Linux 4.2-rc1
[deliverable/linux.git] / net / ceph / messenger.c
... / ...
CommitLineData
1#include <linux/ceph/ceph_debug.h>
2
3#include <linux/crc32c.h>
4#include <linux/ctype.h>
5#include <linux/highmem.h>
6#include <linux/inet.h>
7#include <linux/kthread.h>
8#include <linux/net.h>
9#include <linux/slab.h>
10#include <linux/socket.h>
11#include <linux/string.h>
12#ifdef CONFIG_BLOCK
13#include <linux/bio.h>
14#endif /* CONFIG_BLOCK */
15#include <linux/dns_resolver.h>
16#include <net/tcp.h>
17
18#include <linux/ceph/ceph_features.h>
19#include <linux/ceph/libceph.h>
20#include <linux/ceph/messenger.h>
21#include <linux/ceph/decode.h>
22#include <linux/ceph/pagelist.h>
23#include <linux/export.h>
24
25#define list_entry_next(pos, member) \
26 list_entry(pos->member.next, typeof(*pos), member)
27
28/*
29 * Ceph uses the messenger to exchange ceph_msg messages with other
30 * hosts in the system. The messenger provides ordered and reliable
31 * delivery. We tolerate TCP disconnects by reconnecting (with
32 * exponential backoff) in the case of a fault (disconnection, bad
33 * crc, protocol error). Acks allow sent messages to be discarded by
34 * the sender.
35 */
36
37/*
38 * We track the state of the socket on a given connection using
39 * values defined below. The transition to a new socket state is
40 * handled by a function which verifies we aren't coming from an
41 * unexpected state.
42 *
43 * --------
44 * | NEW* | transient initial state
45 * --------
46 * | con_sock_state_init()
47 * v
48 * ----------
49 * | CLOSED | initialized, but no socket (and no
50 * ---------- TCP connection)
51 * ^ \
52 * | \ con_sock_state_connecting()
53 * | ----------------------
54 * | \
55 * + con_sock_state_closed() \
56 * |+--------------------------- \
57 * | \ \ \
58 * | ----------- \ \
59 * | | CLOSING | socket event; \ \
60 * | ----------- await close \ \
61 * | ^ \ |
62 * | | \ |
63 * | + con_sock_state_closing() \ |
64 * | / \ | |
65 * | / --------------- | |
66 * | / \ v v
67 * | / --------------
68 * | / -----------------| CONNECTING | socket created, TCP
69 * | | / -------------- connect initiated
70 * | | | con_sock_state_connected()
71 * | | v
72 * -------------
73 * | CONNECTED | TCP connection established
74 * -------------
75 *
76 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77 */
78
79#define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
80#define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
81#define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
82#define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
83#define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
84
85/*
86 * connection states
87 */
88#define CON_STATE_CLOSED 1 /* -> PREOPEN */
89#define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
90#define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
91#define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
92#define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
93#define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
94
95/*
96 * ceph_connection flag bits
97 */
98#define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
99 * messages on errors */
100#define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
101#define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
102#define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
103#define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
104
105static bool con_flag_valid(unsigned long con_flag)
106{
107 switch (con_flag) {
108 case CON_FLAG_LOSSYTX:
109 case CON_FLAG_KEEPALIVE_PENDING:
110 case CON_FLAG_WRITE_PENDING:
111 case CON_FLAG_SOCK_CLOSED:
112 case CON_FLAG_BACKOFF:
113 return true;
114 default:
115 return false;
116 }
117}
118
119static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
120{
121 BUG_ON(!con_flag_valid(con_flag));
122
123 clear_bit(con_flag, &con->flags);
124}
125
126static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
127{
128 BUG_ON(!con_flag_valid(con_flag));
129
130 set_bit(con_flag, &con->flags);
131}
132
133static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
134{
135 BUG_ON(!con_flag_valid(con_flag));
136
137 return test_bit(con_flag, &con->flags);
138}
139
140static bool con_flag_test_and_clear(struct ceph_connection *con,
141 unsigned long con_flag)
142{
143 BUG_ON(!con_flag_valid(con_flag));
144
145 return test_and_clear_bit(con_flag, &con->flags);
146}
147
148static bool con_flag_test_and_set(struct ceph_connection *con,
149 unsigned long con_flag)
150{
151 BUG_ON(!con_flag_valid(con_flag));
152
153 return test_and_set_bit(con_flag, &con->flags);
154}
155
156/* Slab caches for frequently-allocated structures */
157
158static struct kmem_cache *ceph_msg_cache;
159static struct kmem_cache *ceph_msg_data_cache;
160
161/* static tag bytes (protocol control messages) */
162static char tag_msg = CEPH_MSGR_TAG_MSG;
163static char tag_ack = CEPH_MSGR_TAG_ACK;
164static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
165
166#ifdef CONFIG_LOCKDEP
167static struct lock_class_key socket_class;
168#endif
169
170/*
171 * When skipping (ignoring) a block of input we read it into a "skip
172 * buffer," which is this many bytes in size.
173 */
174#define SKIP_BUF_SIZE 1024
175
176static void queue_con(struct ceph_connection *con);
177static void cancel_con(struct ceph_connection *con);
178static void con_work(struct work_struct *);
179static void con_fault(struct ceph_connection *con);
180
181/*
182 * Nicely render a sockaddr as a string. An array of formatted
183 * strings is used, to approximate reentrancy.
184 */
185#define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
186#define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
187#define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
188#define MAX_ADDR_STR_LEN 64 /* 54 is enough */
189
190static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
191static atomic_t addr_str_seq = ATOMIC_INIT(0);
192
193static struct page *zero_page; /* used in certain error cases */
194
195const char *ceph_pr_addr(const struct sockaddr_storage *ss)
196{
197 int i;
198 char *s;
199 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
200 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
201
202 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
203 s = addr_str[i];
204
205 switch (ss->ss_family) {
206 case AF_INET:
207 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
208 ntohs(in4->sin_port));
209 break;
210
211 case AF_INET6:
212 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
213 ntohs(in6->sin6_port));
214 break;
215
216 default:
217 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
218 ss->ss_family);
219 }
220
221 return s;
222}
223EXPORT_SYMBOL(ceph_pr_addr);
224
225static void encode_my_addr(struct ceph_messenger *msgr)
226{
227 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
228 ceph_encode_addr(&msgr->my_enc_addr);
229}
230
231/*
232 * work queue for all reading and writing to/from the socket.
233 */
234static struct workqueue_struct *ceph_msgr_wq;
235
236static int ceph_msgr_slab_init(void)
237{
238 BUG_ON(ceph_msg_cache);
239 ceph_msg_cache = kmem_cache_create("ceph_msg",
240 sizeof (struct ceph_msg),
241 __alignof__(struct ceph_msg), 0, NULL);
242
243 if (!ceph_msg_cache)
244 return -ENOMEM;
245
246 BUG_ON(ceph_msg_data_cache);
247 ceph_msg_data_cache = kmem_cache_create("ceph_msg_data",
248 sizeof (struct ceph_msg_data),
249 __alignof__(struct ceph_msg_data),
250 0, NULL);
251 if (ceph_msg_data_cache)
252 return 0;
253
254 kmem_cache_destroy(ceph_msg_cache);
255 ceph_msg_cache = NULL;
256
257 return -ENOMEM;
258}
259
260static void ceph_msgr_slab_exit(void)
261{
262 BUG_ON(!ceph_msg_data_cache);
263 kmem_cache_destroy(ceph_msg_data_cache);
264 ceph_msg_data_cache = NULL;
265
266 BUG_ON(!ceph_msg_cache);
267 kmem_cache_destroy(ceph_msg_cache);
268 ceph_msg_cache = NULL;
269}
270
271static void _ceph_msgr_exit(void)
272{
273 if (ceph_msgr_wq) {
274 destroy_workqueue(ceph_msgr_wq);
275 ceph_msgr_wq = NULL;
276 }
277
278 ceph_msgr_slab_exit();
279
280 BUG_ON(zero_page == NULL);
281 page_cache_release(zero_page);
282 zero_page = NULL;
283}
284
285int ceph_msgr_init(void)
286{
287 BUG_ON(zero_page != NULL);
288 zero_page = ZERO_PAGE(0);
289 page_cache_get(zero_page);
290
291 if (ceph_msgr_slab_init())
292 return -ENOMEM;
293
294 /*
295 * The number of active work items is limited by the number of
296 * connections, so leave @max_active at default.
297 */
298 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
299 if (ceph_msgr_wq)
300 return 0;
301
302 pr_err("msgr_init failed to create workqueue\n");
303 _ceph_msgr_exit();
304
305 return -ENOMEM;
306}
307EXPORT_SYMBOL(ceph_msgr_init);
308
309void ceph_msgr_exit(void)
310{
311 BUG_ON(ceph_msgr_wq == NULL);
312
313 _ceph_msgr_exit();
314}
315EXPORT_SYMBOL(ceph_msgr_exit);
316
317void ceph_msgr_flush(void)
318{
319 flush_workqueue(ceph_msgr_wq);
320}
321EXPORT_SYMBOL(ceph_msgr_flush);
322
323/* Connection socket state transition functions */
324
325static void con_sock_state_init(struct ceph_connection *con)
326{
327 int old_state;
328
329 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
330 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
331 printk("%s: unexpected old state %d\n", __func__, old_state);
332 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
333 CON_SOCK_STATE_CLOSED);
334}
335
336static void con_sock_state_connecting(struct ceph_connection *con)
337{
338 int old_state;
339
340 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
341 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
342 printk("%s: unexpected old state %d\n", __func__, old_state);
343 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
344 CON_SOCK_STATE_CONNECTING);
345}
346
347static void con_sock_state_connected(struct ceph_connection *con)
348{
349 int old_state;
350
351 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
352 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
353 printk("%s: unexpected old state %d\n", __func__, old_state);
354 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
355 CON_SOCK_STATE_CONNECTED);
356}
357
358static void con_sock_state_closing(struct ceph_connection *con)
359{
360 int old_state;
361
362 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
363 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
364 old_state != CON_SOCK_STATE_CONNECTED &&
365 old_state != CON_SOCK_STATE_CLOSING))
366 printk("%s: unexpected old state %d\n", __func__, old_state);
367 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
368 CON_SOCK_STATE_CLOSING);
369}
370
371static void con_sock_state_closed(struct ceph_connection *con)
372{
373 int old_state;
374
375 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
376 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
377 old_state != CON_SOCK_STATE_CLOSING &&
378 old_state != CON_SOCK_STATE_CONNECTING &&
379 old_state != CON_SOCK_STATE_CLOSED))
380 printk("%s: unexpected old state %d\n", __func__, old_state);
381 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
382 CON_SOCK_STATE_CLOSED);
383}
384
385/*
386 * socket callback functions
387 */
388
389/* data available on socket, or listen socket received a connect */
390static void ceph_sock_data_ready(struct sock *sk)
391{
392 struct ceph_connection *con = sk->sk_user_data;
393 if (atomic_read(&con->msgr->stopping)) {
394 return;
395 }
396
397 if (sk->sk_state != TCP_CLOSE_WAIT) {
398 dout("%s on %p state = %lu, queueing work\n", __func__,
399 con, con->state);
400 queue_con(con);
401 }
402}
403
404/* socket has buffer space for writing */
405static void ceph_sock_write_space(struct sock *sk)
406{
407 struct ceph_connection *con = sk->sk_user_data;
408
409 /* only queue to workqueue if there is data we want to write,
410 * and there is sufficient space in the socket buffer to accept
411 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
412 * doesn't get called again until try_write() fills the socket
413 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
414 * and net/core/stream.c:sk_stream_write_space().
