xen-netfront: Use setup_timer
[deliverable/linux.git] / net / core / dev.c
... / ...
CommitLineData
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
76#include <linux/bitops.h>
77#include <linux/capability.h>
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
81#include <linux/hash.h>
82#include <linux/slab.h>
83#include <linux/sched.h>
84#include <linux/mutex.h>
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
94#include <linux/ethtool.h>
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
97#include <net/net_namespace.h>
98#include <net/sock.h>
99#include <linux/rtnetlink.h>
100#include <linux/stat.h>
101#include <net/dst.h>
102#include <net/pkt_sched.h>
103#include <net/checksum.h>
104#include <net/xfrm.h>
105#include <linux/highmem.h>
106#include <linux/init.h>
107#include <linux/module.h>
108#include <linux/netpoll.h>
109#include <linux/rcupdate.h>
110#include <linux/delay.h>
111#include <net/iw_handler.h>
112#include <asm/current.h>
113#include <linux/audit.h>
114#include <linux/dmaengine.h>
115#include <linux/err.h>
116#include <linux/ctype.h>
117#include <linux/if_arp.h>
118#include <linux/if_vlan.h>
119#include <linux/ip.h>
120#include <net/ip.h>
121#include <net/mpls.h>
122#include <linux/ipv6.h>
123#include <linux/in.h>
124#include <linux/jhash.h>
125#include <linux/random.h>
126#include <trace/events/napi.h>
127#include <trace/events/net.h>
128#include <trace/events/skb.h>
129#include <linux/pci.h>
130#include <linux/inetdevice.h>
131#include <linux/cpu_rmap.h>
132#include <linux/static_key.h>
133#include <linux/hashtable.h>
134#include <linux/vmalloc.h>
135#include <linux/if_macvlan.h>
136#include <linux/errqueue.h>
137#include <linux/hrtimer.h>
138#include <linux/netfilter_ingress.h>
139
140#include "net-sysfs.h"
141
142/* Instead of increasing this, you should create a hash table. */
143#define MAX_GRO_SKBS 8
144
145/* This should be increased if a protocol with a bigger head is added. */
146#define GRO_MAX_HEAD (MAX_HEADER + 128)
147
148static DEFINE_SPINLOCK(ptype_lock);
149static DEFINE_SPINLOCK(offload_lock);
150struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
151struct list_head ptype_all __read_mostly; /* Taps */
152static struct list_head offload_base __read_mostly;
153
154static int netif_rx_internal(struct sk_buff *skb);
155static int call_netdevice_notifiers_info(unsigned long val,
156 struct net_device *dev,
157 struct netdev_notifier_info *info);
158
159/*
160 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
161 * semaphore.
162 *
163 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
164 *
165 * Writers must hold the rtnl semaphore while they loop through the
166 * dev_base_head list, and hold dev_base_lock for writing when they do the
167 * actual updates. This allows pure readers to access the list even
168 * while a writer is preparing to update it.
169 *
170 * To put it another way, dev_base_lock is held for writing only to
171 * protect against pure readers; the rtnl semaphore provides the
172 * protection against other writers.
173 *
174 * See, for example usages, register_netdevice() and
175 * unregister_netdevice(), which must be called with the rtnl
176 * semaphore held.
177 */
178DEFINE_RWLOCK(dev_base_lock);
179EXPORT_SYMBOL(dev_base_lock);
180
181/* protects napi_hash addition/deletion and napi_gen_id */
182static DEFINE_SPINLOCK(napi_hash_lock);
183
184static unsigned int napi_gen_id;
185static DEFINE_HASHTABLE(napi_hash, 8);
186
187static seqcount_t devnet_rename_seq;
188
189static inline void dev_base_seq_inc(struct net *net)
190{
191 while (++net->dev_base_seq == 0);
192}
193
194static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195{
196 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
197
198 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
199}
200
201static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202{
203 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
204}
205
206static inline void rps_lock(struct softnet_data *sd)
207{
208#ifdef CONFIG_RPS
209 spin_lock(&sd->input_pkt_queue.lock);
210#endif
211}
212
213static inline void rps_unlock(struct softnet_data *sd)
214{
215#ifdef CONFIG_RPS
216 spin_unlock(&sd->input_pkt_queue.lock);
217#endif
218}
219
220/* Device list insertion */
221static void list_netdevice(struct net_device *dev)
222{
223 struct net *net = dev_net(dev);
224
225 ASSERT_RTNL();
226
227 write_lock_bh(&dev_base_lock);
228 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
229 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
230 hlist_add_head_rcu(&dev->index_hlist,
231 dev_index_hash(net, dev->ifindex));
232 write_unlock_bh(&dev_base_lock);
233
234 dev_base_seq_inc(net);
235}
236
237/* Device list removal
238 * caller must respect a RCU grace period before freeing/reusing dev
239 */
240static void unlist_netdevice(struct net_device *dev)
241{
242 ASSERT_RTNL();
243
244 /* Unlink dev from the device chain */
245 write_lock_bh(&dev_base_lock);
246 list_del_rcu(&dev->dev_list);
247 hlist_del_rcu(&dev->name_hlist);
248 hlist_del_rcu(&dev->index_hlist);
249 write_unlock_bh(&dev_base_lock);
250
251 dev_base_seq_inc(dev_net(dev));
252}
253
254/*
255 * Our notifier list
256 */
257
258static RAW_NOTIFIER_HEAD(netdev_chain);
259
260/*
261 * Device drivers call our routines to queue packets here. We empty the
262 * queue in the local softnet handler.
263 */
264
265DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
266EXPORT_PER_CPU_SYMBOL(softnet_data);
267
268#ifdef CONFIG_LOCKDEP
269/*
270 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
271 * according to dev->type
272 */
273static const unsigned short netdev_lock_type[] =
274 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
275 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
276 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
277 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
278 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
279 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
280 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
281 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
282 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
283 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
284 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
285 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
286 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
287 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
288 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
289
290static const char *const netdev_lock_name[] =
291 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
292 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
293 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
294 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
295 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
296 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
297 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
298 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
299 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
300 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
301 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
302 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
303 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
304 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
305 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
306
307static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
308static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
309
310static inline unsigned short netdev_lock_pos(unsigned short dev_type)
311{
312 int i;
313
314 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
315 if (netdev_lock_type[i] == dev_type)
316 return i;
317 /* the last key is used by default */
318 return ARRAY_SIZE(netdev_lock_type) - 1;
319}
320
321static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
322 unsigned short dev_type)
323{
324 int i;
325
326 i = netdev_lock_pos(dev_type);
327 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
328 netdev_lock_name[i]);
329}
330
331static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
332{
333 int i;
334
335 i = netdev_lock_pos(dev->type);
336 lockdep_set_class_and_name(&dev->addr_list_lock,
337 &netdev_addr_lock_key[i],
338 netdev_lock_name[i]);
339}
340#else
341static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
342 unsigned short dev_type)
343{
344}
345static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
346{
347}
348#endif
349
350/*******************************************************************************
351
352 Protocol management and registration routines
353
354*******************************************************************************/
355
356/*
357 * Add a protocol ID to the list. Now that the input handler is
358 * smarter we can dispense with all the messy stuff that used to be
359 * here.
