mm: export unusable free space index via debugfs
[deliverable/linux.git] / mm / vmstat.c
... / ...
CommitLineData
1/*
2 * linux/mm/vmstat.c
3 *
4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * zoned VM statistics
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
10 */
11#include <linux/fs.h>
12#include <linux/mm.h>
13#include <linux/err.h>
14#include <linux/module.h>
15#include <linux/slab.h>
16#include <linux/cpu.h>
17#include <linux/vmstat.h>
18#include <linux/sched.h>
19
20#ifdef CONFIG_VM_EVENT_COUNTERS
21DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
22EXPORT_PER_CPU_SYMBOL(vm_event_states);
23
24static void sum_vm_events(unsigned long *ret, const struct cpumask *cpumask)
25{
26 int cpu;
27 int i;
28
29 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
30
31 for_each_cpu(cpu, cpumask) {
32 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
33
34 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
35 ret[i] += this->event[i];
36 }
37}
38
39/*
40 * Accumulate the vm event counters across all CPUs.
41 * The result is unavoidably approximate - it can change
42 * during and after execution of this function.
43*/
44void all_vm_events(unsigned long *ret)
45{
46 get_online_cpus();
47 sum_vm_events(ret, cpu_online_mask);
48 put_online_cpus();
49}
50EXPORT_SYMBOL_GPL(all_vm_events);
51
52#ifdef CONFIG_HOTPLUG
53/*
54 * Fold the foreign cpu events into our own.
55 *
56 * This is adding to the events on one processor
57 * but keeps the global counts constant.
58 */
59void vm_events_fold_cpu(int cpu)
60{
61 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
62 int i;
63
64 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
65 count_vm_events(i, fold_state->event[i]);
66 fold_state->event[i] = 0;
67 }
68}
69#endif /* CONFIG_HOTPLUG */
70
71#endif /* CONFIG_VM_EVENT_COUNTERS */
72
73/*
74 * Manage combined zone based / global counters
75 *
76 * vm_stat contains the global counters
77 */
78atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
79EXPORT_SYMBOL(vm_stat);
80
81#ifdef CONFIG_SMP
82
83static int calculate_threshold(struct zone *zone)
84{
85 int threshold;
86 int mem; /* memory in 128 MB units */
87
88 /*
89 * The threshold scales with the number of processors and the amount
90 * of memory per zone. More memory means that we can defer updates for
91 * longer, more processors could lead to more contention.
92 * fls() is used to have a cheap way of logarithmic scaling.
93 *
94 * Some sample thresholds:
95 *
96 * Threshold Processors (fls) Zonesize fls(mem+1)
97 * ------------------------------------------------------------------
98 * 8 1 1 0.9-1 GB 4
99 * 16 2 2 0.9-1 GB 4
100 * 20 2 2 1-2 GB 5
101 * 24 2 2 2-4 GB 6
102 * 28 2 2 4-8 GB 7
103 * 32 2 2 8-16 GB 8
104 * 4 2 2 <128M 1
105 * 30 4 3 2-4 GB 5
106 * 48 4 3 8-16 GB 8
107 * 32 8 4 1-2 GB 4
108 * 32 8 4 0.9-1GB 4
109 * 10 16 5 <128M 1
110 * 40 16 5 900M 4
111 * 70 64 7 2-4 GB 5
112 * 84 64 7 4-8 GB 6
113 * 108 512 9 4-8 GB 6
114 * 125 1024 10 8-16 GB 8
115 * 125 1024 10 16-32 GB 9
116 */
117
118 mem = zone->present_pages >> (27 - PAGE_SHIFT);
119
120 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
121
122 /*
123 * Maximum threshold is 125
124 */
125 threshold = min(125, threshold);
126
127 return threshold;
128}
129
130/*
131 * Refresh the thresholds for each zone.
132 */
133static void refresh_zone_stat_thresholds(void)
134{
135 struct zone *zone;
136 int cpu;
137 int threshold;
138
139 for_each_populated_zone(zone) {
140 threshold = calculate_threshold(zone);
141
142 for_each_online_cpu(cpu)
143 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
144 = threshold;
145 }
146}
147
148/*
149 * For use when we know that interrupts are disabled.
