libceph: start defining message data cursor
[deliverable/linux.git] / net / ceph / messenger.c
... / ...
CommitLineData
1#include <linux/ceph/ceph_debug.h>
2
3#include <linux/crc32c.h>
4#include <linux/ctype.h>
5#include <linux/highmem.h>
6#include <linux/inet.h>
7#include <linux/kthread.h>
8#include <linux/net.h>
9#include <linux/slab.h>
10#include <linux/socket.h>
11#include <linux/string.h>
12#ifdef CONFIG_BLOCK
13#include <linux/bio.h>
14#endif /* CONFIG_BLOCK */
15#include <linux/dns_resolver.h>
16#include <net/tcp.h>
17
18#include <linux/ceph/libceph.h>
19#include <linux/ceph/messenger.h>
20#include <linux/ceph/decode.h>
21#include <linux/ceph/pagelist.h>
22#include <linux/export.h>
23
24#define list_entry_next(pos, member) \
25 list_entry(pos->member.next, typeof(*pos), member)
26
27/*
28 * Ceph uses the messenger to exchange ceph_msg messages with other
29 * hosts in the system. The messenger provides ordered and reliable
30 * delivery. We tolerate TCP disconnects by reconnecting (with
31 * exponential backoff) in the case of a fault (disconnection, bad
32 * crc, protocol error). Acks allow sent messages to be discarded by
33 * the sender.
34 */
35
36/*
37 * We track the state of the socket on a given connection using
38 * values defined below. The transition to a new socket state is
39 * handled by a function which verifies we aren't coming from an
40 * unexpected state.
41 *
42 * --------
43 * | NEW* | transient initial state
44 * --------
45 * | con_sock_state_init()
46 * v
47 * ----------
48 * | CLOSED | initialized, but no socket (and no
49 * ---------- TCP connection)
50 * ^ \
51 * | \ con_sock_state_connecting()
52 * | ----------------------
53 * | \
54 * + con_sock_state_closed() \
55 * |+--------------------------- \
56 * | \ \ \
57 * | ----------- \ \
58 * | | CLOSING | socket event; \ \
59 * | ----------- await close \ \
60 * | ^ \ |
61 * | | \ |
62 * | + con_sock_state_closing() \ |
63 * | / \ | |
64 * | / --------------- | |
65 * | / \ v v
66 * | / --------------
67 * | / -----------------| CONNECTING | socket created, TCP
68 * | | / -------------- connect initiated
69 * | | | con_sock_state_connected()
70 * | | v
71 * -------------
72 * | CONNECTED | TCP connection established
73 * -------------
74 *
75 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
76 */
77
78#define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
79#define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
80#define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
81#define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
82#define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
83
84/*
85 * connection states
86 */
87#define CON_STATE_CLOSED 1 /* -> PREOPEN */
88#define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
89#define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
90#define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
91#define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
92#define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
93
94/*
95 * ceph_connection flag bits
96 */
97#define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
98 * messages on errors */
99#define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
100#define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
101#define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
102#define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
103
104static bool con_flag_valid(unsigned long con_flag)
105{
106 switch (con_flag) {
107 case CON_FLAG_LOSSYTX:
108 case CON_FLAG_KEEPALIVE_PENDING:
109 case CON_FLAG_WRITE_PENDING:
110 case CON_FLAG_SOCK_CLOSED:
111 case CON_FLAG_BACKOFF:
112 return true;
113 default:
114 return false;
115 }
116}
117
118static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
119{
120 BUG_ON(!con_flag_valid(con_flag));
121
122 clear_bit(con_flag, &con->flags);
123}
124
125static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
126{
127 BUG_ON(!con_flag_valid(con_flag));
128
129 set_bit(con_flag, &con->flags);
130}
131
132static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
133{
134 BUG_ON(!con_flag_valid(con_flag));
135
136 return test_bit(con_flag, &con->flags);
137}
138
139static bool con_flag_test_and_clear(struct ceph_connection *con,
140 unsigned long con_flag)
141{
142 BUG_ON(!con_flag_valid(con_flag));
143
144 return test_and_clear_bit(con_flag, &con->flags);
145}
146
147static bool con_flag_test_and_set(struct ceph_connection *con,
148 unsigned long con_flag)
149{
150 BUG_ON(!con_flag_valid(con_flag));
151
152 return test_and_set_bit(con_flag, &con->flags);
153}
154
155/* static tag bytes (protocol control messages) */
156static char tag_msg = CEPH_MSGR_TAG_MSG;
157static char tag_ack = CEPH_MSGR_TAG_ACK;
158static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
159
160#ifdef CONFIG_LOCKDEP
161static struct lock_class_key socket_class;
162#endif
163
164/*
165 * When skipping (ignoring) a block of input we read it into a "skip
166 * buffer," which is this many bytes in size.
167 */
168#define SKIP_BUF_SIZE 1024
169
170static void queue_con(struct ceph_connection *con);
171static void con_work(struct work_struct *);
172static void con_fault(struct ceph_connection *con);
173
174/*
175 * Nicely render a sockaddr as a string. An array of formatted
176 * strings is used, to approximate reentrancy.
177 */
178#define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
179#define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
180#define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
181#define MAX_ADDR_STR_LEN 64 /* 54 is enough */
182
183static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
184static atomic_t addr_str_seq = ATOMIC_INIT(0);
185
186static struct page *zero_page; /* used in certain error cases */
187
188const char *ceph_pr_addr(const struct sockaddr_storage *ss)
189{
190 int i;
191 char *s;
192 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
193 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
194
195 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
196 s = addr_str[i];
197
198 switch (ss->ss_family) {
199 case AF_INET:
200 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
201 ntohs(in4->sin_port));
202 break;
203
204 case AF_INET6:
205 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
206 ntohs(in6->sin6_port));
207 break;
208
209 default:
210 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
211 ss->ss_family);
212 }
213
214 return s;
215}
216EXPORT_SYMBOL(ceph_pr_addr);
217
218static void encode_my_addr(struct ceph_messenger *msgr)
219{
220 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
221 ceph_encode_addr(&msgr->my_enc_addr);
222}
223
224/*
225 * work queue for all reading and writing to/from the socket.
226 */
227static struct workqueue_struct *ceph_msgr_wq;
228
229static void _ceph_msgr_exit(void)
230{
231 if (ceph_msgr_wq) {
232 destroy_workqueue(ceph_msgr_wq);
233 ceph_msgr_wq = NULL;
234 }
235
236 BUG_ON(zero_page == NULL);
237 kunmap(zero_page);
238 page_cache_release(zero_page);
239 zero_page = NULL;
240}
241
242int ceph_msgr_init(void)
243{
244 BUG_ON(zero_page != NULL);
245 zero_page = ZERO_PAGE(0);
246 page_cache_get(zero_page);
247
248 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
249 if (ceph_msgr_wq)
250 return 0;
251
252 pr_err("msgr_init failed to create workqueue\n");
253 _ceph_msgr_exit();
254
255 return -ENOMEM;
256}
257EXPORT_SYMBOL(ceph_msgr_init);
258
259void ceph_msgr_exit(void)
260{
261 BUG_ON(ceph_msgr_wq == NULL);
262
263 _ceph_msgr_exit();
264}
265EXPORT_SYMBOL(ceph_msgr_exit);
266
267void ceph_msgr_flush(void)
268{
269 flush_workqueue(ceph_msgr_wq);
270}
271EXPORT_SYMBOL(ceph_msgr_flush);
272
273/* Connection socket state transition functions */
274
275static void con_sock_state_init(struct ceph_connection *con)
276{
277 int old_state;
278
279 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
280 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
281 printk("%s: unexpected old state %d\n", __func__, old_state);
282 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
283 CON_SOCK_STATE_CLOSED);
284}
285
286static void con_sock_state_connecting(struct ceph_connection *con)
287{
288 int old_state;
289
290 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
291 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
292 printk("%s: unexpected old state %d\n", __func__, old_state);
293 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
294 CON_SOCK_STATE_CONNECTING);
295}
296
297static void con_sock_state_connected(struct ceph_connection *con)
298{
299 int old_state;
300
301 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
302 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
303 printk("%s: unexpected old state %d\n", __func__, old_state);
304 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
305 CON_SOCK_STATE_CONNECTED);
306}
307
308static void con_sock_state_closing(struct ceph_connection *con)
309{
310 int old_state;
311
312 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
313 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
314 old_state != CON_SOCK_STATE_CONNECTED &&
315 old_state != CON_SOCK_STATE_CLOSING))
316 printk("%s: unexpected old state %d\n", __func__, old_state);
317 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
318 CON_SOCK_STATE_CLOSING);
319}
320
321static void con_sock_state_closed(struct ceph_connection *con)
322{
323 int old_state;
324
325 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
326 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
327 old_state != CON_SOCK_STATE_CLOSING &&
328 old_state != CON_SOCK_STATE_CONNECTING &&
329 old_state != CON_SOCK_STATE_CLOSED))
330 printk("%s: unexpected old state %d\n", __func__, old_state);
331 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
332 CON_SOCK_STATE_CLOSED);
333}
334
335/*
336 * socket callback functions
337 */
338
339/* data available on socket, or listen socket received a connect */
340static void ceph_sock_data_ready(struct sock *sk, int count_unused)
341{
342 struct ceph_connection *con = sk->sk_user_data;
343 if (atomic_read(&con->msgr->stopping)) {
344 return;
345 }
346
347 if (sk->sk_state != TCP_CLOSE_WAIT) {
348 dout("%s on %p state = %lu, queueing work\n", __func__,
349 con, con->state);
350 queue_con(con);
351 }
352}
353
354/* socket has buffer space for writing */
355static void ceph_sock_write_space(struct sock *sk)
356{
357 struct ceph_connection *con = sk->sk_user_data;
358
359 /* only queue to workqueue if there is data we want to write,
360 * and there is sufficient space in the socket buffer to accept
361 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
362 * doesn't get called again until try_write() fills the socket
363 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
364 * and net/core/stream.c:sk_stream_write_space().
365 */
366 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
367 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
368 dout("%s %p queueing write work\n", __func__, con);
369 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
370 queue_con(con);
371 }
372 } else {
373 dout("%s %p nothing to write\n", __func__, con);
374 }
375}
376
377/* socket's state has changed */
378static void ceph_sock_state_change(struct sock *sk)
379{
380 struct ceph_connection *con = sk->sk_user_data;
381
382 dout("%s %p state = %lu sk_state = %u\n", __func__,
383 con, con->state, sk->sk_state);
384
385 switch (sk->sk_state) {
386 case TCP_CLOSE:
387 dout("%s TCP_CLOSE\n", __func__);
388 case TCP_CLOSE_WAIT:
389 dout("%s TCP_CLOSE_WAIT\n", __func__);
390 con_sock_state_closing(con);
391 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
392 queue_con(con);
393 break;
394 case TCP_ESTABLISHED:
395 dout("%s TCP_ESTABLISHED\n", __func__);
396 con_sock_state_connected(con);
397 queue_con(con);
398 break;
399 default: /* Everything else is uninteresting */
400 break;
401 }
402}
403
404/*
405 * set up socket callbacks
406 */
407static void set_sock_callbacks(struct socket *sock,
408 struct ceph_connection *con)
409{
410 struct sock *sk = sock->sk;
411 sk->sk_user_data = con;
412 sk->sk_data_ready = ceph_sock_data_ready;
413 sk->sk_write_space = ceph_sock_write_space;
414 sk->sk_state_change = ceph_sock_state_change;
415}
416
417
418/*
419 * socket helpers
420 */
421
422/*
423 * initiate connection to a remote socket.
