NUMNODES)
245
246static int drain_freelist(struct kmem_cache *cache,
247 struct kmem_cache_node *n, int tofree);
248static void free_block(struct kmem_cache *cachep, void **objpp, int len,
249 int node, struct list_head *list);
250static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
251static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
252static void cache_reap(struct work_struct *unused);
253
254static int slab_early_init = 1;
255
256#define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
257#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
258
259static void kmem_cache_node_init(struct kmem_cache_node *parent)
260{
261 INIT_LIST_HEAD(&parent->slabs_full);
262 INIT_LIST_HEAD(&parent->slabs_partial);
263 INIT_LIST_HEAD(&parent->slabs_free);
264 parent->shared = NULL;
265 parent->alien = NULL;
266 parent->colour_next = 0;
267 spin_lock_init(&parent->list_lock);
268 parent->free_objects = 0;
269 parent->free_touched = 0;
270}
271
272#define MAKE_LIST(cachep, listp, slab, nodeid) \
273 do { \
274 INIT_LIST_HEAD(listp); \
275 list_splice(&get_node(cachep, nodeid)->slab, listp); \
276 } while (0)
277
278#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
279 do { \
280 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
281 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
282 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
283 } while (0)
284
285#define CFLGS_OFF_SLAB (0x80000000UL)
286#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
287
288#define BATCHREFILL_LIMIT 16
289/*
290 * Optimization question: fewer reaps means less probability for unnessary
291 * cpucache drain/refill cycles.
292 *
293 * OTOH the cpuarrays can contain lots of objects,
294 * which could lock up otherwise freeable slabs.
295 */
296#define REAPTIMEOUT_AC (2*HZ)
297#define REAPTIMEOUT_NODE (4*HZ)
298
299#if STATS
300#define STATS_INC_ACTIVE(x) ((x)->num_active++)
301#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
302#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
303#define STATS_INC_GROWN(x) ((x)->grown++)
304#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
305#define STATS_SET_HIGH(x) \
306 do { \
307 if ((x)->num_active > (x)->high_mark) \
308 (x)->high_mark = (x)->num_active; \
309 } while (0)
310#define STATS_INC_ERR(x) ((x)->errors++)
311#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
312#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
313#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
314#define STATS_SET_FREEABLE(x, i) \
315 do { \
316 if ((x)->max_freeable < i) \
317 (x)->max_freeable = i; \
318 } while (0)
319#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
320#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
321#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
322#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
323#else
324#define STATS_INC_ACTIVE(x) do { } while (0)
325#define STATS_DEC_ACTIVE(x) do { } while (0)
326#define STATS_INC_ALLOCED(x) do { } while (0)
327#define STATS_INC_GROWN(x) do { } while (0)
328#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
329#define STATS_SET_HIGH(x) do { } while (0)
330#define STATS_INC_ERR(x) do { } while (0)
331#define STATS_INC_NODEALLOCS(x) do { } while (0)
332#define STATS_INC_NODEFREES(x) do { } while (0)
333#define STATS_INC_ACOVERFLOW(x) do { } while (0)
334#define STATS_SET_FREEABLE(x, i) do { } while (0)
335#define STATS_INC_ALLOCHIT(x) do { } while (0)
336#define STATS_INC_ALLOCMISS(x) do { } while (0)
337#define STATS_INC_FREEHIT(x) do { } while (0)
338#define STATS_INC_FREEMISS(x) do { } while (0)
339#endif
340
341#if DEBUG
342
343/*
344 * memory layout of objects:
345 * 0 : objp
346 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
347 * the end of an object is aligned with the end of the real
348 * allocation. Catches writes behind the end of the allocation.
349 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
350 * redzone word.
351 * cachep->obj_offset: The real object.
352 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
353 * cachep->size - 1* BYTES_PER_WORD: last caller address
354 * [BYTES_PER_WORD long]
355 */
356static int obj_offset(struct kmem_cache *cachep)
357{
358 return cachep->obj_offset;
359}
360
361static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
362{
363 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
364 return (unsigned long long*) (objp + obj_offset(cachep) -
365 sizeof(unsigned long long));
366}
367
368static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
369{
370 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
371 if (cachep->flags & SLAB_STORE_USER)
372 return (unsigned long long *)(objp + cachep->size -
373 sizeof(unsigned long long) -
374 REDZONE_ALIGN);
375 return (unsigned long long *) (objp + cachep->size -
376 sizeof(unsigned long long));
377}
378
379static void **dbg_userword(struct kmem_cache *cachep, void *objp)
380{
381 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
382 return (void **)(objp + cachep->size - BYTES_PER_WORD);
383}
384
385#else
386
387#define obj_offset(x) 0
388#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
389#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
390#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
391
392#endif
393
394#define OBJECT_FREE (0)
395#define OBJECT_ACTIVE (1)
396
397#ifdef CONFIG_DEBUG_SLAB_LEAK
398
399static void set_obj_status(struct page *page, int idx, int val)
400{
401 int freelist_size;
402 char *status;
403 struct kmem_cache *cachep = page->slab_cache;
404
405 freelist_size = cachep->num * sizeof(freelist_idx_t);
406 status = (char *)page->freelist + freelist_size;
407 status[idx] = val;
408}
409
410static inline unsigned int get_obj_status(struct page *page, int idx)
411{
412 int freelist_size;
413 char *status;
414 struct kmem_cache *cachep = page->slab_cache;
415
416 freelist_size = cachep->num * sizeof(freelist_idx_t);
417 status = (char *)page->freelist + freelist_size;
418
419 return status[idx];
420}
421
422#else
423static inline void set_obj_status(struct page *page, int idx, int val) {}
424
425#endif
426
427/*
428 * Do not go above this order unless 0 objects fit into the slab or
429 * overridden on the command line.
430 */
431#define SLAB_MAX_ORDER_HI 1
432#define SLAB_MAX_ORDER_LO 0
433static int slab_max_order = SLAB_MAX_ORDER_LO;
434static bool slab_max_order_set __initdata;
435
436static inline struct kmem_cache *virt_to_cache(const void *obj)
437{
438 struct page *page = virt_to_head_page(obj);
439 return page->slab_cache;
440}
441
442static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
443 unsigned int idx)
444{
445 return page->s_mem + cache->size * idx;
446}
447
448/*
449 * We want to avoid an expensive divide : (offset / cache->size)
450 * Using the fact that size is a constant for a particular cache,
451 * we can replace (offset / cache->size) by
452 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
453 */
454static inline unsigned int obj_to_index(const struct kmem_cache *cache,
455 const struct page *page, void *obj)
456{
457 u32 offset = (obj - page->s_mem);
458 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
459}
460
461static struct arraycache_init initarray_generic =
462 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
463
464/* internal cache of cache description objs */
465static struct kmem_cache kmem_cache_boot = {
466 .batchcount = 1,
467 .limit = BOOT_CPUCACHE_ENTRIES,
468 .shared = 1,
469 .size = sizeof(struct kmem_cache),
470 .name = "kmem_cache",
471};
472
473#define BAD_ALIEN_MAGIC 0x01020304ul
474
475static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
476
477static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
478{
479 return cachep->array[smp_processor_id()];
480}
481
482static size_t calculate_freelist_size(int nr_objs, size_t align)
483{
484 size_t freelist_size;
485
486 freelist_size = nr_objs * sizeof(freelist_idx_t);
487 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
488 freelist_size += nr_objs * sizeof(char);
489
490 if (align)
491 freelist_size = ALIGN(freelist_size, align);
492
493 return freelist_size;
494}
495
496static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
497 size_t idx_size, size_t align)
498{
499 int nr_objs;
500 size_t remained_size;
501 size_t freelist_size;
502 int extra_space = 0;
503
504 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
505 extra_space = sizeof(char);
506 /*
507 * Ignore padding for the initial guess. The padding
508 * is at most @align-1 bytes, and @buffer_size is at
509 * least @align. In the worst case, this result will
510 * be one greater than the number of objects that fit
511 * into the memory allocation when taking the padding
512 * into account.
513 */
514 nr_objs = slab_size / (buffer_size + idx_size + extra_space);
515
516 /*
517 * This calculated number will be either the right
518 * amount, or one greater than what we want.
519 */
520 remained_size = slab_size - nr_objs * buffer_size;
521 freelist_size = calculate_freelist_size(nr_objs, align);
522 if (remained_size < freelist_size)
523 nr_objs--;
524
525 return nr_objs;
526}
527
528/*
529 * Calculate the number of objects and left-over bytes for a given buffer size.
530 */
531static void cache_estimate(unsigned long gfporder, size_t buffer_size,
532 size_t align, int flags, size_t *left_over,
533 unsigned int *num)
534{
535 int nr_objs;
536 size_t mgmt_size;
537 size_t slab_size = PAGE_SIZE << gfporder;
538
539 /*
540 * The slab management structure can be either off the slab or
541 * on it. For the latter case, the memory allocated for a
542 * slab is used for:
543 *
544 * - One unsigned int for each object
545 * - Padding to respect alignment of @align
546 * - @buffer_size bytes for each object
547 *
548 * If the slab management structure is off the slab, then the
549 * alignment will already be calculated into the size. Because
550 * the slabs are all pages aligned, the objects will be at the
551 * correct alignment when allocated.
552 */
553 if (flags & CFLGS_OFF_SLAB) {
554 mgmt_size = 0;
555 nr_objs = slab_size / buffer_size;
556
557 } else {
558 nr_objs = calculate_nr_objs(slab_size, buffer_size,
559 sizeof(freelist_idx_t), align);
560 mgmt_size = calculate_freelist_size(nr_objs, align);
561 }
562 *num = nr_objs;
563 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
564}
565
566#if DEBUG
567#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
568
569static void __slab_error(const char *function, struct kmem_cache *cachep,
570 char *msg)
571{
572 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
573 function, cachep->name, msg);
574 dump_stack();
575 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
576}
577#endif
578
579/*
580 * By default on NUMA we use alien caches to stage the freeing of
581 * objects allocated from other nodes. This causes massive memory
582 * inefficiencies when using fake NUMA setup to split memory into a
583 * large number of small nodes, so it can be disabled on the command
584 * line
585 */
586
587static int use_alien_caches __read_mostly = 1;
588static int __init noaliencache_setup(char *s)
589{
590 use_alien_caches = 0;
591 return 1;
592}
593__setup("noaliencache", noaliencache_setup);
594
595static int __init slab_max_order_setup(char *str)
596{
597 get_option(&str, &slab_max_order);
598 slab_max_order = slab_max_order < 0 ? 0 :
599 min(slab_max_order, MAX_ORDER - 1);
600 slab_max_order_set = true;
601
602 return 1;
603}
604__setup("slab_max_order=", slab_max_order_setup);
605
606#ifdef CONFIG_NUMA
607/*
608 * Special reaping functions for NUMA systems called from cache_reap().
609 * These take care of doing round robin flushing of alien caches (containing
610 * objects freed on different nodes from which they were allocated) and the
611 * flushing of remote pcps by calling drain_node_pages.
612 */
613static DEFINE_PER_CPU(unsigned long, slab_reap_node);
614
615static void init_reap_node(int cpu)
616{
617 int node;
618
619 node = next_node(cpu_to_mem(cpu), node_online_map);
620 if (node == MAX_NUMNODES)
621 node = first_node(node_online_map);
622
623 per_cpu(slab_reap_node, cpu) = node;
624}
625
626static void next_reap_node(void)
627{
628 int node = __this_cpu_read(slab_reap_node);
629
630 node = next_node(node, node_online_map);
631 if (unlikely(node >= MAX_NUMNODES))
632 node = first_node(node_online_map);
633 __this_cpu_write(slab_reap_node, node);
634}
635
636#else
637#define init_reap_node(cpu) do { } while (0)
638#define next_reap_node(void) do { } while (0)
639#endif
640
641/*
642 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
643 * via the workqueue/eventd.
644 * Add the CPU number into the expiration time to minimize the possibility of
645 * the CPUs getting into lockstep and contending for the global cache chain
646 * lock.
647 */
648static void start_cpu_timer(int cpu)
649{
650 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
651
652 /*
653 * When this gets called from do_initcalls via cpucache_init(),
654 * init_workqueues() has already run, so keventd will be setup
655 * at that time.
656 */
657 if (keventd_up() && reap_work->work.func == NULL) {
658 init_reap_node(cpu);
659 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
660 schedule_delayed_work_on(cpu, reap_work,
661 __round_jiffies_relative(HZ, cpu));
662 }
663}
664
665static void init_arraycache(struct array_cache *ac, int limit, int batch)
666{
667 /*
668 * The array_cache structures contain pointers to free object.
669 * However, when such objects are allocated or transferred to another
670 * cache the pointers are not cleared and they could be counted as
671 * valid references during a kmemleak scan. Therefore, kmemleak must
672 * not scan such objects.
673 */
674 kmemleak_no_scan(ac);
675 if (ac) {
676 ac->avail = 0;
677 ac->limit = limit;
678 ac->batchcount = batch;
679 ac->touched = 0;
680 }
681}
682
683static struct array_cache *alloc_arraycache(int node, int entries,
684 int batchcount, gfp_t gfp)
685{
686 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
687 struct array_cache *ac = NULL;
688
689 ac = kmalloc_node(memsize, gfp, node);
690 init_arraycache(ac, entries, batchcount);
691 return ac;
692}
693
694static inline bool is_slab_pfmemalloc(struct page *page)
695{
696 return PageSlabPfmemalloc(page);
697}
698
699/* Clears pfmemalloc_active if no slabs have pfmalloc set */
700static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
701 struct array_cache *ac)
702{
703 struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
704 struct page *page;
705 unsigned long flags;
706
707 if (!pfmemalloc_active)
708 return;
709
710 spin_lock_irqsave(&n->list_lock, flags);
711 list_for_each_entry(page, &n->slabs_full, lru)
712 if (is_slab_pfmemalloc(page))
713 goto out;
714
715 list_for_each_entry(page, &n->slabs_partial, lru)
716 if (is_slab_pfmemalloc(page))
717 goto out;
718
719 list_for_each_entry(page, &n->slabs_free, lru)
720 if (is_slab_pfmemalloc(page))
721 goto out;
722
723 pfmemalloc_active = false;
724out:
725 spin_unlock_irqrestore(&n->list_lock, flags);
726}
727
728static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
729 gfp_t flags, bool force_refill)
730{
731 int i;
732 void *objp = ac->entry[--ac->avail];
733
734 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
735 if (unlikely(is_obj_pfmemalloc(objp))) {
736 struct kmem_cache_node *n;
737
738 if (gfp_pfmemalloc_allowed(flags)) {
739 clear_obj_pfmemalloc(&objp);
740 return objp;
741 }
742
743 /* The caller cannot use PFMEMALLOC objects, find another one */
744 for (i = 0; i < ac->avail; i++) {
745 /* If a !PFMEMALLOC object is found, swap them */
746 if (!is_obj_pfmemalloc(ac->entry[i])) {
747 objp = ac->entry[i];
748 ac->entry[i] = ac->entry[ac->avail];
749 ac->entry[ac->avail] = objp;
750 return objp;
751 }
752 }
753
754 /*
755 * If there are empty slabs on the slabs_free list and we are
756 * being forced to refill the cache, mark this one !pfmemalloc.