415 */
416 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
417 if (sk_stream_is_writeable(sk)) {
418 dout("%s %p queueing write work\n", __func__, con);
419 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
420 queue_con(con);
421 }
422 } else {
423 dout("%s %p nothing to write\n", __func__, con);
424 }
425}
426
427/* socket's state has changed */
428static void ceph_sock_state_change(struct sock *sk)
429{
430 struct ceph_connection *con = sk->sk_user_data;
431
432 dout("%s %p state = %lu sk_state = %u\n", __func__,
433 con, con->state, sk->sk_state);
434
435 switch (sk->sk_state) {
436 case TCP_CLOSE:
437 dout("%s TCP_CLOSE\n", __func__);
438 case TCP_CLOSE_WAIT:
439 dout("%s TCP_CLOSE_WAIT\n", __func__);
440 con_sock_state_closing(con);
441 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
442 queue_con(con);
443 break;
444 case TCP_ESTABLISHED:
445 dout("%s TCP_ESTABLISHED\n", __func__);
446 con_sock_state_connected(con);
447 queue_con(con);
448 break;
449 default: /* Everything else is uninteresting */
450 break;
451 }
452}
453
454/*
455 * set up socket callbacks
456 */
457static void set_sock_callbacks(struct socket *sock,
458 struct ceph_connection *con)
459{
460 struct sock *sk = sock->sk;
461 sk->sk_user_data = con;
462 sk->sk_data_ready = ceph_sock_data_ready;
463 sk->sk_write_space = ceph_sock_write_space;
464 sk->sk_state_change = ceph_sock_state_change;
465}
466
467
468/*
469 * socket helpers
470 */
471
472/*
473 * initiate connection to a remote socket.
474 */
475static int ceph_tcp_connect(struct ceph_connection *con)
476{
477 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
478 struct socket *sock;
479 int ret;
480
481 BUG_ON(con->sock);
482 ret = sock_create_kern(&init_net, con->peer_addr.in_addr.ss_family,
483 SOCK_STREAM, IPPROTO_TCP, &sock);
484 if (ret)
485 return ret;
486 sock->sk->sk_allocation = GFP_NOFS;
487
488#ifdef CONFIG_LOCKDEP
489 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
490#endif
491
492 set_sock_callbacks(sock, con);
493
494 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
495
496 con_sock_state_connecting(con);
497 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
498 O_NONBLOCK);
499 if (ret == -EINPROGRESS) {
500 dout("connect %s EINPROGRESS sk_state = %u\n",
501 ceph_pr_addr(&con->peer_addr.in_addr),
502 sock->sk->sk_state);
503 } else if (ret < 0) {
504 pr_err("connect %s error %d\n",
505 ceph_pr_addr(&con->peer_addr.in_addr), ret);
506 sock_release(sock);
507 return ret;
508 }
509
510 if (con->msgr->tcp_nodelay) {
511 int optval = 1;
512
513 ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
514 (char *)&optval, sizeof(optval));
515 if (ret)
516 pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
517 ret);
518 }
519
520 con->sock = sock;
521 return 0;
522}
523
524static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
525{
526 struct kvec iov = {buf, len};
527 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
528 int r;
529
530 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
531 if (r == -EAGAIN)
532 r = 0;
533 return r;
534}
535
536static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
537 int page_offset, size_t length)
538{
539 void *kaddr;
540 int ret;
541
542 BUG_ON(page_offset + length > PAGE_SIZE);
543
544 kaddr = kmap(page);
545 BUG_ON(!kaddr);
546 ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
547 kunmap(page);
548
549 return ret;
550}
551
552/*
553 * write something. @more is true if caller will be sending more data
554 * shortly.
555 */
556static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
557 size_t kvlen, size_t len, int more)
558{
559 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
560 int r;
561
562 if (more)
563 msg.msg_flags |= MSG_MORE;
564 else
565 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
566
567 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
568 if (r == -EAGAIN)
569 r = 0;
570 return r;
571}
572
573static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
574 int offset, size_t size, bool more)
575{
576 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
577 int ret;
578
579 ret = kernel_sendpage(sock, page, offset, size, flags);
580 if (ret == -EAGAIN)
581 ret = 0;
582
583 return ret;
584}
585
586static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
587 int offset, size_t size, bool more)
588{
589 int ret;
590 struct kvec iov;
591
592 /* sendpage cannot properly handle pages with page_count == 0,
593 * we need to fallback to sendmsg if that's the case */
594 if (page_count(page) >= 1)
595 return __ceph_tcp_sendpage(sock, page, offset, size, more);
596
597 iov.iov_base = kmap(page) + offset;
598 iov.iov_len = size;
599 ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more);
600 kunmap(page);
601
602 return ret;
603}
604
605/*
606 * Shutdown/close the socket for the given connection.
607 */
608static int con_close_socket(struct ceph_connection *con)
609{
610 int rc = 0;
611
612 dout("con_close_socket on %p sock %p\n", con, con->sock);
613 if (con->sock) {
614 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
615 sock_release(con->sock);
616 con->sock = NULL;
617 }
618
619 /*
620 * Forcibly clear the SOCK_CLOSED flag. It gets set
621 * independent of the connection mutex, and we could have
622 * received a socket close event before we had the chance to
623 * shut the socket down.
624 */
625 con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
626
627 con_sock_state_closed(con);
628 return rc;
629}
630
631/*
632 * Reset a connection. Discard all incoming and outgoing messages
633 * and clear *_seq state.
634 */
635static void ceph_msg_remove(struct ceph_msg *msg)
636{
637 list_del_init(&msg->list_head);
638 BUG_ON(msg->con == NULL);
639 msg->con->ops->put(msg->con);
640 msg->con = NULL;
641
642 ceph_msg_put(msg);
643}
644static void ceph_msg_remove_list(struct list_head *head)
645{
646 while (!list_empty(head)) {
647 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
648 list_head);
649 ceph_msg_remove(msg);
650 }
651}
652
653static void reset_connection(struct ceph_connection *con)
654{
655 /* reset connection, out_queue, msg_ and connect_seq */
656 /* discard existing out_queue and msg_seq */
657 dout("reset_connection %p\n", con);
658 ceph_msg_remove_list(&con->out_queue);
659 ceph_msg_remove_list(&con->out_sent);
660
661 if (con->in_msg) {
662 BUG_ON(con->in_msg->con != con);
663 con->in_msg->con = NULL;
664 ceph_msg_put(con->in_msg);
665 con->in_msg = NULL;
666 con->ops->put(con);
667 }
668
669 con->connect_seq = 0;
670 con->out_seq = 0;
671 if (con->out_msg) {
672 ceph_msg_put(con->out_msg);
673 con->out_msg = NULL;
674 }
675 con->in_seq = 0;
676 con->in_seq_acked = 0;
677}
678
679/*
680 * mark a peer down. drop any open connections.
681 */
682void ceph_con_close(struct ceph_connection *con)
683{
684 mutex_lock(&con->mutex);
685 dout("con_close %p peer %s\n", con,
686 ceph_pr_addr(&con->peer_addr.in_addr));
687 con->state = CON_STATE_CLOSED;
688
689 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */
690 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
691 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
692 con_flag_clear(con, CON_FLAG_BACKOFF);
693
694 reset_connection(con);
695 con->peer_global_seq = 0;
696 cancel_con(con);
697 con_close_socket(con);
698 mutex_unlock(&con->mutex);
699}
700EXPORT_SYMBOL(ceph_con_close);
701
702/*
703 * Reopen a closed connection, with a new peer address.
704 */
705void ceph_con_open(struct ceph_connection *con,
706 __u8 entity_type, __u64 entity_num,
707 struct ceph_entity_addr *addr)
708{
709 mutex_lock(&con->mutex);
710 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
711
712 WARN_ON(con->state != CON_STATE_CLOSED);
713 con->state = CON_STATE_PREOPEN;
714
715 con->peer_name.type = (__u8) entity_type;
716 con->peer_name.num = cpu_to_le64(entity_num);
717
718 memcpy(&con->peer_addr, addr, sizeof(*addr));
719 con->delay = 0; /* reset backoff memory */
720 mutex_unlock(&con->mutex);
721 queue_con(con);
722}
723EXPORT_SYMBOL(ceph_con_open);
724
725/*
726 * return true if this connection ever successfully opened
727 */
728bool ceph_con_opened(struct ceph_connection *con)
729{
730 return con->connect_seq > 0;
731}
732
733/*
734 * initialize a new connection.
735 */
736void ceph_con_init(struct ceph_connection *con, void *private,
737 const struct ceph_connection_operations *ops,
738 struct ceph_messenger *msgr)
739{
740 dout("con_init %p\n", con);
741 memset(con, 0, sizeof(*con));
742 con->private = private;
743 con->ops = ops;
744 con->msgr = msgr;
745
746 con_sock_state_init(con);
747
748 mutex_init(&con->mutex);
749 INIT_LIST_HEAD(&con->out_queue);
750 INIT_LIST_HEAD(&con->out_sent);
751 INIT_DELAYED_WORK(&con->work, con_work);
752
753 con->state = CON_STATE_CLOSED;
754}
755EXPORT_SYMBOL(ceph_con_init);
756
757
758/*
759 * We maintain a global counter to order connection attempts. Get
760 * a unique seq greater than @gt.
761 */
762static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
763{
764 u32 ret;
765
766 spin_lock(&msgr->global_seq_lock);
767 if (msgr->global_seq < gt)
768 msgr->global_seq = gt;
769 ret = ++msgr->global_seq;
770 spin_unlock(&msgr->global_seq_lock);
771 return ret;
772}
773
774static void con_out_kvec_reset(struct ceph_connection *con)
775{
776 con->out_kvec_left = 0;
777 con->out_kvec_bytes = 0;
778 con->out_kvec_cur = &con->out_kvec[0];
779}
780
781static void con_out_kvec_add(struct ceph_connection *con,
782 size_t size, void *data)
783{
784 int index;
785
786 index = con->out_kvec_left;
787 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
788
789 con->out_kvec[index].iov_len = size;
790 con->out_kvec[index].iov_base = data;
791 con->out_kvec_left++;
792 con->out_kvec_bytes += size;
793}
794
795#ifdef CONFIG_BLOCK
796
797/*
798 * For a bio data item, a piece is whatever remains of the next
799 * entry in the current bio iovec, or the first entry in the next
800 * bio in the list.
801 */
802static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
803 size_t length)
804{
805 struct ceph_msg_data *data = cursor->data;
806 struct bio *bio;
807
808 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
809
810 bio = data->bio;
811 BUG_ON(!bio);
812
813 cursor->resid = min(length, data->bio_length);
814 cursor->bio = bio;
815 cursor->bvec_iter = bio->bi_iter;
816 cursor->last_piece =
817 cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
818}
819
820static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
821 size_t *page_offset,
822 size_t *length)
823{
824 struct ceph_msg_data *data = cursor->data;
825 struct bio *bio;
826 struct bio_vec bio_vec;
827
828 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
829
830 bio = cursor->bio;
831 BUG_ON(!bio);
832
833 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
834
835 *page_offset = (size_t) bio_vec.bv_offset;
836 BUG_ON(*page_offset >= PAGE_SIZE);
837 if (cursor->last_piece) /* pagelist offset is always 0 */
838 *length = cursor->resid;
839 else
840 *length = (size_t) bio_vec.bv_len;
841 BUG_ON(*length > cursor->resid);
842 BUG_ON(*page_offset + *length > PAGE_SIZE);
843
844 return bio_vec.bv_page;
845}
846
847static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
848 size_t bytes)
849{
850 struct bio *bio;
851 struct bio_vec bio_vec;
852
853 BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
854
855 bio = cursor->bio;
856 BUG_ON(!bio);
857
858 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
859
860 /* Advance the cursor offset */
861
862 BUG_ON(cursor->resid < bytes);
863 cursor->resid -= bytes;
864
865 bio_advance_iter(bio, &cursor->bvec_iter, bytes);
866
867 if (bytes < bio_vec.bv_len)
868 return false; /* more bytes to process in this segment */
869
870 /* Move on to the next segment, and possibly the next bio */
871
872 if (!cursor->bvec_iter.bi_size) {
873 bio = bio->bi_next;
874 cursor->bio = bio;
875 if (bio)
876 cursor->bvec_iter = bio->bi_iter;
877 else
878 memset(&cursor->bvec_iter, 0,
879 sizeof(cursor->bvec_iter));
880 }
881
882 if (!cursor->last_piece) {
883 BUG_ON(!cursor->resid);
884 BUG_ON(!bio);
885 /* A short read is OK, so use <= rather than == */
886 if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
887 cursor->last_piece = true;
888 }
889
890 return true;
891}
892#endif /* CONFIG_BLOCK */
893
894/*
895 * For a page array, a piece comes from the first page in the array
896 * that has not already been fully consumed.