424 */
425static int ceph_tcp_connect(struct ceph_connection *con)
426{
427 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
428 struct socket *sock;
429 int ret;
430
431 BUG_ON(con->sock);
432 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
433 IPPROTO_TCP, &sock);
434 if (ret)
435 return ret;
436 sock->sk->sk_allocation = GFP_NOFS;
437
438#ifdef CONFIG_LOCKDEP
439 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
440#endif
441
442 set_sock_callbacks(sock, con);
443
444 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
445
446 con_sock_state_connecting(con);
447 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
448 O_NONBLOCK);
449 if (ret == -EINPROGRESS) {
450 dout("connect %s EINPROGRESS sk_state = %u\n",
451 ceph_pr_addr(&con->peer_addr.in_addr),
452 sock->sk->sk_state);
453 } else if (ret < 0) {
454 pr_err("connect %s error %d\n",
455 ceph_pr_addr(&con->peer_addr.in_addr), ret);
456 sock_release(sock);
457 con->error_msg = "connect error";
458
459 return ret;
460 }
461 con->sock = sock;
462 return 0;
463}
464
465static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
466{
467 struct kvec iov = {buf, len};
468 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
469 int r;
470
471 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
472 if (r == -EAGAIN)
473 r = 0;
474 return r;
475}
476
477static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
478 int page_offset, size_t length)
479{
480 void *kaddr;
481 int ret;
482
483 BUG_ON(page_offset + length > PAGE_SIZE);
484
485 kaddr = kmap(page);
486 BUG_ON(!kaddr);
487 ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
488 kunmap(page);
489
490 return ret;
491}
492
493/*
494 * write something. @more is true if caller will be sending more data
495 * shortly.
496 */
497static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
498 size_t kvlen, size_t len, int more)
499{
500 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
501 int r;
502
503 if (more)
504 msg.msg_flags |= MSG_MORE;
505 else
506 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
507
508 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
509 if (r == -EAGAIN)
510 r = 0;
511 return r;
512}
513
514static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
515 int offset, size_t size, bool more)
516{
517 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
518 int ret;
519
520 ret = kernel_sendpage(sock, page, offset, size, flags);
521 if (ret == -EAGAIN)
522 ret = 0;
523
524 return ret;
525}
526
527
528/*
529 * Shutdown/close the socket for the given connection.
530 */
531static int con_close_socket(struct ceph_connection *con)
532{
533 int rc = 0;
534
535 dout("con_close_socket on %p sock %p\n", con, con->sock);
536 if (con->sock) {
537 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
538 sock_release(con->sock);
539 con->sock = NULL;
540 }
541
542 /*
543 * Forcibly clear the SOCK_CLOSED flag. It gets set
544 * independent of the connection mutex, and we could have
545 * received a socket close event before we had the chance to
546 * shut the socket down.
547 */
548 con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
549
550 con_sock_state_closed(con);
551 return rc;
552}
553
554/*
555 * Reset a connection. Discard all incoming and outgoing messages
556 * and clear *_seq state.
557 */
558static void ceph_msg_remove(struct ceph_msg *msg)
559{
560 list_del_init(&msg->list_head);
561 BUG_ON(msg->con == NULL);
562 msg->con->ops->put(msg->con);
563 msg->con = NULL;
564
565 ceph_msg_put(msg);
566}
567static void ceph_msg_remove_list(struct list_head *head)
568{
569 while (!list_empty(head)) {
570 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
571 list_head);
572 ceph_msg_remove(msg);
573 }
574}
575
576static void reset_connection(struct ceph_connection *con)
577{
578 /* reset connection, out_queue, msg_ and connect_seq */
579 /* discard existing out_queue and msg_seq */
580 dout("reset_connection %p\n", con);
581 ceph_msg_remove_list(&con->out_queue);
582 ceph_msg_remove_list(&con->out_sent);
583
584 if (con->in_msg) {
585 BUG_ON(con->in_msg->con != con);
586 con->in_msg->con = NULL;
587 ceph_msg_put(con->in_msg);
588 con->in_msg = NULL;
589 con->ops->put(con);
590 }
591
592 con->connect_seq = 0;
593 con->out_seq = 0;
594 if (con->out_msg) {
595 ceph_msg_put(con->out_msg);
596 con->out_msg = NULL;
597 }
598 con->in_seq = 0;
599 con->in_seq_acked = 0;
600}
601
602/*
603 * mark a peer down. drop any open connections.
604 */
605void ceph_con_close(struct ceph_connection *con)
606{
607 mutex_lock(&con->mutex);
608 dout("con_close %p peer %s\n", con,
609 ceph_pr_addr(&con->peer_addr.in_addr));
610 con->state = CON_STATE_CLOSED;
611
612 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */
613 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
614 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
615 con_flag_clear(con, CON_FLAG_BACKOFF);
616
617 reset_connection(con);
618 con->peer_global_seq = 0;
619 cancel_delayed_work(&con->work);
620 con_close_socket(con);
621 mutex_unlock(&con->mutex);
622}
623EXPORT_SYMBOL(ceph_con_close);
624
625/*
626 * Reopen a closed connection, with a new peer address.
627 */
628void ceph_con_open(struct ceph_connection *con,
629 __u8 entity_type, __u64 entity_num,
630 struct ceph_entity_addr *addr)
631{
632 mutex_lock(&con->mutex);
633 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
634
635 WARN_ON(con->state != CON_STATE_CLOSED);
636 con->state = CON_STATE_PREOPEN;
637
638 con->peer_name.type = (__u8) entity_type;
639 con->peer_name.num = cpu_to_le64(entity_num);
640
641 memcpy(&con->peer_addr, addr, sizeof(*addr));
642 con->delay = 0; /* reset backoff memory */
643 mutex_unlock(&con->mutex);
644 queue_con(con);
645}
646EXPORT_SYMBOL(ceph_con_open);
647
648/*
649 * return true if this connection ever successfully opened
650 */
651bool ceph_con_opened(struct ceph_connection *con)
652{
653 return con->connect_seq > 0;
654}
655
656/*
657 * initialize a new connection.
658 */
659void ceph_con_init(struct ceph_connection *con, void *private,
660 const struct ceph_connection_operations *ops,
661 struct ceph_messenger *msgr)
662{
663 dout("con_init %p\n", con);
664 memset(con, 0, sizeof(*con));
665 con->private = private;
666 con->ops = ops;
667 con->msgr = msgr;
668
669 con_sock_state_init(con);
670
671 mutex_init(&con->mutex);
672 INIT_LIST_HEAD(&con->out_queue);
673 INIT_LIST_HEAD(&con->out_sent);
674 INIT_DELAYED_WORK(&con->work, con_work);
675
676 con->state = CON_STATE_CLOSED;
677}
678EXPORT_SYMBOL(ceph_con_init);
679
680
681/*
682 * We maintain a global counter to order connection attempts. Get
683 * a unique seq greater than @gt.
684 */
685static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
686{
687 u32 ret;
688
689 spin_lock(&msgr->global_seq_lock);
690 if (msgr->global_seq < gt)
691 msgr->global_seq = gt;
692 ret = ++msgr->global_seq;
693 spin_unlock(&msgr->global_seq_lock);
694 return ret;
695}
696
697static void con_out_kvec_reset(struct ceph_connection *con)
698{
699 con->out_kvec_left = 0;
700 con->out_kvec_bytes = 0;
701 con->out_kvec_cur = &con->out_kvec[0];
702}
703
704static void con_out_kvec_add(struct ceph_connection *con,
705 size_t size, void *data)
706{
707 int index;
708
709 index = con->out_kvec_left;
710 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
711
712 con->out_kvec[index].iov_len = size;
713 con->out_kvec[index].iov_base = data;
714 con->out_kvec_left++;
715 con->out_kvec_bytes += size;
716}
717
718#ifdef CONFIG_BLOCK
719static void init_bio_iter(struct bio *bio, struct bio **bio_iter,
720 unsigned int *bio_seg)
721{
722 if (!bio) {
723 *bio_iter = NULL;
724 *bio_seg = 0;
725 return;
726 }
727 *bio_iter = bio;
728 *bio_seg = (unsigned int) bio->bi_idx;
729}
730
731static void iter_bio_next(struct bio **bio_iter, unsigned int *seg)
732{
733 if (*bio_iter == NULL)
734 return;
735
736 BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
737
738 (*seg)++;
739 if (*seg == (*bio_iter)->bi_vcnt)
740 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
741}
742#endif
743
744/*
745 * Message data is handled (sent or received) in pieces, where each
746 * piece resides on a single page. The network layer might not
747 * consume an entire piece at once. A data item's cursor keeps
748 * track of which piece is next to process and how much remains to
749 * be processed in that piece. It also tracks whether the current
750 * piece is the last one in the data item.
751 */
752static void ceph_msg_data_cursor_init(struct ceph_msg_data *data)
753{
754 struct ceph_msg_data_cursor *cursor = &data->cursor;
755 struct ceph_pagelist *pagelist;
756 struct page *page;
757
758 if (data->type != CEPH_MSG_DATA_PAGELIST)
759 return;
760
761 pagelist = data->pagelist;
762 BUG_ON(!pagelist);
763 if (!pagelist->length)
764 return; /* pagelist can be assigned but empty */
765
766 BUG_ON(list_empty(&pagelist->head));
767 page = list_first_entry(&pagelist->head, struct page, lru);
768
769 cursor->page = page;
770 cursor->offset = 0;
771 cursor->last_piece = pagelist->length <= PAGE_SIZE;
772}
773
774/*
775 * Return the page containing the next piece to process for a given
776 * data item, and supply the page offset and length of that piece.
777 * Indicate whether this is the last piece in this data item.
778 */
779static struct page *ceph_msg_data_next(struct ceph_msg_data *data,
780 size_t *page_offset,
781 size_t *length,
782 bool *last_piece)
783{
784 struct ceph_msg_data_cursor *cursor = &data->cursor;
785 struct ceph_pagelist *pagelist;
786 size_t piece_end;
787
788 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
789
790 pagelist = data->pagelist;
791 BUG_ON(!pagelist);
792
793 BUG_ON(!cursor->page);
794 BUG_ON(cursor->offset >= pagelist->length);
795
796 *last_piece = cursor->last_piece;
797 if (*last_piece) {
798 /* pagelist offset is always 0 */
799 piece_end = pagelist->length & ~PAGE_MASK;
800 if (!piece_end)
801 piece_end = PAGE_SIZE;
802 } else {
803 piece_end = PAGE_SIZE;
804 }
805 *page_offset = cursor->offset & ~PAGE_MASK;
806 *length = piece_end - *page_offset;
807
808 return data->cursor.page;
809}
810
811/*
812 * Returns true if the result moves the cursor on to the next piece
813 * (the next page) of the pagelist.
814 */
815static bool ceph_msg_data_advance(struct ceph_msg_data *data, size_t bytes)
816{
817 struct ceph_msg_data_cursor *cursor = &data->cursor;
818 struct ceph_pagelist *pagelist;
819
820 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
821
822 pagelist = data->pagelist;
823 BUG_ON(!pagelist);
824 BUG_ON(!cursor->page);
825 BUG_ON(cursor->offset + bytes > pagelist->length);
826 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
827
828 /* Advance the cursor offset */
829
830 cursor->offset += bytes;
831 /* pagelist offset is always 0 */
832 if (!bytes || cursor->offset & ~PAGE_MASK)
833 return false; /* more bytes to process in the current page */
834
835 /* Move on to the next page */
836
837 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
838 cursor->page = list_entry_next(cursor->page, lru);
839
840 /* cursor offset is at page boundary; pagelist offset is always 0 */
841 if (pagelist->length - cursor->offset <= PAGE_SIZE)
842 cursor->last_piece = true;
843
844 return true;
845}
846
847static void prepare_message_data(struct ceph_msg *msg,
848 struct ceph_msg_pos *msg_pos)
849{
850 BUG_ON(!msg);
851 BUG_ON(!msg->hdr.data_len);
852
853 /* initialize page iterator */
854 msg_pos->page = 0;
855 if (ceph_msg_has_pages(msg))
856 msg_pos->page_pos = msg->p.alignment;
857 else
858 msg_pos->page_pos = 0;
859#ifdef CONFIG_BLOCK
860 if (ceph_msg_has_bio(msg))
861 init_bio_iter(msg->b.bio, &msg->b.bio_iter, &msg->b.bio_seg);
862#endif
863 msg_pos->data_pos = 0;
864
865 /* If there's a trail, initialize its cursor */
866
867 if (ceph_msg_has_trail(msg))
868 ceph_msg_data_cursor_init(&msg->t);
869
870 msg_pos->did_page_crc = false;
871}
872
873/*
874 * Prepare footer for currently outgoing message, and finish things
875 * off. Assumes out_kvec* are already valid.. we just add on to the end.