757 */
758 n = get_node(cachep, numa_mem_id());
759 if (!list_empty(&n->slabs_free) && force_refill) {
760 struct page *page = virt_to_head_page(objp);
761 ClearPageSlabPfmemalloc(page);
762 clear_obj_pfmemalloc(&objp);
763 recheck_pfmemalloc_active(cachep, ac);
764 return objp;
765 }
766
767 /* No !PFMEMALLOC objects available */
768 ac->avail++;
769 objp = NULL;
770 }
771
772 return objp;
773}
774
775static inline void *ac_get_obj(struct kmem_cache *cachep,
776 struct array_cache *ac, gfp_t flags, bool force_refill)
777{
778 void *objp;
779
780 if (unlikely(sk_memalloc_socks()))
781 objp = __ac_get_obj(cachep, ac, flags, force_refill);
782 else
783 objp = ac->entry[--ac->avail];
784
785 return objp;
786}
787
788static noinline void *__ac_put_obj(struct kmem_cache *cachep,
789 struct array_cache *ac, void *objp)
790{
791 if (unlikely(pfmemalloc_active)) {
792 /* Some pfmemalloc slabs exist, check if this is one */
793 struct page *page = virt_to_head_page(objp);
794 if (PageSlabPfmemalloc(page))
795 set_obj_pfmemalloc(&objp);
796 }
797
798 return objp;
799}
800
801static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
802 void *objp)
803{
804 if (unlikely(sk_memalloc_socks()))
805 objp = __ac_put_obj(cachep, ac, objp);
806
807 ac->entry[ac->avail++] = objp;
808}
809
810/*
811 * Transfer objects in one arraycache to another.
812 * Locking must be handled by the caller.
813 *
814 * Return the number of entries transferred.
815 */
816static int transfer_objects(struct array_cache *to,
817 struct array_cache *from, unsigned int max)
818{
819 /* Figure out how many entries to transfer */
820 int nr = min3(from->avail, max, to->limit - to->avail);
821
822 if (!nr)
823 return 0;
824
825 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
826 sizeof(void *) *nr);
827
828 from->avail -= nr;
829 to->avail += nr;
830 return nr;
831}
832
833#ifndef CONFIG_NUMA
834
835#define drain_alien_cache(cachep, alien) do { } while (0)
836#define reap_alien(cachep, n) do { } while (0)
837
838static inline struct alien_cache **alloc_alien_cache(int node,
839 int limit, gfp_t gfp)
840{
841 return (struct alien_cache **)BAD_ALIEN_MAGIC;
842}
843
844static inline void free_alien_cache(struct alien_cache **ac_ptr)
845{
846}
847
848static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
849{
850 return 0;
851}
852
853static inline void *alternate_node_alloc(struct kmem_cache *cachep,
854 gfp_t flags)
855{
856 return NULL;
857}
858
859static inline void *____cache_alloc_node(struct kmem_cache *cachep,
860 gfp_t flags, int nodeid)
861{
862 return NULL;
863}
864
865#else /* CONFIG_NUMA */
866
867static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
868static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
869
870static struct alien_cache *__alloc_alien_cache(int node, int entries,
871 int batch, gfp_t gfp)
872{
873 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
874 struct alien_cache *alc = NULL;
875
876 alc = kmalloc_node(memsize, gfp, node);
877 init_arraycache(&alc->ac, entries, batch);
878 spin_lock_init(&alc->lock);
879 return alc;
880}
881
882static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
883{
884 struct alien_cache **alc_ptr;
885 size_t memsize = sizeof(void *) * nr_node_ids;
886 int i;
887
888 if (limit > 1)
889 limit = 12;
890 alc_ptr = kzalloc_node(memsize, gfp, node);
891 if (!alc_ptr)
892 return NULL;
893
894 for_each_node(i) {
895 if (i == node || !node_online(i))
896 continue;
897 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
898 if (!alc_ptr[i]) {
899 for (i--; i >= 0; i--)
900 kfree(alc_ptr[i]);
901 kfree(alc_ptr);
902 return NULL;
903 }
904 }
905 return alc_ptr;
906}
907
908static void free_alien_cache(struct alien_cache **alc_ptr)
909{
910 int i;
911
912 if (!alc_ptr)
913 return;
914 for_each_node(i)
915 kfree(alc_ptr[i]);
916 kfree(alc_ptr);
917}
918
919static void __drain_alien_cache(struct kmem_cache *cachep,
920 struct array_cache *ac, int node,
921 struct list_head *list)
922{
923 struct kmem_cache_node *n = get_node(cachep, node);
924
925 if (ac->avail) {
926 spin_lock(&n->list_lock);
927 /*
928 * Stuff objects into the remote nodes shared array first.
929 * That way we could avoid the overhead of putting the objects
930 * into the free lists and getting them back later.
931 */
932 if (n->shared)
933 transfer_objects(n->shared, ac, ac->limit);
934
935 free_block(cachep, ac->entry, ac->avail, node, list);
936 ac->avail = 0;
937 spin_unlock(&n->list_lock);
938 }
939}
940
941/*
942 * Called from cache_reap() to regularly drain alien caches round robin.
943 */
944static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
945{
946 int node = __this_cpu_read(slab_reap_node);
947
948 if (n->alien) {
949 struct alien_cache *alc = n->alien[node];
950 struct array_cache *ac;
951
952 if (alc) {
953 ac = &alc->ac;
954 if (ac->avail && spin_trylock_irq(&alc->lock)) {
955 LIST_HEAD(list);
956
957 __drain_alien_cache(cachep, ac, node, &list);
958 spin_unlock_irq(&alc->lock);
959 slabs_destroy(cachep, &list);
960 }
961 }
962 }
963}
964
965static void drain_alien_cache(struct kmem_cache *cachep,
966 struct alien_cache **alien)
967{
968 int i = 0;
969 struct alien_cache *alc;
970 struct array_cache *ac;
971 unsigned long flags;
972
973 for_each_online_node(i) {
974 alc = alien[i];
975 if (alc) {
976 LIST_HEAD(list);
977
978 ac = &alc->ac;
979 spin_lock_irqsave(&alc->lock, flags);
980 __drain_alien_cache(cachep, ac, i, &list);
981 spin_unlock_irqrestore(&alc->lock, flags);
982 slabs_destroy(cachep, &list);
983 }
984 }
985}
986
987static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
988 int node, int page_node)
989{
990 struct kmem_cache_node *n;
991 struct alien_cache *alien = NULL;
992 struct array_cache *ac;
993 LIST_HEAD(list);
994
995 n = get_node(cachep, node);
996 STATS_INC_NODEFREES(cachep);
997 if (n->alien && n->alien[page_node]) {
998 alien = n->alien[page_node];
999 ac = &alien->ac;
1000 spin_lock(&alien->lock);
1001 if (unlikely(ac->avail == ac->limit)) {
1002 STATS_INC_ACOVERFLOW(cachep);
1003 __drain_alien_cache(cachep, ac, page_node, &list);
1004 }
1005 ac_put_obj(cachep, ac, objp);
1006 spin_unlock(&alien->lock);
1007 slabs_destroy(cachep, &list);
1008 } else {
1009 n = get_node(cachep, page_node);
1010 spin_lock(&n->list_lock);
1011 free_block(cachep, &objp, 1, page_node, &list);
1012 spin_unlock(&n->list_lock);
1013 slabs_destroy(cachep, &list);
1014 }
1015 return 1;
1016}
1017
1018static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1019{
1020 int page_node = page_to_nid(virt_to_page(objp));
1021 int node = numa_mem_id();
1022 /*
1023 * Make sure we are not freeing a object from another node to the array
1024 * cache on this cpu.
1025 */
1026 if (likely(node == page_node))
1027 return 0;
1028
1029 return __cache_free_alien(cachep, objp, node, page_node);
1030}
1031#endif
1032
1033/*
1034 * Allocates and initializes node for a node on each slab cache, used for
1035 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
1036 * will be allocated off-node since memory is not yet online for the new node.
1037 * When hotplugging memory or a cpu, existing node are not replaced if
1038 * already in use.
1039 *
1040 * Must hold slab_mutex.
1041 */
1042static int init_cache_node_node(int node)
1043{
1044 struct kmem_cache *cachep;
1045 struct kmem_cache_node *n;
1046 const size_t memsize = sizeof(struct kmem_cache_node);
1047
1048 list_for_each_entry(cachep, &slab_caches, list) {
1049 /*
1050 * Set up the kmem_cache_node for cpu before we can
1051 * begin anything. Make sure some other cpu on this
1052 * node has not already allocated this
1053 */
1054 n = get_node(cachep, node);
1055 if (!n) {
1056 n = kmalloc_node(memsize, GFP_KERNEL, node);
1057 if (!n)
1058 return -ENOMEM;
1059 kmem_cache_node_init(n);
1060 n->next_reap = jiffies + REAPTIMEOUT_NODE +
1061 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1062
1063 /*
1064 * The kmem_cache_nodes don't come and go as CPUs
1065 * come and go. slab_mutex is sufficient
1066 * protection here.
1067 */
1068 cachep->node[node] = n;
1069 }
1070
1071 spin_lock_irq(&n->list_lock);
1072 n->free_limit =
1073 (1 + nr_cpus_node(node)) *
1074 cachep->batchcount + cachep->num;
1075 spin_unlock_irq(&n->list_lock);
1076 }
1077 return 0;
1078}
1079
1080static inline int slabs_tofree(struct kmem_cache *cachep,
1081 struct kmem_cache_node *n)
1082{
1083 return (n->free_objects + cachep->num - 1) / cachep->num;
1084}
1085
1086static void cpuup_canceled(long cpu)
1087{
1088 struct kmem_cache *cachep;
1089 struct kmem_cache_node *n = NULL;
1090 int node = cpu_to_mem(cpu);
1091 const struct cpumask *mask = cpumask_of_node(node);
1092
1093 list_for_each_entry(cachep, &slab_caches, list) {
1094 struct array_cache *nc;
1095 struct array_cache *shared;
1096 struct alien_cache **alien;
1097 LIST_HEAD(list);
1098
1099 /* cpu is dead; no one can alloc from it. */
1100 nc = cachep->array[cpu];
1101 cachep->array[cpu] = NULL;
1102 n = get_node(cachep, node);
1103
1104 if (!n)
1105 goto free_array_cache;
1106
1107 spin_lock_irq(&n->list_lock);
1108
1109 /* Free limit for this kmem_cache_node */
1110 n->free_limit -= cachep->batchcount;
1111 if (nc)
1112 free_block(cachep, nc->entry, nc->avail, node, &list);
1113
1114 if (!cpumask_empty(mask)) {
1115 spin_unlock_irq(&n->list_lock);
1116 goto free_array_cache;
1117 }
1118
1119 shared = n->shared;
1120 if (shared) {
1121 free_block(cachep, shared->entry,
1122 shared->avail, node, &list);
1123 n->shared = NULL;
1124 }
1125
1126 alien = n->alien;
1127 n->alien = NULL;
1128
1129 spin_unlock_irq(&n->list_lock);
1130
1131 kfree(shared);
1132 if (alien) {
1133 drain_alien_cache(cachep, alien);
1134 free_alien_cache(alien);
1135 }
1136free_array_cache:
1137 slabs_destroy(cachep, &list);
1138 kfree(nc);
1139 }
1140 /*
1141 * In the previous loop, all the objects were freed to
1142 * the respective cache's slabs, now we can go ahead and
1143 * shrink each nodelist to its limit.
1144 */
1145 list_for_each_entry(cachep, &slab_caches, list) {
1146 n = get_node(cachep, node);
1147 if (!n)
1148 continue;
1149 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1150 }
1151}
1152
1153static int cpuup_prepare(long cpu)
1154{
1155 struct kmem_cache *cachep;
1156 struct kmem_cache_node *n = NULL;
1157 int node = cpu_to_mem(cpu);
1158 int err;
1159
1160 /*
1161 * We need to do this right in the beginning since
1162 * alloc_arraycache's are going to use this list.
1163 * kmalloc_node allows us to add the slab to the right
1164 * kmem_cache_node and not this cpu's kmem_cache_node
1165 */
1166 err = init_cache_node_node(node);
1167 if (err < 0)
1168 goto bad;
1169
1170 /*
1171 * Now we can go ahead with allocating the shared arrays and
1172 * array caches
1173 */
1174 list_for_each_entry(cachep, &slab_caches, list) {
1175 struct array_cache *nc;
1176 struct array_cache *shared = NULL;
1177 struct alien_cache **alien = NULL;
1178
1179 nc = alloc_arraycache(node, cachep->limit,
1180 cachep->batchcount, GFP_KERNEL);
1181 if (!nc)
1182 goto bad;
1183 if (cachep->shared) {
1184 shared = alloc_arraycache(node,
1185 cachep->shared * cachep->batchcount,
1186 0xbaadf00d, GFP_KERNEL);
1187 if (!shared) {
1188 kfree(nc);
1189 goto bad;
1190 }
1191 }
1192 if (use_alien_caches) {
1193 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1194 if (!alien) {
1195 kfree(shared);
1196 kfree(nc);
1197 goto bad;
1198 }
1199 }
1200 cachep->array[cpu] = nc;
1201 n = get_node(cachep, node);
1202 BUG_ON(!n);
1203
1204 spin_lock_irq(&n->list_lock);
1205 if (!n->shared) {
1206 /*
1207 * We are serialised from CPU_DEAD or
1208 * CPU_UP_CANCELLED by the cpucontrol lock
1209 */
1210 n->shared = shared;
1211 shared = NULL;
1212 }
1213#ifdef CONFIG_NUMA
1214 if (!n->alien) {
1215 n->alien = alien;
1216 alien = NULL;
1217 }
1218#endif
1219 spin_unlock_irq(&n->list_lock);
1220 kfree(shared);
1221 free_alien_cache(alien);
1222 }
1223
1224 return 0;
1225bad:
1226 cpuup_canceled(cpu);
1227 return -ENOMEM;
1228}
1229
1230static int cpuup_callback(struct notifier_block *nfb,
1231 unsigned long action, void *hcpu)
1232{
1233 long cpu = (long)hcpu;
1234 int err = 0;
1235
1236 switch (action) {
1237 case CPU_UP_PREPARE:
1238 case CPU_UP_PREPARE_FROZEN:
1239 mutex_lock(&slab_mutex);
1240 err = cpuup_prepare(cpu);
1241 mutex_unlock(&slab_mutex);
1242 break;
1243 case CPU_ONLINE:
1244 case CPU_ONLINE_FROZEN:
1245 start_cpu_timer(cpu);
1246 break;
1247#ifdef CONFIG_HOTPLUG_CPU
1248 case CPU_DOWN_PREPARE:
1249 case CPU_DOWN_PREPARE_FROZEN:
1250 /*
1251 * Shutdown cache reaper. Note that the slab_mutex is
1252 * held so that if cache_reap() is invoked it cannot do
1253 * anything expensive but will only modify reap_work
1254 * and reschedule the timer.