897 */
898static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
899 size_t length)
900{
901 struct ceph_msg_data *data = cursor->data;
902 int page_count;
903
904 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
905
906 BUG_ON(!data->pages);
907 BUG_ON(!data->length);
908
909 cursor->resid = min(length, data->length);
910 page_count = calc_pages_for(data->alignment, (u64)data->length);
911 cursor->page_offset = data->alignment & ~PAGE_MASK;
912 cursor->page_index = 0;
913 BUG_ON(page_count > (int)USHRT_MAX);
914 cursor->page_count = (unsigned short)page_count;
915 BUG_ON(length > SIZE_MAX - cursor->page_offset);
916 cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
917}
918
919static struct page *
920ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
921 size_t *page_offset, size_t *length)
922{
923 struct ceph_msg_data *data = cursor->data;
924
925 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
926
927 BUG_ON(cursor->page_index >= cursor->page_count);
928 BUG_ON(cursor->page_offset >= PAGE_SIZE);
929
930 *page_offset = cursor->page_offset;
931 if (cursor->last_piece)
932 *length = cursor->resid;
933 else
934 *length = PAGE_SIZE - *page_offset;
935
936 return data->pages[cursor->page_index];
937}
938
939static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
940 size_t bytes)
941{
942 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
943
944 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
945
946 /* Advance the cursor page offset */
947
948 cursor->resid -= bytes;
949 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
950 if (!bytes || cursor->page_offset)
951 return false; /* more bytes to process in the current page */
952
953 if (!cursor->resid)
954 return false; /* no more data */
955
956 /* Move on to the next page; offset is already at 0 */
957
958 BUG_ON(cursor->page_index >= cursor->page_count);
959 cursor->page_index++;
960 cursor->last_piece = cursor->resid <= PAGE_SIZE;
961
962 return true;
963}
964
965/*
966 * For a pagelist, a piece is whatever remains to be consumed in the
967 * first page in the list, or the front of the next page.
968 */
969static void
970ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
971 size_t length)
972{
973 struct ceph_msg_data *data = cursor->data;
974 struct ceph_pagelist *pagelist;
975 struct page *page;
976
977 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
978
979 pagelist = data->pagelist;
980 BUG_ON(!pagelist);
981
982 if (!length)
983 return; /* pagelist can be assigned but empty */
984
985 BUG_ON(list_empty(&pagelist->head));
986 page = list_first_entry(&pagelist->head, struct page, lru);
987
988 cursor->resid = min(length, pagelist->length);
989 cursor->page = page;
990 cursor->offset = 0;
991 cursor->last_piece = cursor->resid <= PAGE_SIZE;
992}
993
994static struct page *
995ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
996 size_t *page_offset, size_t *length)
997{
998 struct ceph_msg_data *data = cursor->data;
999 struct ceph_pagelist *pagelist;
1000
1001 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1002
1003 pagelist = data->pagelist;
1004 BUG_ON(!pagelist);
1005
1006 BUG_ON(!cursor->page);
1007 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1008
1009 /* offset of first page in pagelist is always 0 */
1010 *page_offset = cursor->offset & ~PAGE_MASK;
1011 if (cursor->last_piece)
1012 *length = cursor->resid;
1013 else
1014 *length = PAGE_SIZE - *page_offset;
1015
1016 return cursor->page;
1017}
1018
1019static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1020 size_t bytes)
1021{
1022 struct ceph_msg_data *data = cursor->data;
1023 struct ceph_pagelist *pagelist;
1024
1025 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1026
1027 pagelist = data->pagelist;
1028 BUG_ON(!pagelist);
1029
1030 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1031 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1032
1033 /* Advance the cursor offset */
1034
1035 cursor->resid -= bytes;
1036 cursor->offset += bytes;
1037 /* offset of first page in pagelist is always 0 */
1038 if (!bytes || cursor->offset & ~PAGE_MASK)
1039 return false; /* more bytes to process in the current page */
1040
1041 if (!cursor->resid)
1042 return false; /* no more data */
1043
1044 /* Move on to the next page */
1045
1046 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1047 cursor->page = list_entry_next(cursor->page, lru);
1048 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1049
1050 return true;
1051}
1052
1053/*
1054 * Message data is handled (sent or received) in pieces, where each
1055 * piece resides on a single page. The network layer might not
1056 * consume an entire piece at once. A data item's cursor keeps
1057 * track of which piece is next to process and how much remains to
1058 * be processed in that piece. It also tracks whether the current
1059 * piece is the last one in the data item.
1060 */
1061static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1062{
1063 size_t length = cursor->total_resid;
1064
1065 switch (cursor->data->type) {
1066 case CEPH_MSG_DATA_PAGELIST:
1067 ceph_msg_data_pagelist_cursor_init(cursor, length);
1068 break;
1069 case CEPH_MSG_DATA_PAGES:
1070 ceph_msg_data_pages_cursor_init(cursor, length);
1071 break;
1072#ifdef CONFIG_BLOCK
1073 case CEPH_MSG_DATA_BIO:
1074 ceph_msg_data_bio_cursor_init(cursor, length);
1075 break;
1076#endif /* CONFIG_BLOCK */
1077 case CEPH_MSG_DATA_NONE:
1078 default:
1079 /* BUG(); */
1080 break;
1081 }
1082 cursor->need_crc = true;
1083}
1084
1085static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1086{
1087 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1088 struct ceph_msg_data *data;
1089
1090 BUG_ON(!length);
1091 BUG_ON(length > msg->data_length);
1092 BUG_ON(list_empty(&msg->data));
1093
1094 cursor->data_head = &msg->data;
1095 cursor->total_resid = length;
1096 data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1097 cursor->data = data;
1098
1099 __ceph_msg_data_cursor_init(cursor);
1100}
1101
1102/*
1103 * Return the page containing the next piece to process for a given
1104 * data item, and supply the page offset and length of that piece.
1105 * Indicate whether this is the last piece in this data item.
1106 */
1107static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1108 size_t *page_offset, size_t *length,
1109 bool *last_piece)
1110{
1111 struct page *page;
1112
1113 switch (cursor->data->type) {
1114 case CEPH_MSG_DATA_PAGELIST:
1115 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1116 break;
1117 case CEPH_MSG_DATA_PAGES:
1118 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1119 break;
1120#ifdef CONFIG_BLOCK
1121 case CEPH_MSG_DATA_BIO:
1122 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1123 break;
1124#endif /* CONFIG_BLOCK */
1125 case CEPH_MSG_DATA_NONE:
1126 default:
1127 page = NULL;
1128 break;
1129 }
1130 BUG_ON(!page);
1131 BUG_ON(*page_offset + *length > PAGE_SIZE);
1132 BUG_ON(!*length);
1133 if (last_piece)
1134 *last_piece = cursor->last_piece;
1135
1136 return page;
1137}
1138
1139/*
1140 * Returns true if the result moves the cursor on to the next piece
1141 * of the data item.
1142 */
1143static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1144 size_t bytes)
1145{
1146 bool new_piece;
1147
1148 BUG_ON(bytes > cursor->resid);
1149 switch (cursor->data->type) {
1150 case CEPH_MSG_DATA_PAGELIST:
1151 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1152 break;
1153 case CEPH_MSG_DATA_PAGES:
1154 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1155 break;
1156#ifdef CONFIG_BLOCK
1157 case CEPH_MSG_DATA_BIO:
1158 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1159 break;
1160#endif /* CONFIG_BLOCK */
1161 case CEPH_MSG_DATA_NONE:
1162 default:
1163 BUG();
1164 break;
1165 }
1166 cursor->total_resid -= bytes;
1167
1168 if (!cursor->resid && cursor->total_resid) {
1169 WARN_ON(!cursor->last_piece);
1170 BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1171 cursor->data = list_entry_next(cursor->data, links);
1172 __ceph_msg_data_cursor_init(cursor);
1173 new_piece = true;
1174 }
1175 cursor->need_crc = new_piece;
1176
1177 return new_piece;
1178}
1179
1180static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1181{
1182 BUG_ON(!msg);
1183 BUG_ON(!data_len);
1184
1185 /* Initialize data cursor */
1186
1187 ceph_msg_data_cursor_init(msg, (size_t)data_len);
1188}
1189
1190/*
1191 * Prepare footer for currently outgoing message, and finish things
1192 * off. Assumes out_kvec* are already valid.. we just add on to the end.
1193 */
1194static void prepare_write_message_footer(struct ceph_connection *con)
1195{
1196 struct ceph_msg *m = con->out_msg;
1197 int v = con->out_kvec_left;
1198
1199 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1200
1201 dout("prepare_write_message_footer %p\n", con);
1202 con->out_kvec_is_msg = true;
1203 con->out_kvec[v].iov_base = &m->footer;
1204 if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1205 if (con->ops->sign_message)
1206 con->ops->sign_message(con, m);
1207 else
1208 m->footer.sig = 0;
1209 con->out_kvec[v].iov_len = sizeof(m->footer);
1210 con->out_kvec_bytes += sizeof(m->footer);
1211 } else {
1212 m->old_footer.flags = m->footer.flags;
1213 con->out_kvec[v].iov_len = sizeof(m->old_footer);
1214 con->out_kvec_bytes += sizeof(m->old_footer);
1215 }
1216 con->out_kvec_left++;
1217 con->out_more = m->more_to_follow;
1218 con->out_msg_done = true;
1219}
1220
1221/*
1222 * Prepare headers for the next outgoing message.
1223 */
1224static void prepare_write_message(struct ceph_connection *con)
1225{
1226 struct ceph_msg *m;
1227 u32 crc;
1228
1229 con_out_kvec_reset(con);
1230 con->out_kvec_is_msg = true;
1231 con->out_msg_done = false;
1232
1233 /* Sneak an ack in there first? If we can get it into the same
1234 * TCP packet that's a good thing. */
1235 if (con->in_seq > con->in_seq_acked) {
1236 con->in_seq_acked = con->in_seq;
1237 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1238 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1239 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1240 &con->out_temp_ack);
1241 }
1242
1243 BUG_ON(list_empty(&con->out_queue));
1244 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1245 con->out_msg = m;
1246 BUG_ON(m->con != con);
1247
1248 /* put message on sent list */
1249 ceph_msg_get(m);
1250 list_move_tail(&m->list_head, &con->out_sent);
1251
1252 /*
1253 * only assign outgoing seq # if we haven't sent this message
1254 * yet. if it is requeued, resend with it's original seq.
1255 */
1256 if (m->needs_out_seq) {
1257 m->hdr.seq = cpu_to_le64(++con->out_seq);
1258 m->needs_out_seq = false;
1259 }
1260 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1261
1262 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1263 m, con->out_seq, le16_to_cpu(m->hdr.type),
1264 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1265 m->data_length);
1266 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1267
1268 /* tag + hdr + front + middle */
1269 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1270 con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
1271 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1272
1273 if (m->middle)
1274 con_out_kvec_add(con, m->middle->vec.iov_len,
1275 m->middle->vec.iov_base);
1276
1277 /* fill in crc (except data pages), footer */
1278 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1279 con->out_msg->hdr.crc = cpu_to_le32(crc);
1280 con->out_msg->footer.flags = 0;
1281
1282 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1283 con->out_msg->footer.front_crc = cpu_to_le32(crc);
1284 if (m->middle) {
1285 crc = crc32c(0, m->middle->vec.iov_base,
1286 m->middle->vec.iov_len);
1287 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1288 } else
1289 con->out_msg->footer.middle_crc = 0;
1290 dout("%s front_crc %u middle_crc %u\n", __func__,
1291 le32_to_cpu(con->out_msg->footer.front_crc),
1292 le32_to_cpu(con->out_msg->footer.middle_crc));
1293
1294 /* is there a data payload? */
1295 con->out_msg->footer.data_crc = 0;
1296 if (m->data_length) {
1297 prepare_message_data(con->out_msg, m->data_length);
1298 con->out_more = 1; /* data + footer will follow */
1299 } else {
1300 /* no, queue up footer too and be done */
1301 prepare_write_message_footer(con);
1302 }
1303
1304 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1305}
1306
1307/*
1308 * Prepare an ack.
1309 */
1310static void prepare_write_ack(struct ceph_connection *con)
1311{
1312 dout("prepare_write_ack %p %llu -> %llu\n", con,
1313 con->in_seq_acked, con->in_seq);
1314 con->in_seq_acked = con->in_seq;
1315
1316 con_out_kvec_reset(con);
1317
1318 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1319
1320 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1321 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1322 &con->out_temp_ack);
1323
1324 con->out_more = 1; /* more will follow.. eventually.. */
1325 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1326}
1327
1328/*
1329 * Prepare to share the seq during handshake
1330 */
1331static void prepare_write_seq(struct ceph_connection *con)
1332{
1333 dout("prepare_write_seq %p %llu -> %llu\n", con,
1334 con->in_seq_acked, con->in_seq);
1335 con->in_seq_acked = con->in_seq;
1336
1337 con_out_kvec_reset(con);
1338
1339 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1340 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1341 &con->out_temp_ack);
1342
1343 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1344}
1345
1346/*
1347 * Prepare to write keepalive byte.