150 */
151void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
152 int delta)
153{
154 struct per_cpu_pageset *pcp = this_cpu_ptr(zone->pageset);
155
156 s8 *p = pcp->vm_stat_diff + item;
157 long x;
158
159 x = delta + *p;
160
161 if (unlikely(x > pcp->stat_threshold || x < -pcp->stat_threshold)) {
162 zone_page_state_add(x, zone, item);
163 x = 0;
164 }
165 *p = x;
166}
167EXPORT_SYMBOL(__mod_zone_page_state);
168
169/*
170 * For an unknown interrupt state
171 */
172void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
173 int delta)
174{
175 unsigned long flags;
176
177 local_irq_save(flags);
178 __mod_zone_page_state(zone, item, delta);
179 local_irq_restore(flags);
180}
181EXPORT_SYMBOL(mod_zone_page_state);
182
183/*
184 * Optimized increment and decrement functions.
185 *
186 * These are only for a single page and therefore can take a struct page *
187 * argument instead of struct zone *. This allows the inclusion of the code
188 * generated for page_zone(page) into the optimized functions.
189 *
190 * No overflow check is necessary and therefore the differential can be
191 * incremented or decremented in place which may allow the compilers to
192 * generate better code.
193 * The increment or decrement is known and therefore one boundary check can
194 * be omitted.
195 *
196 * NOTE: These functions are very performance sensitive. Change only
197 * with care.
198 *
199 * Some processors have inc/dec instructions that are atomic vs an interrupt.
200 * However, the code must first determine the differential location in a zone
201 * based on the processor number and then inc/dec the counter. There is no
202 * guarantee without disabling preemption that the processor will not change
203 * in between and therefore the atomicity vs. interrupt cannot be exploited
204 * in a useful way here.
205 */
206void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
207{
208 struct per_cpu_pageset *pcp = this_cpu_ptr(zone->pageset);
209 s8 *p = pcp->vm_stat_diff + item;
210
211 (*p)++;
212
213 if (unlikely(*p > pcp->stat_threshold)) {
214 int overstep = pcp->stat_threshold / 2;
215
216 zone_page_state_add(*p + overstep, zone, item);
217 *p = -overstep;
218 }
219}
220
221void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
222{
223 __inc_zone_state(page_zone(page), item);
224}
225EXPORT_SYMBOL(__inc_zone_page_state);
226
227void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
228{
229 struct per_cpu_pageset *pcp = this_cpu_ptr(zone->pageset);
230 s8 *p = pcp->vm_stat_diff + item;
231
232 (*p)--;
233
234 if (unlikely(*p < - pcp->stat_threshold)) {
235 int overstep = pcp->stat_threshold / 2;
236
237 zone_page_state_add(*p - overstep, zone, item);
238 *p = overstep;
239 }
240}
241
242void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
243{
244 __dec_zone_state(page_zone(page), item);
245}
246EXPORT_SYMBOL(__dec_zone_page_state);
247
248void inc_zone_state(struct zone *zone, enum zone_stat_item item)
249{
250 unsigned long flags;
251
252 local_irq_save(flags);
253 __inc_zone_state(zone, item);
254 local_irq_restore(flags);
255}
256
257void inc_zone_page_state(struct page *page, enum zone_stat_item item)
258{
259 unsigned long flags;
260 struct zone *zone;
261
262 zone = page_zone(page);
263 local_irq_save(flags);
264 __inc_zone_state(zone, item);
265 local_irq_restore(flags);
266}
267EXPORT_SYMBOL(inc_zone_page_state);
268
269void dec_zone_page_state(struct page *page, enum zone_stat_item item)
270{
271 unsigned long flags;
272
273 local_irq_save(flags);
274 __dec_zone_page_state(page, item);
275 local_irq_restore(flags);
276}
277EXPORT_SYMBOL(dec_zone_page_state);
278
279/*
280 * Update the zone counters for one cpu.