360 *
361 * BEWARE!!! Protocol handlers, mangling input packets,
362 * MUST BE last in hash buckets and checking protocol handlers
363 * MUST start from promiscuous ptype_all chain in net_bh.
364 * It is true now, do not change it.
365 * Explanation follows: if protocol handler, mangling packet, will
366 * be the first on list, it is not able to sense, that packet
367 * is cloned and should be copied-on-write, so that it will
368 * change it and subsequent readers will get broken packet.
369 * --ANK (980803)
370 */
371
372static inline struct list_head *ptype_head(const struct packet_type *pt)
373{
374 if (pt->type == htons(ETH_P_ALL))
375 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
376 else
377 return pt->dev ? &pt->dev->ptype_specific :
378 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
379}
380
381/**
382 * dev_add_pack - add packet handler
383 * @pt: packet type declaration
384 *
385 * Add a protocol handler to the networking stack. The passed &packet_type
386 * is linked into kernel lists and may not be freed until it has been
387 * removed from the kernel lists.
388 *
389 * This call does not sleep therefore it can not
390 * guarantee all CPU's that are in middle of receiving packets
391 * will see the new packet type (until the next received packet).
392 */
393
394void dev_add_pack(struct packet_type *pt)
395{
396 struct list_head *head = ptype_head(pt);
397
398 spin_lock(&ptype_lock);
399 list_add_rcu(&pt->list, head);
400 spin_unlock(&ptype_lock);
401}
402EXPORT_SYMBOL(dev_add_pack);
403
404/**
405 * __dev_remove_pack - remove packet handler
406 * @pt: packet type declaration
407 *
408 * Remove a protocol handler that was previously added to the kernel
409 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
410 * from the kernel lists and can be freed or reused once this function
411 * returns.
412 *
413 * The packet type might still be in use by receivers
414 * and must not be freed until after all the CPU's have gone
415 * through a quiescent state.
416 */
417void __dev_remove_pack(struct packet_type *pt)
418{
419 struct list_head *head = ptype_head(pt);
420 struct packet_type *pt1;
421
422 spin_lock(&ptype_lock);
423
424 list_for_each_entry(pt1, head, list) {
425 if (pt == pt1) {
426 list_del_rcu(&pt->list);
427 goto out;
428 }
429 }
430
431 pr_warn("dev_remove_pack: %p not found\n", pt);
432out:
433 spin_unlock(&ptype_lock);
434}
435EXPORT_SYMBOL(__dev_remove_pack);
436
437/**
438 * dev_remove_pack - remove packet handler
439 * @pt: packet type declaration
440 *
441 * Remove a protocol handler that was previously added to the kernel
442 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
443 * from the kernel lists and can be freed or reused once this function
444 * returns.
445 *
446 * This call sleeps to guarantee that no CPU is looking at the packet
447 * type after return.
448 */
449void dev_remove_pack(struct packet_type *pt)
450{
451 __dev_remove_pack(pt);
452
453 synchronize_net();
454}
455EXPORT_SYMBOL(dev_remove_pack);
456
457
458/**
459 * dev_add_offload - register offload handlers
460 * @po: protocol offload declaration
461 *
462 * Add protocol offload handlers to the networking stack. The passed
463 * &proto_offload is linked into kernel lists and may not be freed until
464 * it has been removed from the kernel lists.
465 *
466 * This call does not sleep therefore it can not
467 * guarantee all CPU's that are in middle of receiving packets
468 * will see the new offload handlers (until the next received packet).
469 */
470void dev_add_offload(struct packet_offload *po)
471{
472 struct list_head *head = &offload_base;
473
474 spin_lock(&offload_lock);
475 list_add_rcu(&po->list, head);
476 spin_unlock(&offload_lock);
477}
478EXPORT_SYMBOL(dev_add_offload);
479
480/**
481 * __dev_remove_offload - remove offload handler
482 * @po: packet offload declaration
483 *
484 * Remove a protocol offload handler that was previously added to the
485 * kernel offload handlers by dev_add_offload(). The passed &offload_type
486 * is removed from the kernel lists and can be freed or reused once this
487 * function returns.
488 *
489 * The packet type might still be in use by receivers
490 * and must not be freed until after all the CPU's have gone
491 * through a quiescent state.
492 */
493static void __dev_remove_offload(struct packet_offload *po)
494{
495 struct list_head *head = &offload_base;
496 struct packet_offload *po1;
497
498 spin_lock(&offload_lock);
499
500 list_for_each_entry(po1, head, list) {
501 if (po == po1) {
502 list_del_rcu(&po->list);
503 goto out;
504 }
505 }
506
507 pr_warn("dev_remove_offload: %p not found\n", po);
508out:
509 spin_unlock(&offload_lock);
510}
511
512/**
513 * dev_remove_offload - remove packet offload handler
514 * @po: packet offload declaration
515 *
516 * Remove a packet offload handler that was previously added to the kernel
517 * offload handlers by dev_add_offload(). The passed &offload_type is
518 * removed from the kernel lists and can be freed or reused once this
519 * function returns.
520 *
521 * This call sleeps to guarantee that no CPU is looking at the packet
522 * type after return.
523 */
524void dev_remove_offload(struct packet_offload *po)
525{
526 __dev_remove_offload(po);
527
528 synchronize_net();
529}
530EXPORT_SYMBOL(dev_remove_offload);
531
532/******************************************************************************
533
534 Device Boot-time Settings Routines
535
536*******************************************************************************/
537
538/* Boot time configuration table */
539static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
540
541/**
542 * netdev_boot_setup_add - add new setup entry
543 * @name: name of the device
544 * @map: configured settings for the device
545 *
546 * Adds new setup entry to the dev_boot_setup list. The function
547 * returns 0 on error and 1 on success. This is a generic routine to
548 * all netdevices.