1348 */
1349static void prepare_write_keepalive(struct ceph_connection *con)
1350{
1351 dout("prepare_write_keepalive %p\n", con);
1352 con_out_kvec_reset(con);
1353 con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
1354 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1355}
1356
1357/*
1358 * Connection negotiation.
1359 */
1360
1361static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1362 int *auth_proto)
1363{
1364 struct ceph_auth_handshake *auth;
1365
1366 if (!con->ops->get_authorizer) {
1367 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1368 con->out_connect.authorizer_len = 0;
1369 return NULL;
1370 }
1371
1372 /* Can't hold the mutex while getting authorizer */
1373 mutex_unlock(&con->mutex);
1374 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1375 mutex_lock(&con->mutex);
1376
1377 if (IS_ERR(auth))
1378 return auth;
1379 if (con->state != CON_STATE_NEGOTIATING)
1380 return ERR_PTR(-EAGAIN);
1381
1382 con->auth_reply_buf = auth->authorizer_reply_buf;
1383 con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1384 return auth;
1385}
1386
1387/*
1388 * We connected to a peer and are saying hello.
1389 */
1390static void prepare_write_banner(struct ceph_connection *con)
1391{
1392 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1393 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1394 &con->msgr->my_enc_addr);
1395
1396 con->out_more = 0;
1397 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1398}
1399
1400static int prepare_write_connect(struct ceph_connection *con)
1401{
1402 unsigned int global_seq = get_global_seq(con->msgr, 0);
1403 int proto;
1404 int auth_proto;
1405 struct ceph_auth_handshake *auth;
1406
1407 switch (con->peer_name.type) {
1408 case CEPH_ENTITY_TYPE_MON:
1409 proto = CEPH_MONC_PROTOCOL;
1410 break;
1411 case CEPH_ENTITY_TYPE_OSD:
1412 proto = CEPH_OSDC_PROTOCOL;
1413 break;
1414 case CEPH_ENTITY_TYPE_MDS:
1415 proto = CEPH_MDSC_PROTOCOL;
1416 break;
1417 default:
1418 BUG();
1419 }
1420
1421 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1422 con->connect_seq, global_seq, proto);
1423
1424 con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
1425 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1426 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1427 con->out_connect.global_seq = cpu_to_le32(global_seq);
1428 con->out_connect.protocol_version = cpu_to_le32(proto);
1429 con->out_connect.flags = 0;
1430
1431 auth_proto = CEPH_AUTH_UNKNOWN;
1432 auth = get_connect_authorizer(con, &auth_proto);
1433 if (IS_ERR(auth))
1434 return PTR_ERR(auth);
1435
1436 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1437 con->out_connect.authorizer_len = auth ?
1438 cpu_to_le32(auth->authorizer_buf_len) : 0;
1439
1440 con_out_kvec_add(con, sizeof (con->out_connect),
1441 &con->out_connect);
1442 if (auth && auth->authorizer_buf_len)
1443 con_out_kvec_add(con, auth->authorizer_buf_len,
1444 auth->authorizer_buf);
1445
1446 con->out_more = 0;
1447 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1448
1449 return 0;
1450}
1451
1452/*
1453 * write as much of pending kvecs to the socket as we can.
1454 * 1 -> done
1455 * 0 -> socket full, but more to do
1456 * <0 -> error
1457 */
1458static int write_partial_kvec(struct ceph_connection *con)
1459{
1460 int ret;
1461
1462 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1463 while (con->out_kvec_bytes > 0) {
1464 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1465 con->out_kvec_left, con->out_kvec_bytes,
1466 con->out_more);
1467 if (ret <= 0)
1468 goto out;
1469 con->out_kvec_bytes -= ret;
1470 if (con->out_kvec_bytes == 0)
1471 break; /* done */
1472
1473 /* account for full iov entries consumed */
1474 while (ret >= con->out_kvec_cur->iov_len) {
1475 BUG_ON(!con->out_kvec_left);
1476 ret -= con->out_kvec_cur->iov_len;
1477 con->out_kvec_cur++;
1478 con->out_kvec_left--;
1479 }
1480 /* and for a partially-consumed entry */
1481 if (ret) {
1482 con->out_kvec_cur->iov_len -= ret;
1483 con->out_kvec_cur->iov_base += ret;
1484 }
1485 }
1486 con->out_kvec_left = 0;
1487 con->out_kvec_is_msg = false;
1488 ret = 1;
1489out:
1490 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1491 con->out_kvec_bytes, con->out_kvec_left, ret);
1492 return ret; /* done! */
1493}
1494
1495static u32 ceph_crc32c_page(u32 crc, struct page *page,
1496 unsigned int page_offset,
1497 unsigned int length)
1498{
1499 char *kaddr;
1500
1501 kaddr = kmap(page);
1502 BUG_ON(kaddr == NULL);
1503 crc = crc32c(crc, kaddr + page_offset, length);
1504 kunmap(page);
1505
1506 return crc;
1507}
1508/*
1509 * Write as much message data payload as we can. If we finish, queue
1510 * up the footer.
1511 * 1 -> done, footer is now queued in out_kvec[].
1512 * 0 -> socket full, but more to do
1513 * <0 -> error
1514 */
1515static int write_partial_message_data(struct ceph_connection *con)
1516{
1517 struct ceph_msg *msg = con->out_msg;
1518 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1519 bool do_datacrc = !con->msgr->nocrc;
1520 u32 crc;
1521
1522 dout("%s %p msg %p\n", __func__, con, msg);
1523
1524 if (list_empty(&msg->data))
1525 return -EINVAL;
1526
1527 /*
1528 * Iterate through each page that contains data to be
1529 * written, and send as much as possible for each.
1530 *
1531 * If we are calculating the data crc (the default), we will
1532 * need to map the page. If we have no pages, they have
1533 * been revoked, so use the zero page.
1534 */
1535 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1536 while (cursor->resid) {
1537 struct page *page;
1538 size_t page_offset;
1539 size_t length;
1540 bool last_piece;
1541 bool need_crc;
1542 int ret;
1543
1544 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
1545 &last_piece);
1546 ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1547 length, !last_piece);
1548 if (ret <= 0) {
1549 if (do_datacrc)
1550 msg->footer.data_crc = cpu_to_le32(crc);
1551
1552 return ret;
1553 }
1554 if (do_datacrc && cursor->need_crc)
1555 crc = ceph_crc32c_page(crc, page, page_offset, length);
1556 need_crc = ceph_msg_data_advance(&msg->cursor, (size_t)ret);
1557 }
1558
1559 dout("%s %p msg %p done\n", __func__, con, msg);
1560
1561 /* prepare and queue up footer, too */
1562 if (do_datacrc)
1563 msg->footer.data_crc = cpu_to_le32(crc);
1564 else
1565 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1566 con_out_kvec_reset(con);
1567 prepare_write_message_footer(con);
1568
1569 return 1; /* must return > 0 to indicate success */
1570}
1571
1572/*
1573 * write some zeros
1574 */
1575static int write_partial_skip(struct ceph_connection *con)
1576{
1577 int ret;
1578
1579 while (con->out_skip > 0) {
1580 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1581
1582 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1583 if (ret <= 0)
1584 goto out;
1585 con->out_skip -= ret;
1586 }
1587 ret = 1;
1588out:
1589 return ret;
1590}
1591
1592/*
1593 * Prepare to read connection handshake, or an ack.
1594 */
1595static void prepare_read_banner(struct ceph_connection *con)
1596{
1597 dout("prepare_read_banner %p\n", con);
1598 con->in_base_pos = 0;
1599}
1600
1601static void prepare_read_connect(struct ceph_connection *con)
1602{
1603 dout("prepare_read_connect %p\n", con);
1604 con->in_base_pos = 0;
1605}
1606
1607static void prepare_read_ack(struct ceph_connection *con)
1608{
1609 dout("prepare_read_ack %p\n", con);
1610 con->in_base_pos = 0;
1611}
1612
1613static void prepare_read_seq(struct ceph_connection *con)
1614{
1615 dout("prepare_read_seq %p\n", con);
1616 con->in_base_pos = 0;
1617 con->in_tag = CEPH_MSGR_TAG_SEQ;
1618}
1619
1620static void prepare_read_tag(struct ceph_connection *con)
1621{
1622 dout("prepare_read_tag %p\n", con);
1623 con->in_base_pos = 0;
1624 con->in_tag = CEPH_MSGR_TAG_READY;
1625}
1626
1627/*
1628 * Prepare to read a message.
1629 */
1630static int prepare_read_message(struct ceph_connection *con)
1631{
1632 dout("prepare_read_message %p\n", con);
1633 BUG_ON(con->in_msg != NULL);
1634 con->in_base_pos = 0;
1635 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1636 return 0;
1637}
1638
1639
1640static int read_partial(struct ceph_connection *con,
1641 int end, int size, void *object)
1642{
1643 while (con->in_base_pos < end) {
1644 int left = end - con->in_base_pos;
1645 int have = size - left;
1646 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1647 if (ret <= 0)
1648 return ret;
1649 con->in_base_pos += ret;
1650 }
1651 return 1;
1652}
1653
1654
1655/*
1656 * Read all or part of the connect-side handshake on a new connection
1657 */
1658static int read_partial_banner(struct ceph_connection *con)
1659{
1660 int size;
1661 int end;
1662 int ret;
1663
1664 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1665
1666 /* peer's banner */
1667 size = strlen(CEPH_BANNER);
1668 end = size;
1669 ret = read_partial(con, end, size, con->in_banner);
1670 if (ret <= 0)
1671 goto out;
1672
1673 size = sizeof (con->actual_peer_addr);
1674 end += size;
1675 ret = read_partial(con, end, size, &con->actual_peer_addr);
1676 if (ret <= 0)
1677 goto out;
1678
1679 size = sizeof (con->peer_addr_for_me);
1680 end += size;
1681 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1682 if (ret <= 0)
1683 goto out;
1684
1685out:
1686 return ret;
1687}
1688
1689static int read_partial_connect(struct ceph_connection *con)
1690{
1691 int size;
1692 int end;
1693 int ret;
1694
1695 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1696
1697 size = sizeof (con->in_reply);
1698 end = size;
1699 ret = read_partial(con, end, size, &con->in_reply);
1700 if (ret <= 0)
1701 goto out;
1702
1703 size = le32_to_cpu(con->in_reply.authorizer_len);
1704 end += size;
1705 ret = read_partial(con, end, size, con->auth_reply_buf);
1706 if (ret <= 0)
1707 goto out;
1708
1709 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1710 con, (int)con->in_reply.tag,
1711 le32_to_cpu(con->in_reply.connect_seq),
1712 le32_to_cpu(con->in_reply.global_seq));
1713out:
1714 return ret;
1715
1716}
1717
1718/*
1719 * Verify the hello banner looks okay.
1720 */
1721static int verify_hello(struct ceph_connection *con)
1722{
1723 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1724 pr_err("connect to %s got bad banner\n",
1725 ceph_pr_addr(&con->peer_addr.in_addr));
1726 con->error_msg = "protocol error, bad banner";
1727 return -1;
1728 }
1729 return 0;
1730}
1731
1732static bool addr_is_blank(struct sockaddr_storage *ss)
1733{
1734 switch (ss->ss_family) {
1735 case AF_INET:
1736 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1737 case AF_INET6:
1738 return
1739 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1740 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1741 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1742 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1743 }
1744 return false;
1745}
1746
1747static int addr_port(struct sockaddr_storage *ss)
1748{
1749 switch (ss->ss_family) {
1750 case AF_INET:
1751 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1752 case AF_INET6:
1753 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1754 }
1755 return 0;
1756}
1757
1758static void addr_set_port(struct sockaddr_storage *ss, int p)
1759{
1760 switch (ss->ss_family) {
1761 case AF_INET:
1762 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1763 break;
1764 case AF_INET6:
1765 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1766 break;
1767 }
1768}
1769
1770/*
1771 * Unlike other *_pton function semantics, zero indicates success.