281 *
282 * The cpu specified must be either the current cpu or a processor that
283 * is not online. If it is the current cpu then the execution thread must
284 * be pinned to the current cpu.
285 *
286 * Note that refresh_cpu_vm_stats strives to only access
287 * node local memory. The per cpu pagesets on remote zones are placed
288 * in the memory local to the processor using that pageset. So the
289 * loop over all zones will access a series of cachelines local to
290 * the processor.
291 *
292 * The call to zone_page_state_add updates the cachelines with the
293 * statistics in the remote zone struct as well as the global cachelines
294 * with the global counters. These could cause remote node cache line
295 * bouncing and will have to be only done when necessary.
296 */
297void refresh_cpu_vm_stats(int cpu)
298{
299 struct zone *zone;
300 int i;
301 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
302
303 for_each_populated_zone(zone) {
304 struct per_cpu_pageset *p;
305
306 p = per_cpu_ptr(zone->pageset, cpu);
307
308 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
309 if (p->vm_stat_diff[i]) {
310 unsigned long flags;
311 int v;
312
313 local_irq_save(flags);
314 v = p->vm_stat_diff[i];
315 p->vm_stat_diff[i] = 0;
316 local_irq_restore(flags);
317 atomic_long_add(v, &zone->vm_stat[i]);
318 global_diff[i] += v;
319#ifdef CONFIG_NUMA
320 /* 3 seconds idle till flush */
321 p->expire = 3;
322#endif
323 }
324 cond_resched();
325#ifdef CONFIG_NUMA
326 /*
327 * Deal with draining the remote pageset of this
328 * processor
329 *
330 * Check if there are pages remaining in this pageset
331 * if not then there is nothing to expire.
332 */
333 if (!p->expire || !p->pcp.count)
334 continue;
335
336 /*
337 * We never drain zones local to this processor.
338 */
339 if (zone_to_nid(zone) == numa_node_id()) {
340 p->expire = 0;
341 continue;
342 }
343
344 p->expire--;
345 if (p->expire)
346 continue;
347
348 if (p->pcp.count)
349 drain_zone_pages(zone, &p->pcp);
350#endif
351 }
352
353 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
354 if (global_diff[i])
355 atomic_long_add(global_diff[i], &vm_stat[i]);
356}
357
358#endif
359
360#ifdef CONFIG_NUMA
361/*
362 * zonelist = the list of zones passed to the allocator
363 * z = the zone from which the allocation occurred.
364 *
365 * Must be called with interrupts disabled.
366 */
367void zone_statistics(struct zone *preferred_zone, struct zone *z)
368{
369 if (z->zone_pgdat == preferred_zone->zone_pgdat) {
370 __inc_zone_state(z, NUMA_HIT);
371 } else {
372 __inc_zone_state(z, NUMA_MISS);
373 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
374 }
375 if (z->node == numa_node_id())
376 __inc_zone_state(z, NUMA_LOCAL);
377 else
378 __inc_zone_state(z, NUMA_OTHER);
379}
380#endif
381
382#ifdef CONFIG_COMPACTION
383struct contig_page_info {
384 unsigned long free_pages;
385 unsigned long free_blocks_total;
386 unsigned long free_blocks_suitable;
387};
388
389/*
390 * Calculate the number of free pages in a zone, how many contiguous
391 * pages are free and how many are large enough to satisfy an allocation of
392 * the target size. Note that this function makes no attempt to estimate
393 * how many suitable free blocks there *might* be if MOVABLE pages were
394 * migrated. Calculating that is possible, but expensive and can be
395 * figured out from userspace
396 */
397static void fill_contig_page_info(struct zone *zone,
398 unsigned int suitable_order,
399 struct contig_page_info *info)
400{
401 unsigned int order;
402
403 info->free_pages = 0;
404 info->free_blocks_total = 0;
405 info->free_blocks_suitable = 0;
406
407 for (order = 0; order < MAX_ORDER; order++) {
408 unsigned long blocks;
409
410 /* Count number of free blocks */
411 blocks = zone->free_area[order].nr_free;
412 info->free_blocks_total += blocks;
413
414 /* Count free base pages */
415 info->free_pages += blocks << order;
416
417 /* Count the suitable free blocks */
418 if (order >= suitable_order)
419 info->free_blocks_suitable += blocks <<
420 (order - suitable_order);
421 }
422}
423#endif
424
425#if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
426#include <linux/proc_fs.h>
427#include <linux/seq_file.h>
428
429static char * const migratetype_names[MIGRATE_TYPES] = {