1255 */
1256 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1257 /* Now the cache_reaper is guaranteed to be not running. */
1258 per_cpu(slab_reap_work, cpu).work.func = NULL;
1259 break;
1260 case CPU_DOWN_FAILED:
1261 case CPU_DOWN_FAILED_FROZEN:
1262 start_cpu_timer(cpu);
1263 break;
1264 case CPU_DEAD:
1265 case CPU_DEAD_FROZEN:
1266 /*
1267 * Even if all the cpus of a node are down, we don't free the
1268 * kmem_cache_node of any cache. This to avoid a race between
1269 * cpu_down, and a kmalloc allocation from another cpu for
1270 * memory from the node of the cpu going down. The node
1271 * structure is usually allocated from kmem_cache_create() and
1272 * gets destroyed at kmem_cache_destroy().
1273 */
1274 /* fall through */
1275#endif
1276 case CPU_UP_CANCELED:
1277 case CPU_UP_CANCELED_FROZEN:
1278 mutex_lock(&slab_mutex);
1279 cpuup_canceled(cpu);
1280 mutex_unlock(&slab_mutex);
1281 break;
1282 }
1283 return notifier_from_errno(err);
1284}
1285
1286static struct notifier_block cpucache_notifier = {
1287 &cpuup_callback, NULL, 0
1288};
1289
1290#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1291/*
1292 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1293 * Returns -EBUSY if all objects cannot be drained so that the node is not
1294 * removed.
1295 *
1296 * Must hold slab_mutex.
1297 */
1298static int __meminit drain_cache_node_node(int node)
1299{
1300 struct kmem_cache *cachep;
1301 int ret = 0;
1302
1303 list_for_each_entry(cachep, &slab_caches, list) {
1304 struct kmem_cache_node *n;
1305
1306 n = get_node(cachep, node);
1307 if (!n)
1308 continue;
1309
1310 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1311
1312 if (!list_empty(&n->slabs_full) ||
1313 !list_empty(&n->slabs_partial)) {
1314 ret = -EBUSY;
1315 break;
1316 }
1317 }
1318 return ret;
1319}
1320
1321static int __meminit slab_memory_callback(struct notifier_block *self,
1322 unsigned long action, void *arg)
1323{
1324 struct memory_notify *mnb = arg;
1325 int ret = 0;
1326 int nid;
1327
1328 nid = mnb->status_change_nid;
1329 if (nid < 0)
1330 goto out;
1331
1332 switch (action) {
1333 case MEM_GOING_ONLINE:
1334 mutex_lock(&slab_mutex);
1335 ret = init_cache_node_node(nid);
1336 mutex_unlock(&slab_mutex);
1337 break;
1338 case MEM_GOING_OFFLINE:
1339 mutex_lock(&slab_mutex);
1340 ret = drain_cache_node_node(nid);
1341 mutex_unlock(&slab_mutex);
1342 break;
1343 case MEM_ONLINE:
1344 case MEM_OFFLINE:
1345 case MEM_CANCEL_ONLINE:
1346 case MEM_CANCEL_OFFLINE:
1347 break;
1348 }
1349out:
1350 return notifier_from_errno(ret);
1351}
1352#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1353
1354/*
1355 * swap the static kmem_cache_node with kmalloced memory
1356 */
1357static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1358 int nodeid)
1359{
1360 struct kmem_cache_node *ptr;
1361
1362 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1363 BUG_ON(!ptr);
1364
1365 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1366 /*
1367 * Do not assume that spinlocks can be initialized via memcpy:
1368 */
1369 spin_lock_init(&ptr->list_lock);
1370
1371 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1372 cachep->node[nodeid] = ptr;
1373}
1374
1375/*
1376 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1377 * size of kmem_cache_node.
1378 */
1379static void __init set_up_node(struct kmem_cache *cachep, int index)
1380{
1381 int node;
1382
1383 for_each_online_node(node) {
1384 cachep->node[node] = &init_kmem_cache_node[index + node];
1385 cachep->node[node]->next_reap = jiffies +
1386 REAPTIMEOUT_NODE +
1387 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1388 }
1389}
1390
1391/*
1392 * The memory after the last cpu cache pointer is used for the
1393 * the node pointer.
1394 */
1395static void setup_node_pointer(struct kmem_cache *cachep)
1396{
1397 cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
1398}
1399
1400/*
1401 * Initialisation. Called after the page allocator have been initialised and
1402 * before smp_init().
1403 */
1404void __init kmem_cache_init(void)
1405{
1406 int i;
1407
1408 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1409 sizeof(struct rcu_head));
1410 kmem_cache = &kmem_cache_boot;
1411 setup_node_pointer(kmem_cache);
1412
1413 if (num_possible_nodes() == 1)
1414 use_alien_caches = 0;
1415
1416 for (i = 0; i < NUM_INIT_LISTS; i++)
1417 kmem_cache_node_init(&init_kmem_cache_node[i]);
1418
1419 set_up_node(kmem_cache, CACHE_CACHE);
1420
1421 /*
1422 * Fragmentation resistance on low memory - only use bigger
1423 * page orders on machines with more than 32MB of memory if
1424 * not overridden on the command line.
1425 */
1426 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1427 slab_max_order = SLAB_MAX_ORDER_HI;
1428
1429 /* Bootstrap is tricky, because several objects are allocated
1430 * from caches that do not exist yet:
1431 * 1) initialize the kmem_cache cache: it contains the struct
1432 * kmem_cache structures of all caches, except kmem_cache itself:
1433 * kmem_cache is statically allocated.
1434 * Initially an __init data area is used for the head array and the
1435 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1436 * array at the end of the bootstrap.
1437 * 2) Create the first kmalloc cache.
1438 * The struct kmem_cache for the new cache is allocated normally.
1439 * An __init data area is used for the head array.
1440 * 3) Create the remaining kmalloc caches, with minimally sized
1441 * head arrays.
1442 * 4) Replace the __init data head arrays for kmem_cache and the first
1443 * kmalloc cache with kmalloc allocated arrays.
1444 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1445 * the other cache's with kmalloc allocated memory.
1446 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1447 */
1448
1449 /* 1) create the kmem_cache */
1450
1451 /*
1452 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1453 */
1454 create_boot_cache(kmem_cache, "kmem_cache",
1455 offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1456 nr_node_ids * sizeof(struct kmem_cache_node *),
1457 SLAB_HWCACHE_ALIGN);
1458 list_add(&kmem_cache->list, &slab_caches);
1459
1460 /* 2+3) create the kmalloc caches */
1461
1462 /*
1463 * Initialize the caches that provide memory for the array cache and the
1464 * kmem_cache_node structures first. Without this, further allocations will
1465 * bug.
1466 */
1467
1468 kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
1469 kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
1470
1471 if (INDEX_AC != INDEX_NODE)
1472 kmalloc_caches[INDEX_NODE] =
1473 create_kmalloc_cache("kmalloc-node",
1474 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1475
1476 slab_early_init = 0;
1477
1478 /* 4) Replace the bootstrap head arrays */
1479 {
1480 struct array_cache *ptr;
1481
1482 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1483
1484 memcpy(ptr, cpu_cache_get(kmem_cache),
1485 sizeof(struct arraycache_init));
1486
1487 kmem_cache->array[smp_processor_id()] = ptr;
1488
1489 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1490
1491 BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
1492 != &initarray_generic.cache);
1493 memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
1494 sizeof(struct arraycache_init));
1495
1496 kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
1497 }
1498 /* 5) Replace the bootstrap kmem_cache_node */
1499 {
1500 int nid;
1501
1502 for_each_online_node(nid) {
1503 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1504
1505 init_list(kmalloc_caches[INDEX_AC],
1506 &init_kmem_cache_node[SIZE_AC + nid], nid);
1507
1508 if (INDEX_AC != INDEX_NODE) {
1509 init_list(kmalloc_caches[INDEX_NODE],
1510 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1511 }
1512 }
1513 }
1514
1515 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1516}
1517
1518void __init kmem_cache_init_late(void)
1519{
1520 struct kmem_cache *cachep;
1521
1522 slab_state = UP;
1523
1524 /* 6) resize the head arrays to their final sizes */
1525 mutex_lock(&slab_mutex);
1526 list_for_each_entry(cachep, &slab_caches, list)
1527 if (enable_cpucache(cachep, GFP_NOWAIT))
1528 BUG();
1529 mutex_unlock(&slab_mutex);
1530
1531 /* Done! */
1532 slab_state = FULL;
1533
1534 /*
1535 * Register a cpu startup notifier callback that initializes
1536 * cpu_cache_get for all new cpus
1537 */
1538 register_cpu_notifier(&cpucache_notifier);
1539
1540#ifdef CONFIG_NUMA
1541 /*
1542 * Register a memory hotplug callback that initializes and frees
1543 * node.
1544 */
1545 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1546#endif
1547
1548 /*
1549 * The reap timers are started later, with a module init call: That part
1550 * of the kernel is not yet operational.
1551 */
1552}
1553
1554static int __init cpucache_init(void)
1555{
1556 int cpu;
1557
1558 /*
1559 * Register the timers that return unneeded pages to the page allocator
1560 */
1561 for_each_online_cpu(cpu)
1562 start_cpu_timer(cpu);
1563
1564 /* Done! */
1565 slab_state = FULL;
1566 return 0;
1567}
1568__initcall(cpucache_init);
1569
1570static noinline void
1571slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1572{
1573#if DEBUG
1574 struct kmem_cache_node *n;
1575 struct page *page;
1576 unsigned long flags;
1577 int node;
1578 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1579 DEFAULT_RATELIMIT_BURST);
1580
1581 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1582 return;
1583
1584 printk(KERN_WARNING
1585 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1586 nodeid, gfpflags);
1587 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
1588 cachep->name, cachep->size, cachep->gfporder);
1589
1590 for_each_kmem_cache_node(cachep, node, n) {
1591 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1592 unsigned long active_slabs = 0, num_slabs = 0;
1593
1594 spin_lock_irqsave(&n->list_lock, flags);
1595 list_for_each_entry(page, &n->slabs_full, lru) {
1596 active_objs += cachep->num;
1597 active_slabs++;
1598 }
1599 list_for_each_entry(page, &n->slabs_partial, lru) {
1600 active_objs += page->active;
1601 active_slabs++;
1602 }
1603 list_for_each_entry(page, &n->slabs_free, lru)
1604 num_slabs++;
1605
1606 free_objects += n->free_objects;
1607 spin_unlock_irqrestore(&n->list_lock, flags);
1608
1609 num_slabs += active_slabs;
1610 num_objs = num_slabs * cachep->num;
1611 printk(KERN_WARNING
1612 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1613 node, active_slabs, num_slabs, active_objs, num_objs,
1614 free_objects);
1615 }
1616#endif
1617}
1618
1619/*
1620 * Interface to system's page allocator. No need to hold the
1621 * kmem_cache_node ->list_lock.
1622 *
1623 * If we requested dmaable memory, we will get it. Even if we
1624 * did not request dmaable memory, we might get it, but that
1625 * would be relatively rare and ignorable.
1626 */
1627static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1628 int nodeid)
1629{
1630 struct page *page;
1631 int nr_pages;
1632
1633 flags |= cachep->allocflags;
1634 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1635 flags |= __GFP_RECLAIMABLE;
1636
1637 if (memcg_charge_slab(cachep, flags, cachep->gfporder))
1638 return NULL;
1639
1640 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1641 if (!page) {
1642 memcg_uncharge_slab(cachep, cachep->gfporder);
1643 slab_out_of_memory(cachep, flags, nodeid);
1644 return NULL;
1645 }
1646
1647 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1648 if (unlikely(page->pfmemalloc))
1649 pfmemalloc_active = true;
1650
1651 nr_pages = (1 << cachep->gfporder);
1652 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1653 add_zone_page_state(page_zone(page),
1654 NR_SLAB_RECLAIMABLE, nr_pages);
1655 else
1656 add_zone_page_state(page_zone(page),
1657 NR_SLAB_UNRECLAIMABLE, nr_pages);
1658 __SetPageSlab(page);
1659 if (page->pfmemalloc)
1660 SetPageSlabPfmemalloc(page);
1661
1662 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1663 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1664
1665 if (cachep->ctor)
1666 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1667 else
1668 kmemcheck_mark_unallocated_pages(page, nr_pages);
1669 }
1670
1671 return page;
1672}
1673
1674/*
1675 * Interface to system's page release.