1772 */
1773static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1774 char delim, const char **ipend)
1775{
1776 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1777 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1778
1779 memset(ss, 0, sizeof(*ss));
1780
1781 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1782 ss->ss_family = AF_INET;
1783 return 0;
1784 }
1785
1786 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1787 ss->ss_family = AF_INET6;
1788 return 0;
1789 }
1790
1791 return -EINVAL;
1792}
1793
1794/*
1795 * Extract hostname string and resolve using kernel DNS facility.
1796 */
1797#ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1798static int ceph_dns_resolve_name(const char *name, size_t namelen,
1799 struct sockaddr_storage *ss, char delim, const char **ipend)
1800{
1801 const char *end, *delim_p;
1802 char *colon_p, *ip_addr = NULL;
1803 int ip_len, ret;
1804
1805 /*
1806 * The end of the hostname occurs immediately preceding the delimiter or
1807 * the port marker (':') where the delimiter takes precedence.
1808 */
1809 delim_p = memchr(name, delim, namelen);
1810 colon_p = memchr(name, ':', namelen);
1811
1812 if (delim_p && colon_p)
1813 end = delim_p < colon_p ? delim_p : colon_p;
1814 else if (!delim_p && colon_p)
1815 end = colon_p;
1816 else {
1817 end = delim_p;
1818 if (!end) /* case: hostname:/ */
1819 end = name + namelen;
1820 }
1821
1822 if (end <= name)
1823 return -EINVAL;
1824
1825 /* do dns_resolve upcall */
1826 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1827 if (ip_len > 0)
1828 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1829 else
1830 ret = -ESRCH;
1831
1832 kfree(ip_addr);
1833
1834 *ipend = end;
1835
1836 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1837 ret, ret ? "failed" : ceph_pr_addr(ss));
1838
1839 return ret;
1840}
1841#else
1842static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1843 struct sockaddr_storage *ss, char delim, const char **ipend)
1844{
1845 return -EINVAL;
1846}
1847#endif
1848
1849/*
1850 * Parse a server name (IP or hostname). If a valid IP address is not found
1851 * then try to extract a hostname to resolve using userspace DNS upcall.
1852 */
1853static int ceph_parse_server_name(const char *name, size_t namelen,
1854 struct sockaddr_storage *ss, char delim, const char **ipend)
1855{
1856 int ret;
1857
1858 ret = ceph_pton(name, namelen, ss, delim, ipend);
1859 if (ret)
1860 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1861
1862 return ret;
1863}
1864
1865/*
1866 * Parse an ip[:port] list into an addr array. Use the default
1867 * monitor port if a port isn't specified.
1868 */
1869int ceph_parse_ips(const char *c, const char *end,
1870 struct ceph_entity_addr *addr,
1871 int max_count, int *count)
1872{
1873 int i, ret = -EINVAL;
1874 const char *p = c;
1875
1876 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1877 for (i = 0; i < max_count; i++) {
1878 const char *ipend;
1879 struct sockaddr_storage *ss = &addr[i].in_addr;
1880 int port;
1881 char delim = ',';
1882
1883 if (*p == '[') {
1884 delim = ']';
1885 p++;
1886 }
1887
1888 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1889 if (ret)
1890 goto bad;
1891 ret = -EINVAL;
1892
1893 p = ipend;
1894
1895 if (delim == ']') {
1896 if (*p != ']') {
1897 dout("missing matching ']'\n");
1898 goto bad;
1899 }
1900 p++;
1901 }
1902
1903 /* port? */
1904 if (p < end && *p == ':') {
1905 port = 0;
1906 p++;
1907 while (p < end && *p >= '0' && *p <= '9') {
1908 port = (port * 10) + (*p - '0');
1909 p++;
1910 }
1911 if (port == 0)
1912 port = CEPH_MON_PORT;
1913 else if (port > 65535)
1914 goto bad;
1915 } else {
1916 port = CEPH_MON_PORT;
1917 }
1918
1919 addr_set_port(ss, port);
1920
1921 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1922
1923 if (p == end)
1924 break;
1925 if (*p != ',')
1926 goto bad;
1927 p++;
1928 }
1929
1930 if (p != end)
1931 goto bad;
1932
1933 if (count)
1934 *count = i + 1;
1935 return 0;
1936
1937bad:
1938 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1939 return ret;
1940}
1941EXPORT_SYMBOL(ceph_parse_ips);
1942
1943static int process_banner(struct ceph_connection *con)
1944{
1945 dout("process_banner on %p\n", con);
1946
1947 if (verify_hello(con) < 0)
1948 return -1;
1949
1950 ceph_decode_addr(&con->actual_peer_addr);
1951 ceph_decode_addr(&con->peer_addr_for_me);
1952
1953 /*
1954 * Make sure the other end is who we wanted. note that the other
1955 * end may not yet know their ip address, so if it's 0.0.0.0, give
1956 * them the benefit of the doubt.
1957 */
1958 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1959 sizeof(con->peer_addr)) != 0 &&
1960 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1961 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1962 pr_warn("wrong peer, want %s/%d, got %s/%d\n",
1963 ceph_pr_addr(&con->peer_addr.in_addr),
1964 (int)le32_to_cpu(con->peer_addr.nonce),
1965 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1966 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1967 con->error_msg = "wrong peer at address";
1968 return -1;
1969 }
1970
1971 /*
1972 * did we learn our address?
1973 */
1974 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1975 int port = addr_port(&con->msgr->inst.addr.in_addr);
1976
1977 memcpy(&con->msgr->inst.addr.in_addr,
1978 &con->peer_addr_for_me.in_addr,
1979 sizeof(con->peer_addr_for_me.in_addr));
1980 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1981 encode_my_addr(con->msgr);
1982 dout("process_banner learned my addr is %s\n",
1983 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1984 }
1985
1986 return 0;
1987}
1988
1989static int process_connect(struct ceph_connection *con)
1990{
1991 u64 sup_feat = con->msgr->supported_features;
1992 u64 req_feat = con->msgr->required_features;
1993 u64 server_feat = ceph_sanitize_features(
1994 le64_to_cpu(con->in_reply.features));
1995 int ret;
1996
1997 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1998
1999 switch (con->in_reply.tag) {
2000 case CEPH_MSGR_TAG_FEATURES:
2001 pr_err("%s%lld %s feature set mismatch,"
2002 " my %llx < server's %llx, missing %llx\n",
2003 ENTITY_NAME(con->peer_name),
2004 ceph_pr_addr(&con->peer_addr.in_addr),
2005 sup_feat, server_feat, server_feat & ~sup_feat);
2006 con->error_msg = "missing required protocol features";
2007 reset_connection(con);
2008 return -1;
2009
2010 case CEPH_MSGR_TAG_BADPROTOVER:
2011 pr_err("%s%lld %s protocol version mismatch,"
2012 " my %d != server's %d\n",
2013 ENTITY_NAME(con->peer_name),
2014 ceph_pr_addr(&con->peer_addr.in_addr),
2015 le32_to_cpu(con->out_connect.protocol_version),
2016 le32_to_cpu(con->in_reply.protocol_version));
2017 con->error_msg = "protocol version mismatch";
2018 reset_connection(con);
2019 return -1;
2020
2021 case CEPH_MSGR_TAG_BADAUTHORIZER:
2022 con->auth_retry++;
2023 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2024 con->auth_retry);
2025 if (con->auth_retry == 2) {
2026 con->error_msg = "connect authorization failure";
2027 return -1;
2028 }
2029 con_out_kvec_reset(con);
2030 ret = prepare_write_connect(con);
2031 if (ret < 0)
2032 return ret;
2033 prepare_read_connect(con);
2034 break;
2035
2036 case CEPH_MSGR_TAG_RESETSESSION:
2037 /*
2038 * If we connected with a large connect_seq but the peer
2039 * has no record of a session with us (no connection, or
2040 * connect_seq == 0), they will send RESETSESION to indicate
2041 * that they must have reset their session, and may have
2042 * dropped messages.
2043 */
2044 dout("process_connect got RESET peer seq %u\n",
2045 le32_to_cpu(con->in_reply.connect_seq));
2046 pr_err("%s%lld %s connection reset\n",
2047 ENTITY_NAME(con->peer_name),
2048 ceph_pr_addr(&con->peer_addr.in_addr));
2049 reset_connection(con);
2050 con_out_kvec_reset(con);
2051 ret = prepare_write_connect(con);
2052 if (ret < 0)
2053 return ret;
2054 prepare_read_connect(con);
2055
2056 /* Tell ceph about it. */
2057 mutex_unlock(&con->mutex);
2058 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2059 if (con->ops->peer_reset)
2060 con->ops->peer_reset(con);
2061 mutex_lock(&con->mutex);
2062 if (con->state != CON_STATE_NEGOTIATING)
2063 return -EAGAIN;
2064 break;
2065
2066 case CEPH_MSGR_TAG_RETRY_SESSION:
2067 /*
2068 * If we sent a smaller connect_seq than the peer has, try
2069 * again with a larger value.
2070 */
2071 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2072 le32_to_cpu(con->out_connect.connect_seq),
2073 le32_to_cpu(con->in_reply.connect_seq));
2074 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2075 con_out_kvec_reset(con);
2076 ret = prepare_write_connect(con);
2077 if (ret < 0)
2078 return ret;
2079 prepare_read_connect(con);
2080 break;
2081
2082 case CEPH_MSGR_TAG_RETRY_GLOBAL:
2083 /*
2084 * If we sent a smaller global_seq than the peer has, try
2085 * again with a larger value.
2086 */
2087 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2088 con->peer_global_seq,
2089 le32_to_cpu(con->in_reply.global_seq));
2090 get_global_seq(con->msgr,
2091 le32_to_cpu(con->in_reply.global_seq));
2092 con_out_kvec_reset(con);
2093 ret = prepare_write_connect(con);
2094 if (ret < 0)
2095 return ret;
2096 prepare_read_connect(con);
2097 break;
2098
2099 case CEPH_MSGR_TAG_SEQ:
2100 case CEPH_MSGR_TAG_READY:
2101 if (req_feat & ~server_feat) {
2102 pr_err("%s%lld %s protocol feature mismatch,"
2103 " my required %llx > server's %llx, need %llx\n",
2104 ENTITY_NAME(con->peer_name),
2105 ceph_pr_addr(&con->peer_addr.in_addr),
2106 req_feat, server_feat, req_feat & ~server_feat);
2107 con->error_msg = "missing required protocol features";
2108 reset_connection(con);
2109 return -1;
2110 }
2111
2112 WARN_ON(con->state != CON_STATE_NEGOTIATING);
2113 con->state = CON_STATE_OPEN;
2114 con->auth_retry = 0; /* we authenticated; clear flag */
2115 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2116 con->connect_seq++;
2117 con->peer_features = server_feat;
2118 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2119 con->peer_global_seq,
2120 le32_to_cpu(con->in_reply.connect_seq),
2121 con->connect_seq);
2122 WARN_ON(con->connect_seq !=
2123 le32_to_cpu(con->in_reply.connect_seq));
2124
2125 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2126 con_flag_set(con, CON_FLAG_LOSSYTX);
2127
2128 con->delay = 0; /* reset backoff memory */
2129
2130 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2131 prepare_write_seq(con);
2132 prepare_read_seq(con);
2133 } else {
2134 prepare_read_tag(con);
2135 }
2136 break;
2137
2138 case CEPH_MSGR_TAG_WAIT:
2139 /*
2140 * If there is a connection race (we are opening
2141 * connections to each other), one of us may just have
2142 * to WAIT. This shouldn't happen if we are the
2143 * client.
2144 */
2145 con->error_msg = "protocol error, got WAIT as client";
2146 return -1;
2147
2148 default:
2149 con->error_msg = "protocol error, garbage tag during connect";
2150 return -1;
2151 }
2152 return 0;
2153}
2154
2155
2156/*
2157 * read (part of) an ack
2158 */
2159static int read_partial_ack(struct ceph_connection *con)
2160{
2161 int size = sizeof (con->in_temp_ack);
2162 int end = size;
2163
2164 return read_partial(con, end, size, &con->in_temp_ack);
2165}
2166
2167/*
2168 * We can finally discard anything that's been acked.