549 */
550static int netdev_boot_setup_add(char *name, struct ifmap *map)
551{
552 struct netdev_boot_setup *s;
553 int i;
554
555 s = dev_boot_setup;
556 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
557 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
558 memset(s[i].name, 0, sizeof(s[i].name));
559 strlcpy(s[i].name, name, IFNAMSIZ);
560 memcpy(&s[i].map, map, sizeof(s[i].map));
561 break;
562 }
563 }
564
565 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
566}
567
568/**
569 * netdev_boot_setup_check - check boot time settings
570 * @dev: the netdevice
571 *
572 * Check boot time settings for the device.
573 * The found settings are set for the device to be used
574 * later in the device probing.
575 * Returns 0 if no settings found, 1 if they are.
576 */
577int netdev_boot_setup_check(struct net_device *dev)
578{
579 struct netdev_boot_setup *s = dev_boot_setup;
580 int i;
581
582 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
583 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
584 !strcmp(dev->name, s[i].name)) {
585 dev->irq = s[i].map.irq;
586 dev->base_addr = s[i].map.base_addr;
587 dev->mem_start = s[i].map.mem_start;
588 dev->mem_end = s[i].map.mem_end;
589 return 1;
590 }
591 }
592 return 0;
593}
594EXPORT_SYMBOL(netdev_boot_setup_check);
595
596
597/**
598 * netdev_boot_base - get address from boot time settings
599 * @prefix: prefix for network device
600 * @unit: id for network device
601 *
602 * Check boot time settings for the base address of device.
603 * The found settings are set for the device to be used
604 * later in the device probing.
605 * Returns 0 if no settings found.
606 */
607unsigned long netdev_boot_base(const char *prefix, int unit)
608{
609 const struct netdev_boot_setup *s = dev_boot_setup;
610 char name[IFNAMSIZ];
611 int i;
612
613 sprintf(name, "%s%d", prefix, unit);
614
615 /*
616 * If device already registered then return base of 1
617 * to indicate not to probe for this interface
618 */
619 if (__dev_get_by_name(&init_net, name))
620 return 1;
621
622 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
623 if (!strcmp(name, s[i].name))
624 return s[i].map.base_addr;
625 return 0;
626}
627
628/*
629 * Saves at boot time configured settings for any netdevice.
630 */
631int __init netdev_boot_setup(char *str)
632{
633 int ints[5];
634 struct ifmap map;
635
636 str = get_options(str, ARRAY_SIZE(ints), ints);
637 if (!str || !*str)
638 return 0;
639
640 /* Save settings */
641 memset(&map, 0, sizeof(map));
642 if (ints[0] > 0)
643 map.irq = ints[1];
644 if (ints[0] > 1)
645 map.base_addr = ints[2];
646 if (ints[0] > 2)
647 map.mem_start = ints[3];
648 if (ints[0] > 3)
649 map.mem_end = ints[4];
650
651 /* Add new entry to the list */
652 return netdev_boot_setup_add(str, &map);
653}
654
655__setup("netdev=", netdev_boot_setup);
656
657/*******************************************************************************
658
659 Device Interface Subroutines
660
661*******************************************************************************/
662
663/**
664 * dev_get_iflink - get 'iflink' value of a interface
665 * @dev: targeted interface
666 *
667 * Indicates the ifindex the interface is linked to.
668 * Physical interfaces have the same 'ifindex' and 'iflink' values.
669 */
670
671int dev_get_iflink(const struct net_device *dev)
672{
673 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
674 return dev->netdev_ops->ndo_get_iflink(dev);
675
676 /* If dev->rtnl_link_ops is set, it's a virtual interface. */
677 if (dev->rtnl_link_ops)
678 return 0;
679
680 return dev->ifindex;
681}
682EXPORT_SYMBOL(dev_get_iflink);
683
684/**
685 * __dev_get_by_name - find a device by its name
686 * @net: the applicable net namespace
687 * @name: name to find
688 *
689 * Find an interface by name. Must be called under RTNL semaphore
690 * or @dev_base_lock. If the name is found a pointer to the device
691 * is returned. If the name is not found then %NULL is returned. The
692 * reference counters are not incremented so the caller must be
693 * careful with locks.
694 */
695
696struct net_device *__dev_get_by_name(struct net *net, const char *name)
697{
698 struct net_device *dev;
699 struct hlist_head *head = dev_name_hash(net, name);
700
701 hlist_for_each_entry(dev, head, name_hlist)
702 if (!strncmp(dev->name, name, IFNAMSIZ))
703 return dev;
704
705 return NULL;
706}
707EXPORT_SYMBOL(__dev_get_by_name);
708
709/**
710 * dev_get_by_name_rcu - find a device by its name
711 * @net: the applicable net namespace
712 * @name: name to find
713 *
714 * Find an interface by name.
715 * If the name is found a pointer to the device is returned.
716 * If the name is not found then %NULL is returned.
717 * The reference counters are not incremented so the caller must be
718 * careful with locks. The caller must hold RCU lock.
719 */
720
721struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
722{
723 struct net_device *dev;
724 struct hlist_head *head = dev_name_hash(net, name);
725
726 hlist_for_each_entry_rcu(dev, head, name_hlist)
727 if (!strncmp(dev->name, name, IFNAMSIZ))
728 return dev;
729
730 return NULL;
731}
732EXPORT_SYMBOL(dev_get_by_name_rcu);
733
734/**
735 * dev_get_by_name - find a device by its name
736 * @net: the applicable net namespace
737 * @name: name to find
738 *
739 * Find an interface by name. This can be called from any
740 * context and does its own locking. The returned handle has
741 * the usage count incremented and the caller must use dev_put() to
742 * release it when it is no longer needed. %NULL is returned if no
743 * matching device is found.
744 */
745
746struct net_device *dev_get_by_name(struct net *net, const char *name)
747{
748 struct net_device *dev;
749
750 rcu_read_lock();
751 dev = dev_get_by_name_rcu(net, name);
752 if (dev)
753 dev_hold(dev);
754 rcu_read_unlock();
755 return dev;
756}
757EXPORT_SYMBOL(dev_get_by_name);
758
759/**
760 * __dev_get_by_index - find a device by its ifindex
761 * @net: the applicable net namespace
762 * @ifindex: index of device
763 *
764 * Search for an interface by index. Returns %NULL if the device
765 * is not found or a pointer to the device. The device has not
766 * had its reference counter increased so the caller must be careful
767 * about locking. The caller must hold either the RTNL semaphore
768 * or @dev_base_lock.