430 "Unmovable",
431 "Reclaimable",
432 "Movable",
433 "Reserve",
434 "Isolate",
435};
436
437static void *frag_start(struct seq_file *m, loff_t *pos)
438{
439 pg_data_t *pgdat;
440 loff_t node = *pos;
441 for (pgdat = first_online_pgdat();
442 pgdat && node;
443 pgdat = next_online_pgdat(pgdat))
444 --node;
445
446 return pgdat;
447}
448
449static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
450{
451 pg_data_t *pgdat = (pg_data_t *)arg;
452
453 (*pos)++;
454 return next_online_pgdat(pgdat);
455}
456
457static void frag_stop(struct seq_file *m, void *arg)
458{
459}
460
461/* Walk all the zones in a node and print using a callback */
462static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
463 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
464{
465 struct zone *zone;
466 struct zone *node_zones = pgdat->node_zones;
467 unsigned long flags;
468
469 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
470 if (!populated_zone(zone))
471 continue;
472
473 spin_lock_irqsave(&zone->lock, flags);
474 print(m, pgdat, zone);
475 spin_unlock_irqrestore(&zone->lock, flags);
476 }
477}
478#endif
479
480#ifdef CONFIG_PROC_FS
481static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
482 struct zone *zone)
483{
484 int order;
485
486 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
487 for (order = 0; order < MAX_ORDER; ++order)
488 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
489 seq_putc(m, '\n');
490}
491
492/*
493 * This walks the free areas for each zone.
494 */
495static int frag_show(struct seq_file *m, void *arg)
496{
497 pg_data_t *pgdat = (pg_data_t *)arg;
498 walk_zones_in_node(m, pgdat, frag_show_print);
499 return 0;
500}
501
502static void pagetypeinfo_showfree_print(struct seq_file *m,
503 pg_data_t *pgdat, struct zone *zone)
504{
505 int order, mtype;
506
507 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
508 seq_printf(m, "Node %4d, zone %8s, type %12s ",
509 pgdat->node_id,
510 zone->name,
511 migratetype_names[mtype]);
512 for (order = 0; order < MAX_ORDER; ++order) {
513 unsigned long freecount = 0;
514 struct free_area *area;
515 struct list_head *curr;
516
517 area = &(zone->free_area[order]);
518
519 list_for_each(curr, &area->free_list[mtype])
520 freecount++;
521 seq_printf(m, "%6lu ", freecount);
522 }
523 seq_putc(m, '\n');
524 }
525}
526
527/* Print out the free pages at each order for each migatetype */
528static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
529{
530 int order;
531 pg_data_t *pgdat = (pg_data_t *)arg;
532
533 /* Print header */
534 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
535 for (order = 0; order < MAX_ORDER; ++order)
536 seq_printf(m, "%6d ", order);
537 seq_putc(m, '\n');
538
539 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
540
541 return 0;
542}
543
544static void pagetypeinfo_showblockcount_print(struct seq_file *m,
545 pg_data_t *pgdat, struct zone *zone)
546{
547 int mtype;
548 unsigned long pfn;
549 unsigned long start_pfn = zone->zone_start_pfn;
550 unsigned long end_pfn = start_pfn + zone->spanned_pages;
551 unsigned long count[MIGRATE_TYPES] = { 0, };
552
553 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
554 struct page *page;
555
556 if (!pfn_valid(pfn))
557 continue;
558
559 page = pfn_to_page(pfn);
560
561 /* Watch for unexpected holes punched in the memmap */
562 if (!memmap_valid_within(pfn, page, zone))
563 continue;
564
565 mtype = get_pageblock_migratetype(page);
566
567 if (mtype < MIGRATE_TYPES)
568 count[mtype]++;
569 }
570
571 /* Print counts */
572 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
573 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
574 seq_printf(m, "%12lu ", count[mtype]);
575 seq_putc(m, '\n');
576}
577
578/* Print out the free pages at each order for each migratetype */
579static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
580{
581 int mtype;
582 pg_data_t *pgdat = (pg_data_t *)arg;
583
584 seq_printf(m, "\n%-23s", "Number of blocks type ");
585 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
586 seq_printf(m, "%12s ", migratetype_names[mtype]);
587 seq_putc(m, '\n');
588 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
589
590 return 0;
591}
592
593/*
594 * This prints out statistics in relation to grouping pages by mobility.