876 */
877static void prepare_write_message_footer(struct ceph_connection *con)
878{
879 struct ceph_msg *m = con->out_msg;
880 int v = con->out_kvec_left;
881
882 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
883
884 dout("prepare_write_message_footer %p\n", con);
885 con->out_kvec_is_msg = true;
886 con->out_kvec[v].iov_base = &m->footer;
887 con->out_kvec[v].iov_len = sizeof(m->footer);
888 con->out_kvec_bytes += sizeof(m->footer);
889 con->out_kvec_left++;
890 con->out_more = m->more_to_follow;
891 con->out_msg_done = true;
892}
893
894/*
895 * Prepare headers for the next outgoing message.
896 */
897static void prepare_write_message(struct ceph_connection *con)
898{
899 struct ceph_msg *m;
900 u32 crc;
901
902 con_out_kvec_reset(con);
903 con->out_kvec_is_msg = true;
904 con->out_msg_done = false;
905
906 /* Sneak an ack in there first? If we can get it into the same
907 * TCP packet that's a good thing. */
908 if (con->in_seq > con->in_seq_acked) {
909 con->in_seq_acked = con->in_seq;
910 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
911 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
912 con_out_kvec_add(con, sizeof (con->out_temp_ack),
913 &con->out_temp_ack);
914 }
915
916 BUG_ON(list_empty(&con->out_queue));
917 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
918 con->out_msg = m;
919 BUG_ON(m->con != con);
920
921 /* put message on sent list */
922 ceph_msg_get(m);
923 list_move_tail(&m->list_head, &con->out_sent);
924
925 /*
926 * only assign outgoing seq # if we haven't sent this message
927 * yet. if it is requeued, resend with it's original seq.
928 */
929 if (m->needs_out_seq) {
930 m->hdr.seq = cpu_to_le64(++con->out_seq);
931 m->needs_out_seq = false;
932 }
933
934 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d (%zd)\n",
935 m, con->out_seq, le16_to_cpu(m->hdr.type),
936 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
937 le32_to_cpu(m->hdr.data_len), m->p.length);
938 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
939
940 /* tag + hdr + front + middle */
941 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
942 con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
943 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
944
945 if (m->middle)
946 con_out_kvec_add(con, m->middle->vec.iov_len,
947 m->middle->vec.iov_base);
948
949 /* fill in crc (except data pages), footer */
950 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
951 con->out_msg->hdr.crc = cpu_to_le32(crc);
952 con->out_msg->footer.flags = 0;
953
954 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
955 con->out_msg->footer.front_crc = cpu_to_le32(crc);
956 if (m->middle) {
957 crc = crc32c(0, m->middle->vec.iov_base,
958 m->middle->vec.iov_len);
959 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
960 } else
961 con->out_msg->footer.middle_crc = 0;
962 dout("%s front_crc %u middle_crc %u\n", __func__,
963 le32_to_cpu(con->out_msg->footer.front_crc),
964 le32_to_cpu(con->out_msg->footer.middle_crc));
965
966 /* is there a data payload? */
967 con->out_msg->footer.data_crc = 0;
968 if (m->hdr.data_len) {
969 prepare_message_data(con->out_msg, &con->out_msg_pos);
970 con->out_more = 1; /* data + footer will follow */
971 } else {
972 /* no, queue up footer too and be done */
973 prepare_write_message_footer(con);
974 }
975
976 con_flag_set(con, CON_FLAG_WRITE_PENDING);
977}
978
979/*
980 * Prepare an ack.
981 */
982static void prepare_write_ack(struct ceph_connection *con)
983{
984 dout("prepare_write_ack %p %llu -> %llu\n", con,
985 con->in_seq_acked, con->in_seq);
986 con->in_seq_acked = con->in_seq;
987
988 con_out_kvec_reset(con);
989
990 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
991
992 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
993 con_out_kvec_add(con, sizeof (con->out_temp_ack),
994 &con->out_temp_ack);
995
996 con->out_more = 1; /* more will follow.. eventually.. */
997 con_flag_set(con, CON_FLAG_WRITE_PENDING);
998}
999
1000/*
1001 * Prepare to write keepalive byte.
1002 */
1003static void prepare_write_keepalive(struct ceph_connection *con)
1004{
1005 dout("prepare_write_keepalive %p\n", con);
1006 con_out_kvec_reset(con);
1007 con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
1008 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1009}
1010
1011/*
1012 * Connection negotiation.
1013 */
1014
1015static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1016 int *auth_proto)
1017{
1018 struct ceph_auth_handshake *auth;
1019
1020 if (!con->ops->get_authorizer) {
1021 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1022 con->out_connect.authorizer_len = 0;
1023 return NULL;
1024 }
1025
1026 /* Can't hold the mutex while getting authorizer */
1027 mutex_unlock(&con->mutex);
1028 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1029 mutex_lock(&con->mutex);
1030
1031 if (IS_ERR(auth))
1032 return auth;
1033 if (con->state != CON_STATE_NEGOTIATING)
1034 return ERR_PTR(-EAGAIN);
1035
1036 con->auth_reply_buf = auth->authorizer_reply_buf;
1037 con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1038 return auth;
1039}
1040
1041/*
1042 * We connected to a peer and are saying hello.
1043 */
1044static void prepare_write_banner(struct ceph_connection *con)
1045{
1046 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1047 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1048 &con->msgr->my_enc_addr);
1049
1050 con->out_more = 0;
1051 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1052}
1053
1054static int prepare_write_connect(struct ceph_connection *con)
1055{
1056 unsigned int global_seq = get_global_seq(con->msgr, 0);
1057 int proto;
1058 int auth_proto;
1059 struct ceph_auth_handshake *auth;
1060
1061 switch (con->peer_name.type) {
1062 case CEPH_ENTITY_TYPE_MON:
1063 proto = CEPH_MONC_PROTOCOL;
1064 break;
1065 case CEPH_ENTITY_TYPE_OSD:
1066 proto = CEPH_OSDC_PROTOCOL;
1067 break;
1068 case CEPH_ENTITY_TYPE_MDS:
1069 proto = CEPH_MDSC_PROTOCOL;
1070 break;
1071 default:
1072 BUG();
1073 }
1074
1075 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1076 con->connect_seq, global_seq, proto);
1077
1078 con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
1079 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1080 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1081 con->out_connect.global_seq = cpu_to_le32(global_seq);
1082 con->out_connect.protocol_version = cpu_to_le32(proto);
1083 con->out_connect.flags = 0;
1084
1085 auth_proto = CEPH_AUTH_UNKNOWN;
1086 auth = get_connect_authorizer(con, &auth_proto);
1087 if (IS_ERR(auth))
1088 return PTR_ERR(auth);
1089
1090 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1091 con->out_connect.authorizer_len = auth ?
1092 cpu_to_le32(auth->authorizer_buf_len) : 0;
1093
1094 con_out_kvec_add(con, sizeof (con->out_connect),
1095 &con->out_connect);
1096 if (auth && auth->authorizer_buf_len)
1097 con_out_kvec_add(con, auth->authorizer_buf_len,
1098 auth->authorizer_buf);
1099
1100 con->out_more = 0;
1101 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1102
1103 return 0;
1104}
1105
1106/*
1107 * write as much of pending kvecs to the socket as we can.
1108 * 1 -> done
1109 * 0 -> socket full, but more to do
1110 * <0 -> error
1111 */
1112static int write_partial_kvec(struct ceph_connection *con)
1113{
1114 int ret;
1115
1116 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1117 while (con->out_kvec_bytes > 0) {
1118 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1119 con->out_kvec_left, con->out_kvec_bytes,
1120 con->out_more);
1121 if (ret <= 0)
1122 goto out;
1123 con->out_kvec_bytes -= ret;
1124 if (con->out_kvec_bytes == 0)
1125 break; /* done */
1126
1127 /* account for full iov entries consumed */
1128 while (ret >= con->out_kvec_cur->iov_len) {
1129 BUG_ON(!con->out_kvec_left);
1130 ret -= con->out_kvec_cur->iov_len;
1131 con->out_kvec_cur++;
1132 con->out_kvec_left--;
1133 }
1134 /* and for a partially-consumed entry */
1135 if (ret) {
1136 con->out_kvec_cur->iov_len -= ret;
1137 con->out_kvec_cur->iov_base += ret;
1138 }
1139 }
1140 con->out_kvec_left = 0;
1141 con->out_kvec_is_msg = false;
1142 ret = 1;
1143out:
1144 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1145 con->out_kvec_bytes, con->out_kvec_left, ret);
1146 return ret; /* done! */
1147}
1148
1149static void out_msg_pos_next(struct ceph_connection *con, struct page *page,
1150 size_t len, size_t sent, bool in_trail)
1151{
1152 struct ceph_msg *msg = con->out_msg;
1153 struct ceph_msg_pos *msg_pos = &con->out_msg_pos;
1154
1155 BUG_ON(!msg);
1156 BUG_ON(!sent);
1157
1158 msg_pos->data_pos += sent;
1159 msg_pos->page_pos += sent;
1160 if (in_trail) {
1161 bool need_crc;
1162
1163 need_crc = ceph_msg_data_advance(&msg->t, sent);
1164 BUG_ON(need_crc && sent != len);
1165 }
1166 if (sent < len)
1167 return;
1168
1169 BUG_ON(sent != len);
1170 msg_pos->page_pos = 0;
1171 msg_pos->page++;
1172 msg_pos->did_page_crc = false;
1173 if (ceph_msg_has_pagelist(msg)) {
1174 list_rotate_left(&msg->l.pagelist->head);
1175#ifdef CONFIG_BLOCK
1176 } else if (ceph_msg_has_bio(msg)) {
1177 iter_bio_next(&msg->b.bio_iter, &msg->b.bio_seg);
1178#endif
1179 }
1180}
1181
1182static void in_msg_pos_next(struct ceph_connection *con, size_t len,
1183 size_t received)
1184{
1185 struct ceph_msg *msg = con->in_msg;
1186 struct ceph_msg_pos *msg_pos = &con->in_msg_pos;
1187
1188 BUG_ON(!msg);
1189 BUG_ON(!received);
1190
1191 msg_pos->data_pos += received;
1192 msg_pos->page_pos += received;
1193 if (received < len)
1194 return;
1195
1196 BUG_ON(received != len);
1197 msg_pos->page_pos = 0;
1198 msg_pos->page++;
1199#ifdef CONFIG_BLOCK
1200 if (msg->b.bio)
1201 iter_bio_next(&msg->b.bio_iter, &msg->b.bio_seg);
1202#endif /* CONFIG_BLOCK */
1203}
1204
1205static u32 ceph_crc32c_page(u32 crc, struct page *page,
1206 unsigned int page_offset,
1207 unsigned int length)
1208{
1209 char *kaddr;
1210
1211 kaddr = kmap(page);
1212 BUG_ON(kaddr == NULL);
1213 crc = crc32c(crc, kaddr + page_offset, length);
1214 kunmap(page);
1215
1216 return crc;
1217}
1218/*
1219 * Write as much message data payload as we can. If we finish, queue
1220 * up the footer.
1221 * 1 -> done, footer is now queued in out_kvec[].