769 */
770
771struct net_device *__dev_get_by_index(struct net *net, int ifindex)
772{
773 struct net_device *dev;
774 struct hlist_head *head = dev_index_hash(net, ifindex);
775
776 hlist_for_each_entry(dev, head, index_hlist)
777 if (dev->ifindex == ifindex)
778 return dev;
779
780 return NULL;
781}
782EXPORT_SYMBOL(__dev_get_by_index);
783
784/**
785 * dev_get_by_index_rcu - find a device by its ifindex
786 * @net: the applicable net namespace
787 * @ifindex: index of device
788 *
789 * Search for an interface by index. Returns %NULL if the device
790 * is not found or a pointer to the device. The device has not
791 * had its reference counter increased so the caller must be careful
792 * about locking. The caller must hold RCU lock.
793 */
794
795struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
796{
797 struct net_device *dev;
798 struct hlist_head *head = dev_index_hash(net, ifindex);
799
800 hlist_for_each_entry_rcu(dev, head, index_hlist)
801 if (dev->ifindex == ifindex)
802 return dev;
803
804 return NULL;
805}
806EXPORT_SYMBOL(dev_get_by_index_rcu);
807
808
809/**
810 * dev_get_by_index - find a device by its ifindex
811 * @net: the applicable net namespace
812 * @ifindex: index of device
813 *
814 * Search for an interface by index. Returns NULL if the device
815 * is not found or a pointer to the device. The device returned has
816 * had a reference added and the pointer is safe until the user calls
817 * dev_put to indicate they have finished with it.
818 */
819
820struct net_device *dev_get_by_index(struct net *net, int ifindex)
821{
822 struct net_device *dev;
823
824 rcu_read_lock();
825 dev = dev_get_by_index_rcu(net, ifindex);
826 if (dev)
827 dev_hold(dev);
828 rcu_read_unlock();
829 return dev;
830}
831EXPORT_SYMBOL(dev_get_by_index);
832
833/**
834 * netdev_get_name - get a netdevice name, knowing its ifindex.
835 * @net: network namespace
836 * @name: a pointer to the buffer where the name will be stored.
837 * @ifindex: the ifindex of the interface to get the name from.
838 *
839 * The use of raw_seqcount_begin() and cond_resched() before
840 * retrying is required as we want to give the writers a chance
841 * to complete when CONFIG_PREEMPT is not set.
842 */
843int netdev_get_name(struct net *net, char *name, int ifindex)
844{
845 struct net_device *dev;
846 unsigned int seq;
847
848retry:
849 seq = raw_seqcount_begin(&devnet_rename_seq);
850 rcu_read_lock();
851 dev = dev_get_by_index_rcu(net, ifindex);
852 if (!dev) {
853 rcu_read_unlock();
854 return -ENODEV;
855 }
856
857 strcpy(name, dev->name);
858 rcu_read_unlock();
859 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
860 cond_resched();
861 goto retry;
862 }
863
864 return 0;
865}
866
867/**
868 * dev_getbyhwaddr_rcu - find a device by its hardware address
869 * @net: the applicable net namespace
870 * @type: media type of device
871 * @ha: hardware address
872 *
873 * Search for an interface by MAC address. Returns NULL if the device
874 * is not found or a pointer to the device.
875 * The caller must hold RCU or RTNL.
876 * The returned device has not had its ref count increased
877 * and the caller must therefore be careful about locking
878 *
879 */
880
881struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
882 const char *ha)
883{
884 struct net_device *dev;
885
886 for_each_netdev_rcu(net, dev)
887 if (dev->type == type &&
888 !memcmp(dev->dev_addr, ha, dev->addr_len))
889 return dev;
890
891 return NULL;
892}
893EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
894
895struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
896{
897 struct net_device *dev;
898
899 ASSERT_RTNL();
900 for_each_netdev(net, dev)
901 if (dev->type == type)
902 return dev;
903
904 return NULL;
905}
906EXPORT_SYMBOL(__dev_getfirstbyhwtype);
907
908struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
909{
910 struct net_device *dev, *ret = NULL;
911
912 rcu_read_lock();
913 for_each_netdev_rcu(net, dev)
914 if (dev->type == type) {
915 dev_hold(dev);
916 ret = dev;
917 break;
918 }
919 rcu_read_unlock();
920 return ret;
921}
922EXPORT_SYMBOL(dev_getfirstbyhwtype);
923
924/**
925 * __dev_get_by_flags - find any device with given flags
926 * @net: the applicable net namespace
927 * @if_flags: IFF_* values
928 * @mask: bitmask of bits in if_flags to check
929 *
930 * Search for any interface with the given flags. Returns NULL if a device
931 * is not found or a pointer to the device. Must be called inside
932 * rtnl_lock(), and result refcount is unchanged.
933 */
934
935struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
936 unsigned short mask)
937{
938 struct net_device *dev, *ret;
939
940 ASSERT_RTNL();
941
942 ret = NULL;
943 for_each_netdev(net, dev) {
944 if (((dev->flags ^ if_flags) & mask) == 0) {
945 ret = dev;
946 break;
947 }
948 }
949 return ret;
950}
951EXPORT_SYMBOL(__dev_get_by_flags);
952
953/**
954 * dev_valid_name - check if name is okay for network device
955 * @name: name string
956 *
957 * Network device names need to be valid file names to
958 * to allow sysfs to work. We also disallow any kind of
959 * whitespace.
960 */
961bool dev_valid_name(const char *name)
962{
963 if (*name == '\0')
964 return false;
965 if (strlen(name) >= IFNAMSIZ)
966 return false;
967 if (!strcmp(name, ".") || !strcmp(name, ".."))
968 return false;
969
970 while (*name) {
971 if (*name == '/' || *name == ':' || isspace(*name))
972 return false;
973 name++;
974 }
975 return true;
976}
977EXPORT_SYMBOL(dev_valid_name);
978
979/**
980 * __dev_alloc_name - allocate a name for a device
981 * @net: network namespace to allocate the device name in
982 * @name: name format string
983 * @buf: scratch buffer and result name string
984 *
985 * Passed a format string - eg "lt%d" it will try and find a suitable
986 * id. It scans list of devices to build up a free map, then chooses
987 * the first empty slot. The caller must hold the dev_base or rtnl lock
988 * while allocating the name and adding the device in order to avoid
989 * duplicates.
990 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
991 * Returns the number of the unit assigned or a negative errno code.