2169 */
2170static void process_ack(struct ceph_connection *con)
2171{
2172 struct ceph_msg *m;
2173 u64 ack = le64_to_cpu(con->in_temp_ack);
2174 u64 seq;
2175
2176 while (!list_empty(&con->out_sent)) {
2177 m = list_first_entry(&con->out_sent, struct ceph_msg,
2178 list_head);
2179 seq = le64_to_cpu(m->hdr.seq);
2180 if (seq > ack)
2181 break;
2182 dout("got ack for seq %llu type %d at %p\n", seq,
2183 le16_to_cpu(m->hdr.type), m);
2184 m->ack_stamp = jiffies;
2185 ceph_msg_remove(m);
2186 }
2187 prepare_read_tag(con);
2188}
2189
2190
2191static int read_partial_message_section(struct ceph_connection *con,
2192 struct kvec *section,
2193 unsigned int sec_len, u32 *crc)
2194{
2195 int ret, left;
2196
2197 BUG_ON(!section);
2198
2199 while (section->iov_len < sec_len) {
2200 BUG_ON(section->iov_base == NULL);
2201 left = sec_len - section->iov_len;
2202 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2203 section->iov_len, left);
2204 if (ret <= 0)
2205 return ret;
2206 section->iov_len += ret;
2207 }
2208 if (section->iov_len == sec_len)
2209 *crc = crc32c(0, section->iov_base, section->iov_len);
2210
2211 return 1;
2212}
2213
2214static int read_partial_msg_data(struct ceph_connection *con)
2215{
2216 struct ceph_msg *msg = con->in_msg;
2217 struct ceph_msg_data_cursor *cursor = &msg->cursor;
2218 const bool do_datacrc = !con->msgr->nocrc;
2219 struct page *page;
2220 size_t page_offset;
2221 size_t length;
2222 u32 crc = 0;
2223 int ret;
2224
2225 BUG_ON(!msg);
2226 if (list_empty(&msg->data))
2227 return -EIO;
2228
2229 if (do_datacrc)
2230 crc = con->in_data_crc;
2231 while (cursor->resid) {
2232 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
2233 NULL);
2234 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2235 if (ret <= 0) {
2236 if (do_datacrc)
2237 con->in_data_crc = crc;
2238
2239 return ret;
2240 }
2241
2242 if (do_datacrc)
2243 crc = ceph_crc32c_page(crc, page, page_offset, ret);
2244 (void) ceph_msg_data_advance(&msg->cursor, (size_t)ret);
2245 }
2246 if (do_datacrc)
2247 con->in_data_crc = crc;
2248
2249 return 1; /* must return > 0 to indicate success */
2250}
2251
2252/*
2253 * read (part of) a message.
2254 */
2255static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2256
2257static int read_partial_message(struct ceph_connection *con)
2258{
2259 struct ceph_msg *m = con->in_msg;
2260 int size;
2261 int end;
2262 int ret;
2263 unsigned int front_len, middle_len, data_len;
2264 bool do_datacrc = !con->msgr->nocrc;
2265 bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2266 u64 seq;
2267 u32 crc;
2268
2269 dout("read_partial_message con %p msg %p\n", con, m);
2270
2271 /* header */
2272 size = sizeof (con->in_hdr);
2273 end = size;
2274 ret = read_partial(con, end, size, &con->in_hdr);
2275 if (ret <= 0)
2276 return ret;
2277
2278 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2279 if (cpu_to_le32(crc) != con->in_hdr.crc) {
2280 pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2281 crc, con->in_hdr.crc);
2282 return -EBADMSG;
2283 }
2284
2285 front_len = le32_to_cpu(con->in_hdr.front_len);
2286 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2287 return -EIO;
2288 middle_len = le32_to_cpu(con->in_hdr.middle_len);
2289 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2290 return -EIO;
2291 data_len = le32_to_cpu(con->in_hdr.data_len);
2292 if (data_len > CEPH_MSG_MAX_DATA_LEN)
2293 return -EIO;
2294
2295 /* verify seq# */
2296 seq = le64_to_cpu(con->in_hdr.seq);
2297 if ((s64)seq - (s64)con->in_seq < 1) {
2298 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2299 ENTITY_NAME(con->peer_name),
2300 ceph_pr_addr(&con->peer_addr.in_addr),
2301 seq, con->in_seq + 1);
2302 con->in_base_pos = -front_len - middle_len - data_len -
2303 sizeof(m->footer);
2304 con->in_tag = CEPH_MSGR_TAG_READY;
2305 return 0;
2306 } else if ((s64)seq - (s64)con->in_seq > 1) {
2307 pr_err("read_partial_message bad seq %lld expected %lld\n",
2308 seq, con->in_seq + 1);
2309 con->error_msg = "bad message sequence # for incoming message";
2310 return -EBADE;
2311 }
2312
2313 /* allocate message? */
2314 if (!con->in_msg) {
2315 int skip = 0;
2316
2317 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2318 front_len, data_len);
2319 ret = ceph_con_in_msg_alloc(con, &skip);
2320 if (ret < 0)
2321 return ret;
2322
2323 BUG_ON(!con->in_msg ^ skip);
2324 if (con->in_msg && data_len > con->in_msg->data_length) {
2325 pr_warn("%s skipping long message (%u > %zd)\n",
2326 __func__, data_len, con->in_msg->data_length);
2327 ceph_msg_put(con->in_msg);
2328 con->in_msg = NULL;
2329 skip = 1;
2330 }
2331 if (skip) {
2332 /* skip this message */
2333 dout("alloc_msg said skip message\n");
2334 con->in_base_pos = -front_len - middle_len - data_len -
2335 sizeof(m->footer);
2336 con->in_tag = CEPH_MSGR_TAG_READY;
2337 con->in_seq++;
2338 return 0;
2339 }
2340
2341 BUG_ON(!con->in_msg);
2342 BUG_ON(con->in_msg->con != con);
2343 m = con->in_msg;
2344 m->front.iov_len = 0; /* haven't read it yet */
2345 if (m->middle)
2346 m->middle->vec.iov_len = 0;
2347
2348 /* prepare for data payload, if any */
2349
2350 if (data_len)
2351 prepare_message_data(con->in_msg, data_len);
2352 }
2353
2354 /* front */
2355 ret = read_partial_message_section(con, &m->front, front_len,
2356 &con->in_front_crc);
2357 if (ret <= 0)
2358 return ret;
2359
2360 /* middle */
2361 if (m->middle) {
2362 ret = read_partial_message_section(con, &m->middle->vec,
2363 middle_len,
2364 &con->in_middle_crc);
2365 if (ret <= 0)
2366 return ret;
2367 }
2368
2369 /* (page) data */
2370 if (data_len) {
2371 ret = read_partial_msg_data(con);
2372 if (ret <= 0)
2373 return ret;
2374 }
2375
2376 /* footer */
2377 if (need_sign)
2378 size = sizeof(m->footer);
2379 else
2380 size = sizeof(m->old_footer);
2381
2382 end += size;
2383 ret = read_partial(con, end, size, &m->footer);
2384 if (ret <= 0)
2385 return ret;
2386
2387 if (!need_sign) {
2388 m->footer.flags = m->old_footer.flags;
2389 m->footer.sig = 0;
2390 }
2391
2392 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2393 m, front_len, m->footer.front_crc, middle_len,
2394 m->footer.middle_crc, data_len, m->footer.data_crc);
2395
2396 /* crc ok? */
2397 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2398 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2399 m, con->in_front_crc, m->footer.front_crc);
2400 return -EBADMSG;
2401 }
2402 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2403 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2404 m, con->in_middle_crc, m->footer.middle_crc);
2405 return -EBADMSG;
2406 }
2407 if (do_datacrc &&
2408 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2409 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2410 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2411 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2412 return -EBADMSG;
2413 }
2414
2415 if (need_sign && con->ops->check_message_signature &&
2416 con->ops->check_message_signature(con, m)) {
2417 pr_err("read_partial_message %p signature check failed\n", m);
2418 return -EBADMSG;
2419 }
2420
2421 return 1; /* done! */
2422}
2423
2424/*
2425 * Process message. This happens in the worker thread. The callback should
2426 * be careful not to do anything that waits on other incoming messages or it
2427 * may deadlock.
2428 */
2429static void process_message(struct ceph_connection *con)
2430{
2431 struct ceph_msg *msg;
2432
2433 BUG_ON(con->in_msg->con != con);
2434 con->in_msg->con = NULL;
2435 msg = con->in_msg;
2436 con->in_msg = NULL;
2437 con->ops->put(con);
2438
2439 /* if first message, set peer_name */
2440 if (con->peer_name.type == 0)
2441 con->peer_name = msg->hdr.src;
2442
2443 con->in_seq++;
2444 mutex_unlock(&con->mutex);
2445
2446 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2447 msg, le64_to_cpu(msg->hdr.seq),
2448 ENTITY_NAME(msg->hdr.src),
2449 le16_to_cpu(msg->hdr.type),
2450 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2451 le32_to_cpu(msg->hdr.front_len),
2452 le32_to_cpu(msg->hdr.data_len),
2453 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2454 con->ops->dispatch(con, msg);
2455
2456 mutex_lock(&con->mutex);
2457}
2458
2459
2460/*
2461 * Write something to the socket. Called in a worker thread when the
2462 * socket appears to be writeable and we have something ready to send.
2463 */
2464static int try_write(struct ceph_connection *con)
2465{
2466 int ret = 1;
2467
2468 dout("try_write start %p state %lu\n", con, con->state);
2469
2470more:
2471 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2472
2473 /* open the socket first? */
2474 if (con->state == CON_STATE_PREOPEN) {
2475 BUG_ON(con->sock);
2476 con->state = CON_STATE_CONNECTING;
2477
2478 con_out_kvec_reset(con);
2479 prepare_write_banner(con);
2480 prepare_read_banner(con);
2481
2482 BUG_ON(con->in_msg);
2483 con->in_tag = CEPH_MSGR_TAG_READY;
2484 dout("try_write initiating connect on %p new state %lu\n",
2485 con, con->state);
2486 ret = ceph_tcp_connect(con);
2487 if (ret < 0) {
2488 con->error_msg = "connect error";
2489 goto out;
2490 }
2491 }
2492
2493more_kvec:
2494 /* kvec data queued? */
2495 if (con->out_skip) {
2496 ret = write_partial_skip(con);
2497 if (ret <= 0)
2498 goto out;
2499 }
2500 if (con->out_kvec_left) {
2501 ret = write_partial_kvec(con);
2502 if (ret <= 0)
2503 goto out;
2504 }
2505
2506 /* msg pages? */
2507 if (con->out_msg) {
2508 if (con->out_msg_done) {
2509 ceph_msg_put(con->out_msg);
2510 con->out_msg = NULL; /* we're done with this one */
2511 goto do_next;
2512 }
2513
2514 ret = write_partial_message_data(con);
2515 if (ret == 1)
2516 goto more_kvec; /* we need to send the footer, too! */
2517 if (ret == 0)
2518 goto out;
2519 if (ret < 0) {
2520 dout("try_write write_partial_message_data err %d\n",
2521 ret);
2522 goto out;
2523 }
2524 }
2525
2526do_next:
2527 if (con->state == CON_STATE_OPEN) {
2528 /* is anything else pending? */
2529 if (!list_empty(&con->out_queue)) {
2530 prepare_write_message(con);
2531 goto more;
2532 }
2533 if (con->in_seq > con->in_seq_acked) {
2534 prepare_write_ack(con);
2535 goto more;
2536 }
2537 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2538 prepare_write_keepalive(con);
2539 goto more;
2540 }
2541 }
2542
2543 /* Nothing to do! */
2544 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2545 dout("try_write nothing else to write.\n");
2546 ret = 0;
2547out:
2548 dout("try_write done on %p ret %d\n", con, ret);
2549 return ret;
2550}
2551
2552
2553
2554/*
2555 * Read what we can from the socket.
2556 */
2557static int try_read(struct ceph_connection *con)
2558{
2559 int ret = -1;
2560
2561more:
2562 dout("try_read start on %p state %lu\n", con, con->state);
2563 if (con->state != CON_STATE_CONNECTING &&
2564 con->state != CON_STATE_NEGOTIATING &&
2565 con->state != CON_STATE_OPEN)
2566 return 0;
2567
2568 BUG_ON(!con->sock);
2569
2570 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2571 con->in_base_pos);
2572
2573 if (con->state == CON_STATE_CONNECTING) {
2574 dout("try_read connecting\n");
2575 ret = read_partial_banner(con);
2576 if (ret <= 0)
2577 goto out;
2578 ret = process_banner(con);
2579 if (ret < 0)
2580 goto out;
2581
2582 con->state = CON_STATE_NEGOTIATING;
2583
2584 /*
2585 * Received banner is good, exchange connection info.