1222 * 0 -> socket full, but more to do
1223 * <0 -> error
1224 */
1225static int write_partial_message_data(struct ceph_connection *con)
1226{
1227 struct ceph_msg *msg = con->out_msg;
1228 struct ceph_msg_pos *msg_pos = &con->out_msg_pos;
1229 unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
1230 bool do_datacrc = !con->msgr->nocrc;
1231 int ret;
1232 int total_max_write;
1233 bool in_trail = false;
1234 size_t trail_len = 0;
1235 size_t trail_off = data_len;
1236
1237 if (ceph_msg_has_trail(msg)) {
1238 trail_len = msg->t.pagelist->length;
1239 trail_off -= trail_len;
1240 }
1241
1242 dout("%s %p msg %p page %d offset %d\n", __func__,
1243 con, msg, msg_pos->page, msg_pos->page_pos);
1244
1245 /*
1246 * Iterate through each page that contains data to be
1247 * written, and send as much as possible for each.
1248 *
1249 * If we are calculating the data crc (the default), we will
1250 * need to map the page. If we have no pages, they have
1251 * been revoked, so use the zero page.
1252 */
1253 while (data_len > msg_pos->data_pos) {
1254 struct page *page = NULL;
1255 size_t page_offset;
1256 size_t length;
1257 int max_write = PAGE_SIZE;
1258 int bio_offset = 0;
1259 bool use_cursor = false;
1260 bool last_piece = true; /* preserve existing behavior */
1261
1262 in_trail = in_trail || msg_pos->data_pos >= trail_off;
1263 if (!in_trail)
1264 total_max_write = trail_off - msg_pos->data_pos;
1265
1266 if (in_trail) {
1267 BUG_ON(!ceph_msg_has_trail(msg));
1268 use_cursor = true;
1269 page = ceph_msg_data_next(&msg->t, &page_offset,
1270 &length, &last_piece);
1271 } else if (ceph_msg_has_pages(msg)) {
1272 page = msg->p.pages[msg_pos->page];
1273 } else if (ceph_msg_has_pagelist(msg)) {
1274 page = list_first_entry(&msg->l.pagelist->head,
1275 struct page, lru);
1276#ifdef CONFIG_BLOCK
1277 } else if (ceph_msg_has_bio(msg)) {
1278 struct bio_vec *bv;
1279
1280 bv = bio_iovec_idx(msg->b.bio_iter, msg->b.bio_seg);
1281 page = bv->bv_page;
1282 bio_offset = bv->bv_offset;
1283 max_write = bv->bv_len;
1284#endif
1285 } else {
1286 page = zero_page;
1287 }
1288 if (!use_cursor)
1289 length = min_t(int, max_write - msg_pos->page_pos,
1290 total_max_write);
1291
1292 page_offset = msg_pos->page_pos + bio_offset;
1293 if (do_datacrc && !msg_pos->did_page_crc) {
1294 u32 crc = le32_to_cpu(msg->footer.data_crc);
1295
1296 crc = ceph_crc32c_page(crc, page, page_offset, length);
1297 msg->footer.data_crc = cpu_to_le32(crc);
1298 msg_pos->did_page_crc = true;
1299 }
1300 ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1301 length, last_piece);
1302 if (ret <= 0)
1303 goto out;
1304
1305 out_msg_pos_next(con, page, length, (size_t) ret, in_trail);
1306 }
1307
1308 dout("%s %p msg %p done\n", __func__, con, msg);
1309
1310 /* prepare and queue up footer, too */
1311 if (!do_datacrc)
1312 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1313 con_out_kvec_reset(con);
1314 prepare_write_message_footer(con);
1315 ret = 1;
1316out:
1317 return ret;
1318}
1319
1320/*
1321 * write some zeros
1322 */
1323static int write_partial_skip(struct ceph_connection *con)
1324{
1325 int ret;
1326
1327 while (con->out_skip > 0) {
1328 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1329
1330 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1331 if (ret <= 0)
1332 goto out;
1333 con->out_skip -= ret;
1334 }
1335 ret = 1;
1336out:
1337 return ret;
1338}
1339
1340/*
1341 * Prepare to read connection handshake, or an ack.
1342 */
1343static void prepare_read_banner(struct ceph_connection *con)
1344{
1345 dout("prepare_read_banner %p\n", con);
1346 con->in_base_pos = 0;
1347}
1348
1349static void prepare_read_connect(struct ceph_connection *con)
1350{
1351 dout("prepare_read_connect %p\n", con);
1352 con->in_base_pos = 0;
1353}
1354
1355static void prepare_read_ack(struct ceph_connection *con)
1356{
1357 dout("prepare_read_ack %p\n", con);
1358 con->in_base_pos = 0;
1359}
1360
1361static void prepare_read_tag(struct ceph_connection *con)
1362{
1363 dout("prepare_read_tag %p\n", con);
1364 con->in_base_pos = 0;
1365 con->in_tag = CEPH_MSGR_TAG_READY;
1366}
1367
1368/*
1369 * Prepare to read a message.
1370 */
1371static int prepare_read_message(struct ceph_connection *con)
1372{
1373 dout("prepare_read_message %p\n", con);
1374 BUG_ON(con->in_msg != NULL);
1375 con->in_base_pos = 0;
1376 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1377 return 0;
1378}
1379
1380
1381static int read_partial(struct ceph_connection *con,
1382 int end, int size, void *object)
1383{
1384 while (con->in_base_pos < end) {
1385 int left = end - con->in_base_pos;
1386 int have = size - left;
1387 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1388 if (ret <= 0)
1389 return ret;
1390 con->in_base_pos += ret;
1391 }
1392 return 1;
1393}
1394
1395
1396/*
1397 * Read all or part of the connect-side handshake on a new connection
1398 */
1399static int read_partial_banner(struct ceph_connection *con)
1400{
1401 int size;
1402 int end;
1403 int ret;
1404
1405 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1406
1407 /* peer's banner */
1408 size = strlen(CEPH_BANNER);
1409 end = size;
1410 ret = read_partial(con, end, size, con->in_banner);
1411 if (ret <= 0)
1412 goto out;
1413
1414 size = sizeof (con->actual_peer_addr);
1415 end += size;
1416 ret = read_partial(con, end, size, &con->actual_peer_addr);
1417 if (ret <= 0)
1418 goto out;
1419
1420 size = sizeof (con->peer_addr_for_me);
1421 end += size;
1422 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1423 if (ret <= 0)
1424 goto out;
1425
1426out:
1427 return ret;
1428}
1429
1430static int read_partial_connect(struct ceph_connection *con)
1431{
1432 int size;
1433 int end;
1434 int ret;
1435
1436 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1437
1438 size = sizeof (con->in_reply);
1439 end = size;
1440 ret = read_partial(con, end, size, &con->in_reply);
1441 if (ret <= 0)
1442 goto out;
1443
1444 size = le32_to_cpu(con->in_reply.authorizer_len);
1445 end += size;
1446 ret = read_partial(con, end, size, con->auth_reply_buf);
1447 if (ret <= 0)
1448 goto out;
1449
1450 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1451 con, (int)con->in_reply.tag,
1452 le32_to_cpu(con->in_reply.connect_seq),
1453 le32_to_cpu(con->in_reply.global_seq));
1454out:
1455 return ret;
1456
1457}
1458
1459/*
1460 * Verify the hello banner looks okay.
1461 */
1462static int verify_hello(struct ceph_connection *con)
1463{
1464 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1465 pr_err("connect to %s got bad banner\n",
1466 ceph_pr_addr(&con->peer_addr.in_addr));
1467 con->error_msg = "protocol error, bad banner";
1468 return -1;
1469 }
1470 return 0;
1471}
1472
1473static bool addr_is_blank(struct sockaddr_storage *ss)
1474{
1475 switch (ss->ss_family) {
1476 case AF_INET:
1477 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1478 case AF_INET6:
1479 return
1480 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1481 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1482 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1483 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1484 }
1485 return false;
1486}
1487
1488static int addr_port(struct sockaddr_storage *ss)
1489{
1490 switch (ss->ss_family) {
1491 case AF_INET:
1492 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1493 case AF_INET6:
1494 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1495 }
1496 return 0;
1497}
1498
1499static void addr_set_port(struct sockaddr_storage *ss, int p)
1500{
1501 switch (ss->ss_family) {
1502 case AF_INET:
1503 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1504 break;
1505 case AF_INET6:
1506 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1507 break;
1508 }
1509}
1510
1511/*
1512 * Unlike other *_pton function semantics, zero indicates success.
1513 */
1514static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1515 char delim, const char **ipend)
1516{
1517 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1518 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1519
1520 memset(ss, 0, sizeof(*ss));
1521
1522 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1523 ss->ss_family = AF_INET;
1524 return 0;
1525 }
1526
1527 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1528 ss->ss_family = AF_INET6;
1529 return 0;
1530 }
1531
1532 return -EINVAL;
1533}
1534
1535/*
1536 * Extract hostname string and resolve using kernel DNS facility.
1537 */
1538#ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1539static int ceph_dns_resolve_name(const char *name, size_t namelen,
1540 struct sockaddr_storage *ss, char delim, const char **ipend)
1541{
1542 const char *end, *delim_p;
1543 char *colon_p, *ip_addr = NULL;
1544 int ip_len, ret;
1545
1546 /*
1547 * The end of the hostname occurs immediately preceding the delimiter or
1548 * the port marker (':') where the delimiter takes precedence.
1549 */
1550 delim_p = memchr(name, delim, namelen);
1551 colon_p = memchr(name, ':', namelen);
1552
1553 if (delim_p && colon_p)
1554 end = delim_p < colon_p ? delim_p : colon_p;
1555 else if (!delim_p && colon_p)
1556 end = colon_p;
1557 else {
1558 end = delim_p;
1559 if (!end) /* case: hostname:/ */
1560 end = name + namelen;
1561 }
1562
1563 if (end <= name)
1564 return -EINVAL;
1565
1566 /* do dns_resolve upcall */
1567 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1568 if (ip_len > 0)
1569 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1570 else
1571 ret = -ESRCH;
1572
1573 kfree(ip_addr);
1574
1575 *ipend = end;
1576
1577 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1578 ret, ret ? "failed" : ceph_pr_addr(ss));
1579
1580 return ret;
1581}
1582#else
1583static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1584 struct sockaddr_storage *ss, char delim, const char **ipend)
1585{
1586 return -EINVAL;
1587}
1588#endif
1589
1590/*
1591 * Parse a server name (IP or hostname). If a valid IP address is not found
1592 * then try to extract a hostname to resolve using userspace DNS upcall.
1593 */
1594static int ceph_parse_server_name(const char *name, size_t namelen,
1595 struct sockaddr_storage *ss, char delim, const char **ipend)
1596{
1597 int ret;
1598
1599 ret = ceph_pton(name, namelen, ss, delim, ipend);
1600 if (ret)
1601 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1602
1603 return ret;
1604}
1605
1606/*
1607 * Parse an ip[:port] list into an addr array. Use the default
1608 * monitor port if a port isn't specified.