1676 */
1677static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1678{
1679 const unsigned long nr_freed = (1 << cachep->gfporder);
1680
1681 kmemcheck_free_shadow(page, cachep->gfporder);
1682
1683 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1684 sub_zone_page_state(page_zone(page),
1685 NR_SLAB_RECLAIMABLE, nr_freed);
1686 else
1687 sub_zone_page_state(page_zone(page),
1688 NR_SLAB_UNRECLAIMABLE, nr_freed);
1689
1690 BUG_ON(!PageSlab(page));
1691 __ClearPageSlabPfmemalloc(page);
1692 __ClearPageSlab(page);
1693 page_mapcount_reset(page);
1694 page->mapping = NULL;
1695
1696 if (current->reclaim_state)
1697 current->reclaim_state->reclaimed_slab += nr_freed;
1698 __free_pages(page, cachep->gfporder);
1699 memcg_uncharge_slab(cachep, cachep->gfporder);
1700}
1701
1702static void kmem_rcu_free(struct rcu_head *head)
1703{
1704 struct kmem_cache *cachep;
1705 struct page *page;
1706
1707 page = container_of(head, struct page, rcu_head);
1708 cachep = page->slab_cache;
1709
1710 kmem_freepages(cachep, page);
1711}
1712
1713#if DEBUG
1714
1715#ifdef CONFIG_DEBUG_PAGEALLOC
1716static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1717 unsigned long caller)
1718{
1719 int size = cachep->object_size;
1720
1721 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1722
1723 if (size < 5 * sizeof(unsigned long))
1724 return;
1725
1726 *addr++ = 0x12345678;
1727 *addr++ = caller;
1728 *addr++ = smp_processor_id();
1729 size -= 3 * sizeof(unsigned long);
1730 {
1731 unsigned long *sptr = &caller;
1732 unsigned long svalue;
1733
1734 while (!kstack_end(sptr)) {
1735 svalue = *sptr++;
1736 if (kernel_text_address(svalue)) {
1737 *addr++ = svalue;
1738 size -= sizeof(unsigned long);
1739 if (size <= sizeof(unsigned long))
1740 break;
1741 }
1742 }
1743
1744 }
1745 *addr++ = 0x87654321;
1746}
1747#endif
1748
1749static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1750{
1751 int size = cachep->object_size;
1752 addr = &((char *)addr)[obj_offset(cachep)];
1753
1754 memset(addr, val, size);
1755 *(unsigned char *)(addr + size - 1) = POISON_END;
1756}
1757
1758static void dump_line(char *data, int offset, int limit)
1759{
1760 int i;
1761 unsigned char error = 0;
1762 int bad_count = 0;
1763
1764 printk(KERN_ERR "%03x: ", offset);
1765 for (i = 0; i < limit; i++) {
1766 if (data[offset + i] != POISON_FREE) {
1767 error = data[offset + i];
1768 bad_count++;
1769 }
1770 }
1771 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1772 &data[offset], limit, 1);
1773
1774 if (bad_count == 1) {
1775 error ^= POISON_FREE;
1776 if (!(error & (error - 1))) {
1777 printk(KERN_ERR "Single bit error detected. Probably "
1778 "bad RAM.\n");
1779#ifdef CONFIG_X86
1780 printk(KERN_ERR "Run memtest86+ or a similar memory "
1781 "test tool.\n");
1782#else
1783 printk(KERN_ERR "Run a memory test tool.\n");
1784#endif
1785 }
1786 }
1787}
1788#endif
1789
1790#if DEBUG
1791
1792static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1793{
1794 int i, size;
1795 char *realobj;
1796
1797 if (cachep->flags & SLAB_RED_ZONE) {
1798 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1799 *dbg_redzone1(cachep, objp),
1800 *dbg_redzone2(cachep, objp));
1801 }
1802
1803 if (cachep->flags & SLAB_STORE_USER) {
1804 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1805 *dbg_userword(cachep, objp),
1806 *dbg_userword(cachep, objp));
1807 }
1808 realobj = (char *)objp + obj_offset(cachep);
1809 size = cachep->object_size;
1810 for (i = 0; i < size && lines; i += 16, lines--) {
1811 int limit;
1812 limit = 16;
1813 if (i + limit > size)
1814 limit = size - i;
1815 dump_line(realobj, i, limit);
1816 }
1817}
1818
1819static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1820{
1821 char *realobj;
1822 int size, i;
1823 int lines = 0;
1824
1825 realobj = (char *)objp + obj_offset(cachep);
1826 size = cachep->object_size;
1827
1828 for (i = 0; i < size; i++) {
1829 char exp = POISON_FREE;
1830 if (i == size - 1)
1831 exp = POISON_END;
1832 if (realobj[i] != exp) {
1833 int limit;
1834 /* Mismatch ! */
1835 /* Print header */
1836 if (lines == 0) {
1837 printk(KERN_ERR
1838 "Slab corruption (%s): %s start=%p, len=%d\n",
1839 print_tainted(), cachep->name, realobj, size);
1840 print_objinfo(cachep, objp, 0);
1841 }
1842 /* Hexdump the affected line */
1843 i = (i / 16) * 16;
1844 limit = 16;
1845 if (i + limit > size)
1846 limit = size - i;
1847 dump_line(realobj, i, limit);
1848 i += 16;
1849 lines++;
1850 /* Limit to 5 lines */
1851 if (lines > 5)
1852 break;
1853 }
1854 }
1855 if (lines != 0) {
1856 /* Print some data about the neighboring objects, if they
1857 * exist:
1858 */
1859 struct page *page = virt_to_head_page(objp);
1860 unsigned int objnr;
1861
1862 objnr = obj_to_index(cachep, page, objp);
1863 if (objnr) {
1864 objp = index_to_obj(cachep, page, objnr - 1);
1865 realobj = (char *)objp + obj_offset(cachep);
1866 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1867 realobj, size);
1868 print_objinfo(cachep, objp, 2);
1869 }
1870 if (objnr + 1 < cachep->num) {
1871 objp = index_to_obj(cachep, page, objnr + 1);
1872 realobj = (char *)objp + obj_offset(cachep);
1873 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1874 realobj, size);
1875 print_objinfo(cachep, objp, 2);
1876 }
1877 }
1878}
1879#endif
1880
1881#if DEBUG
1882static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1883 struct page *page)
1884{
1885 int i;
1886 for (i = 0; i < cachep->num; i++) {
1887 void *objp = index_to_obj(cachep, page, i);
1888
1889 if (cachep->flags & SLAB_POISON) {
1890#ifdef CONFIG_DEBUG_PAGEALLOC
1891 if (cachep->size % PAGE_SIZE == 0 &&
1892 OFF_SLAB(cachep))
1893 kernel_map_pages(virt_to_page(objp),
1894 cachep->size / PAGE_SIZE, 1);
1895 else
1896 check_poison_obj(cachep, objp);
1897#else
1898 check_poison_obj(cachep, objp);
1899#endif
1900 }
1901 if (cachep->flags & SLAB_RED_ZONE) {
1902 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1903 slab_error(cachep, "start of a freed object "
1904 "was overwritten");
1905 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1906 slab_error(cachep, "end of a freed object "
1907 "was overwritten");
1908 }
1909 }
1910}
1911#else
1912static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1913 struct page *page)
1914{
1915}
1916#endif
1917
1918/**
1919 * slab_destroy - destroy and release all objects in a slab
1920 * @cachep: cache pointer being destroyed
1921 * @page: page pointer being destroyed
1922 *
1923 * Destroy all the objs in a slab page, and release the mem back to the system.
1924 * Before calling the slab page must have been unlinked from the cache. The
1925 * kmem_cache_node ->list_lock is not held/needed.
1926 */
1927static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1928{
1929 void *freelist;
1930
1931 freelist = page->freelist;
1932 slab_destroy_debugcheck(cachep, page);
1933 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1934 struct rcu_head *head;
1935
1936 /*
1937 * RCU free overloads the RCU head over the LRU.
1938 * slab_page has been overloeaded over the LRU,
1939 * however it is not used from now on so that
1940 * we can use it safely.
1941 */
1942 head = (void *)&page->rcu_head;
1943 call_rcu(head, kmem_rcu_free);
1944
1945 } else {
1946 kmem_freepages(cachep, page);
1947 }
1948
1949 /*
1950 * From now on, we don't use freelist
1951 * although actual page can be freed in rcu context
1952 */
1953 if (OFF_SLAB(cachep))
1954 kmem_cache_free(cachep->freelist_cache, freelist);
1955}
1956
1957static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1958{
1959 struct page *page, *n;
1960
1961 list_for_each_entry_safe(page, n, list, lru) {
1962 list_del(&page->lru);
1963 slab_destroy(cachep, page);
1964 }
1965}
1966
1967/**
1968 * calculate_slab_order - calculate size (page order) of slabs
1969 * @cachep: pointer to the cache that is being created
1970 * @size: size of objects to be created in this cache.
1971 * @align: required alignment for the objects.
1972 * @flags: slab allocation flags
1973 *
1974 * Also calculates the number of objects per slab.
1975 *
1976 * This could be made much more intelligent. For now, try to avoid using
1977 * high order pages for slabs. When the gfp() functions are more friendly
1978 * towards high-order requests, this should be changed.
1979 */
1980static size_t calculate_slab_order(struct kmem_cache *cachep,
1981 size_t size, size_t align, unsigned long flags)
1982{
1983 unsigned long offslab_limit;
1984 size_t left_over = 0;
1985 int gfporder;
1986
1987 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1988 unsigned int num;
1989 size_t remainder;
1990
1991 cache_estimate(gfporder, size, align, flags, &remainder, &num);
1992 if (!num)
1993 continue;
1994
1995 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1996 if (num > SLAB_OBJ_MAX_NUM)
1997 break;
1998
1999 if (flags & CFLGS_OFF_SLAB) {
2000 size_t freelist_size_per_obj = sizeof(freelist_idx_t);
2001 /*
2002 * Max number of objs-per-slab for caches which
2003 * use off-slab slabs. Needed to avoid a possible
2004 * looping condition in cache_grow().
2005 */
2006 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
2007 freelist_size_per_obj += sizeof(char);
2008 offslab_limit = size;
2009 offslab_limit /= freelist_size_per_obj;
2010
2011 if (num > offslab_limit)
2012 break;
2013 }
2014
2015 /* Found something acceptable - save it away */
2016 cachep->num = num;
2017 cachep->gfporder = gfporder;
2018 left_over = remainder;
2019
2020 /*
2021 * A VFS-reclaimable slab tends to have most allocations
2022 * as GFP_NOFS and we really don't want to have to be allocating
2023 * higher-order pages when we are unable to shrink dcache.
2024 */
2025 if (flags & SLAB_RECLAIM_ACCOUNT)
2026 break;
2027
2028 /*
2029 * Large number of objects is good, but very large slabs are
2030 * currently bad for the gfp()s.
2031 */
2032 if (gfporder >= slab_max_order)
2033 break;
2034
2035 /*
2036 * Acceptable internal fragmentation?
2037 */
2038 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2039 break;
2040 }
2041 return left_over;
2042}
2043
2044static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2045{
2046 if (slab_state >= FULL)
2047 return enable_cpucache(cachep, gfp);
2048
2049 if (slab_state == DOWN) {
2050 /*
2051 * Note: Creation of first cache (kmem_cache).
2052 * The setup_node is taken care
2053 * of by the caller of __kmem_cache_create
2054 */
2055 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2056 slab_state = PARTIAL;
2057 } else if (slab_state == PARTIAL) {
2058 /*
2059 * Note: the second kmem_cache_create must create the cache
2060 * that's used by kmalloc(24), otherwise the creation of
2061 * further caches will BUG().
2062 */
2063 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2064
2065 /*
2066 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
2067 * the second cache, then we need to set up all its node/,
2068 * otherwise the creation of further caches will BUG().
2069 */
2070 set_up_node(cachep, SIZE_AC);
2071 if (INDEX_AC == INDEX_NODE)
2072 slab_state = PARTIAL_NODE;
2073 else
2074 slab_state = PARTIAL_ARRAYCACHE;
2075 } else {
2076 /* Remaining boot caches */
2077 cachep->array[smp_processor_id()] =
2078 kmalloc(sizeof(struct arraycache_init), gfp);
2079
2080 if (slab_state == PARTIAL_ARRAYCACHE) {
2081 set_up_node(cachep, SIZE_NODE);
2082 slab_state = PARTIAL_NODE;
2083 } else {
2084 int node;
2085 for_each_online_node(node) {
2086 cachep->node[node] =
2087 kmalloc_node(sizeof(struct kmem_cache_node),
2088 gfp, node);
2089 BUG_ON(!cachep->node[node]);
2090 kmem_cache_node_init(cachep->node[node]);
2091 }
2092 }
2093 }
2094 cachep->node[numa_mem_id()]->next_reap =
2095 jiffies + REAPTIMEOUT_NODE +
2096 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
2097
2098 cpu_cache_get(cachep)->avail = 0;
2099 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2100 cpu_cache_get(cachep)->batchcount = 1;
2101 cpu_cache_get(cachep)->touched = 0;
2102 cachep->batchcount = 1;
2103 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2104 return 0;
2105}
2106
2107unsigned long kmem_cache_flags(unsigned long object_size,
2108 unsigned long flags, const char *name,
2109 void (*ctor)(void *))
2110{
2111 return flags;
2112}
2113
2114struct kmem_cache *
2115__kmem_cache_alias(const char *name, size_t size, size_t align,
2116 unsigned long flags, void (*ctor)(void *))
2117{
2118 struct kmem_cache *cachep;
2119
2120 cachep = find_mergeable(size, align, flags, name, ctor);
2121 if (cachep) {
2122 cachep->refcount++;
2123
2124 /*
2125 * Adjust the object sizes so that we clear
2126 * the complete object on kzalloc.
2127 */
2128 cachep->object_size = max_t(int, cachep->object_size, size);
2129 }
2130 return cachep;
2131}
2132
2133/**
2134 * __kmem_cache_create - Create a cache.
2135 * @cachep: cache management descriptor
2136 * @flags: SLAB flags
2137 *
2138 * Returns a ptr to the cache on success, NULL on failure.
2139 * Cannot be called within a int, but can be interrupted.
2140 * The @ctor is run when new pages are allocated by the cache.
2141 *
2142 * The flags are
2143 *
2144 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2145 * to catch references to uninitialised memory.
2146 *
2147 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2148 * for buffer overruns.
2149 *
2150 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2151 * cacheline. This can be beneficial if you're counting cycles as closely
2152 * as davem.
2153 */
2154int
2155__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2156{
2157 size_t left_over, freelist_size;
2158 size_t ralign = BYTES_PER_WORD;
2159 gfp_t gfp;
2160 int err;
2161 size_t size = cachep->size;
2162
2163#if DEBUG
2164#if FORCED_DEBUG
2165 /*
2166 * Enable redzoning and last user accounting, except for caches with
2167 * large objects, if the increased size would increase the object size
2168 * above the next power of two: caches with object sizes just above a
2169 * power of two have a significant amount of internal fragmentation.
2170 */
2171 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2172 2 * sizeof(unsigned long long)))
2173 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2174 if (!(flags & SLAB_DESTROY_BY_RCU))
2175 flags |= SLAB_POISON;
2176#endif
2177 if (flags & SLAB_DESTROY_BY_RCU)
2178 BUG_ON(flags & SLAB_POISON);
2179#endif
2180
2181 /*
2182 * Check that size is in terms of words. This is needed to avoid
2183 * unaligned accesses for some archs when redzoning is used, and makes
2184 * sure any on-slab bufctl's are also correctly aligned.
2185 */
2186 if (size & (BYTES_PER_WORD - 1)) {
2187 size += (BYTES_PER_WORD - 1);
2188 size &= ~(BYTES_PER_WORD - 1);
2189 }
2190
2191 if (flags & SLAB_RED_ZONE) {
2192 ralign = REDZONE_ALIGN;
2193 /* If redzoning, ensure that the second redzone is suitably
2194 * aligned, by adjusting the object size accordingly. */
2195 size += REDZONE_ALIGN - 1;
2196 size &= ~(REDZONE_ALIGN - 1);
2197 }
2198
2199 /* 3) caller mandated alignment */
2200 if (ralign < cachep->align) {
2201 ralign = cachep->align;
2202 }
2203 /* disable debug if necessary */
2204 if (ralign > __alignof__(unsigned long long))
2205 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2206 /*
2207 * 4) Store it.
2208 */
2209 cachep->align = ralign;
2210
2211 if (slab_is_available())
2212 gfp = GFP_KERNEL;
2213 else
2214 gfp = GFP_NOWAIT;
2215
2216 setup_node_pointer(cachep);
2217#if DEBUG
2218
2219 /*
2220 * Both debugging options require word-alignment which is calculated
2221 * into align above.
2222 */
2223 if (flags & SLAB_RED_ZONE) {
2224 /* add space for red zone words */
2225 cachep->obj_offset += sizeof(unsigned long long);
2226 size += 2 * sizeof(unsigned long long);
2227 }
2228 if (flags & SLAB_STORE_USER) {
2229 /* user store requires one word storage behind the end of
2230 * the real object. But if the second red zone needs to be
2231 * aligned to 64 bits, we must allow that much space.
2232 */
2233 if (flags & SLAB_RED_ZONE)
2234 size += REDZONE_ALIGN;
2235 else
2236 size += BYTES_PER_WORD;
2237 }
2238#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2239 if (size >= kmalloc_size(INDEX_NODE + 1)
2240 && cachep->object_size > cache_line_size()
2241 && ALIGN(size, cachep->align) < PAGE_SIZE) {
2242 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
2243 size = PAGE_SIZE;
2244 }
2245#endif
2246#endif
2247
2248 /*
2249 * Determine if the slab management is 'on' or 'off' slab.
2250 * (bootstrapping cannot cope with offslab caches so don't do
2251 * it too early on. Always use on-slab management when
2252 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2253 */
2254 if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init &&
2255 !(flags & SLAB_NOLEAKTRACE))
2256 /*
2257 * Size is large, assume best to place the slab management obj
2258 * off-slab (should allow better packing of objs).