595 * It is expensive to collect so do not constantly read the file.
596 */
597static int pagetypeinfo_show(struct seq_file *m, void *arg)
598{
599 pg_data_t *pgdat = (pg_data_t *)arg;
600
601 /* check memoryless node */
602 if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
603 return 0;
604
605 seq_printf(m, "Page block order: %d\n", pageblock_order);
606 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
607 seq_putc(m, '\n');
608 pagetypeinfo_showfree(m, pgdat);
609 pagetypeinfo_showblockcount(m, pgdat);
610
611 return 0;
612}
613
614static const struct seq_operations fragmentation_op = {
615 .start = frag_start,
616 .next = frag_next,
617 .stop = frag_stop,
618 .show = frag_show,
619};
620
621static int fragmentation_open(struct inode *inode, struct file *file)
622{
623 return seq_open(file, &fragmentation_op);
624}
625
626static const struct file_operations fragmentation_file_operations = {
627 .open = fragmentation_open,
628 .read = seq_read,
629 .llseek = seq_lseek,
630 .release = seq_release,
631};
632
633static const struct seq_operations pagetypeinfo_op = {
634 .start = frag_start,
635 .next = frag_next,
636 .stop = frag_stop,
637 .show = pagetypeinfo_show,
638};
639
640static int pagetypeinfo_open(struct inode *inode, struct file *file)
641{
642 return seq_open(file, &pagetypeinfo_op);
643}
644
645static const struct file_operations pagetypeinfo_file_ops = {
646 .open = pagetypeinfo_open,
647 .read = seq_read,
648 .llseek = seq_lseek,
649 .release = seq_release,
650};
651
652#ifdef CONFIG_ZONE_DMA
653#define TEXT_FOR_DMA(xx) xx "_dma",
654#else
655#define TEXT_FOR_DMA(xx)
656#endif
657
658#ifdef CONFIG_ZONE_DMA32
659#define TEXT_FOR_DMA32(xx) xx "_dma32",
660#else
661#define TEXT_FOR_DMA32(xx)
662#endif
663
664#ifdef CONFIG_HIGHMEM
665#define TEXT_FOR_HIGHMEM(xx) xx "_high",
666#else
667#define TEXT_FOR_HIGHMEM(xx)
668#endif
669
670#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
671 TEXT_FOR_HIGHMEM(xx) xx "_movable",
672
673static const char * const vmstat_text[] = {
674 /* Zoned VM counters */
675 "nr_free_pages",
676 "nr_inactive_anon",
677 "nr_active_anon",
678 "nr_inactive_file",
679 "nr_active_file",
680 "nr_unevictable",
681 "nr_mlock",
682 "nr_anon_pages",
683 "nr_mapped",
684 "nr_file_pages",
685 "nr_dirty",
686 "nr_writeback",
687 "nr_slab_reclaimable",
688 "nr_slab_unreclaimable",
689 "nr_page_table_pages",
690 "nr_kernel_stack",
691 "nr_unstable",
692 "nr_bounce",
693 "nr_vmscan_write",
694 "nr_writeback_temp",
695 "nr_isolated_anon",
696 "nr_isolated_file",
697 "nr_shmem",
698#ifdef CONFIG_NUMA
699 "numa_hit",
700 "numa_miss",
701 "numa_foreign",
702 "numa_interleave",
703 "numa_local",
704 "numa_other",