992 */
993
994static int __dev_alloc_name(struct net *net, const char *name, char *buf)
995{
996 int i = 0;
997 const char *p;
998 const int max_netdevices = 8*PAGE_SIZE;
999 unsigned long *inuse;
1000 struct net_device *d;
1001
1002 p = strnchr(name, IFNAMSIZ-1, '%');
1003 if (p) {
1004 /*
1005 * Verify the string as this thing may have come from
1006 * the user. There must be either one "%d" and no other "%"
1007 * characters.
1008 */
1009 if (p[1] != 'd' || strchr(p + 2, '%'))
1010 return -EINVAL;
1011
1012 /* Use one page as a bit array of possible slots */
1013 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1014 if (!inuse)
1015 return -ENOMEM;
1016
1017 for_each_netdev(net, d) {
1018 if (!sscanf(d->name, name, &i))
1019 continue;
1020 if (i < 0 || i >= max_netdevices)
1021 continue;
1022
1023 /* avoid cases where sscanf is not exact inverse of printf */
1024 snprintf(buf, IFNAMSIZ, name, i);
1025 if (!strncmp(buf, d->name, IFNAMSIZ))
1026 set_bit(i, inuse);
1027 }
1028
1029 i = find_first_zero_bit(inuse, max_netdevices);
1030 free_page((unsigned long) inuse);
1031 }
1032
1033 if (buf != name)
1034 snprintf(buf, IFNAMSIZ, name, i);
1035 if (!__dev_get_by_name(net, buf))
1036 return i;
1037
1038 /* It is possible to run out of possible slots
1039 * when the name is long and there isn't enough space left
1040 * for the digits, or if all bits are used.
1041 */
1042 return -ENFILE;
1043}
1044
1045/**
1046 * dev_alloc_name - allocate a name for a device
1047 * @dev: device
1048 * @name: name format string
1049 *
1050 * Passed a format string - eg "lt%d" it will try and find a suitable
1051 * id. It scans list of devices to build up a free map, then chooses
1052 * the first empty slot. The caller must hold the dev_base or rtnl lock
1053 * while allocating the name and adding the device in order to avoid
1054 * duplicates.
1055 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056 * Returns the number of the unit assigned or a negative errno code.
1057 */
1058
1059int dev_alloc_name(struct net_device *dev, const char *name)
1060{
1061 char buf[IFNAMSIZ];
1062 struct net *net;
1063 int ret;
1064
1065 BUG_ON(!dev_net(dev));
1066 net = dev_net(dev);
1067 ret = __dev_alloc_name(net, name, buf);
1068 if (ret >= 0)
1069 strlcpy(dev->name, buf, IFNAMSIZ);
1070 return ret;
1071}
1072EXPORT_SYMBOL(dev_alloc_name);
1073
1074static int dev_alloc_name_ns(struct net *net,
1075 struct net_device *dev,
1076 const char *name)
1077{
1078 char buf[IFNAMSIZ];
1079 int ret;
1080
1081 ret = __dev_alloc_name(net, name, buf);
1082 if (ret >= 0)
1083 strlcpy(dev->name, buf, IFNAMSIZ);
1084 return ret;
1085}
1086
1087static int dev_get_valid_name(struct net *net,
1088 struct net_device *dev,
1089 const char *name)
1090{
1091 BUG_ON(!net);
1092
1093 if (!dev_valid_name(name))
1094 return -EINVAL;
1095
1096 if (strchr(name, '%'))
1097 return dev_alloc_name_ns(net, dev, name);
1098 else if (__dev_get_by_name(net, name))
1099 return -EEXIST;
1100 else if (dev->name != name)
1101 strlcpy(dev->name, name, IFNAMSIZ);
1102
1103 return 0;
1104}
1105
1106/**
1107 * dev_change_name - change name of a device
1108 * @dev: device
1109 * @newname: name (or format string) must be at least IFNAMSIZ
1110 *
1111 * Change name of a device, can pass format strings "eth%d".
1112 * for wildcarding.
1113 */
1114int dev_change_name(struct net_device *dev, const char *newname)
1115{
1116 unsigned char old_assign_type;
1117 char oldname[IFNAMSIZ];
1118 int err = 0;
1119 int ret;
1120 struct net *net;
1121
1122 ASSERT_RTNL();
1123 BUG_ON(!dev_net(dev));
1124
1125 net = dev_net(dev);
1126 if (dev->flags & IFF_UP)
1127 return -EBUSY;
1128
1129 write_seqcount_begin(&devnet_rename_seq);
1130
1131 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1132 write_seqcount_end(&devnet_rename_seq);
1133 return 0;
1134 }
1135
1136 memcpy(oldname, dev->name, IFNAMSIZ);
1137
1138 err = dev_get_valid_name(net, dev, newname);
1139 if (err < 0) {
1140 write_seqcount_end(&devnet_rename_seq);
1141 return err;
1142 }
1143
1144 if (oldname[0] && !strchr(oldname, '%'))
1145 netdev_info(dev, "renamed from %s\n", oldname);
1146
1147 old_assign_type = dev->name_assign_type;
1148 dev->name_assign_type = NET_NAME_RENAMED;
1149
1150rollback:
1151 ret = device_rename(&dev->dev, dev->name);
1152 if (ret) {
1153 memcpy(dev->name, oldname, IFNAMSIZ);
1154 dev->name_assign_type = old_assign_type;
1155 write_seqcount_end(&devnet_rename_seq);
1156 return ret;
1157 }
1158
1159 write_seqcount_end(&devnet_rename_seq);
1160
1161 netdev_adjacent_rename_links(dev, oldname);
1162
1163 write_lock_bh(&dev_base_lock);
1164 hlist_del_rcu(&dev->name_hlist);
1165 write_unlock_bh(&dev_base_lock);
1166
1167 synchronize_rcu();
1168
1169 write_lock_bh(&dev_base_lock);
1170 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1171 write_unlock_bh(&dev_base_lock);
1172
1173 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1174 ret = notifier_to_errno(ret);
1175
1176 if (ret) {
1177 /* err >= 0 after dev_alloc_name() or stores the first errno */
1178 if (err >= 0) {
1179 err = ret;
1180 write_seqcount_begin(&devnet_rename_seq);
1181 memcpy(dev->name, oldname, IFNAMSIZ);
1182 memcpy(oldname, newname, IFNAMSIZ);
1183 dev->name_assign_type = old_assign_type;
1184 old_assign_type = NET_NAME_RENAMED;
1185 goto rollback;
1186 } else {
1187 pr_err("%s: name change rollback failed: %d\n",
1188 dev->name, ret);
1189 }
1190 }
1191
1192 return err;
1193}
1194
1195/**
1196 * dev_set_alias - change ifalias of a device
1197 * @dev: device
1198 * @alias: name up to IFALIASZ
1199 * @len: limit of bytes to copy from info
1200 *
1201 * Set ifalias for a device,
1202 */
1203int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1204{
1205 char *new_ifalias;
1206
1207 ASSERT_RTNL();
1208
1209 if (len >= IFALIASZ)
1210 return -EINVAL;
1211
1212 if (!len) {
1213 kfree(dev->ifalias);
1214 dev->ifalias = NULL;
1215 return 0;
1216 }
1217
1218 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1219 if (!new_ifalias)
1220 return -ENOMEM;
1221 dev->ifalias = new_ifalias;
1222
1223 strlcpy(dev->ifalias, alias, len+1);
1224 return len;
1225}
1226
1227
1228/**
1229 * netdev_features_change - device changes features
1230 * @dev: device to cause notification
1231 *
1232 * Called to indicate a device has changed features.