1609 */
1610int ceph_parse_ips(const char *c, const char *end,
1611 struct ceph_entity_addr *addr,
1612 int max_count, int *count)
1613{
1614 int i, ret = -EINVAL;
1615 const char *p = c;
1616
1617 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1618 for (i = 0; i < max_count; i++) {
1619 const char *ipend;
1620 struct sockaddr_storage *ss = &addr[i].in_addr;
1621 int port;
1622 char delim = ',';
1623
1624 if (*p == '[') {
1625 delim = ']';
1626 p++;
1627 }
1628
1629 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1630 if (ret)
1631 goto bad;
1632 ret = -EINVAL;
1633
1634 p = ipend;
1635
1636 if (delim == ']') {
1637 if (*p != ']') {
1638 dout("missing matching ']'\n");
1639 goto bad;
1640 }
1641 p++;
1642 }
1643
1644 /* port? */
1645 if (p < end && *p == ':') {
1646 port = 0;
1647 p++;
1648 while (p < end && *p >= '0' && *p <= '9') {
1649 port = (port * 10) + (*p - '0');
1650 p++;
1651 }
1652 if (port > 65535 || port == 0)
1653 goto bad;
1654 } else {
1655 port = CEPH_MON_PORT;
1656 }
1657
1658 addr_set_port(ss, port);
1659
1660 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1661
1662 if (p == end)
1663 break;
1664 if (*p != ',')
1665 goto bad;
1666 p++;
1667 }
1668
1669 if (p != end)
1670 goto bad;
1671
1672 if (count)
1673 *count = i + 1;
1674 return 0;
1675
1676bad:
1677 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1678 return ret;
1679}
1680EXPORT_SYMBOL(ceph_parse_ips);
1681
1682static int process_banner(struct ceph_connection *con)
1683{
1684 dout("process_banner on %p\n", con);
1685
1686 if (verify_hello(con) < 0)
1687 return -1;
1688
1689 ceph_decode_addr(&con->actual_peer_addr);
1690 ceph_decode_addr(&con->peer_addr_for_me);
1691
1692 /*
1693 * Make sure the other end is who we wanted. note that the other
1694 * end may not yet know their ip address, so if it's 0.0.0.0, give
1695 * them the benefit of the doubt.
1696 */
1697 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1698 sizeof(con->peer_addr)) != 0 &&
1699 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1700 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1701 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1702 ceph_pr_addr(&con->peer_addr.in_addr),
1703 (int)le32_to_cpu(con->peer_addr.nonce),
1704 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1705 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1706 con->error_msg = "wrong peer at address";
1707 return -1;
1708 }
1709
1710 /*
1711 * did we learn our address?
1712 */
1713 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1714 int port = addr_port(&con->msgr->inst.addr.in_addr);
1715
1716 memcpy(&con->msgr->inst.addr.in_addr,
1717 &con->peer_addr_for_me.in_addr,
1718 sizeof(con->peer_addr_for_me.in_addr));
1719 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1720 encode_my_addr(con->msgr);
1721 dout("process_banner learned my addr is %s\n",
1722 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1723 }
1724
1725 return 0;
1726}
1727
1728static int process_connect(struct ceph_connection *con)
1729{
1730 u64 sup_feat = con->msgr->supported_features;
1731 u64 req_feat = con->msgr->required_features;
1732 u64 server_feat = le64_to_cpu(con->in_reply.features);
1733 int ret;
1734
1735 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1736
1737 switch (con->in_reply.tag) {
1738 case CEPH_MSGR_TAG_FEATURES:
1739 pr_err("%s%lld %s feature set mismatch,"
1740 " my %llx < server's %llx, missing %llx\n",
1741 ENTITY_NAME(con->peer_name),
1742 ceph_pr_addr(&con->peer_addr.in_addr),
1743 sup_feat, server_feat, server_feat & ~sup_feat);
1744 con->error_msg = "missing required protocol features";
1745 reset_connection(con);
1746 return -1;
1747
1748 case CEPH_MSGR_TAG_BADPROTOVER:
1749 pr_err("%s%lld %s protocol version mismatch,"
1750 " my %d != server's %d\n",
1751 ENTITY_NAME(con->peer_name),
1752 ceph_pr_addr(&con->peer_addr.in_addr),
1753 le32_to_cpu(con->out_connect.protocol_version),
1754 le32_to_cpu(con->in_reply.protocol_version));
1755 con->error_msg = "protocol version mismatch";
1756 reset_connection(con);
1757 return -1;
1758
1759 case CEPH_MSGR_TAG_BADAUTHORIZER:
1760 con->auth_retry++;
1761 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1762 con->auth_retry);
1763 if (con->auth_retry == 2) {
1764 con->error_msg = "connect authorization failure";
1765 return -1;
1766 }
1767 con->auth_retry = 1;
1768 con_out_kvec_reset(con);
1769 ret = prepare_write_connect(con);
1770 if (ret < 0)
1771 return ret;
1772 prepare_read_connect(con);
1773 break;
1774
1775 case CEPH_MSGR_TAG_RESETSESSION:
1776 /*
1777 * If we connected with a large connect_seq but the peer
1778 * has no record of a session with us (no connection, or
1779 * connect_seq == 0), they will send RESETSESION to indicate
1780 * that they must have reset their session, and may have
1781 * dropped messages.
1782 */
1783 dout("process_connect got RESET peer seq %u\n",
1784 le32_to_cpu(con->in_reply.connect_seq));
1785 pr_err("%s%lld %s connection reset\n",
1786 ENTITY_NAME(con->peer_name),
1787 ceph_pr_addr(&con->peer_addr.in_addr));
1788 reset_connection(con);
1789 con_out_kvec_reset(con);
1790 ret = prepare_write_connect(con);
1791 if (ret < 0)
1792 return ret;
1793 prepare_read_connect(con);
1794
1795 /* Tell ceph about it. */
1796 mutex_unlock(&con->mutex);
1797 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1798 if (con->ops->peer_reset)
1799 con->ops->peer_reset(con);
1800 mutex_lock(&con->mutex);
1801 if (con->state != CON_STATE_NEGOTIATING)
1802 return -EAGAIN;
1803 break;
1804
1805 case CEPH_MSGR_TAG_RETRY_SESSION:
1806 /*
1807 * If we sent a smaller connect_seq than the peer has, try
1808 * again with a larger value.
1809 */
1810 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
1811 le32_to_cpu(con->out_connect.connect_seq),
1812 le32_to_cpu(con->in_reply.connect_seq));
1813 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
1814 con_out_kvec_reset(con);
1815 ret = prepare_write_connect(con);
1816 if (ret < 0)
1817 return ret;
1818 prepare_read_connect(con);
1819 break;
1820
1821 case CEPH_MSGR_TAG_RETRY_GLOBAL:
1822 /*
1823 * If we sent a smaller global_seq than the peer has, try
1824 * again with a larger value.
1825 */
1826 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1827 con->peer_global_seq,
1828 le32_to_cpu(con->in_reply.global_seq));
1829 get_global_seq(con->msgr,
1830 le32_to_cpu(con->in_reply.global_seq));
1831 con_out_kvec_reset(con);
1832 ret = prepare_write_connect(con);
1833 if (ret < 0)
1834 return ret;
1835 prepare_read_connect(con);
1836 break;
1837
1838 case CEPH_MSGR_TAG_READY:
1839 if (req_feat & ~server_feat) {
1840 pr_err("%s%lld %s protocol feature mismatch,"
1841 " my required %llx > server's %llx, need %llx\n",
1842 ENTITY_NAME(con->peer_name),
1843 ceph_pr_addr(&con->peer_addr.in_addr),
1844 req_feat, server_feat, req_feat & ~server_feat);
1845 con->error_msg = "missing required protocol features";
1846 reset_connection(con);
1847 return -1;
1848 }
1849
1850 WARN_ON(con->state != CON_STATE_NEGOTIATING);
1851 con->state = CON_STATE_OPEN;
1852
1853 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1854 con->connect_seq++;
1855 con->peer_features = server_feat;
1856 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1857 con->peer_global_seq,
1858 le32_to_cpu(con->in_reply.connect_seq),
1859 con->connect_seq);
1860 WARN_ON(con->connect_seq !=
1861 le32_to_cpu(con->in_reply.connect_seq));
1862
1863 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1864 con_flag_set(con, CON_FLAG_LOSSYTX);
1865
1866 con->delay = 0; /* reset backoff memory */
1867
1868 prepare_read_tag(con);
1869 break;
1870
1871 case CEPH_MSGR_TAG_WAIT:
1872 /*
1873 * If there is a connection race (we are opening
1874 * connections to each other), one of us may just have
1875 * to WAIT. This shouldn't happen if we are the
1876 * client.
1877 */
1878 pr_err("process_connect got WAIT as client\n");
1879 con->error_msg = "protocol error, got WAIT as client";
1880 return -1;
1881
1882 default:
1883 pr_err("connect protocol error, will retry\n");
1884 con->error_msg = "protocol error, garbage tag during connect";
1885 return -1;
1886 }
1887 return 0;
1888}
1889
1890
1891/*
1892 * read (part of) an ack
1893 */
1894static int read_partial_ack(struct ceph_connection *con)
1895{
1896 int size = sizeof (con->in_temp_ack);
1897 int end = size;
1898
1899 return read_partial(con, end, size, &con->in_temp_ack);
1900}
1901
1902
1903/*
1904 * We can finally discard anything that's been acked.
1905 */
1906static void process_ack(struct ceph_connection *con)
1907{
1908 struct ceph_msg *m;
1909 u64 ack = le64_to_cpu(con->in_temp_ack);
1910 u64 seq;
1911
1912 while (!list_empty(&con->out_sent)) {
1913 m = list_first_entry(&con->out_sent, struct ceph_msg,
1914 list_head);
1915 seq = le64_to_cpu(m->hdr.seq);
1916 if (seq > ack)
1917 break;
1918 dout("got ack for seq %llu type %d at %p\n", seq,
1919 le16_to_cpu(m->hdr.type), m);
1920 m->ack_stamp = jiffies;
1921 ceph_msg_remove(m);
1922 }
1923 prepare_read_tag(con);
1924}
1925
1926
1927
1928
1929static int read_partial_message_section(struct ceph_connection *con,
1930 struct kvec *section,
1931 unsigned int sec_len, u32 *crc)
1932{
1933 int ret, left;
1934
1935 BUG_ON(!section);
1936
1937 while (section->iov_len < sec_len) {
1938 BUG_ON(section->iov_base == NULL);
1939 left = sec_len - section->iov_len;
1940 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1941 section->iov_len, left);
1942 if (ret <= 0)
1943 return ret;
1944 section->iov_len += ret;
1945 }
1946 if (section->iov_len == sec_len)
1947 *crc = crc32c(0, section->iov_base, section->iov_len);
1948
1949 return 1;
1950}
1951
1952static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
1953
1954static int read_partial_message_pages(struct ceph_connection *con,
1955 struct page **pages,
1956 unsigned int data_len, bool do_datacrc)
1957{
1958 struct ceph_msg_pos *msg_pos = &con->in_msg_pos;
1959 struct page *page;
1960 size_t page_offset;
1961 size_t length;
1962 unsigned int left;
1963 int ret;
1964
1965 /* (page) data */
1966 BUG_ON(pages == NULL);
1967 page = pages[msg_pos->page];
1968 page_offset = msg_pos->page_pos;
1969 BUG_ON(msg_pos->data_pos >= data_len);
1970 left = data_len - msg_pos->data_pos;
1971 BUG_ON(page_offset >= PAGE_SIZE);
1972 length = min_t(unsigned int, PAGE_SIZE - page_offset, left);
1973
1974 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
1975 if (ret <= 0)
1976 return ret;
1977
1978 if (do_datacrc)
1979 con->in_data_crc = ceph_crc32c_page(con->in_data_crc, page,
1980 page_offset, ret);
1981
1982 in_msg_pos_next(con, length, ret);
1983
1984 return ret;
1985}
1986
1987#ifdef CONFIG_BLOCK
1988static int read_partial_message_bio(struct ceph_connection *con,
1989 unsigned int data_len, bool do_datacrc)
1990{
1991 struct ceph_msg *msg = con->in_msg;
1992 struct ceph_msg_pos *msg_pos = &con->in_msg_pos;
1993 struct bio_vec *bv;
1994 struct page *page;
1995 size_t page_offset;
1996 size_t length;
1997 unsigned int left;
1998 int ret;
1999
2000 BUG_ON(!msg);
2001 BUG_ON(!msg->b.bio_iter);
2002 bv = bio_iovec_idx(msg->b.bio_iter, msg->b.bio_seg);
2003 page = bv->bv_page;
2004 page_offset = bv->bv_offset + msg_pos->page_pos;
2005 BUG_ON(msg_pos->data_pos >= data_len);
2006 left = data_len - msg_pos->data_pos;
2007 BUG_ON(msg_pos->page_pos >= bv->bv_len);
2008 length = min_t(unsigned int, bv->bv_len - msg_pos->page_pos, left);
2009
2010 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2011 if (ret <= 0)
2012 return ret;
2013
2014 if (do_datacrc)
2015 con->in_data_crc = ceph_crc32c_page(con->in_data_crc, page,
2016 page_offset, ret);
2017
2018 in_msg_pos_next(con, length, ret);
2019
2020 return ret;
2021}
2022#endif
2023
2024static int read_partial_msg_data(struct ceph_connection *con)
2025{
2026 struct ceph_msg *msg = con->in_msg;
2027 struct ceph_msg_pos *msg_pos = &con->in_msg_pos;
2028 const bool do_datacrc = !con->msgr->nocrc;
2029 unsigned int data_len;
2030 int ret;
2031
2032 BUG_ON(!msg);
2033
2034 data_len = le32_to_cpu(con->in_hdr.data_len);
2035 while (msg_pos->data_pos < data_len) {
2036 if (ceph_msg_has_pages(msg)) {
2037 ret = read_partial_message_pages(con, msg->p.pages,
2038 data_len, do_datacrc);
2039 if (ret <= 0)
2040 return ret;
2041#ifdef CONFIG_BLOCK
2042 } else if (ceph_msg_has_bio(msg)) {
2043 ret = read_partial_message_bio(con,
2044 data_len, do_datacrc);
2045 if (ret <= 0)
2046 return ret;
2047#endif
2048 } else {
2049 BUG_ON(1);
2050 }
2051 }
2052
2053 return 1; /* must return > 0 to indicate success */
2054}
2055
2056/*
2057 * read (part of) a message.