705#endif
706
707#ifdef CONFIG_VM_EVENT_COUNTERS
708 "pgpgin",
709 "pgpgout",
710 "pswpin",
711 "pswpout",
712
713 TEXTS_FOR_ZONES("pgalloc")
714
715 "pgfree",
716 "pgactivate",
717 "pgdeactivate",
718
719 "pgfault",
720 "pgmajfault",
721
722 TEXTS_FOR_ZONES("pgrefill")
723 TEXTS_FOR_ZONES("pgsteal")
724 TEXTS_FOR_ZONES("pgscan_kswapd")
725 TEXTS_FOR_ZONES("pgscan_direct")
726
727#ifdef CONFIG_NUMA
728 "zone_reclaim_failed",
729#endif
730 "pginodesteal",
731 "slabs_scanned",
732 "kswapd_steal",
733 "kswapd_inodesteal",
734 "kswapd_low_wmark_hit_quickly",
735 "kswapd_high_wmark_hit_quickly",
736 "kswapd_skip_congestion_wait",
737 "pageoutrun",
738 "allocstall",
739
740 "pgrotated",
741#ifdef CONFIG_HUGETLB_PAGE
742 "htlb_buddy_alloc_success",
743 "htlb_buddy_alloc_fail",
744#endif
745 "unevictable_pgs_culled",
746 "unevictable_pgs_scanned",
747 "unevictable_pgs_rescued",
748 "unevictable_pgs_mlocked",
749 "unevictable_pgs_munlocked",
750 "unevictable_pgs_cleared",
751 "unevictable_pgs_stranded",
752 "unevictable_pgs_mlockfreed",
753#endif
754};
755
756static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
757 struct zone *zone)
758{
759 int i;
760 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
761 seq_printf(m,
762 "\n pages free %lu"
763 "\n min %lu"
764 "\n low %lu"
765 "\n high %lu"
766 "\n scanned %lu"
767 "\n spanned %lu"
768 "\n present %lu",
769 zone_page_state(zone, NR_FREE_PAGES),
770 min_wmark_pages(zone),
771 low_wmark_pages(zone),
772 high_wmark_pages(zone),
773 zone->pages_scanned,
774 zone->spanned_pages,
775 zone->present_pages);
776
777 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
778 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
779 zone_page_state(zone, i));
780
781 seq_printf(m,
782 "\n protection: (%lu",
783 zone->lowmem_reserve[0]);
784 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
785 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
786 seq_printf(m,
787 ")"
788 "\n pagesets");
789 for_each_online_cpu(i) {
790 struct per_cpu_pageset *pageset;
791
792 pageset = per_cpu_ptr(zone->pageset, i);
793 seq_printf(m,
794 "\n cpu: %i"
795 "\n count: %i"
796 "\n high: %i"
797 "\n batch: %i",
798 i,
799 pageset->pcp.count,
800 pageset->pcp.high,
801 pageset->pcp.batch);
802#ifdef CONFIG_SMP
803 seq_printf(m, "\n vm stats threshold: %d",
804 pageset->stat_threshold);
805#endif
806 }
807 seq_printf(m,
808 "\n all_unreclaimable: %u"
809 "\n prev_priority: %i"
810 "\n start_pfn: %lu"
811 "\n inactive_ratio: %u",
812 zone->all_unreclaimable,
813 zone->prev_priority,
814 zone->zone_start_pfn,
815 zone->inactive_ratio);
816 seq_putc(m, '\n');
817}
818
819/*
820 * Output information about zones in @pgdat.