2259 */
2260 flags |= CFLGS_OFF_SLAB;
2261
2262 size = ALIGN(size, cachep->align);
2263 /*
2264 * We should restrict the number of objects in a slab to implement
2265 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2266 */
2267 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2268 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2269
2270 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2271
2272 if (!cachep->num)
2273 return -E2BIG;
2274
2275 freelist_size = calculate_freelist_size(cachep->num, cachep->align);
2276
2277 /*
2278 * If the slab has been placed off-slab, and we have enough space then
2279 * move it on-slab. This is at the expense of any extra colouring.
2280 */
2281 if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
2282 flags &= ~CFLGS_OFF_SLAB;
2283 left_over -= freelist_size;
2284 }
2285
2286 if (flags & CFLGS_OFF_SLAB) {
2287 /* really off slab. No need for manual alignment */
2288 freelist_size = calculate_freelist_size(cachep->num, 0);
2289
2290#ifdef CONFIG_PAGE_POISONING
2291 /* If we're going to use the generic kernel_map_pages()
2292 * poisoning, then it's going to smash the contents of
2293 * the redzone and userword anyhow, so switch them off.
2294 */
2295 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2296 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2297#endif
2298 }
2299
2300 cachep->colour_off = cache_line_size();
2301 /* Offset must be a multiple of the alignment. */
2302 if (cachep->colour_off < cachep->align)
2303 cachep->colour_off = cachep->align;
2304 cachep->colour = left_over / cachep->colour_off;
2305 cachep->freelist_size = freelist_size;
2306 cachep->flags = flags;
2307 cachep->allocflags = __GFP_COMP;
2308 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2309 cachep->allocflags |= GFP_DMA;
2310 cachep->size = size;
2311 cachep->reciprocal_buffer_size = reciprocal_value(size);
2312
2313 if (flags & CFLGS_OFF_SLAB) {
2314 cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
2315 /*
2316 * This is a possibility for one of the kmalloc_{dma,}_caches.
2317 * But since we go off slab only for object size greater than
2318 * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created
2319 * in ascending order,this should not happen at all.
2320 * But leave a BUG_ON for some lucky dude.
2321 */
2322 BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
2323 }
2324
2325 err = setup_cpu_cache(cachep, gfp);
2326 if (err) {
2327 __kmem_cache_shutdown(cachep);
2328 return err;
2329 }
2330
2331 return 0;
2332}
2333
2334#if DEBUG
2335static void check_irq_off(void)
2336{
2337 BUG_ON(!irqs_disabled());
2338}
2339
2340static void check_irq_on(void)
2341{
2342 BUG_ON(irqs_disabled());
2343}
2344
2345static void check_spinlock_acquired(struct kmem_cache *cachep)
2346{
2347#ifdef CONFIG_SMP
2348 check_irq_off();
2349 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2350#endif
2351}
2352
2353static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2354{
2355#ifdef CONFIG_SMP
2356 check_irq_off();
2357 assert_spin_locked(&get_node(cachep, node)->list_lock);
2358#endif
2359}
2360
2361#else
2362#define check_irq_off() do { } while(0)
2363#define check_irq_on() do { } while(0)
2364#define check_spinlock_acquired(x) do { } while(0)
2365#define check_spinlock_acquired_node(x, y) do { } while(0)
2366#endif
2367
2368static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2369 struct array_cache *ac,
2370 int force, int node);
2371
2372static void do_drain(void *arg)
2373{
2374 struct kmem_cache *cachep = arg;
2375 struct array_cache *ac;
2376 int node = numa_mem_id();
2377 struct kmem_cache_node *n;
2378 LIST_HEAD(list);
2379
2380 check_irq_off();
2381 ac = cpu_cache_get(cachep);
2382 n = get_node(cachep, node);
2383 spin_lock(&n->list_lock);
2384 free_block(cachep, ac->entry, ac->avail, node, &list);
2385 spin_unlock(&n->list_lock);
2386 slabs_destroy(cachep, &list);
2387 ac->avail = 0;
2388}
2389
2390static void drain_cpu_caches(struct kmem_cache *cachep)
2391{
2392 struct kmem_cache_node *n;
2393 int node;
2394
2395 on_each_cpu(do_drain, cachep, 1);
2396 check_irq_on();
2397 for_each_kmem_cache_node(cachep, node, n)
2398 if (n->alien)
2399 drain_alien_cache(cachep, n->alien);
2400
2401 for_each_kmem_cache_node(cachep, node, n)
2402 drain_array(cachep, n, n->shared, 1, node);
2403}
2404
2405/*
2406 * Remove slabs from the list of free slabs.
2407 * Specify the number of slabs to drain in tofree.
2408 *
2409 * Returns the actual number of slabs released.
2410 */
2411static int drain_freelist(struct kmem_cache *cache,
2412 struct kmem_cache_node *n, int tofree)
2413{
2414 struct list_head *p;
2415 int nr_freed;
2416 struct page *page;
2417
2418 nr_freed = 0;
2419 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2420
2421 spin_lock_irq(&n->list_lock);
2422 p = n->slabs_free.prev;
2423 if (p == &n->slabs_free) {
2424 spin_unlock_irq(&n->list_lock);
2425 goto out;
2426 }
2427
2428 page = list_entry(p, struct page, lru);
2429#if DEBUG
2430 BUG_ON(page->active);
2431#endif
2432 list_del(&page->lru);
2433 /*
2434 * Safe to drop the lock. The slab is no longer linked
2435 * to the cache.
2436 */
2437 n->free_objects -= cache->num;
2438 spin_unlock_irq(&n->list_lock);
2439 slab_destroy(cache, page);
2440 nr_freed++;
2441 }
2442out:
2443 return nr_freed;
2444}
2445
2446int __kmem_cache_shrink(struct kmem_cache *cachep)
2447{
2448 int ret = 0;
2449 int node;
2450 struct kmem_cache_node *n;
2451
2452 drain_cpu_caches(cachep);
2453
2454 check_irq_on();
2455 for_each_kmem_cache_node(cachep, node, n) {
2456 drain_freelist(cachep, n, slabs_tofree(cachep, n));
2457
2458 ret += !list_empty(&n->slabs_full) ||
2459 !list_empty(&n->slabs_partial);
2460 }
2461 return (ret ? 1 : 0);
2462}
2463
2464int __kmem_cache_shutdown(struct kmem_cache *cachep)
2465{
2466 int i;
2467 struct kmem_cache_node *n;
2468 int rc = __kmem_cache_shrink(cachep);
2469
2470 if (rc)
2471 return rc;
2472
2473 for_each_online_cpu(i)
2474 kfree(cachep->array[i]);
2475
2476 /* NUMA: free the node structures */
2477 for_each_kmem_cache_node(cachep, i, n) {
2478 kfree(n->shared);
2479 free_alien_cache(n->alien);
2480 kfree(n);
2481 cachep->node[i] = NULL;
2482 }
2483 return 0;
2484}
2485
2486/*
2487 * Get the memory for a slab management obj.
2488 *
2489 * For a slab cache when the slab descriptor is off-slab, the
2490 * slab descriptor can't come from the same cache which is being created,
2491 * Because if it is the case, that means we defer the creation of
2492 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2493 * And we eventually call down to __kmem_cache_create(), which
2494 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2495 * This is a "chicken-and-egg" problem.
2496 *
2497 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2498 * which are all initialized during kmem_cache_init().
2499 */
2500static void *alloc_slabmgmt(struct kmem_cache *cachep,
2501 struct page *page, int colour_off,
2502 gfp_t local_flags, int nodeid)
2503{
2504 void *freelist;
2505 void *addr = page_address(page);
2506
2507 if (OFF_SLAB(cachep)) {
2508 /* Slab management obj is off-slab. */
2509 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2510 local_flags, nodeid);
2511 if (!freelist)
2512 return NULL;
2513 } else {
2514 freelist = addr + colour_off;
2515 colour_off += cachep->freelist_size;
2516 }
2517 page->active = 0;
2518 page->s_mem = addr + colour_off;
2519 return freelist;
2520}
2521
2522static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2523{
2524 return ((freelist_idx_t *)page->freelist)[idx];
2525}
2526
2527static inline void set_free_obj(struct page *page,
2528 unsigned int idx, freelist_idx_t val)
2529{
2530 ((freelist_idx_t *)(page->freelist))[idx] = val;
2531}
2532
2533static void cache_init_objs(struct kmem_cache *cachep,
2534 struct page *page)
2535{
2536 int i;
2537
2538 for (i = 0; i < cachep->num; i++) {
2539 void *objp = index_to_obj(cachep, page, i);
2540#if DEBUG
2541 /* need to poison the objs? */
2542 if (cachep->flags & SLAB_POISON)
2543 poison_obj(cachep, objp, POISON_FREE);
2544 if (cachep->flags & SLAB_STORE_USER)
2545 *dbg_userword(cachep, objp) = NULL;
2546
2547 if (cachep->flags & SLAB_RED_ZONE) {
2548 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2549 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2550 }
2551 /*
2552 * Constructors are not allowed to allocate memory from the same
2553 * cache which they are a constructor for. Otherwise, deadlock.
2554 * They must also be threaded.
2555 */
2556 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2557 cachep->ctor(objp + obj_offset(cachep));
2558
2559 if (cachep->flags & SLAB_RED_ZONE) {
2560 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2561 slab_error(cachep, "constructor overwrote the"
2562 " end of an object");
2563 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2564 slab_error(cachep, "constructor overwrote the"
2565 " start of an object");
2566 }
2567 if ((cachep->size % PAGE_SIZE) == 0 &&
2568 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2569 kernel_map_pages(virt_to_page(objp),
2570 cachep->size / PAGE_SIZE, 0);
2571#else
2572 if (cachep->ctor)
2573 cachep->ctor(objp);
2574#endif
2575 set_obj_status(page, i, OBJECT_FREE);
2576 set_free_obj(page, i, i);
2577 }
2578}
2579
2580static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2581{
2582 if (CONFIG_ZONE_DMA_FLAG) {
2583 if (flags & GFP_DMA)
2584 BUG_ON(!(cachep->allocflags & GFP_DMA));
2585 else
2586 BUG_ON(cachep->allocflags & GFP_DMA);
2587 }
2588}
2589
2590static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
2591 int nodeid)
2592{
2593 void *objp;
2594
2595 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2596 page->active++;
2597#if DEBUG
2598 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2599#endif
2600
2601 return objp;
2602}
2603
2604static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
2605 void *objp, int nodeid)
2606{
2607 unsigned int objnr = obj_to_index(cachep, page, objp);
2608#if DEBUG
2609 unsigned int i;
2610
2611 /* Verify that the slab belongs to the intended node */
2612 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2613
2614 /* Verify double free bug */
2615 for (i = page->active; i < cachep->num; i++) {
2616 if (get_free_obj(page, i) == objnr) {
2617 printk(KERN_ERR "slab: double free detected in cache "
2618 "'%s', objp %p\n", cachep->name, objp);
2619 BUG();
2620 }
2621 }
2622#endif
2623 page->active--;
2624 set_free_obj(page, page->active, objnr);
2625}
2626
2627/*
2628 * Map pages beginning at addr to the given cache and slab. This is required
2629 * for the slab allocator to be able to lookup the cache and slab of a
2630 * virtual address for kfree, ksize, and slab debugging.
2631 */
2632static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2633 void *freelist)
2634{
2635 page->slab_cache = cache;
2636 page->freelist = freelist;
2637}
2638
2639/*
2640 * Grow (by 1) the number of slabs within a cache. This is called by
2641 * kmem_cache_alloc() when there are no active objs left in a cache.
2642 */
2643static int cache_grow(struct kmem_cache *cachep,
2644 gfp_t flags, int nodeid, struct page *page)
2645{
2646 void *freelist;
2647 size_t offset;
2648 gfp_t local_flags;
2649 struct kmem_cache_node *n;
2650
2651 /*
2652 * Be lazy and only check for valid flags here, keeping it out of the
2653 * critical path in kmem_cache_alloc().
2654 */
2655 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2656 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2657
2658 /* Take the node list lock to change the colour_next on this node */
2659 check_irq_off();
2660 n = get_node(cachep, nodeid);
2661 spin_lock(&n->list_lock);
2662
2663 /* Get colour for the slab, and cal the next value. */
2664 offset = n->colour_next;
2665 n->colour_next++;
2666 if (n->colour_next >= cachep->colour)
2667 n->colour_next = 0;
2668 spin_unlock(&n->list_lock);
2669
2670 offset *= cachep->colour_off;
2671
2672 if (local_flags & __GFP_WAIT)
2673 local_irq_enable();
2674
2675 /*
2676 * The test for missing atomic flag is performed here, rather than
2677 * the more obvious place, simply to reduce the critical path length
2678 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2679 * will eventually be caught here (where it matters).
2680 */
2681 kmem_flagcheck(cachep, flags);
2682
2683 /*
2684 * Get mem for the objs. Attempt to allocate a physical page from
2685 * 'nodeid'.
2686 */
2687 if (!page)
2688 page = kmem_getpages(cachep, local_flags, nodeid);
2689 if (!page)
2690 goto failed;
2691
2692 /* Get slab management. */
2693 freelist = alloc_slabmgmt(cachep, page, offset,
2694 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2695 if (!freelist)
2696 goto opps1;
2697
2698 slab_map_pages(cachep, page, freelist);
2699
2700 cache_init_objs(cachep, page);
2701
2702 if (local_flags & __GFP_WAIT)
2703 local_irq_disable();
2704 check_irq_off();
2705 spin_lock(&n->list_lock);
2706
2707 /* Make slab active. */
2708 list_add_tail(&page->lru, &(n->slabs_free));
2709 STATS_INC_GROWN(cachep);
2710 n->free_objects += cachep->num;
2711 spin_unlock(&n->list_lock);
2712 return 1;
2713opps1:
2714 kmem_freepages(cachep, page);
2715failed:
2716 if (local_flags & __GFP_WAIT)
2717 local_irq_disable();
2718 return 0;
2719}
2720
2721#if DEBUG
2722
2723/*
2724 * Perform extra freeing checks:
2725 * - detect bad pointers.
2726 * - POISON/RED_ZONE checking
2727 */
2728static void kfree_debugcheck(const void *objp)
2729{
2730 if (!virt_addr_valid(objp)) {
2731 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2732 (unsigned long)objp);
2733 BUG();
2734 }
2735}
2736
2737static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2738{
2739 unsigned long long redzone1, redzone2;
2740
2741 redzone1 = *dbg_redzone1(cache, obj);
2742 redzone2 = *dbg_redzone2(cache, obj);
2743
2744 /*
2745 * Redzone is ok.