2586 * Do not reset out_kvec, as sending our banner raced
2587 * with receiving peer banner after connect completed.
2588 */
2589 ret = prepare_write_connect(con);
2590 if (ret < 0)
2591 goto out;
2592 prepare_read_connect(con);
2593
2594 /* Send connection info before awaiting response */
2595 goto out;
2596 }
2597
2598 if (con->state == CON_STATE_NEGOTIATING) {
2599 dout("try_read negotiating\n");
2600 ret = read_partial_connect(con);
2601 if (ret <= 0)
2602 goto out;
2603 ret = process_connect(con);
2604 if (ret < 0)
2605 goto out;
2606 goto more;
2607 }
2608
2609 WARN_ON(con->state != CON_STATE_OPEN);
2610
2611 if (con->in_base_pos < 0) {
2612 /*
2613 * skipping + discarding content.
2614 *
2615 * FIXME: there must be a better way to do this!
2616 */
2617 static char buf[SKIP_BUF_SIZE];
2618 int skip = min((int) sizeof (buf), -con->in_base_pos);
2619
2620 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2621 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2622 if (ret <= 0)
2623 goto out;
2624 con->in_base_pos += ret;
2625 if (con->in_base_pos)
2626 goto more;
2627 }
2628 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2629 /*
2630 * what's next?
2631 */
2632 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2633 if (ret <= 0)
2634 goto out;
2635 dout("try_read got tag %d\n", (int)con->in_tag);
2636 switch (con->in_tag) {
2637 case CEPH_MSGR_TAG_MSG:
2638 prepare_read_message(con);
2639 break;
2640 case CEPH_MSGR_TAG_ACK:
2641 prepare_read_ack(con);
2642 break;
2643 case CEPH_MSGR_TAG_CLOSE:
2644 con_close_socket(con);
2645 con->state = CON_STATE_CLOSED;
2646 goto out;
2647 default:
2648 goto bad_tag;
2649 }
2650 }
2651 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2652 ret = read_partial_message(con);
2653 if (ret <= 0) {
2654 switch (ret) {
2655 case -EBADMSG:
2656 con->error_msg = "bad crc";
2657 /* fall through */
2658 case -EBADE:
2659 ret = -EIO;
2660 break;
2661 case -EIO:
2662 con->error_msg = "io error";
2663 break;
2664 }
2665 goto out;
2666 }
2667 if (con->in_tag == CEPH_MSGR_TAG_READY)
2668 goto more;
2669 process_message(con);
2670 if (con->state == CON_STATE_OPEN)
2671 prepare_read_tag(con);
2672 goto more;
2673 }
2674 if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2675 con->in_tag == CEPH_MSGR_TAG_SEQ) {
2676 /*
2677 * the final handshake seq exchange is semantically
2678 * equivalent to an ACK
2679 */
2680 ret = read_partial_ack(con);
2681 if (ret <= 0)
2682 goto out;
2683 process_ack(con);
2684 goto more;
2685 }
2686
2687out:
2688 dout("try_read done on %p ret %d\n", con, ret);
2689 return ret;
2690
2691bad_tag:
2692 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2693 con->error_msg = "protocol error, garbage tag";
2694 ret = -1;
2695 goto out;
2696}
2697
2698
2699/*
2700 * Atomically queue work on a connection after the specified delay.
2701 * Bump @con reference to avoid races with connection teardown.
2702 * Returns 0 if work was queued, or an error code otherwise.
2703 */
2704static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2705{
2706 if (!con->ops->get(con)) {
2707 dout("%s %p ref count 0\n", __func__, con);
2708 return -ENOENT;
2709 }
2710
2711 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2712 dout("%s %p - already queued\n", __func__, con);
2713 con->ops->put(con);
2714 return -EBUSY;
2715 }
2716
2717 dout("%s %p %lu\n", __func__, con, delay);
2718 return 0;
2719}
2720
2721static void queue_con(struct ceph_connection *con)
2722{
2723 (void) queue_con_delay(con, 0);
2724}
2725
2726static void cancel_con(struct ceph_connection *con)
2727{
2728 if (cancel_delayed_work(&con->work)) {
2729 dout("%s %p\n", __func__, con);
2730 con->ops->put(con);
2731 }
2732}
2733
2734static bool con_sock_closed(struct ceph_connection *con)
2735{
2736 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2737 return false;
2738
2739#define CASE(x) \
2740 case CON_STATE_ ## x: \
2741 con->error_msg = "socket closed (con state " #x ")"; \
2742 break;
2743
2744 switch (con->state) {
2745 CASE(CLOSED);
2746 CASE(PREOPEN);
2747 CASE(CONNECTING);
2748 CASE(NEGOTIATING);
2749 CASE(OPEN);
2750 CASE(STANDBY);
2751 default:
2752 pr_warn("%s con %p unrecognized state %lu\n",
2753 __func__, con, con->state);
2754 con->error_msg = "unrecognized con state";
2755 BUG();
2756 break;
2757 }
2758#undef CASE
2759
2760 return true;
2761}
2762
2763static bool con_backoff(struct ceph_connection *con)
2764{
2765 int ret;
2766
2767 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2768 return false;
2769
2770 ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2771 if (ret) {
2772 dout("%s: con %p FAILED to back off %lu\n", __func__,
2773 con, con->delay);
2774 BUG_ON(ret == -ENOENT);
2775 con_flag_set(con, CON_FLAG_BACKOFF);
2776 }
2777
2778 return true;
2779}
2780
2781/* Finish fault handling; con->mutex must *not* be held here */
2782
2783static void con_fault_finish(struct ceph_connection *con)
2784{
2785 /*
2786 * in case we faulted due to authentication, invalidate our
2787 * current tickets so that we can get new ones.
2788 */
2789 if (con->auth_retry && con->ops->invalidate_authorizer) {
2790 dout("calling invalidate_authorizer()\n");
2791 con->ops->invalidate_authorizer(con);
2792 }
2793
2794 if (con->ops->fault)
2795 con->ops->fault(con);
2796}
2797
2798/*
2799 * Do some work on a connection. Drop a connection ref when we're done.
2800 */
2801static void con_work(struct work_struct *work)
2802{
2803 struct ceph_connection *con = container_of(work, struct ceph_connection,
2804 work.work);
2805 bool fault;
2806
2807 mutex_lock(&con->mutex);
2808 while (true) {
2809 int ret;
2810
2811 if ((fault = con_sock_closed(con))) {
2812 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2813 break;
2814 }
2815 if (con_backoff(con)) {
2816 dout("%s: con %p BACKOFF\n", __func__, con);
2817 break;
2818 }
2819 if (con->state == CON_STATE_STANDBY) {
2820 dout("%s: con %p STANDBY\n", __func__, con);
2821 break;
2822 }
2823 if (con->state == CON_STATE_CLOSED) {
2824 dout("%s: con %p CLOSED\n", __func__, con);
2825 BUG_ON(con->sock);
2826 break;
2827 }
2828 if (con->state == CON_STATE_PREOPEN) {
2829 dout("%s: con %p PREOPEN\n", __func__, con);
2830 BUG_ON(con->sock);
2831 }
2832
2833 ret = try_read(con);
2834 if (ret < 0) {
2835 if (ret == -EAGAIN)
2836 continue;
2837 if (!con->error_msg)
2838 con->error_msg = "socket error on read";
2839 fault = true;
2840 break;
2841 }
2842
2843 ret = try_write(con);
2844 if (ret < 0) {
2845 if (ret == -EAGAIN)
2846 continue;
2847 if (!con->error_msg)
2848 con->error_msg = "socket error on write";
2849 fault = true;
2850 }
2851
2852 break; /* If we make it to here, we're done */
2853 }
2854 if (fault)
2855 con_fault(con);
2856 mutex_unlock(&con->mutex);
2857
2858 if (fault)
2859 con_fault_finish(con);
2860
2861 con->ops->put(con);
2862}
2863
2864/*
2865 * Generic error/fault handler. A retry mechanism is used with
2866 * exponential backoff
2867 */
2868static void con_fault(struct ceph_connection *con)
2869{
2870 dout("fault %p state %lu to peer %s\n",
2871 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2872
2873 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2874 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2875 con->error_msg = NULL;
2876
2877 WARN_ON(con->state != CON_STATE_CONNECTING &&
2878 con->state != CON_STATE_NEGOTIATING &&
2879 con->state != CON_STATE_OPEN);
2880
2881 con_close_socket(con);
2882
2883 if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2884 dout("fault on LOSSYTX channel, marking CLOSED\n");
2885 con->state = CON_STATE_CLOSED;
2886 return;
2887 }
2888
2889 if (con->in_msg) {
2890 BUG_ON(con->in_msg->con != con);
2891 con->in_msg->con = NULL;
2892 ceph_msg_put(con->in_msg);
2893 con->in_msg = NULL;
2894 con->ops->put(con);
2895 }
2896
2897 /* Requeue anything that hasn't been acked */
2898 list_splice_init(&con->out_sent, &con->out_queue);
2899
2900 /* If there are no messages queued or keepalive pending, place
2901 * the connection in a STANDBY state */
2902 if (list_empty(&con->out_queue) &&
2903 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2904 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2905 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2906 con->state = CON_STATE_STANDBY;
2907 } else {
2908 /* retry after a delay. */
2909 con->state = CON_STATE_PREOPEN;
2910 if (con->delay == 0)
2911 con->delay = BASE_DELAY_INTERVAL;
2912 else if (con->delay < MAX_DELAY_INTERVAL)
2913 con->delay *= 2;
2914 con_flag_set(con, CON_FLAG_BACKOFF);
2915 queue_con(con);
2916 }
2917}
2918
2919
2920
2921/*
2922 * initialize a new messenger instance
2923 */
2924void ceph_messenger_init(struct ceph_messenger *msgr,
2925 struct ceph_entity_addr *myaddr,
2926 u64 supported_features,
2927 u64 required_features,
2928 bool nocrc,
2929 bool tcp_nodelay)
2930{
2931 msgr->supported_features = supported_features;
2932 msgr->required_features = required_features;
2933
2934 spin_lock_init(&msgr->global_seq_lock);
2935
2936 if (myaddr)
2937 msgr->inst.addr = *myaddr;
2938
2939 /* select a random nonce */
2940 msgr->inst.addr.type = 0;
2941 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2942 encode_my_addr(msgr);
2943 msgr->nocrc = nocrc;
2944 msgr->tcp_nodelay = tcp_nodelay;
2945
2946 atomic_set(&msgr->stopping, 0);
2947
2948 dout("%s %p\n", __func__, msgr);
2949}
2950EXPORT_SYMBOL(ceph_messenger_init);
2951
2952static void clear_standby(struct ceph_connection *con)
2953{
2954 /* come back from STANDBY? */
2955 if (con->state == CON_STATE_STANDBY) {
2956 dout("clear_standby %p and ++connect_seq\n", con);
2957 con->state = CON_STATE_PREOPEN;
2958 con->connect_seq++;
2959 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2960 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2961 }
2962}
2963
2964/*
2965 * Queue up an outgoing message on the given connection.