821 */
822static int zoneinfo_show(struct seq_file *m, void *arg)
823{
824 pg_data_t *pgdat = (pg_data_t *)arg;
825 walk_zones_in_node(m, pgdat, zoneinfo_show_print);
826 return 0;
827}
828
829static const struct seq_operations zoneinfo_op = {
830 .start = frag_start, /* iterate over all zones. The same as in
831 * fragmentation. */
832 .next = frag_next,
833 .stop = frag_stop,
834 .show = zoneinfo_show,
835};
836
837static int zoneinfo_open(struct inode *inode, struct file *file)
838{
839 return seq_open(file, &zoneinfo_op);
840}
841
842static const struct file_operations proc_zoneinfo_file_operations = {
843 .open = zoneinfo_open,
844 .read = seq_read,
845 .llseek = seq_lseek,
846 .release = seq_release,
847};
848
849static void *vmstat_start(struct seq_file *m, loff_t *pos)
850{
851 unsigned long *v;
852#ifdef CONFIG_VM_EVENT_COUNTERS
853 unsigned long *e;
854#endif
855 int i;
856
857 if (*pos >= ARRAY_SIZE(vmstat_text))
858 return NULL;
859
860#ifdef CONFIG_VM_EVENT_COUNTERS
861 v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long)
862 + sizeof(struct vm_event_state), GFP_KERNEL);
863#else
864 v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long),
865 GFP_KERNEL);
866#endif
867 m->private = v;
868 if (!v)
869 return ERR_PTR(-ENOMEM);
870 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
871 v[i] = global_page_state(i);
872#ifdef CONFIG_VM_EVENT_COUNTERS
873 e = v + NR_VM_ZONE_STAT_ITEMS;
874 all_vm_events(e);
875 e[PGPGIN] /= 2; /* sectors -> kbytes */
876 e[PGPGOUT] /= 2;
877#endif
878 return v + *pos;
879}
880
881static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
882{
883 (*pos)++;
884 if (*pos >= ARRAY_SIZE(vmstat_text))
885 return NULL;
886 return (unsigned long *)m->private + *pos;
887}
888
889static int vmstat_show(struct seq_file *m, void *arg)
890{
891 unsigned long *l = arg;
892 unsigned long off = l - (unsigned long *)m->private;
893
894 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
895 return 0;
896}
897
898static void vmstat_stop(struct seq_file *m, void *arg)
899{
900 kfree(m->private);
901 m->private = NULL;
902}
903
904static const struct seq_operations vmstat_op = {
905 .start = vmstat_start,
906 .next = vmstat_next,
907 .stop = vmstat_stop,
908 .show = vmstat_show,
909};
910
911static int vmstat_open(struct inode *inode, struct file *file)
912{
913 return seq_open(file, &vmstat_op);
914}
915
916static const struct file_operations proc_vmstat_file_operations = {
917 .open = vmstat_open,
918 .read = seq_read,
919 .llseek = seq_lseek,
920 .release = seq_release,
921};
922#endif /* CONFIG_PROC_FS */
923
924#ifdef CONFIG_SMP
925static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
926int sysctl_stat_interval __read_mostly = HZ;
927
928static void vmstat_update(struct work_struct *w)
929{
930 refresh_cpu_vm_stats(smp_processor_id());
931 schedule_delayed_work(&__get_cpu_var(vmstat_work),
932 round_jiffies_relative(sysctl_stat_interval));
933}
934
935static void __cpuinit start_cpu_timer(int cpu)
936{
937 struct delayed_work *work = &per_cpu(vmstat_work, cpu);
938
939 INIT_DELAYED_WORK_DEFERRABLE(work, vmstat_update);
940 schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
941}
942
943/*
944 * Use the cpu notifier to insure that the thresholds are recalculated
945 * when necessary.