1233 */
1234void netdev_features_change(struct net_device *dev)
1235{
1236 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1237}
1238EXPORT_SYMBOL(netdev_features_change);
1239
1240/**
1241 * netdev_state_change - device changes state
1242 * @dev: device to cause notification
1243 *
1244 * Called to indicate a device has changed state. This function calls
1245 * the notifier chains for netdev_chain and sends a NEWLINK message
1246 * to the routing socket.
1247 */
1248void netdev_state_change(struct net_device *dev)
1249{
1250 if (dev->flags & IFF_UP) {
1251 struct netdev_notifier_change_info change_info;
1252
1253 change_info.flags_changed = 0;
1254 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1255 &change_info.info);
1256 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1257 }
1258}
1259EXPORT_SYMBOL(netdev_state_change);
1260
1261/**
1262 * netdev_notify_peers - notify network peers about existence of @dev
1263 * @dev: network device
1264 *
1265 * Generate traffic such that interested network peers are aware of
1266 * @dev, such as by generating a gratuitous ARP. This may be used when
1267 * a device wants to inform the rest of the network about some sort of
1268 * reconfiguration such as a failover event or virtual machine
1269 * migration.
1270 */
1271void netdev_notify_peers(struct net_device *dev)
1272{
1273 rtnl_lock();
1274 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1275 rtnl_unlock();
1276}
1277EXPORT_SYMBOL(netdev_notify_peers);
1278
1279static int __dev_open(struct net_device *dev)
1280{
1281 const struct net_device_ops *ops = dev->netdev_ops;
1282 int ret;
1283
1284 ASSERT_RTNL();
1285
1286 if (!netif_device_present(dev))
1287 return -ENODEV;
1288
1289 /* Block netpoll from trying to do any rx path servicing.
1290 * If we don't do this there is a chance ndo_poll_controller
1291 * or ndo_poll may be running while we open the device
1292 */
1293 netpoll_poll_disable(dev);
1294
1295 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1296 ret = notifier_to_errno(ret);
1297 if (ret)
1298 return ret;
1299
1300 set_bit(__LINK_STATE_START, &dev->state);
1301
1302 if (ops->ndo_validate_addr)
1303 ret = ops->ndo_validate_addr(dev);
1304
1305 if (!ret && ops->ndo_open)
1306 ret = ops->ndo_open(dev);
1307
1308 netpoll_poll_enable(dev);
1309
1310 if (ret)
1311 clear_bit(__LINK_STATE_START, &dev->state);
1312 else {
1313 dev->flags |= IFF_UP;
1314 dev_set_rx_mode(dev);
1315 dev_activate(dev);
1316 add_device_randomness(dev->dev_addr, dev->addr_len);
1317 }
1318
1319 return ret;
1320}
1321
1322/**
1323 * dev_open - prepare an interface for use.
1324 * @dev: device to open
1325 *
1326 * Takes a device from down to up state. The device's private open
1327 * function is invoked and then the multicast lists are loaded. Finally
1328 * the device is moved into the up state and a %NETDEV_UP message is
1329 * sent to the netdev notifier chain.
1330 *
1331 * Calling this function on an active interface is a nop. On a failure
1332 * a negative errno code is returned.
1333 */
1334int dev_open(struct net_device *dev)
1335{
1336 int ret;
1337
1338 if (dev->flags & IFF_UP)
1339 return 0;
1340
1341 ret = __dev_open(dev);
1342 if (ret < 0)
1343 return ret;
1344
1345 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1346 call_netdevice_notifiers(NETDEV_UP, dev);
1347
1348 return ret;
1349}
1350EXPORT_SYMBOL(dev_open);
1351
1352static int __dev_close_many(struct list_head *head)
1353{
1354 struct net_device *dev;
1355
1356 ASSERT_RTNL();
1357 might_sleep();
1358
1359 list_for_each_entry(dev, head, close_list) {
1360 /* Temporarily disable netpoll until the interface is down */
1361 netpoll_poll_disable(dev);
1362
1363 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1364
1365 clear_bit(__LINK_STATE_START, &dev->state);
1366
1367 /* Synchronize to scheduled poll. We cannot touch poll list, it
1368 * can be even on different cpu. So just clear netif_running().
1369 *
1370 * dev->stop() will invoke napi_disable() on all of it's
1371 * napi_struct instances on this device.
1372 */
1373 smp_mb__after_atomic(); /* Commit netif_running(). */
1374 }
1375
1376 dev_deactivate_many(head);
1377
1378 list_for_each_entry(dev, head, close_list) {
1379 const struct net_device_ops *ops = dev->netdev_ops;
1380
1381 /*
1382 * Call the device specific close. This cannot fail.
1383 * Only if device is UP
1384 *
1385 * We allow it to be called even after a DETACH hot-plug
1386 * event.
1387 */
1388 if (ops->ndo_stop)
1389 ops->ndo_stop(dev);
1390
1391 dev->flags &= ~IFF_UP;
1392 netpoll_poll_enable(dev);
1393 }
1394
1395 return 0;
1396}
1397
1398static int __dev_close(struct net_device *dev)
1399{
1400 int retval;
1401 LIST_HEAD(single);
1402
1403 list_add(&dev->close_list, &single);
1404 retval = __dev_close_many(&single);
1405 list_del(&single);
1406
1407 return retval;
1408}
1409
1410int dev_close_many(struct list_head *head, bool unlink)
1411{
1412 struct net_device *dev, *tmp;
1413
1414 /* Remove the devices that don't need to be closed */
1415 list_for_each_entry_safe(dev, tmp, head, close_list)
1416 if (!(dev->flags & IFF_UP))
1417 list_del_init(&dev->close_list);
1418
1419 __dev_close_many(head);
1420
1421 list_for_each_entry_safe(dev, tmp, head, close_list) {
1422 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1423 call_netdevice_notifiers(NETDEV_DOWN, dev);
1424 if (unlink)
1425 list_del_init(&dev->close_list);
1426 }
1427
1428 return 0;
1429}
1430EXPORT_SYMBOL(dev_close_many);
1431
1432/**
1433 * dev_close - shutdown an interface.