2746 */
2747 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2748 return;
2749
2750 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2751 slab_error(cache, "double free detected");
2752 else
2753 slab_error(cache, "memory outside object was overwritten");
2754
2755 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2756 obj, redzone1, redzone2);
2757}
2758
2759static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2760 unsigned long caller)
2761{
2762 unsigned int objnr;
2763 struct page *page;
2764
2765 BUG_ON(virt_to_cache(objp) != cachep);
2766
2767 objp -= obj_offset(cachep);
2768 kfree_debugcheck(objp);
2769 page = virt_to_head_page(objp);
2770
2771 if (cachep->flags & SLAB_RED_ZONE) {
2772 verify_redzone_free(cachep, objp);
2773 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2774 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2775 }
2776 if (cachep->flags & SLAB_STORE_USER)
2777 *dbg_userword(cachep, objp) = (void *)caller;
2778
2779 objnr = obj_to_index(cachep, page, objp);
2780
2781 BUG_ON(objnr >= cachep->num);
2782 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2783
2784 set_obj_status(page, objnr, OBJECT_FREE);
2785 if (cachep->flags & SLAB_POISON) {
2786#ifdef CONFIG_DEBUG_PAGEALLOC
2787 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2788 store_stackinfo(cachep, objp, caller);
2789 kernel_map_pages(virt_to_page(objp),
2790 cachep->size / PAGE_SIZE, 0);
2791 } else {
2792 poison_obj(cachep, objp, POISON_FREE);
2793 }
2794#else
2795 poison_obj(cachep, objp, POISON_FREE);
2796#endif
2797 }
2798 return objp;
2799}
2800
2801#else
2802#define kfree_debugcheck(x) do { } while(0)
2803#define cache_free_debugcheck(x,objp,z) (objp)
2804#endif
2805
2806static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2807 bool force_refill)
2808{
2809 int batchcount;
2810 struct kmem_cache_node *n;
2811 struct array_cache *ac;
2812 int node;
2813
2814 check_irq_off();
2815 node = numa_mem_id();
2816 if (unlikely(force_refill))
2817 goto force_grow;
2818retry:
2819 ac = cpu_cache_get(cachep);
2820 batchcount = ac->batchcount;
2821 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2822 /*
2823 * If there was little recent activity on this cache, then
2824 * perform only a partial refill. Otherwise we could generate
2825 * refill bouncing.
2826 */
2827 batchcount = BATCHREFILL_LIMIT;
2828 }
2829 n = get_node(cachep, node);
2830
2831 BUG_ON(ac->avail > 0 || !n);
2832 spin_lock(&n->list_lock);
2833
2834 /* See if we can refill from the shared array */
2835 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2836 n->shared->touched = 1;
2837 goto alloc_done;
2838 }
2839
2840 while (batchcount > 0) {
2841 struct list_head *entry;
2842 struct page *page;
2843 /* Get slab alloc is to come from. */
2844 entry = n->slabs_partial.next;
2845 if (entry == &n->slabs_partial) {
2846 n->free_touched = 1;
2847 entry = n->slabs_free.next;
2848 if (entry == &n->slabs_free)
2849 goto must_grow;
2850 }
2851
2852 page = list_entry(entry, struct page, lru);
2853 check_spinlock_acquired(cachep);
2854
2855 /*
2856 * The slab was either on partial or free list so
2857 * there must be at least one object available for
2858 * allocation.
2859 */
2860 BUG_ON(page->active >= cachep->num);
2861
2862 while (page->active < cachep->num && batchcount--) {
2863 STATS_INC_ALLOCED(cachep);
2864 STATS_INC_ACTIVE(cachep);
2865 STATS_SET_HIGH(cachep);
2866
2867 ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
2868 node));
2869 }
2870
2871 /* move slabp to correct slabp list: */
2872 list_del(&page->lru);
2873 if (page->active == cachep->num)
2874 list_add(&page->lru, &n->slabs_full);
2875 else
2876 list_add(&page->lru, &n->slabs_partial);
2877 }
2878
2879must_grow:
2880 n->free_objects -= ac->avail;
2881alloc_done:
2882 spin_unlock(&n->list_lock);
2883
2884 if (unlikely(!ac->avail)) {
2885 int x;
2886force_grow:
2887 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
2888
2889 /* cache_grow can reenable interrupts, then ac could change. */
2890 ac = cpu_cache_get(cachep);
2891 node = numa_mem_id();
2892
2893 /* no objects in sight? abort */
2894 if (!x && (ac->avail == 0 || force_refill))
2895 return NULL;
2896
2897 if (!ac->avail) /* objects refilled by interrupt? */
2898 goto retry;
2899 }
2900 ac->touched = 1;
2901
2902 return ac_get_obj(cachep, ac, flags, force_refill);
2903}
2904
2905static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2906 gfp_t flags)
2907{
2908 might_sleep_if(flags & __GFP_WAIT);
2909#if DEBUG
2910 kmem_flagcheck(cachep, flags);
2911#endif
2912}
2913
2914#if DEBUG
2915static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2916 gfp_t flags, void *objp, unsigned long caller)
2917{
2918 struct page *page;
2919
2920 if (!objp)
2921 return objp;
2922 if (cachep->flags & SLAB_POISON) {
2923#ifdef CONFIG_DEBUG_PAGEALLOC
2924 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2925 kernel_map_pages(virt_to_page(objp),
2926 cachep->size / PAGE_SIZE, 1);
2927 else
2928 check_poison_obj(cachep, objp);
2929#else
2930 check_poison_obj(cachep, objp);
2931#endif
2932 poison_obj(cachep, objp, POISON_INUSE);
2933 }
2934 if (cachep->flags & SLAB_STORE_USER)
2935 *dbg_userword(cachep, objp) = (void *)caller;
2936
2937 if (cachep->flags & SLAB_RED_ZONE) {
2938 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2939 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2940 slab_error(cachep, "double free, or memory outside"
2941 " object was overwritten");
2942 printk(KERN_ERR
2943 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2944 objp, *dbg_redzone1(cachep, objp),
2945 *dbg_redzone2(cachep, objp));
2946 }
2947 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2948 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2949 }
2950
2951 page = virt_to_head_page(objp);
2952 set_obj_status(page, obj_to_index(cachep, page, objp), OBJECT_ACTIVE);
2953 objp += obj_offset(cachep);
2954 if (cachep->ctor && cachep->flags & SLAB_POISON)
2955 cachep->ctor(objp);
2956 if (ARCH_SLAB_MINALIGN &&
2957 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2958 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
2959 objp, (int)ARCH_SLAB_MINALIGN);
2960 }
2961 return objp;
2962}
2963#else
2964#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2965#endif
2966
2967static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
2968{
2969 if (unlikely(cachep == kmem_cache))
2970 return false;
2971
2972 return should_failslab(cachep->object_size, flags, cachep->flags);
2973}
2974
2975static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2976{
2977 void *objp;
2978 struct array_cache *ac;
2979 bool force_refill = false;
2980
2981 check_irq_off();
2982
2983 ac = cpu_cache_get(cachep);
2984 if (likely(ac->avail)) {
2985 ac->touched = 1;
2986 objp = ac_get_obj(cachep, ac, flags, false);
2987
2988 /*
2989 * Allow for the possibility all avail objects are not allowed
2990 * by the current flags
2991 */
2992 if (objp) {
2993 STATS_INC_ALLOCHIT(cachep);
2994 goto out;
2995 }
2996 force_refill = true;
2997 }
2998
2999 STATS_INC_ALLOCMISS(cachep);
3000 objp = cache_alloc_refill(cachep, flags, force_refill);
3001 /*
3002 * the 'ac' may be updated by cache_alloc_refill(),
3003 * and kmemleak_erase() requires its correct value.
3004 */
3005 ac = cpu_cache_get(cachep);
3006
3007out:
3008 /*
3009 * To avoid a false negative, if an object that is in one of the
3010 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3011 * treat the array pointers as a reference to the object.
3012 */
3013 if (objp)
3014 kmemleak_erase(&ac->entry[ac->avail]);
3015 return objp;
3016}
3017
3018#ifdef CONFIG_NUMA
3019/*
3020 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3021 *
3022 * If we are in_interrupt, then process context, including cpusets and
3023 * mempolicy, may not apply and should not be used for allocation policy.
3024 */
3025static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3026{
3027 int nid_alloc, nid_here;
3028
3029 if (in_interrupt() || (flags & __GFP_THISNODE))
3030 return NULL;
3031 nid_alloc = nid_here = numa_mem_id();
3032 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3033 nid_alloc = cpuset_slab_spread_node();
3034 else if (current->mempolicy)
3035 nid_alloc = mempolicy_slab_node();
3036 if (nid_alloc != nid_here)
3037 return ____cache_alloc_node(cachep, flags, nid_alloc);
3038 return NULL;
3039}
3040
3041/*
3042 * Fallback function if there was no memory available and no objects on a
3043 * certain node and fall back is permitted. First we scan all the
3044 * available node for available objects. If that fails then we
3045 * perform an allocation without specifying a node. This allows the page
3046 * allocator to do its reclaim / fallback magic. We then insert the
3047 * slab into the proper nodelist and then allocate from it.
3048 */
3049static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3050{
3051 struct zonelist *zonelist;
3052 gfp_t local_flags;
3053 struct zoneref *z;
3054 struct zone *zone;
3055 enum zone_type high_zoneidx = gfp_zone(flags);
3056 void *obj = NULL;
3057 int nid;
3058 unsigned int cpuset_mems_cookie;
3059
3060 if (flags & __GFP_THISNODE)
3061 return NULL;
3062
3063 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3064
3065retry_cpuset:
3066 cpuset_mems_cookie = read_mems_allowed_begin();
3067 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3068
3069retry:
3070 /*
3071 * Look through allowed nodes for objects available
3072 * from existing per node queues.
3073 */
3074 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3075 nid = zone_to_nid(zone);
3076
3077 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3078 get_node(cache, nid) &&
3079 get_node(cache, nid)->free_objects) {
3080 obj = ____cache_alloc_node(cache,
3081 flags | GFP_THISNODE, nid);
3082 if (obj)
3083 break;
3084 }
3085 }
3086
3087 if (!obj) {
3088 /*
3089 * This allocation will be performed within the constraints
3090 * of the current cpuset / memory policy requirements.
3091 * We may trigger various forms of reclaim on the allowed
3092 * set and go into memory reserves if necessary.
3093 */
3094 struct page *page;
3095
3096 if (local_flags & __GFP_WAIT)
3097 local_irq_enable();
3098 kmem_flagcheck(cache, flags);
3099 page = kmem_getpages(cache, local_flags, numa_mem_id());
3100 if (local_flags & __GFP_WAIT)
3101 local_irq_disable();
3102 if (page) {
3103 /*
3104 * Insert into the appropriate per node queues
3105 */
3106 nid = page_to_nid(page);
3107 if (cache_grow(cache, flags, nid, page)) {
3108 obj = ____cache_alloc_node(cache,
3109 flags | GFP_THISNODE, nid);
3110 if (!obj)
3111 /*
3112 * Another processor may allocate the
3113 * objects in the slab since we are
3114 * not holding any locks.
3115 */
3116 goto retry;
3117 } else {
3118 /* cache_grow already freed obj */
3119 obj = NULL;
3120 }
3121 }
3122 }
3123
3124 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3125 goto retry_cpuset;
3126 return obj;
3127}
3128
3129/*
3130 * A interface to enable slab creation on nodeid
3131 */
3132static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3133 int nodeid)
3134{
3135 struct list_head *entry;
3136 struct page *page;
3137 struct kmem_cache_node *n;
3138 void *obj;
3139 int x;
3140
3141 VM_BUG_ON(nodeid > num_online_nodes());
3142 n = get_node(cachep, nodeid);
3143 BUG_ON(!n);
3144
3145retry:
3146 check_irq_off();
3147 spin_lock(&n->list_lock);
3148 entry = n->slabs_partial.next;
3149 if (entry == &n->slabs_partial) {
3150 n->free_touched = 1;
3151 entry = n->slabs_free.next;
3152 if (entry == &n->slabs_free)
3153 goto must_grow;
3154 }
3155
3156 page = list_entry(entry, struct page, lru);
3157 check_spinlock_acquired_node(cachep, nodeid);
3158
3159 STATS_INC_NODEALLOCS(cachep);
3160 STATS_INC_ACTIVE(cachep);
3161 STATS_SET_HIGH(cachep);
3162
3163 BUG_ON(page->active == cachep->num);
3164
3165 obj = slab_get_obj(cachep, page, nodeid);
3166 n->free_objects--;
3167 /* move slabp to correct slabp list: */
3168 list_del(&page->lru);
3169
3170 if (page->active == cachep->num)
3171 list_add(&page->lru, &n->slabs_full);
3172 else
3173 list_add(&page->lru, &n->slabs_partial);
3174
3175 spin_unlock(&n->list_lock);
3176 goto done;
3177
3178must_grow:
3179 spin_unlock(&n->list_lock);
3180 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3181 if (x)
3182 goto retry;
3183
3184 return fallback_alloc(cachep, flags);
3185
3186done:
3187 return obj;
3188}
3189
3190static __always_inline void *
3191slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3192 unsigned long caller)
3193{
3194 unsigned long save_flags;
3195 void *ptr;
3196 int slab_node = numa_mem_id();
3197
3198 flags &= gfp_allowed_mask;
3199
3200 lockdep_trace_alloc(flags);
3201
3202 if (slab_should_failslab(cachep, flags))
3203 return NULL;
3204
3205 cachep = memcg_kmem_get_cache(cachep, flags);
3206
3207 cache_alloc_debugcheck_before(cachep, flags);
3208 local_irq_save(save_flags);
3209
3210 if (nodeid == NUMA_NO_NODE)
3211 nodeid = slab_node;
3212
3213 if (unlikely(!get_node(cachep, nodeid))) {
3214 /* Node not bootstrapped yet */
3215 ptr = fallback_alloc(cachep, flags);
3216 goto out;
3217 }
3218
3219 if (nodeid == slab_node) {
3220 /*
3221 * Use the locally cached objects if possible.
3222 * However ____cache_alloc does not allow fallback
3223 * to other nodes. It may fail while we still have
3224 * objects on other nodes available.
3225 */
3226 ptr = ____cache_alloc(cachep, flags);
3227 if (ptr)
3228 goto out;
3229 }
3230 /* ___cache_alloc_node can fall back to other nodes */
3231 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3232 out:
3233 local_irq_restore(save_flags);
3234 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3235 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3236 flags);
3237
3238 if (likely(ptr)) {
3239 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3240 if (unlikely(flags & __GFP_ZERO))
3241 memset(ptr, 0, cachep->object_size);
3242 }
3243
3244 return ptr;
3245}
3246
3247static __always_inline void *
3248__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3249{
3250 void *objp;
3251
3252 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3253 objp = alternate_node_alloc(cache, flags);
3254 if (objp)
3255 goto out;
3256 }
3257 objp = ____cache_alloc(cache, flags);
3258
3259 /*
3260 * We may just have run out of memory on the local node.