2966 */
2967void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2968{
2969 /* set src+dst */
2970 msg->hdr.src = con->msgr->inst.name;
2971 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2972 msg->needs_out_seq = true;
2973
2974 mutex_lock(&con->mutex);
2975
2976 if (con->state == CON_STATE_CLOSED) {
2977 dout("con_send %p closed, dropping %p\n", con, msg);
2978 ceph_msg_put(msg);
2979 mutex_unlock(&con->mutex);
2980 return;
2981 }
2982
2983 BUG_ON(msg->con != NULL);
2984 msg->con = con->ops->get(con);
2985 BUG_ON(msg->con == NULL);
2986
2987 BUG_ON(!list_empty(&msg->list_head));
2988 list_add_tail(&msg->list_head, &con->out_queue);
2989 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2990 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2991 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2992 le32_to_cpu(msg->hdr.front_len),
2993 le32_to_cpu(msg->hdr.middle_len),
2994 le32_to_cpu(msg->hdr.data_len));
2995
2996 clear_standby(con);
2997 mutex_unlock(&con->mutex);
2998
2999 /* if there wasn't anything waiting to send before, queue
3000 * new work */
3001 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3002 queue_con(con);
3003}
3004EXPORT_SYMBOL(ceph_con_send);
3005
3006/*
3007 * Revoke a message that was previously queued for send
3008 */
3009void ceph_msg_revoke(struct ceph_msg *msg)
3010{
3011 struct ceph_connection *con = msg->con;
3012
3013 if (!con)
3014 return; /* Message not in our possession */
3015
3016 mutex_lock(&con->mutex);
3017 if (!list_empty(&msg->list_head)) {
3018 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3019 list_del_init(&msg->list_head);
3020 BUG_ON(msg->con == NULL);
3021 msg->con->ops->put(msg->con);
3022 msg->con = NULL;
3023 msg->hdr.seq = 0;
3024
3025 ceph_msg_put(msg);
3026 }
3027 if (con->out_msg == msg) {
3028 dout("%s %p msg %p - was sending\n", __func__, con, msg);
3029 con->out_msg = NULL;
3030 if (con->out_kvec_is_msg) {
3031 con->out_skip = con->out_kvec_bytes;
3032 con->out_kvec_is_msg = false;
3033 }
3034 msg->hdr.seq = 0;
3035
3036 ceph_msg_put(msg);
3037 }
3038 mutex_unlock(&con->mutex);
3039}
3040
3041/*
3042 * Revoke a message that we may be reading data into
3043 */
3044void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3045{
3046 struct ceph_connection *con;
3047
3048 BUG_ON(msg == NULL);
3049 if (!msg->con) {
3050 dout("%s msg %p null con\n", __func__, msg);
3051
3052 return; /* Message not in our possession */
3053 }
3054
3055 con = msg->con;
3056 mutex_lock(&con->mutex);
3057 if (con->in_msg == msg) {
3058 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3059 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3060 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3061
3062 /* skip rest of message */
3063 dout("%s %p msg %p revoked\n", __func__, con, msg);
3064 con->in_base_pos = con->in_base_pos -
3065 sizeof(struct ceph_msg_header) -
3066 front_len -
3067 middle_len -
3068 data_len -
3069 sizeof(struct ceph_msg_footer);
3070 ceph_msg_put(con->in_msg);
3071 con->in_msg = NULL;
3072 con->in_tag = CEPH_MSGR_TAG_READY;
3073 con->in_seq++;
3074 } else {
3075 dout("%s %p in_msg %p msg %p no-op\n",
3076 __func__, con, con->in_msg, msg);
3077 }
3078 mutex_unlock(&con->mutex);
3079}
3080
3081/*
3082 * Queue a keepalive byte to ensure the tcp connection is alive.
3083 */
3084void ceph_con_keepalive(struct ceph_connection *con)
3085{
3086 dout("con_keepalive %p\n", con);
3087 mutex_lock(&con->mutex);
3088 clear_standby(con);
3089 mutex_unlock(&con->mutex);
3090 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3091 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3092 queue_con(con);
3093}
3094EXPORT_SYMBOL(ceph_con_keepalive);
3095
3096static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3097{
3098 struct ceph_msg_data *data;
3099
3100 if (WARN_ON(!ceph_msg_data_type_valid(type)))
3101 return NULL;
3102
3103 data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3104 if (data)
3105 data->type = type;
3106 INIT_LIST_HEAD(&data->links);
3107
3108 return data;
3109}
3110
3111static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3112{
3113 if (!data)
3114 return;
3115
3116 WARN_ON(!list_empty(&data->links));
3117 if (data->type == CEPH_MSG_DATA_PAGELIST)
3118 ceph_pagelist_release(data->pagelist);
3119 kmem_cache_free(ceph_msg_data_cache, data);
3120}
3121
3122void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3123 size_t length, size_t alignment)
3124{
3125 struct ceph_msg_data *data;
3126
3127 BUG_ON(!pages);
3128 BUG_ON(!length);
3129
3130 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3131 BUG_ON(!data);
3132 data->pages = pages;
3133 data->length = length;
3134 data->alignment = alignment & ~PAGE_MASK;
3135
3136 list_add_tail(&data->links, &msg->data);
3137 msg->data_length += length;
3138}
3139EXPORT_SYMBOL(ceph_msg_data_add_pages);
3140
3141void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3142 struct ceph_pagelist *pagelist)
3143{
3144 struct ceph_msg_data *data;
3145
3146 BUG_ON(!pagelist);
3147 BUG_ON(!pagelist->length);
3148
3149 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3150 BUG_ON(!data);
3151 data->pagelist = pagelist;
3152
3153 list_add_tail(&data->links, &msg->data);
3154 msg->data_length += pagelist->length;
3155}
3156EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3157
3158#ifdef CONFIG_BLOCK
3159void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3160 size_t length)
3161{
3162 struct ceph_msg_data *data;
3163
3164 BUG_ON(!bio);
3165
3166 data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3167 BUG_ON(!data);
3168 data->bio = bio;
3169 data->bio_length = length;
3170
3171 list_add_tail(&data->links, &msg->data);
3172 msg->data_length += length;
3173}
3174EXPORT_SYMBOL(ceph_msg_data_add_bio);
3175#endif /* CONFIG_BLOCK */
3176
3177/*
3178 * construct a new message with given type, size
3179 * the new msg has a ref count of 1.
3180 */
3181struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3182 bool can_fail)
3183{
3184 struct ceph_msg *m;
3185
3186 m = kmem_cache_zalloc(ceph_msg_cache, flags);
3187 if (m == NULL)
3188 goto out;
3189
3190 m->hdr.type = cpu_to_le16(type);
3191 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3192 m->hdr.front_len = cpu_to_le32(front_len);
3193
3194 INIT_LIST_HEAD(&m->list_head);
3195 kref_init(&m->kref);
3196 INIT_LIST_HEAD(&m->data);
3197
3198 /* front */
3199 if (front_len) {
3200 m->front.iov_base = ceph_kvmalloc(front_len, flags);
3201 if (m->front.iov_base == NULL) {
3202 dout("ceph_msg_new can't allocate %d bytes\n",
3203 front_len);
3204 goto out2;
3205 }
3206 } else {
3207 m->front.iov_base = NULL;
3208 }
3209 m->front_alloc_len = m->front.iov_len = front_len;
3210
3211 dout("ceph_msg_new %p front %d\n", m, front_len);
3212 return m;
3213
3214out2:
3215 ceph_msg_put(m);
3216out:
3217 if (!can_fail) {
3218 pr_err("msg_new can't create type %d front %d\n", type,
3219 front_len);
3220 WARN_ON(1);
3221 } else {
3222 dout("msg_new can't create type %d front %d\n", type,
3223 front_len);
3224 }
3225 return NULL;
3226}
3227EXPORT_SYMBOL(ceph_msg_new);
3228
3229/*
3230 * Allocate "middle" portion of a message, if it is needed and wasn't
3231 * allocated by alloc_msg. This allows us to read a small fixed-size
3232 * per-type header in the front and then gracefully fail (i.e.,
3233 * propagate the error to the caller based on info in the front) when
3234 * the middle is too large.
3235 */
3236static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3237{
3238 int type = le16_to_cpu(msg->hdr.type);
3239 int middle_len = le32_to_cpu(msg->hdr.middle_len);
3240
3241 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3242 ceph_msg_type_name(type), middle_len);
3243 BUG_ON(!middle_len);
3244 BUG_ON(msg->middle);
3245
3246 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3247 if (!msg->middle)
3248 return -ENOMEM;
3249 return 0;
3250}
3251
3252/*
3253 * Allocate a message for receiving an incoming message on a
3254 * connection, and save the result in con->in_msg. Uses the
3255 * connection's private alloc_msg op if available.
3256 *
3257 * Returns 0 on success, or a negative error code.
3258 *
3259 * On success, if we set *skip = 1:
3260 * - the next message should be skipped and ignored.
3261 * - con->in_msg == NULL
3262 * or if we set *skip = 0:
3263 * - con->in_msg is non-null.
3264 * On error (ENOMEM, EAGAIN, ...),
3265 * - con->in_msg == NULL
3266 */
3267static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3268{
3269 struct ceph_msg_header *hdr = &con->in_hdr;
3270 int middle_len = le32_to_cpu(hdr->middle_len);
3271 struct ceph_msg *msg;
3272 int ret = 0;
3273
3274 BUG_ON(con->in_msg != NULL);
3275 BUG_ON(!con->ops->alloc_msg);
3276
3277 mutex_unlock(&con->mutex);
3278 msg = con->ops->alloc_msg(con, hdr, skip);
3279 mutex_lock(&con->mutex);
3280 if (con->state != CON_STATE_OPEN) {
3281 if (msg)
3282 ceph_msg_put(msg);
3283 return -EAGAIN;
3284 }
3285 if (msg) {
3286 BUG_ON(*skip);
3287 con->in_msg = msg;
3288 con->in_msg->con = con->ops->get(con);
3289 BUG_ON(con->in_msg->con == NULL);
3290 } else {
3291 /*
3292 * Null message pointer means either we should skip
3293 * this message or we couldn't allocate memory. The
3294 * former is not an error.
3295 */
3296 if (*skip)
3297 return 0;
3298
3299 con->error_msg = "error allocating memory for incoming message";
3300 return -ENOMEM;
3301 }
3302 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3303
3304 if (middle_len && !con->in_msg->middle) {
3305 ret = ceph_alloc_middle(con, con->in_msg);
3306 if (ret < 0) {
3307 ceph_msg_put(con->in_msg);
3308 con->in_msg = NULL;
3309 }
3310 }
3311
3312 return ret;
3313}
3314
3315
3316/*
3317 * Free a generically kmalloc'd message.
3318 */
3319static void ceph_msg_free(struct ceph_msg *m)
3320{
3321 dout("%s %p\n", __func__, m);
3322 kvfree(m->front.iov_base);
3323 kmem_cache_free(ceph_msg_cache, m);
3324}
3325
3326static void ceph_msg_release(struct kref *kref)
3327{
3328 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3329 LIST_HEAD(data);
3330 struct list_head *links;
3331 struct list_head *next;
3332
3333 dout("%s %p\n", __func__, m);
3334 WARN_ON(!list_empty(&m->list_head));
3335
3336 /* drop middle, data, if any */
3337 if (m->middle) {
3338 ceph_buffer_put(m->middle);
3339 m->middle = NULL;
3340 }
3341
3342 list_splice_init(&m->data, &data);
3343 list_for_each_safe(links, next, &data) {
3344 struct ceph_msg_data *data;
3345
3346 data = list_entry(links, struct ceph_msg_data, links);
3347 list_del_init(links);
3348 ceph_msg_data_destroy(data);
3349 }
3350 m->data_length = 0;
3351
3352 if (m->pool)
3353 ceph_msgpool_put(m->pool, m);
3354 else
3355 ceph_msg_free(m);
3356}
3357
3358struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3359{
3360 dout("%s %p (was %d)\n", __func__, msg,
3361 atomic_read(&msg->kref.refcount));
3362 kref_get(&msg->kref);
3363 return msg;
3364}
3365EXPORT_SYMBOL(ceph_msg_get);
3366
3367void ceph_msg_put(struct ceph_msg *msg)
3368{
3369 dout("%s %p (was %d)\n", __func__, msg,
3370 atomic_read(&msg->kref.refcount));
3371 kref_put(&msg->kref, ceph_msg_release);
3372}
3373EXPORT_SYMBOL(ceph_msg_put);
3374
3375void ceph_msg_dump(struct ceph_msg *msg)
3376{
3377 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3378 msg->front_alloc_len, msg->data_length);
3379 print_hex_dump(KERN_DEBUG, "header: ",
3380 DUMP_PREFIX_OFFSET, 16, 1,
3381 &msg->hdr, sizeof(msg->hdr), true);
3382 print_hex_dump(KERN_DEBUG, " front: ",
3383 DUMP_PREFIX_OFFSET, 16, 1,
3384 msg->front.iov_base, msg->front.iov_len, true);
3385 if (msg->middle)
3386 print_hex_dump(KERN_DEBUG, "middle: ",
3387 DUMP_PREFIX_OFFSET, 16, 1,
3388 msg->middle->vec.iov_base,
3389 msg->middle->vec.iov_len, true);
3390 print_hex_dump(KERN_DEBUG, "footer: ",
3391 DUMP_PREFIX_OFFSET, 16, 1,
3392 &msg->footer, sizeof(msg->footer), true);
3393}
3394EXPORT_SYMBOL(ceph_msg_dump);
This page took 0.03543 seconds and 5 git commands to generate.