1434 * @dev: device to shutdown
1435 *
1436 * This function moves an active device into down state. A
1437 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1438 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1439 * chain.
1440 */
1441int dev_close(struct net_device *dev)
1442{
1443 if (dev->flags & IFF_UP) {
1444 LIST_HEAD(single);
1445
1446 list_add(&dev->close_list, &single);
1447 dev_close_many(&single, true);
1448 list_del(&single);
1449 }
1450 return 0;
1451}
1452EXPORT_SYMBOL(dev_close);
1453
1454
1455/**
1456 * dev_disable_lro - disable Large Receive Offload on a device
1457 * @dev: device
1458 *
1459 * Disable Large Receive Offload (LRO) on a net device. Must be
1460 * called under RTNL. This is needed if received packets may be
1461 * forwarded to another interface.
1462 */
1463void dev_disable_lro(struct net_device *dev)
1464{
1465 struct net_device *lower_dev;
1466 struct list_head *iter;
1467
1468 dev->wanted_features &= ~NETIF_F_LRO;
1469 netdev_update_features(dev);
1470
1471 if (unlikely(dev->features & NETIF_F_LRO))
1472 netdev_WARN(dev, "failed to disable LRO!\n");
1473
1474 netdev_for_each_lower_dev(dev, lower_dev, iter)
1475 dev_disable_lro(lower_dev);
1476}
1477EXPORT_SYMBOL(dev_disable_lro);
1478
1479static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1480 struct net_device *dev)
1481{
1482 struct netdev_notifier_info info;
1483
1484 netdev_notifier_info_init(&info, dev);
1485 return nb->notifier_call(nb, val, &info);
1486}
1487
1488static int dev_boot_phase = 1;
1489
1490/**
1491 * register_netdevice_notifier - register a network notifier block
1492 * @nb: notifier
1493 *
1494 * Register a notifier to be called when network device events occur.
1495 * The notifier passed is linked into the kernel structures and must
1496 * not be reused until it has been unregistered. A negative errno code
1497 * is returned on a failure.
1498 *
1499 * When registered all registration and up events are replayed
1500 * to the new notifier to allow device to have a race free
1501 * view of the network device list.
1502 */
1503
1504int register_netdevice_notifier(struct notifier_block *nb)
1505{
1506 struct net_device *dev;
1507 struct net_device *last;
1508 struct net *net;
1509 int err;
1510
1511 rtnl_lock();
1512 err = raw_notifier_chain_register(&netdev_chain, nb);
1513 if (err)
1514 goto unlock;
1515 if (dev_boot_phase)
1516 goto unlock;
1517 for_each_net(net) {
1518 for_each_netdev(net, dev) {
1519 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1520 err = notifier_to_errno(err);
1521 if (err)
1522 goto rollback;
1523
1524 if (!(dev->flags & IFF_UP))
1525 continue;
1526
1527 call_netdevice_notifier(nb, NETDEV_UP, dev);
1528 }
1529 }
1530
1531unlock:
1532 rtnl_unlock();
1533 return err;
1534
1535rollback:
1536 last = dev;
1537 for_each_net(net) {
1538 for_each_netdev(net, dev) {
1539 if (dev == last)
1540 goto outroll;
1541
1542 if (dev->flags & IFF_UP) {
1543 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1544 dev);
1545 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1546 }
1547 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1548 }
1549 }
1550
1551outroll:
1552 raw_notifier_chain_unregister(&netdev_chain, nb);
1553 goto unlock;
1554}
1555EXPORT_SYMBOL(register_netdevice_notifier);
1556
1557/**
1558 * unregister_netdevice_notifier - unregister a network notifier block
1559 * @nb: notifier
1560 *
1561 * Unregister a notifier previously registered by
1562 * register_netdevice_notifier(). The notifier is unlinked into the
1563 * kernel structures and may then be reused. A negative errno code
1564 * is returned on a failure.
1565 *
1566 * After unregistering unregister and down device events are synthesized
1567 * for all devices on the device list to the removed notifier to remove
1568 * the need for special case cleanup code.
1569 */
1570
1571int unregister_netdevice_notifier(struct notifier_block *nb)
1572{
1573 struct net_device *dev;
1574 struct net *net;
1575 int err;
1576
1577 rtnl_lock();
1578 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1579 if (err)
1580 goto unlock;
1581
1582 for_each_net(net) {
1583 for_each_netdev(net, dev) {
1584 if (dev->flags & IFF_UP) {
1585 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1586 dev);
1587 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1588 }
1589 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1590 }
1591 }
1592unlock:
1593 rtnl_unlock();
1594 return err;
1595}
1596EXPORT_SYMBOL(unregister_netdevice_notifier);
1597
1598/**
1599 * call_netdevice_notifiers_info - call all network notifier blocks
1600 * @val: value passed unmodified to notifier function
1601 * @dev: net_device pointer passed unmodified to notifier function
1602 * @info: notifier information data
1603 *
1604 * Call all network notifier blocks. Parameters and return value
1605 * are as for raw_notifier_call_chain().
1606 */
1607
1608static int call_netdevice_notifiers_info(unsigned long val,
1609 struct net_device *dev,
1610 struct netdev_notifier_info *info)
1611{
1612 ASSERT_RTNL();
1613 netdev_notifier_info_init(info, dev);
1614 return raw_notifier_call_chain(&netdev_chain, val, info);
1615}
1616
1617/**
1618 * call_netdevice_notifiers - call all network notifier blocks
1619 * @val: value passed unmodified to notifier function
1620 * @dev: net_device pointer passed unmodified to notifier function
1621 *
1622 * Call all network notifier blocks. Parameters and return value
1623 * are as for raw_notifier_call_chain().