2058 */
2059static int read_partial_message(struct ceph_connection *con)
2060{
2061 struct ceph_msg *m = con->in_msg;
2062 int size;
2063 int end;
2064 int ret;
2065 unsigned int front_len, middle_len, data_len;
2066 bool do_datacrc = !con->msgr->nocrc;
2067 u64 seq;
2068 u32 crc;
2069
2070 dout("read_partial_message con %p msg %p\n", con, m);
2071
2072 /* header */
2073 size = sizeof (con->in_hdr);
2074 end = size;
2075 ret = read_partial(con, end, size, &con->in_hdr);
2076 if (ret <= 0)
2077 return ret;
2078
2079 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2080 if (cpu_to_le32(crc) != con->in_hdr.crc) {
2081 pr_err("read_partial_message bad hdr "
2082 " crc %u != expected %u\n",
2083 crc, con->in_hdr.crc);
2084 return -EBADMSG;
2085 }
2086
2087 front_len = le32_to_cpu(con->in_hdr.front_len);
2088 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2089 return -EIO;
2090 middle_len = le32_to_cpu(con->in_hdr.middle_len);
2091 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2092 return -EIO;
2093 data_len = le32_to_cpu(con->in_hdr.data_len);
2094 if (data_len > CEPH_MSG_MAX_DATA_LEN)
2095 return -EIO;
2096
2097 /* verify seq# */
2098 seq = le64_to_cpu(con->in_hdr.seq);
2099 if ((s64)seq - (s64)con->in_seq < 1) {
2100 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2101 ENTITY_NAME(con->peer_name),
2102 ceph_pr_addr(&con->peer_addr.in_addr),
2103 seq, con->in_seq + 1);
2104 con->in_base_pos = -front_len - middle_len - data_len -
2105 sizeof(m->footer);
2106 con->in_tag = CEPH_MSGR_TAG_READY;
2107 return 0;
2108 } else if ((s64)seq - (s64)con->in_seq > 1) {
2109 pr_err("read_partial_message bad seq %lld expected %lld\n",
2110 seq, con->in_seq + 1);
2111 con->error_msg = "bad message sequence # for incoming message";
2112 return -EBADMSG;
2113 }
2114
2115 /* allocate message? */
2116 if (!con->in_msg) {
2117 int skip = 0;
2118
2119 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2120 front_len, data_len);
2121 ret = ceph_con_in_msg_alloc(con, &skip);
2122 if (ret < 0)
2123 return ret;
2124 if (skip) {
2125 /* skip this message */
2126 dout("alloc_msg said skip message\n");
2127 BUG_ON(con->in_msg);
2128 con->in_base_pos = -front_len - middle_len - data_len -
2129 sizeof(m->footer);
2130 con->in_tag = CEPH_MSGR_TAG_READY;
2131 con->in_seq++;
2132 return 0;
2133 }
2134
2135 BUG_ON(!con->in_msg);
2136 BUG_ON(con->in_msg->con != con);
2137 m = con->in_msg;
2138 m->front.iov_len = 0; /* haven't read it yet */
2139 if (m->middle)
2140 m->middle->vec.iov_len = 0;
2141
2142 /* prepare for data payload, if any */
2143
2144 if (data_len)
2145 prepare_message_data(con->in_msg, &con->in_msg_pos);
2146 }
2147
2148 /* front */
2149 ret = read_partial_message_section(con, &m->front, front_len,
2150 &con->in_front_crc);
2151 if (ret <= 0)
2152 return ret;
2153
2154 /* middle */
2155 if (m->middle) {
2156 ret = read_partial_message_section(con, &m->middle->vec,
2157 middle_len,
2158 &con->in_middle_crc);
2159 if (ret <= 0)
2160 return ret;
2161 }
2162
2163 /* (page) data */
2164 if (data_len) {
2165 ret = read_partial_msg_data(con);
2166 if (ret <= 0)
2167 return ret;
2168 }
2169
2170 /* footer */
2171 size = sizeof (m->footer);
2172 end += size;
2173 ret = read_partial(con, end, size, &m->footer);
2174 if (ret <= 0)
2175 return ret;
2176
2177 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2178 m, front_len, m->footer.front_crc, middle_len,
2179 m->footer.middle_crc, data_len, m->footer.data_crc);
2180
2181 /* crc ok? */
2182 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2183 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2184 m, con->in_front_crc, m->footer.front_crc);
2185 return -EBADMSG;
2186 }
2187 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2188 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2189 m, con->in_middle_crc, m->footer.middle_crc);
2190 return -EBADMSG;
2191 }
2192 if (do_datacrc &&
2193 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2194 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2195 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2196 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2197 return -EBADMSG;
2198 }
2199
2200 return 1; /* done! */
2201}
2202
2203/*
2204 * Process message. This happens in the worker thread. The callback should
2205 * be careful not to do anything that waits on other incoming messages or it
2206 * may deadlock.
2207 */
2208static void process_message(struct ceph_connection *con)
2209{
2210 struct ceph_msg *msg;
2211
2212 BUG_ON(con->in_msg->con != con);
2213 con->in_msg->con = NULL;
2214 msg = con->in_msg;
2215 con->in_msg = NULL;
2216 con->ops->put(con);
2217
2218 /* if first message, set peer_name */
2219 if (con->peer_name.type == 0)
2220 con->peer_name = msg->hdr.src;
2221
2222 con->in_seq++;
2223 mutex_unlock(&con->mutex);
2224
2225 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2226 msg, le64_to_cpu(msg->hdr.seq),
2227 ENTITY_NAME(msg->hdr.src),
2228 le16_to_cpu(msg->hdr.type),
2229 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2230 le32_to_cpu(msg->hdr.front_len),
2231 le32_to_cpu(msg->hdr.data_len),
2232 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2233 con->ops->dispatch(con, msg);
2234
2235 mutex_lock(&con->mutex);
2236}
2237
2238
2239/*
2240 * Write something to the socket. Called in a worker thread when the
2241 * socket appears to be writeable and we have something ready to send.
2242 */
2243static int try_write(struct ceph_connection *con)
2244{
2245 int ret = 1;
2246
2247 dout("try_write start %p state %lu\n", con, con->state);
2248
2249more:
2250 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2251
2252 /* open the socket first? */
2253 if (con->state == CON_STATE_PREOPEN) {
2254 BUG_ON(con->sock);
2255 con->state = CON_STATE_CONNECTING;
2256
2257 con_out_kvec_reset(con);
2258 prepare_write_banner(con);
2259 prepare_read_banner(con);
2260
2261 BUG_ON(con->in_msg);
2262 con->in_tag = CEPH_MSGR_TAG_READY;
2263 dout("try_write initiating connect on %p new state %lu\n",
2264 con, con->state);
2265 ret = ceph_tcp_connect(con);
2266 if (ret < 0) {
2267 con->error_msg = "connect error";
2268 goto out;
2269 }
2270 }
2271
2272more_kvec:
2273 /* kvec data queued? */
2274 if (con->out_skip) {
2275 ret = write_partial_skip(con);
2276 if (ret <= 0)
2277 goto out;
2278 }
2279 if (con->out_kvec_left) {
2280 ret = write_partial_kvec(con);
2281 if (ret <= 0)
2282 goto out;
2283 }
2284
2285 /* msg pages? */
2286 if (con->out_msg) {
2287 if (con->out_msg_done) {
2288 ceph_msg_put(con->out_msg);
2289 con->out_msg = NULL; /* we're done with this one */
2290 goto do_next;
2291 }
2292
2293 ret = write_partial_message_data(con);
2294 if (ret == 1)
2295 goto more_kvec; /* we need to send the footer, too! */
2296 if (ret == 0)
2297 goto out;
2298 if (ret < 0) {
2299 dout("try_write write_partial_message_data err %d\n",
2300 ret);
2301 goto out;
2302 }
2303 }
2304
2305do_next:
2306 if (con->state == CON_STATE_OPEN) {
2307 /* is anything else pending? */
2308 if (!list_empty(&con->out_queue)) {
2309 prepare_write_message(con);
2310 goto more;
2311 }
2312 if (con->in_seq > con->in_seq_acked) {
2313 prepare_write_ack(con);
2314 goto more;
2315 }
2316 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2317 prepare_write_keepalive(con);
2318 goto more;
2319 }
2320 }
2321
2322 /* Nothing to do! */
2323 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2324 dout("try_write nothing else to write.\n");
2325 ret = 0;
2326out:
2327 dout("try_write done on %p ret %d\n", con, ret);
2328 return ret;
2329}
2330
2331
2332
2333/*
2334 * Read what we can from the socket.
2335 */
2336static int try_read(struct ceph_connection *con)
2337{
2338 int ret = -1;
2339
2340more:
2341 dout("try_read start on %p state %lu\n", con, con->state);
2342 if (con->state != CON_STATE_CONNECTING &&
2343 con->state != CON_STATE_NEGOTIATING &&
2344 con->state != CON_STATE_OPEN)
2345 return 0;
2346
2347 BUG_ON(!con->sock);
2348
2349 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2350 con->in_base_pos);
2351
2352 if (con->state == CON_STATE_CONNECTING) {
2353 dout("try_read connecting\n");
2354 ret = read_partial_banner(con);
2355 if (ret <= 0)
2356 goto out;
2357 ret = process_banner(con);
2358 if (ret < 0)
2359 goto out;
2360
2361 con->state = CON_STATE_NEGOTIATING;
2362
2363 /*
2364 * Received banner is good, exchange connection info.
2365 * Do not reset out_kvec, as sending our banner raced
2366 * with receiving peer banner after connect completed.
2367 */
2368 ret = prepare_write_connect(con);
2369 if (ret < 0)
2370 goto out;
2371 prepare_read_connect(con);
2372
2373 /* Send connection info before awaiting response */
2374 goto out;
2375 }
2376
2377 if (con->state == CON_STATE_NEGOTIATING) {
2378 dout("try_read negotiating\n");
2379 ret = read_partial_connect(con);
2380 if (ret <= 0)
2381 goto out;
2382 ret = process_connect(con);
2383 if (ret < 0)
2384 goto out;
2385 goto more;
2386 }
2387
2388 WARN_ON(con->state != CON_STATE_OPEN);
2389
2390 if (con->in_base_pos < 0) {
2391 /*
2392 * skipping + discarding content.