3261 * ____cache_alloc_node() knows how to locate memory on other nodes
3262 */
3263 if (!objp)
3264 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3265
3266 out:
3267 return objp;
3268}
3269#else
3270
3271static __always_inline void *
3272__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3273{
3274 return ____cache_alloc(cachep, flags);
3275}
3276
3277#endif /* CONFIG_NUMA */
3278
3279static __always_inline void *
3280slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3281{
3282 unsigned long save_flags;
3283 void *objp;
3284
3285 flags &= gfp_allowed_mask;
3286
3287 lockdep_trace_alloc(flags);
3288
3289 if (slab_should_failslab(cachep, flags))
3290 return NULL;
3291
3292 cachep = memcg_kmem_get_cache(cachep, flags);
3293
3294 cache_alloc_debugcheck_before(cachep, flags);
3295 local_irq_save(save_flags);
3296 objp = __do_cache_alloc(cachep, flags);
3297 local_irq_restore(save_flags);
3298 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3299 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3300 flags);
3301 prefetchw(objp);
3302
3303 if (likely(objp)) {
3304 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3305 if (unlikely(flags & __GFP_ZERO))
3306 memset(objp, 0, cachep->object_size);
3307 }
3308
3309 return objp;
3310}
3311
3312/*
3313 * Caller needs to acquire correct kmem_cache_node's list_lock
3314 * @list: List of detached free slabs should be freed by caller
3315 */
3316static void free_block(struct kmem_cache *cachep, void **objpp,
3317 int nr_objects, int node, struct list_head *list)
3318{
3319 int i;
3320 struct kmem_cache_node *n = get_node(cachep, node);
3321
3322 for (i = 0; i < nr_objects; i++) {
3323 void *objp;
3324 struct page *page;
3325
3326 clear_obj_pfmemalloc(&objpp[i]);
3327 objp = objpp[i];
3328
3329 page = virt_to_head_page(objp);
3330 list_del(&page->lru);
3331 check_spinlock_acquired_node(cachep, node);
3332 slab_put_obj(cachep, page, objp, node);
3333 STATS_DEC_ACTIVE(cachep);
3334 n->free_objects++;
3335
3336 /* fixup slab chains */
3337 if (page->active == 0) {
3338 if (n->free_objects > n->free_limit) {
3339 n->free_objects -= cachep->num;
3340 list_add_tail(&page->lru, list);
3341 } else {
3342 list_add(&page->lru, &n->slabs_free);
3343 }
3344 } else {
3345 /* Unconditionally move a slab to the end of the
3346 * partial list on free - maximum time for the
3347 * other objects to be freed, too.
3348 */
3349 list_add_tail(&page->lru, &n->slabs_partial);
3350 }
3351 }
3352}
3353
3354static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3355{
3356 int batchcount;
3357 struct kmem_cache_node *n;
3358 int node = numa_mem_id();
3359 LIST_HEAD(list);
3360
3361 batchcount = ac->batchcount;
3362#if DEBUG
3363 BUG_ON(!batchcount || batchcount > ac->avail);
3364#endif
3365 check_irq_off();
3366 n = get_node(cachep, node);
3367 spin_lock(&n->list_lock);
3368 if (n->shared) {
3369 struct array_cache *shared_array = n->shared;
3370 int max = shared_array->limit - shared_array->avail;
3371 if (max) {
3372 if (batchcount > max)
3373 batchcount = max;
3374 memcpy(&(shared_array->entry[shared_array->avail]),
3375 ac->entry, sizeof(void *) * batchcount);
3376 shared_array->avail += batchcount;
3377 goto free_done;
3378 }
3379 }
3380
3381 free_block(cachep, ac->entry, batchcount, node, &list);
3382free_done:
3383#if STATS
3384 {
3385 int i = 0;
3386 struct list_head *p;
3387
3388 p = n->slabs_free.next;
3389 while (p != &(n->slabs_free)) {
3390 struct page *page;
3391
3392 page = list_entry(p, struct page, lru);
3393 BUG_ON(page->active);
3394
3395 i++;
3396 p = p->next;
3397 }
3398 STATS_SET_FREEABLE(cachep, i);
3399 }
3400#endif
3401 spin_unlock(&n->list_lock);
3402 slabs_destroy(cachep, &list);
3403 ac->avail -= batchcount;
3404 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3405}
3406
3407/*
3408 * Release an obj back to its cache. If the obj has a constructed state, it must
3409 * be in this state _before_ it is released. Called with disabled ints.
3410 */
3411static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3412 unsigned long caller)
3413{
3414 struct array_cache *ac = cpu_cache_get(cachep);
3415
3416 check_irq_off();
3417 kmemleak_free_recursive(objp, cachep->flags);
3418 objp = cache_free_debugcheck(cachep, objp, caller);
3419
3420 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3421
3422 /*
3423 * Skip calling cache_free_alien() when the platform is not numa.
3424 * This will avoid cache misses that happen while accessing slabp (which
3425 * is per page memory reference) to get nodeid. Instead use a global
3426 * variable to skip the call, which is mostly likely to be present in
3427 * the cache.
3428 */
3429 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3430 return;
3431
3432 if (ac->avail < ac->limit) {
3433 STATS_INC_FREEHIT(cachep);
3434 } else {
3435 STATS_INC_FREEMISS(cachep);
3436 cache_flusharray(cachep, ac);
3437 }
3438
3439 ac_put_obj(cachep, ac, objp);
3440}
3441
3442/**
3443 * kmem_cache_alloc - Allocate an object
3444 * @cachep: The cache to allocate from.
3445 * @flags: See kmalloc().
3446 *
3447 * Allocate an object from this cache. The flags are only relevant
3448 * if the cache has no available objects.
3449 */
3450void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3451{
3452 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3453
3454 trace_kmem_cache_alloc(_RET_IP_, ret,
3455 cachep->object_size, cachep->size, flags);
3456
3457 return ret;
3458}
3459EXPORT_SYMBOL(kmem_cache_alloc);
3460
3461#ifdef CONFIG_TRACING
3462void *
3463kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3464{
3465 void *ret;
3466
3467 ret = slab_alloc(cachep, flags, _RET_IP_);
3468
3469 trace_kmalloc(_RET_IP_, ret,
3470 size, cachep->size, flags);
3471 return ret;
3472}
3473EXPORT_SYMBOL(kmem_cache_alloc_trace);
3474#endif
3475
3476#ifdef CONFIG_NUMA
3477/**
3478 * kmem_cache_alloc_node - Allocate an object on the specified node
3479 * @cachep: The cache to allocate from.
3480 * @flags: See kmalloc().
3481 * @nodeid: node number of the target node.
3482 *
3483 * Identical to kmem_cache_alloc but it will allocate memory on the given
3484 * node, which can improve the performance for cpu bound structures.
3485 *
3486 * Fallback to other node is possible if __GFP_THISNODE is not set.
3487 */
3488void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3489{
3490 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3491
3492 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3493 cachep->object_size, cachep->size,
3494 flags, nodeid);
3495
3496 return ret;
3497}
3498EXPORT_SYMBOL(kmem_cache_alloc_node);
3499
3500#ifdef CONFIG_TRACING
3501void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3502 gfp_t flags,
3503 int nodeid,
3504 size_t size)
3505{
3506 void *ret;
3507
3508 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3509
3510 trace_kmalloc_node(_RET_IP_, ret,
3511 size, cachep->size,
3512 flags, nodeid);
3513 return ret;
3514}
3515EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3516#endif
3517
3518static __always_inline void *
3519__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3520{
3521 struct kmem_cache *cachep;
3522
3523 cachep = kmalloc_slab(size, flags);
3524 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3525 return cachep;
3526 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3527}
3528
3529void *__kmalloc_node(size_t size, gfp_t flags, int node)
3530{
3531 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3532}
3533EXPORT_SYMBOL(__kmalloc_node);
3534
3535void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3536 int node, unsigned long caller)
3537{
3538 return __do_kmalloc_node(size, flags, node, caller);
3539}
3540EXPORT_SYMBOL(__kmalloc_node_track_caller);
3541#endif /* CONFIG_NUMA */
3542
3543/**
3544 * __do_kmalloc - allocate memory
3545 * @size: how many bytes of memory are required.
3546 * @flags: the type of memory to allocate (see kmalloc).
3547 * @caller: function caller for debug tracking of the caller
3548 */
3549static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3550 unsigned long caller)
3551{
3552 struct kmem_cache *cachep;
3553 void *ret;
3554
3555 cachep = kmalloc_slab(size, flags);
3556 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3557 return cachep;
3558 ret = slab_alloc(cachep, flags, caller);
3559
3560 trace_kmalloc(caller, ret,
3561 size, cachep->size, flags);
3562
3563 return ret;
3564}
3565
3566void *__kmalloc(size_t size, gfp_t flags)
3567{
3568 return __do_kmalloc(size, flags, _RET_IP_);
3569}
3570EXPORT_SYMBOL(__kmalloc);
3571
3572void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3573{
3574 return __do_kmalloc(size, flags, caller);
3575}
3576EXPORT_SYMBOL(__kmalloc_track_caller);
3577
3578/**
3579 * kmem_cache_free - Deallocate an object
3580 * @cachep: The cache the allocation was from.
3581 * @objp: The previously allocated object.
3582 *
3583 * Free an object which was previously allocated from this
3584 * cache.
3585 */
3586void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3587{
3588 unsigned long flags;
3589 cachep = cache_from_obj(cachep, objp);
3590 if (!cachep)
3591 return;
3592
3593 local_irq_save(flags);
3594 debug_check_no_locks_freed(objp, cachep->object_size);
3595 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3596 debug_check_no_obj_freed(objp, cachep->object_size);
3597 __cache_free(cachep, objp, _RET_IP_);
3598 local_irq_restore(flags);
3599
3600 trace_kmem_cache_free(_RET_IP_, objp);
3601}
3602EXPORT_SYMBOL(kmem_cache_free);
3603
3604/**
3605 * kfree - free previously allocated memory
3606 * @objp: pointer returned by kmalloc.
3607 *
3608 * If @objp is NULL, no operation is performed.
3609 *
3610 * Don't free memory not originally allocated by kmalloc()
3611 * or you will run into trouble.
3612 */
3613void kfree(const void *objp)
3614{
3615 struct kmem_cache *c;
3616 unsigned long flags;
3617
3618 trace_kfree(_RET_IP_, objp);
3619
3620 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3621 return;
3622 local_irq_save(flags);
3623 kfree_debugcheck(objp);
3624 c = virt_to_cache(objp);
3625 debug_check_no_locks_freed(objp, c->object_size);
3626
3627 debug_check_no_obj_freed(objp, c->object_size);
3628 __cache_free(c, (void *)objp, _RET_IP_);
3629 local_irq_restore(flags);
3630}
3631EXPORT_SYMBOL(kfree);
3632
3633/*
3634 * This initializes kmem_cache_node or resizes various caches for all nodes.
3635 */
3636static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3637{
3638 int node;
3639 struct kmem_cache_node *n;
3640 struct array_cache *new_shared;
3641 struct alien_cache **new_alien = NULL;
3642
3643 for_each_online_node(node) {
3644
3645 if (use_alien_caches) {
3646 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3647 if (!new_alien)
3648 goto fail;
3649 }
3650
3651 new_shared = NULL;
3652 if (cachep->shared) {
3653 new_shared = alloc_arraycache(node,
3654 cachep->shared*cachep->batchcount,
3655 0xbaadf00d, gfp);
3656 if (!new_shared) {
3657 free_alien_cache(new_alien);
3658 goto fail;
3659 }
3660 }
3661
3662 n = get_node(cachep, node);
3663 if (n) {
3664 struct array_cache *shared = n->shared;
3665 LIST_HEAD(list);
3666
3667 spin_lock_irq(&n->list_lock);
3668
3669 if (shared)
3670 free_block(cachep, shared->entry,
3671 shared->avail, node, &list);
3672
3673 n->shared = new_shared;
3674 if (!n->alien) {
3675 n->alien = new_alien;
3676 new_alien = NULL;
3677 }
3678 n->free_limit = (1 + nr_cpus_node(node)) *
3679 cachep->batchcount + cachep->num;
3680 spin_unlock_irq(&n->list_lock);
3681 slabs_destroy(cachep, &list);
3682 kfree(shared);
3683 free_alien_cache(new_alien);
3684 continue;
3685 }
3686 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3687 if (!n) {
3688 free_alien_cache(new_alien);
3689 kfree(new_shared);
3690 goto fail;
3691 }
3692
3693 kmem_cache_node_init(n);
3694 n->next_reap = jiffies + REAPTIMEOUT_NODE +
3695 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
3696 n->shared = new_shared;
3697 n->alien = new_alien;
3698 n->free_limit = (1 + nr_cpus_node(node)) *
3699 cachep->batchcount + cachep->num;
3700 cachep->node[node] = n;
3701 }
3702 return 0;
3703
3704fail:
3705 if (!cachep->list.next) {
3706 /* Cache is not active yet. Roll back what we did */
3707 node--;
3708 while (node >= 0) {
3709 n = get_node(cachep, node);
3710 if (n) {
3711 kfree(n->shared);
3712 free_alien_cache(n->alien);
3713 kfree(n);
3714 cachep->node[node] = NULL;
3715 }
3716 node--;
3717 }
3718 }
3719 return -ENOMEM;
3720}
3721
3722struct ccupdate_struct {
3723 struct kmem_cache *cachep;
3724 struct array_cache *new[0];
3725};
3726
3727static void do_ccupdate_local(void *info)
3728{
3729 struct ccupdate_struct *new = info;
3730 struct array_cache *old;
3731
3732 check_irq_off();
3733 old = cpu_cache_get(new->cachep);
3734
3735 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3736 new->new[smp_processor_id()] = old;
3737}
3738
3739/* Always called with the slab_mutex held */
3740static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3741 int batchcount, int shared, gfp_t gfp)
3742{
3743 struct ccupdate_struct *new;
3744 int i;
3745
3746 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
3747 gfp);
3748 if (!new)
3749 return -ENOMEM;
3750
3751 for_each_online_cpu(i) {
3752 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
3753 batchcount, gfp);
3754 if (!new->new[i]) {
3755 for (i--; i >= 0; i--)
3756 kfree(new->new[i]);
3757 kfree(new);
3758 return -ENOMEM;
3759 }
3760 }
3761 new->cachep = cachep;
3762
3763 on_each_cpu(do_ccupdate_local, (void *)new, 1);
3764
3765 check_irq_on();
3766 cachep->batchcount = batchcount;
3767 cachep->limit = limit;
3768 cachep->shared = shared;
3769
3770 for_each_online_cpu(i) {
3771 LIST_HEAD(list);
3772 struct array_cache *ccold = new->new[i];
3773 int node;
3774 struct kmem_cache_node *n;
3775
3776 if (!ccold)
3777 continue;
3778
3779 node = cpu_to_mem(i);
3780 n = get_node(cachep, node);
3781 spin_lock_irq(&n->list_lock);
3782 free_block(cachep, ccold->entry, ccold->avail, node, &list);
3783 spin_unlock_irq(&n->list_lock);
3784 slabs_destroy(cachep, &list);
3785 kfree(ccold);
3786 }
3787 kfree(new);
3788 return alloc_kmem_cache_node(cachep, gfp);
3789}
3790
3791static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3792 int batchcount, int shared, gfp_t gfp)
3793{
3794 int ret;
3795 struct kmem_cache *c = NULL;
3796 int i = 0;
3797
3798 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3799
3800 if (slab_state < FULL)
3801 return ret;
3802
3803 if ((ret < 0) || !is_root_cache(cachep))
3804 return ret;
3805
3806 VM_BUG_ON(!mutex_is_locked(&slab_mutex));
3807 for_each_memcg_cache_index(i) {
3808 c = cache_from_memcg_idx(cachep, i);
3809 if (c)
3810 /* return value determined by the parent cache only */
3811 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3812 }
3813
3814 return ret;
3815}
3816
3817/* Called with slab_mutex held always */
3818static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3819{
3820 int err;
3821 int limit = 0;
3822 int shared = 0;
3823 int batchcount = 0;
3824
3825 if (!is_root_cache(cachep)) {
3826 struct kmem_cache *root = memcg_root_cache(cachep);
3827 limit = root->limit;
3828 shared = root->shared;
3829 batchcount = root->batchcount;
3830 }
3831
3832 if (limit && shared && batchcount)
3833 goto skip_setup;
3834 /*
3835 * The head array serves three purposes:
3836 * - create a LIFO ordering, i.e. return objects that are cache-warm
3837 * - reduce the number of spinlock operations.