946 */
947static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
948 unsigned long action,
949 void *hcpu)
950{
951 long cpu = (long)hcpu;
952
953 switch (action) {
954 case CPU_ONLINE:
955 case CPU_ONLINE_FROZEN:
956 start_cpu_timer(cpu);
957 node_set_state(cpu_to_node(cpu), N_CPU);
958 break;
959 case CPU_DOWN_PREPARE:
960 case CPU_DOWN_PREPARE_FROZEN:
961 cancel_rearming_delayed_work(&per_cpu(vmstat_work, cpu));
962 per_cpu(vmstat_work, cpu).work.func = NULL;
963 break;
964 case CPU_DOWN_FAILED:
965 case CPU_DOWN_FAILED_FROZEN:
966 start_cpu_timer(cpu);
967 break;
968 case CPU_DEAD:
969 case CPU_DEAD_FROZEN:
970 refresh_zone_stat_thresholds();
971 break;
972 default:
973 break;
974 }
975 return NOTIFY_OK;
976}
977
978static struct notifier_block __cpuinitdata vmstat_notifier =
979 { &vmstat_cpuup_callback, NULL, 0 };
980#endif
981
982static int __init setup_vmstat(void)
983{
984#ifdef CONFIG_SMP
985 int cpu;
986
987 refresh_zone_stat_thresholds();
988 register_cpu_notifier(&vmstat_notifier);
989
990 for_each_online_cpu(cpu)
991 start_cpu_timer(cpu);
992#endif
993#ifdef CONFIG_PROC_FS
994 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
995 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
996 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
997 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
998#endif
999 return 0;
1000}
1001module_init(setup_vmstat)
1002
1003#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1004#include <linux/debugfs.h>
1005
1006static struct dentry *extfrag_debug_root;
1007
1008/*
1009 * Return an index indicating how much of the available free memory is
1010 * unusable for an allocation of the requested size.
1011 */
1012static int unusable_free_index(unsigned int order,
1013 struct contig_page_info *info)
1014{
1015 /* No free memory is interpreted as all free memory is unusable */
1016 if (info->free_pages == 0)
1017 return 1000;
1018
1019 /*
1020 * Index should be a value between 0 and 1. Return a value to 3
1021 * decimal places.
1022 *
1023 * 0 => no fragmentation
1024 * 1 => high fragmentation
1025 */
1026 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1027
1028}
1029
1030static void unusable_show_print(struct seq_file *m,
1031 pg_data_t *pgdat, struct zone *zone)
1032{
1033 unsigned int order;
1034 int index;
1035 struct contig_page_info info;
1036
1037 seq_printf(m, "Node %d, zone %8s ",
1038 pgdat->node_id,
1039 zone->name);
1040 for (order = 0; order < MAX_ORDER; ++order) {
1041 fill_contig_page_info(zone, order, &info);
1042 index = unusable_free_index(order, &info);
1043 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1044 }
1045
1046 seq_putc(m, '\n');
1047}
1048
1049/*
1050 * Display unusable free space index
1051 *
1052 * The unusable free space index measures how much of the available free
1053 * memory cannot be used to satisfy an allocation of a given size and is a
1054 * value between 0 and 1. The higher the value, the more of free memory is
1055 * unusable and by implication, the worse the external fragmentation is. This
1056 * can be expressed as a percentage by multiplying by 100.
1057 */
1058static int unusable_show(struct seq_file *m, void *arg)
1059{
1060 pg_data_t *pgdat = (pg_data_t *)arg;
1061
1062 /* check memoryless node */
1063 if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
1064 return 0;
1065
1066 walk_zones_in_node(m, pgdat, unusable_show_print);
1067
1068 return 0;
1069}
1070
1071static const struct seq_operations unusable_op = {
1072 .start = frag_start,
1073 .next = frag_next,
1074 .stop = frag_stop,
1075 .show = unusable_show,
1076};
1077
1078static int unusable_open(struct inode *inode, struct file *file)
1079{
1080 return seq_open(file, &unusable_op);
1081}
1082
1083static const struct file_operations unusable_file_ops = {
1084 .open = unusable_open,
1085 .read = seq_read,
1086 .llseek = seq_lseek,
1087 .release = seq_release,
1088};
1089
1090static int __init extfrag_debug_init(void)
1091{
1092 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1093 if (!extfrag_debug_root)
1094 return -ENOMEM;
1095
1096 if (!debugfs_create_file("unusable_index", 0444,
1097 extfrag_debug_root, NULL, &unusable_file_ops))
1098 return -ENOMEM;
1099
1100 return 0;
1101}
1102
1103module_init(extfrag_debug_init);
1104#endif
This page took 0.051772 seconds and 5 git commands to generate.