2393 *
2394 * FIXME: there must be a better way to do this!
2395 */
2396 static char buf[SKIP_BUF_SIZE];
2397 int skip = min((int) sizeof (buf), -con->in_base_pos);
2398
2399 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2400 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2401 if (ret <= 0)
2402 goto out;
2403 con->in_base_pos += ret;
2404 if (con->in_base_pos)
2405 goto more;
2406 }
2407 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2408 /*
2409 * what's next?
2410 */
2411 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2412 if (ret <= 0)
2413 goto out;
2414 dout("try_read got tag %d\n", (int)con->in_tag);
2415 switch (con->in_tag) {
2416 case CEPH_MSGR_TAG_MSG:
2417 prepare_read_message(con);
2418 break;
2419 case CEPH_MSGR_TAG_ACK:
2420 prepare_read_ack(con);
2421 break;
2422 case CEPH_MSGR_TAG_CLOSE:
2423 con_close_socket(con);
2424 con->state = CON_STATE_CLOSED;
2425 goto out;
2426 default:
2427 goto bad_tag;
2428 }
2429 }
2430 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2431 ret = read_partial_message(con);
2432 if (ret <= 0) {
2433 switch (ret) {
2434 case -EBADMSG:
2435 con->error_msg = "bad crc";
2436 ret = -EIO;
2437 break;
2438 case -EIO:
2439 con->error_msg = "io error";
2440 break;
2441 }
2442 goto out;
2443 }
2444 if (con->in_tag == CEPH_MSGR_TAG_READY)
2445 goto more;
2446 process_message(con);
2447 if (con->state == CON_STATE_OPEN)
2448 prepare_read_tag(con);
2449 goto more;
2450 }
2451 if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2452 ret = read_partial_ack(con);
2453 if (ret <= 0)
2454 goto out;
2455 process_ack(con);
2456 goto more;
2457 }
2458
2459out:
2460 dout("try_read done on %p ret %d\n", con, ret);
2461 return ret;
2462
2463bad_tag:
2464 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2465 con->error_msg = "protocol error, garbage tag";
2466 ret = -1;
2467 goto out;
2468}
2469
2470
2471/*
2472 * Atomically queue work on a connection after the specified delay.
2473 * Bump @con reference to avoid races with connection teardown.
2474 * Returns 0 if work was queued, or an error code otherwise.
2475 */
2476static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2477{
2478 if (!con->ops->get(con)) {
2479 dout("%s %p ref count 0\n", __func__, con);
2480
2481 return -ENOENT;
2482 }
2483
2484 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2485 dout("%s %p - already queued\n", __func__, con);
2486 con->ops->put(con);
2487
2488 return -EBUSY;
2489 }
2490
2491 dout("%s %p %lu\n", __func__, con, delay);
2492
2493 return 0;
2494}
2495
2496static void queue_con(struct ceph_connection *con)
2497{
2498 (void) queue_con_delay(con, 0);
2499}
2500
2501static bool con_sock_closed(struct ceph_connection *con)
2502{
2503 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2504 return false;
2505
2506#define CASE(x) \
2507 case CON_STATE_ ## x: \
2508 con->error_msg = "socket closed (con state " #x ")"; \
2509 break;
2510
2511 switch (con->state) {
2512 CASE(CLOSED);
2513 CASE(PREOPEN);
2514 CASE(CONNECTING);
2515 CASE(NEGOTIATING);
2516 CASE(OPEN);
2517 CASE(STANDBY);
2518 default:
2519 pr_warning("%s con %p unrecognized state %lu\n",
2520 __func__, con, con->state);
2521 con->error_msg = "unrecognized con state";
2522 BUG();
2523 break;
2524 }
2525#undef CASE
2526
2527 return true;
2528}
2529
2530static bool con_backoff(struct ceph_connection *con)
2531{
2532 int ret;
2533
2534 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2535 return false;
2536
2537 ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2538 if (ret) {
2539 dout("%s: con %p FAILED to back off %lu\n", __func__,
2540 con, con->delay);
2541 BUG_ON(ret == -ENOENT);
2542 con_flag_set(con, CON_FLAG_BACKOFF);
2543 }
2544
2545 return true;
2546}
2547
2548/* Finish fault handling; con->mutex must *not* be held here */
2549
2550static void con_fault_finish(struct ceph_connection *con)
2551{
2552 /*
2553 * in case we faulted due to authentication, invalidate our
2554 * current tickets so that we can get new ones.
2555 */
2556 if (con->auth_retry && con->ops->invalidate_authorizer) {
2557 dout("calling invalidate_authorizer()\n");
2558 con->ops->invalidate_authorizer(con);
2559 }
2560
2561 if (con->ops->fault)
2562 con->ops->fault(con);
2563}
2564
2565/*
2566 * Do some work on a connection. Drop a connection ref when we're done.
2567 */
2568static void con_work(struct work_struct *work)
2569{
2570 struct ceph_connection *con = container_of(work, struct ceph_connection,
2571 work.work);
2572 bool fault;
2573
2574 mutex_lock(&con->mutex);
2575 while (true) {
2576 int ret;
2577
2578 if ((fault = con_sock_closed(con))) {
2579 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2580 break;
2581 }
2582 if (con_backoff(con)) {
2583 dout("%s: con %p BACKOFF\n", __func__, con);
2584 break;
2585 }
2586 if (con->state == CON_STATE_STANDBY) {
2587 dout("%s: con %p STANDBY\n", __func__, con);
2588 break;
2589 }
2590 if (con->state == CON_STATE_CLOSED) {
2591 dout("%s: con %p CLOSED\n", __func__, con);
2592 BUG_ON(con->sock);
2593 break;
2594 }
2595 if (con->state == CON_STATE_PREOPEN) {
2596 dout("%s: con %p PREOPEN\n", __func__, con);
2597 BUG_ON(con->sock);
2598 }
2599
2600 ret = try_read(con);
2601 if (ret < 0) {
2602 if (ret == -EAGAIN)
2603 continue;
2604 con->error_msg = "socket error on read";
2605 fault = true;
2606 break;
2607 }
2608
2609 ret = try_write(con);
2610 if (ret < 0) {
2611 if (ret == -EAGAIN)
2612 continue;
2613 con->error_msg = "socket error on write";
2614 fault = true;
2615 }
2616
2617 break; /* If we make it to here, we're done */
2618 }
2619 if (fault)
2620 con_fault(con);
2621 mutex_unlock(&con->mutex);
2622
2623 if (fault)
2624 con_fault_finish(con);
2625
2626 con->ops->put(con);
2627}
2628
2629/*
2630 * Generic error/fault handler. A retry mechanism is used with
2631 * exponential backoff
2632 */
2633static void con_fault(struct ceph_connection *con)
2634{
2635 pr_warning("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2636 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2637 dout("fault %p state %lu to peer %s\n",
2638 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2639
2640 WARN_ON(con->state != CON_STATE_CONNECTING &&
2641 con->state != CON_STATE_NEGOTIATING &&
2642 con->state != CON_STATE_OPEN);
2643
2644 con_close_socket(con);
2645
2646 if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2647 dout("fault on LOSSYTX channel, marking CLOSED\n");
2648 con->state = CON_STATE_CLOSED;
2649 return;
2650 }
2651
2652 if (con->in_msg) {
2653 BUG_ON(con->in_msg->con != con);
2654 con->in_msg->con = NULL;
2655 ceph_msg_put(con->in_msg);
2656 con->in_msg = NULL;
2657 con->ops->put(con);
2658 }
2659
2660 /* Requeue anything that hasn't been acked */
2661 list_splice_init(&con->out_sent, &con->out_queue);
2662
2663 /* If there are no messages queued or keepalive pending, place
2664 * the connection in a STANDBY state */
2665 if (list_empty(&con->out_queue) &&
2666 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2667 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2668 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2669 con->state = CON_STATE_STANDBY;
2670 } else {
2671 /* retry after a delay. */
2672 con->state = CON_STATE_PREOPEN;
2673 if (con->delay == 0)
2674 con->delay = BASE_DELAY_INTERVAL;
2675 else if (con->delay < MAX_DELAY_INTERVAL)
2676 con->delay *= 2;
2677 con_flag_set(con, CON_FLAG_BACKOFF);
2678 queue_con(con);
2679 }
2680}
2681
2682
2683
2684/*
2685 * initialize a new messenger instance
2686 */
2687void ceph_messenger_init(struct ceph_messenger *msgr,
2688 struct ceph_entity_addr *myaddr,
2689 u32 supported_features,
2690 u32 required_features,
2691 bool nocrc)
2692{
2693 msgr->supported_features = supported_features;
2694 msgr->required_features = required_features;
2695
2696 spin_lock_init(&msgr->global_seq_lock);
2697
2698 if (myaddr)
2699 msgr->inst.addr = *myaddr;
2700
2701 /* select a random nonce */
2702 msgr->inst.addr.type = 0;
2703 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2704 encode_my_addr(msgr);
2705 msgr->nocrc = nocrc;
2706
2707 atomic_set(&msgr->stopping, 0);
2708
2709 dout("%s %p\n", __func__, msgr);
2710}
2711EXPORT_SYMBOL(ceph_messenger_init);
2712
2713static void clear_standby(struct ceph_connection *con)
2714{
2715 /* come back from STANDBY? */
2716 if (con->state == CON_STATE_STANDBY) {
2717 dout("clear_standby %p and ++connect_seq\n", con);
2718 con->state = CON_STATE_PREOPEN;
2719 con->connect_seq++;
2720 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2721 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2722 }
2723}
2724
2725/*
2726 * Queue up an outgoing message on the given connection.
2727 */
2728void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2729{
2730 /* set src+dst */
2731 msg->hdr.src = con->msgr->inst.name;
2732 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2733 msg->needs_out_seq = true;
2734
2735 mutex_lock(&con->mutex);
2736
2737 if (con->state == CON_STATE_CLOSED) {
2738 dout("con_send %p closed, dropping %p\n", con, msg);
2739 ceph_msg_put(msg);
2740 mutex_unlock(&con->mutex);
2741 return;
2742 }
2743
2744 BUG_ON(msg->con != NULL);
2745 msg->con = con->ops->get(con);
2746 BUG_ON(msg->con == NULL);
2747
2748 BUG_ON(!list_empty(&msg->list_head));
2749 list_add_tail(&msg->list_head, &con->out_queue);
2750 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2751 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2752 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2753 le32_to_cpu(msg->hdr.front_len),
2754 le32_to_cpu(msg->hdr.middle_len),
2755 le32_to_cpu(msg->hdr.data_len));
2756
2757 clear_standby(con);
2758 mutex_unlock(&con->mutex);
2759
2760 /* if there wasn't anything waiting to send before, queue
2761 * new work */
2762 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2763 queue_con(con);
2764}
2765EXPORT_SYMBOL(ceph_con_send);
2766
2767/*
2768 * Revoke a message that was previously queued for send
2769 */
2770void ceph_msg_revoke(struct ceph_msg *msg)
2771{
2772 struct ceph_connection *con = msg->con;
2773
2774 if (!con)
2775 return; /* Message not in our possession */
2776
2777 mutex_lock(&con->mutex);
2778 if (!list_empty(&msg->list_head)) {
2779 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2780 list_del_init(&msg->list_head);
2781 BUG_ON(msg->con == NULL);
2782 msg->con->ops->put(msg->con);
2783 msg->con = NULL;
2784 msg->hdr.seq = 0;
2785
2786 ceph_msg_put(msg);
2787 }
2788 if (con->out_msg == msg) {
2789 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2790 con->out_msg = NULL;
2791 if (con->out_kvec_is_msg) {
2792 con->out_skip = con->out_kvec_bytes;
2793 con->out_kvec_is_msg = false;
2794 }
2795 msg->hdr.seq = 0;
2796
2797 ceph_msg_put(msg);
2798 }
2799 mutex_unlock(&con->mutex);
2800}
2801
2802/*
2803 * Revoke a message that we may be reading data into
2804 */
2805void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2806{
2807 struct ceph_connection *con;
2808
2809 BUG_ON(msg == NULL);
2810 if (!msg->con) {
2811 dout("%s msg %p null con\n", __func__, msg);
2812
2813 return; /* Message not in our possession */
2814 }
2815
2816 con = msg->con;
2817 mutex_lock(&con->mutex);
2818 if (con->in_msg == msg) {
2819 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2820 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2821 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2822
2823 /* skip rest of message */
2824 dout("%s %p msg %p revoked\n", __func__, con, msg);
2825 con->in_base_pos = con->in_base_pos -
2826 sizeof(struct ceph_msg_header) -
2827 front_len -
2828 middle_len -
2829 data_len -
2830 sizeof(struct ceph_msg_footer);
2831 ceph_msg_put(con->in_msg);
2832 con->in_msg = NULL;
2833 con->in_tag = CEPH_MSGR_TAG_READY;
2834 con->in_seq++;
2835 } else {
2836 dout("%s %p in_msg %p msg %p no-op\n",
2837 __func__, con, con->in_msg, msg);
2838 }
2839 mutex_unlock(&con->mutex);
2840}
2841
2842/*
2843 * Queue a keepalive byte to ensure the tcp connection is alive.