3838 * - reduce the number of linked list operations on the slab and
3839 * bufctl chains: array operations are cheaper.
3840 * The numbers are guessed, we should auto-tune as described by
3841 * Bonwick.
3842 */
3843 if (cachep->size > 131072)
3844 limit = 1;
3845 else if (cachep->size > PAGE_SIZE)
3846 limit = 8;
3847 else if (cachep->size > 1024)
3848 limit = 24;
3849 else if (cachep->size > 256)
3850 limit = 54;
3851 else
3852 limit = 120;
3853
3854 /*
3855 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3856 * allocation behaviour: Most allocs on one cpu, most free operations
3857 * on another cpu. For these cases, an efficient object passing between
3858 * cpus is necessary. This is provided by a shared array. The array
3859 * replaces Bonwick's magazine layer.
3860 * On uniprocessor, it's functionally equivalent (but less efficient)
3861 * to a larger limit. Thus disabled by default.
3862 */
3863 shared = 0;
3864 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3865 shared = 8;
3866
3867#if DEBUG
3868 /*
3869 * With debugging enabled, large batchcount lead to excessively long
3870 * periods with disabled local interrupts. Limit the batchcount
3871 */
3872 if (limit > 32)
3873 limit = 32;
3874#endif
3875 batchcount = (limit + 1) / 2;
3876skip_setup:
3877 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3878 if (err)
3879 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3880 cachep->name, -err);
3881 return err;
3882}
3883
3884/*
3885 * Drain an array if it contains any elements taking the node lock only if
3886 * necessary. Note that the node listlock also protects the array_cache
3887 * if drain_array() is used on the shared array.
3888 */
3889static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3890 struct array_cache *ac, int force, int node)
3891{
3892 LIST_HEAD(list);
3893 int tofree;
3894
3895 if (!ac || !ac->avail)
3896 return;
3897 if (ac->touched && !force) {
3898 ac->touched = 0;
3899 } else {
3900 spin_lock_irq(&n->list_lock);
3901 if (ac->avail) {
3902 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3903 if (tofree > ac->avail)
3904 tofree = (ac->avail + 1) / 2;
3905 free_block(cachep, ac->entry, tofree, node, &list);
3906 ac->avail -= tofree;
3907 memmove(ac->entry, &(ac->entry[tofree]),
3908 sizeof(void *) * ac->avail);
3909 }
3910 spin_unlock_irq(&n->list_lock);
3911 slabs_destroy(cachep, &list);
3912 }
3913}
3914
3915/**
3916 * cache_reap - Reclaim memory from caches.
3917 * @w: work descriptor
3918 *
3919 * Called from workqueue/eventd every few seconds.
3920 * Purpose:
3921 * - clear the per-cpu caches for this CPU.
3922 * - return freeable pages to the main free memory pool.
3923 *
3924 * If we cannot acquire the cache chain mutex then just give up - we'll try
3925 * again on the next iteration.
3926 */
3927static void cache_reap(struct work_struct *w)
3928{
3929 struct kmem_cache *searchp;
3930 struct kmem_cache_node *n;
3931 int node = numa_mem_id();
3932 struct delayed_work *work = to_delayed_work(w);
3933
3934 if (!mutex_trylock(&slab_mutex))
3935 /* Give up. Setup the next iteration. */
3936 goto out;
3937
3938 list_for_each_entry(searchp, &slab_caches, list) {
3939 check_irq_on();
3940
3941 /*
3942 * We only take the node lock if absolutely necessary and we
3943 * have established with reasonable certainty that
3944 * we can do some work if the lock was obtained.
3945 */
3946 n = get_node(searchp, node);
3947
3948 reap_alien(searchp, n);
3949
3950 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
3951
3952 /*
3953 * These are racy checks but it does not matter
3954 * if we skip one check or scan twice.
3955 */
3956 if (time_after(n->next_reap, jiffies))
3957 goto next;
3958
3959 n->next_reap = jiffies + REAPTIMEOUT_NODE;
3960
3961 drain_array(searchp, n, n->shared, 0, node);
3962
3963 if (n->free_touched)
3964 n->free_touched = 0;
3965 else {
3966 int freed;
3967
3968 freed = drain_freelist(searchp, n, (n->free_limit +
3969 5 * searchp->num - 1) / (5 * searchp->num));
3970 STATS_ADD_REAPED(searchp, freed);
3971 }
3972next:
3973 cond_resched();
3974 }
3975 check_irq_on();
3976 mutex_unlock(&slab_mutex);
3977 next_reap_node();
3978out:
3979 /* Set up the next iteration */
3980 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
3981}
3982
3983#ifdef CONFIG_SLABINFO
3984void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
3985{
3986 struct page *page;
3987 unsigned long active_objs;
3988 unsigned long num_objs;
3989 unsigned long active_slabs = 0;
3990 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3991 const char *name;
3992 char *error = NULL;
3993 int node;
3994 struct kmem_cache_node *n;
3995
3996 active_objs = 0;
3997 num_slabs = 0;
3998 for_each_kmem_cache_node(cachep, node, n) {
3999
4000 check_irq_on();
4001 spin_lock_irq(&n->list_lock);
4002
4003 list_for_each_entry(page, &n->slabs_full, lru) {
4004 if (page->active != cachep->num && !error)
4005 error = "slabs_full accounting error";
4006 active_objs += cachep->num;
4007 active_slabs++;
4008 }
4009 list_for_each_entry(page, &n->slabs_partial, lru) {
4010 if (page->active == cachep->num && !error)
4011 error = "slabs_partial accounting error";
4012 if (!page->active && !error)
4013 error = "slabs_partial accounting error";
4014 active_objs += page->active;
4015 active_slabs++;
4016 }
4017 list_for_each_entry(page, &n->slabs_free, lru) {
4018 if (page->active && !error)
4019 error = "slabs_free accounting error";
4020 num_slabs++;
4021 }
4022 free_objects += n->free_objects;
4023 if (n->shared)
4024 shared_avail += n->shared->avail;
4025
4026 spin_unlock_irq(&n->list_lock);
4027 }
4028 num_slabs += active_slabs;
4029 num_objs = num_slabs * cachep->num;
4030 if (num_objs - active_objs != free_objects && !error)
4031 error = "free_objects accounting error";
4032
4033 name = cachep->name;
4034 if (error)
4035 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4036
4037 sinfo->active_objs = active_objs;
4038 sinfo->num_objs = num_objs;
4039 sinfo->active_slabs = active_slabs;
4040 sinfo->num_slabs = num_slabs;
4041 sinfo->shared_avail = shared_avail;
4042 sinfo->limit = cachep->limit;
4043 sinfo->batchcount = cachep->batchcount;
4044 sinfo->shared = cachep->shared;
4045 sinfo->objects_per_slab = cachep->num;
4046 sinfo->cache_order = cachep->gfporder;
4047}
4048
4049void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4050{
4051#if STATS
4052 { /* node stats */
4053 unsigned long high = cachep->high_mark;
4054 unsigned long allocs = cachep->num_allocations;
4055 unsigned long grown = cachep->grown;
4056 unsigned long reaped = cachep->reaped;
4057 unsigned long errors = cachep->errors;
4058 unsigned long max_freeable = cachep->max_freeable;
4059 unsigned long node_allocs = cachep->node_allocs;
4060 unsigned long node_frees = cachep->node_frees;
4061 unsigned long overflows = cachep->node_overflow;
4062
4063 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4064 "%4lu %4lu %4lu %4lu %4lu",
4065 allocs, high, grown,
4066 reaped, errors, max_freeable, node_allocs,
4067 node_frees, overflows);
4068 }
4069 /* cpu stats */
4070 {
4071 unsigned long allochit = atomic_read(&cachep->allochit);
4072 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4073 unsigned long freehit = atomic_read(&cachep->freehit);
4074 unsigned long freemiss = atomic_read(&cachep->freemiss);
4075
4076 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4077 allochit, allocmiss, freehit, freemiss);
4078 }
4079#endif
4080}
4081
4082#define MAX_SLABINFO_WRITE 128
4083/**
4084 * slabinfo_write - Tuning for the slab allocator
4085 * @file: unused
4086 * @buffer: user buffer
4087 * @count: data length
4088 * @ppos: unused
4089 */
4090ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4091 size_t count, loff_t *ppos)
4092{
4093 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4094 int limit, batchcount, shared, res;
4095 struct kmem_cache *cachep;
4096
4097 if (count > MAX_SLABINFO_WRITE)
4098 return -EINVAL;
4099 if (copy_from_user(&kbuf, buffer, count))
4100 return -EFAULT;
4101 kbuf[MAX_SLABINFO_WRITE] = '\0';
4102
4103 tmp = strchr(kbuf, ' ');
4104 if (!tmp)
4105 return -EINVAL;
4106 *tmp = '\0';
4107 tmp++;
4108 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4109 return -EINVAL;
4110
4111 /* Find the cache in the chain of caches. */
4112 mutex_lock(&slab_mutex);
4113 res = -EINVAL;
4114 list_for_each_entry(cachep, &slab_caches, list) {
4115 if (!strcmp(cachep->name, kbuf)) {
4116 if (limit < 1 || batchcount < 1 ||
4117 batchcount > limit || shared < 0) {
4118 res = 0;
4119 } else {
4120 res = do_tune_cpucache(cachep, limit,
4121 batchcount, shared,
4122 GFP_KERNEL);
4123 }
4124 break;
4125 }
4126 }
4127 mutex_unlock(&slab_mutex);
4128 if (res >= 0)
4129 res = count;
4130 return res;
4131}
4132
4133#ifdef CONFIG_DEBUG_SLAB_LEAK
4134
4135static void *leaks_start(struct seq_file *m, loff_t *pos)
4136{
4137 mutex_lock(&slab_mutex);
4138 return seq_list_start(&slab_caches, *pos);
4139}
4140
4141static inline int add_caller(unsigned long *n, unsigned long v)
4142{
4143 unsigned long *p;
4144 int l;
4145 if (!v)
4146 return 1;
4147 l = n[1];
4148 p = n + 2;
4149 while (l) {
4150 int i = l/2;
4151 unsigned long *q = p + 2 * i;
4152 if (*q == v) {
4153 q[1]++;
4154 return 1;
4155 }
4156 if (*q > v) {
4157 l = i;
4158 } else {
4159 p = q + 2;
4160 l -= i + 1;
4161 }
4162 }
4163 if (++n[1] == n[0])
4164 return 0;
4165 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4166 p[0] = v;
4167 p[1] = 1;
4168 return 1;
4169}
4170
4171static void handle_slab(unsigned long *n, struct kmem_cache *c,
4172 struct page *page)
4173{
4174 void *p;
4175 int i;
4176
4177 if (n[0] == n[1])
4178 return;
4179 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4180 if (get_obj_status(page, i) != OBJECT_ACTIVE)
4181 continue;
4182
4183 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4184 return;
4185 }
4186}
4187
4188static void show_symbol(struct seq_file *m, unsigned long address)
4189{
4190#ifdef CONFIG_KALLSYMS
4191 unsigned long offset, size;
4192 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4193
4194 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4195 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4196 if (modname[0])
4197 seq_printf(m, " [%s]", modname);
4198 return;
4199 }
4200#endif
4201 seq_printf(m, "%p", (void *)address);
4202}
4203
4204static int leaks_show(struct seq_file *m, void *p)
4205{
4206 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4207 struct page *page;
4208 struct kmem_cache_node *n;
4209 const char *name;
4210 unsigned long *x = m->private;
4211 int node;
4212 int i;
4213
4214 if (!(cachep->flags & SLAB_STORE_USER))
4215 return 0;
4216 if (!(cachep->flags & SLAB_RED_ZONE))
4217 return 0;
4218
4219 /* OK, we can do it */
4220
4221 x[1] = 0;
4222
4223 for_each_kmem_cache_node(cachep, node, n) {
4224
4225 check_irq_on();
4226 spin_lock_irq(&n->list_lock);
4227
4228 list_for_each_entry(page, &n->slabs_full, lru)
4229 handle_slab(x, cachep, page);
4230 list_for_each_entry(page, &n->slabs_partial, lru)
4231 handle_slab(x, cachep, page);
4232 spin_unlock_irq(&n->list_lock);
4233 }
4234 name = cachep->name;
4235 if (x[0] == x[1]) {
4236 /* Increase the buffer size */
4237 mutex_unlock(&slab_mutex);
4238 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4239 if (!m->private) {
4240 /* Too bad, we are really out */
4241 m->private = x;
4242 mutex_lock(&slab_mutex);
4243 return -ENOMEM;
4244 }
4245 *(unsigned long *)m->private = x[0] * 2;
4246 kfree(x);
4247 mutex_lock(&slab_mutex);
4248 /* Now make sure this entry will be retried */
4249 m->count = m->size;
4250 return 0;
4251 }
4252 for (i = 0; i < x[1]; i++) {
4253 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4254 show_symbol(m, x[2*i+2]);
4255 seq_putc(m, '\n');
4256 }
4257
4258 return 0;
4259}
4260
4261static const struct seq_operations slabstats_op = {
4262 .start = leaks_start,
4263 .next = slab_next,
4264 .stop = slab_stop,
4265 .show = leaks_show,
4266};
4267
4268static int slabstats_open(struct inode *inode, struct file *file)
4269{
4270 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4271 int ret = -ENOMEM;
4272 if (n) {
4273 ret = seq_open(file, &slabstats_op);
4274 if (!ret) {
4275 struct seq_file *m = file->private_data;
4276 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4277 m->private = n;
4278 n = NULL;
4279 }
4280 kfree(n);
4281 }
4282 return ret;
4283}
4284
4285static const struct file_operations proc_slabstats_operations = {
4286 .open = slabstats_open,
4287 .read = seq_read,
4288 .llseek = seq_lseek,
4289 .release = seq_release_private,
4290};
4291#endif
4292
4293static int __init slab_proc_init(void)
4294{
4295#ifdef CONFIG_DEBUG_SLAB_LEAK
4296 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4297#endif
4298 return 0;
4299}
4300module_init(slab_proc_init);
4301#endif
4302
4303/**
4304 * ksize - get the actual amount of memory allocated for a given object
4305 * @objp: Pointer to the object
4306 *
4307 * kmalloc may internally round up allocations and return more memory
4308 * than requested. ksize() can be used to determine the actual amount of
4309 * memory allocated. The caller may use this additional memory, even though
4310 * a smaller amount of memory was initially specified with the kmalloc call.
4311 * The caller must guarantee that objp points to a valid object previously
4312 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4313 * must not be freed during the duration of the call.
4314 */
4315size_t ksize(const void *objp)
4316{
4317 BUG_ON(!objp);
4318 if (unlikely(objp == ZERO_SIZE_PTR))
4319 return 0;
4320
4321 return virt_to_cache(objp)->object_size;
4322}
4323EXPORT_SYMBOL(ksize);
This page took 0.049605 seconds and 5 git commands to generate.