2844 */
2845void ceph_con_keepalive(struct ceph_connection *con)
2846{
2847 dout("con_keepalive %p\n", con);
2848 mutex_lock(&con->mutex);
2849 clear_standby(con);
2850 mutex_unlock(&con->mutex);
2851 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
2852 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2853 queue_con(con);
2854}
2855EXPORT_SYMBOL(ceph_con_keepalive);
2856
2857static void ceph_msg_data_init(struct ceph_msg_data *data)
2858{
2859 data->type = CEPH_MSG_DATA_NONE;
2860}
2861
2862void ceph_msg_data_set_pages(struct ceph_msg *msg, struct page **pages,
2863 size_t length, size_t alignment)
2864{
2865 BUG_ON(!pages);
2866 BUG_ON(!length);
2867 BUG_ON(msg->p.type != CEPH_MSG_DATA_NONE);
2868
2869 msg->p.type = CEPH_MSG_DATA_PAGES;
2870 msg->p.pages = pages;
2871 msg->p.length = length;
2872 msg->p.alignment = alignment & ~PAGE_MASK;
2873}
2874EXPORT_SYMBOL(ceph_msg_data_set_pages);
2875
2876void ceph_msg_data_set_pagelist(struct ceph_msg *msg,
2877 struct ceph_pagelist *pagelist)
2878{
2879 BUG_ON(!pagelist);
2880 BUG_ON(!pagelist->length);
2881 BUG_ON(msg->l.type != CEPH_MSG_DATA_NONE);
2882
2883 msg->l.type = CEPH_MSG_DATA_PAGELIST;
2884 msg->l.pagelist = pagelist;
2885}
2886EXPORT_SYMBOL(ceph_msg_data_set_pagelist);
2887
2888void ceph_msg_data_set_bio(struct ceph_msg *msg, struct bio *bio)
2889{
2890 BUG_ON(!bio);
2891 BUG_ON(msg->b.type != CEPH_MSG_DATA_NONE);
2892
2893 msg->b.type = CEPH_MSG_DATA_BIO;
2894 msg->b.bio = bio;
2895}
2896EXPORT_SYMBOL(ceph_msg_data_set_bio);
2897
2898void ceph_msg_data_set_trail(struct ceph_msg *msg, struct ceph_pagelist *trail)
2899{
2900 BUG_ON(!trail);
2901 BUG_ON(!trail->length);
2902 BUG_ON(msg->b.type != CEPH_MSG_DATA_NONE);
2903
2904 msg->t.type = CEPH_MSG_DATA_PAGELIST;
2905 msg->t.pagelist = trail;
2906}
2907EXPORT_SYMBOL(ceph_msg_data_set_trail);
2908
2909/*
2910 * construct a new message with given type, size
2911 * the new msg has a ref count of 1.
2912 */
2913struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2914 bool can_fail)
2915{
2916 struct ceph_msg *m;
2917
2918 m = kzalloc(sizeof(*m), flags);
2919 if (m == NULL)
2920 goto out;
2921
2922 m->hdr.type = cpu_to_le16(type);
2923 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2924 m->hdr.front_len = cpu_to_le32(front_len);
2925
2926 INIT_LIST_HEAD(&m->list_head);
2927 kref_init(&m->kref);
2928
2929 ceph_msg_data_init(&m->p);
2930 ceph_msg_data_init(&m->l);
2931 ceph_msg_data_init(&m->b);
2932 ceph_msg_data_init(&m->t);
2933
2934 /* front */
2935 m->front_max = front_len;
2936 if (front_len) {
2937 if (front_len > PAGE_CACHE_SIZE) {
2938 m->front.iov_base = __vmalloc(front_len, flags,
2939 PAGE_KERNEL);
2940 m->front_is_vmalloc = true;
2941 } else {
2942 m->front.iov_base = kmalloc(front_len, flags);
2943 }
2944 if (m->front.iov_base == NULL) {
2945 dout("ceph_msg_new can't allocate %d bytes\n",
2946 front_len);
2947 goto out2;
2948 }
2949 } else {
2950 m->front.iov_base = NULL;
2951 }
2952 m->front.iov_len = front_len;
2953
2954 dout("ceph_msg_new %p front %d\n", m, front_len);
2955 return m;
2956
2957out2:
2958 ceph_msg_put(m);
2959out:
2960 if (!can_fail) {
2961 pr_err("msg_new can't create type %d front %d\n", type,
2962 front_len);
2963 WARN_ON(1);
2964 } else {
2965 dout("msg_new can't create type %d front %d\n", type,
2966 front_len);
2967 }
2968 return NULL;
2969}
2970EXPORT_SYMBOL(ceph_msg_new);
2971
2972/*
2973 * Allocate "middle" portion of a message, if it is needed and wasn't
2974 * allocated by alloc_msg. This allows us to read a small fixed-size
2975 * per-type header in the front and then gracefully fail (i.e.,
2976 * propagate the error to the caller based on info in the front) when
2977 * the middle is too large.
2978 */
2979static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2980{
2981 int type = le16_to_cpu(msg->hdr.type);
2982 int middle_len = le32_to_cpu(msg->hdr.middle_len);
2983
2984 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2985 ceph_msg_type_name(type), middle_len);
2986 BUG_ON(!middle_len);
2987 BUG_ON(msg->middle);
2988
2989 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2990 if (!msg->middle)
2991 return -ENOMEM;
2992 return 0;
2993}
2994
2995/*
2996 * Allocate a message for receiving an incoming message on a
2997 * connection, and save the result in con->in_msg. Uses the
2998 * connection's private alloc_msg op if available.
2999 *
3000 * Returns 0 on success, or a negative error code.
3001 *
3002 * On success, if we set *skip = 1:
3003 * - the next message should be skipped and ignored.
3004 * - con->in_msg == NULL
3005 * or if we set *skip = 0:
3006 * - con->in_msg is non-null.
3007 * On error (ENOMEM, EAGAIN, ...),
3008 * - con->in_msg == NULL
3009 */
3010static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3011{
3012 struct ceph_msg_header *hdr = &con->in_hdr;
3013 int middle_len = le32_to_cpu(hdr->middle_len);
3014 struct ceph_msg *msg;
3015 int ret = 0;
3016
3017 BUG_ON(con->in_msg != NULL);
3018 BUG_ON(!con->ops->alloc_msg);
3019
3020 mutex_unlock(&con->mutex);
3021 msg = con->ops->alloc_msg(con, hdr, skip);
3022 mutex_lock(&con->mutex);
3023 if (con->state != CON_STATE_OPEN) {
3024 if (msg)
3025 ceph_msg_put(msg);
3026 return -EAGAIN;
3027 }
3028 if (msg) {
3029 BUG_ON(*skip);
3030 con->in_msg = msg;
3031 con->in_msg->con = con->ops->get(con);
3032 BUG_ON(con->in_msg->con == NULL);
3033 } else {
3034 /*
3035 * Null message pointer means either we should skip
3036 * this message or we couldn't allocate memory. The
3037 * former is not an error.
3038 */
3039 if (*skip)
3040 return 0;
3041 con->error_msg = "error allocating memory for incoming message";
3042
3043 return -ENOMEM;
3044 }
3045 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3046
3047 if (middle_len && !con->in_msg->middle) {
3048 ret = ceph_alloc_middle(con, con->in_msg);
3049 if (ret < 0) {
3050 ceph_msg_put(con->in_msg);
3051 con->in_msg = NULL;
3052 }
3053 }
3054
3055 return ret;
3056}
3057
3058
3059/*
3060 * Free a generically kmalloc'd message.
3061 */
3062void ceph_msg_kfree(struct ceph_msg *m)
3063{
3064 dout("msg_kfree %p\n", m);
3065 if (m->front_is_vmalloc)
3066 vfree(m->front.iov_base);
3067 else
3068 kfree(m->front.iov_base);
3069 kfree(m);
3070}
3071
3072/*
3073 * Drop a msg ref. Destroy as needed.
3074 */
3075void ceph_msg_last_put(struct kref *kref)
3076{
3077 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3078
3079 dout("ceph_msg_put last one on %p\n", m);
3080 WARN_ON(!list_empty(&m->list_head));
3081
3082 /* drop middle, data, if any */
3083 if (m->middle) {
3084 ceph_buffer_put(m->middle);
3085 m->middle = NULL;
3086 }
3087 if (ceph_msg_has_pages(m)) {
3088 m->p.length = 0;
3089 m->p.pages = NULL;
3090 }
3091
3092 if (ceph_msg_has_pagelist(m)) {
3093 ceph_pagelist_release(m->l.pagelist);
3094 kfree(m->l.pagelist);
3095 m->l.pagelist = NULL;
3096 }
3097
3098 if (ceph_msg_has_trail(m))
3099 m->t.pagelist = NULL;
3100
3101 if (m->pool)
3102 ceph_msgpool_put(m->pool, m);
3103 else
3104 ceph_msg_kfree(m);
3105}
3106EXPORT_SYMBOL(ceph_msg_last_put);
3107
3108void ceph_msg_dump(struct ceph_msg *msg)
3109{
3110 pr_debug("msg_dump %p (front_max %d length %zd)\n", msg,
3111 msg->front_max, msg->p.length);
3112 print_hex_dump(KERN_DEBUG, "header: ",
3113 DUMP_PREFIX_OFFSET, 16, 1,
3114 &msg->hdr, sizeof(msg->hdr), true);
3115 print_hex_dump(KERN_DEBUG, " front: ",
3116 DUMP_PREFIX_OFFSET, 16, 1,
3117 msg->front.iov_base, msg->front.iov_len, true);
3118 if (msg->middle)
3119 print_hex_dump(KERN_DEBUG, "middle: ",
3120 DUMP_PREFIX_OFFSET, 16, 1,
3121 msg->middle->vec.iov_base,
3122 msg->middle->vec.iov_len, true);
3123 print_hex_dump(KERN_DEBUG, "footer: ",
3124 DUMP_PREFIX_OFFSET, 16, 1,
3125 &msg->footer, sizeof(msg->footer), true);
3126}
3127EXPORT_SYMBOL(ceph_msg_dump);
This page took 0.035577 seconds and 5 git commands to generate.