1624 */
1625
1626int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1627{
1628 struct netdev_notifier_info info;
1629
1630 return call_netdevice_notifiers_info(val, dev, &info);
1631}
1632EXPORT_SYMBOL(call_netdevice_notifiers);
1633
1634#ifdef CONFIG_NET_INGRESS
1635static struct static_key ingress_needed __read_mostly;
1636
1637void net_inc_ingress_queue(void)
1638{
1639 static_key_slow_inc(&ingress_needed);
1640}
1641EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1642
1643void net_dec_ingress_queue(void)
1644{
1645 static_key_slow_dec(&ingress_needed);
1646}
1647EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1648#endif
1649
1650static struct static_key netstamp_needed __read_mostly;
1651#ifdef HAVE_JUMP_LABEL
1652/* We are not allowed to call static_key_slow_dec() from irq context
1653 * If net_disable_timestamp() is called from irq context, defer the
1654 * static_key_slow_dec() calls.
1655 */
1656static atomic_t netstamp_needed_deferred;
1657#endif
1658
1659void net_enable_timestamp(void)
1660{
1661#ifdef HAVE_JUMP_LABEL
1662 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1663
1664 if (deferred) {
1665 while (--deferred)
1666 static_key_slow_dec(&netstamp_needed);
1667 return;
1668 }
1669#endif
1670 static_key_slow_inc(&netstamp_needed);
1671}
1672EXPORT_SYMBOL(net_enable_timestamp);
1673
1674void net_disable_timestamp(void)
1675{
1676#ifdef HAVE_JUMP_LABEL
1677 if (in_interrupt()) {
1678 atomic_inc(&netstamp_needed_deferred);
1679 return;
1680 }
1681#endif
1682 static_key_slow_dec(&netstamp_needed);
1683}
1684EXPORT_SYMBOL(net_disable_timestamp);
1685
1686static inline void net_timestamp_set(struct sk_buff *skb)
1687{
1688 skb->tstamp.tv64 = 0;
1689 if (static_key_false(&netstamp_needed))
1690 __net_timestamp(skb);
1691}
1692
1693#define net_timestamp_check(COND, SKB) \
1694 if (static_key_false(&netstamp_needed)) { \
1695 if ((COND) && !(SKB)->tstamp.tv64) \
1696 __net_timestamp(SKB); \
1697 } \
1698
1699bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1700{
1701 unsigned int len;
1702
1703 if (!(dev->flags & IFF_UP))
1704 return false;
1705
1706 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1707 if (skb->len <= len)
1708 return true;
1709
1710 /* if TSO is enabled, we don't care about the length as the packet
1711 * could be forwarded without being segmented before
1712 */
1713 if (skb_is_gso(skb))
1714 return true;
1715
1716 return false;
1717}
1718EXPORT_SYMBOL_GPL(is_skb_forwardable);
1719
1720int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1721{
1722 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1723 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1724 atomic_long_inc(&dev->rx_dropped);
1725 kfree_skb(skb);
1726 return NET_RX_DROP;
1727 }
1728 }
1729
1730 if (unlikely(!is_skb_forwardable(dev, skb))) {
1731 atomic_long_inc(&dev->rx_dropped);
1732 kfree_skb(skb);
1733 return NET_RX_DROP;
1734 }
1735
1736 skb_scrub_packet(skb, true);
1737 skb->priority = 0;
1738 skb->protocol = eth_type_trans(skb, dev);
1739 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1740
1741 return 0;
1742}
1743EXPORT_SYMBOL_GPL(__dev_forward_skb);
1744
1745/**
1746 * dev_forward_skb - loopback an skb to another netif
1747 *
1748 * @dev: destination network device
1749 * @skb: buffer to forward
1750 *
1751 * return values:
1752 * NET_RX_SUCCESS (no congestion)
1753 * NET_RX_DROP (packet was dropped, but freed)
1754 *
1755 * dev_forward_skb can be used for injecting an skb from the
1756 * start_xmit function of one device into the receive queue
1757 * of another device.
1758 *
1759 * The receiving device may be in another namespace, so
1760 * we have to clear all information in the skb that could
1761 * impact namespace isolation.
1762 */
1763int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1764{
1765 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1766}
1767EXPORT_SYMBOL_GPL(dev_forward_skb);
1768
1769static inline int deliver_skb(struct sk_buff *skb,
1770 struct packet_type *pt_prev,
1771 struct net_device *orig_dev)
1772{
1773 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1774 return -ENOMEM;
1775 atomic_inc(&skb->users);
1776 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1777}
1778
1779static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1780 struct packet_type **pt,
1781 struct net_device *orig_dev,
1782 __be16 type,
1783 struct list_head *ptype_list)
1784{
1785 struct packet_type *ptype, *pt_prev = *pt;
1786
1787 list_for_each_entry_rcu(ptype, ptype_list, list) {
1788 if (ptype->type != type)
1789 continue;
1790 if (pt_prev)
1791 deliver_skb(skb, pt_prev, orig_dev);
1792 pt_prev = ptype;
1793 }
1794 *pt = pt_prev;
1795}
1796
1797static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1798{
1799 if (!ptype->af_packet_priv || !skb->sk)
1800 return false;
1801
1802 if (ptype->id_match)
1803 return ptype->id_match(ptype, skb->sk);
1804 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1805 return true;
1806
1807 return false;
1808}
1809
1810/*
1811 * Support routine. Sends outgoing frames to any network
1812 * taps currently in use.
1813 */
1814
1815static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1816{
1817 struct packet_type *ptype;
1818 struct sk_buff *skb2 = NULL;
1819 struct packet_type *pt_prev = NULL;
1820 struct list_head *ptype_list = &ptype_all;
1821
1822 rcu_read_lock();
1823again:
1824 list_for_each_entry_rcu(ptype, ptype_list, list) {
1825 /* Never send packets back to the socket
1826 * they originated from - MvS (miquels@drinkel.ow.org)
1827 */
1828 if (skb_loop_sk(ptype, skb))
1829 continue;
1830
1831 if (pt_prev) {
1832 deliver_skb(skb2, pt_prev, skb->dev);
1833 pt_prev = ptype;
1834 continue;
1835 }
1836
1837 /* need to clone skb, done only once */
1838 skb2 = skb_clone(skb, GFP_ATOMIC);
1839 if (!skb2)
1840 goto out_unlock;
1841
1842 net_timestamp_set(skb2);
1843
1844 /* skb->nh should be correctly
1845 * set by sender, so that the second statement is
1846 * just protection against buggy protocols.
1847 */
1848 skb_reset_mac_header(skb2);
1849
1850 if (skb_network_header(skb2) < skb2->data ||
1851 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1852 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1853 ntohs(skb2->protocol),
1854 dev->name);
1855 skb_reset_network_header(skb2);
1856 }
1857
1858 skb2->transport_header = skb2->network_header;
1859 skb2->pkt_type = PACKET_OUTGOING;
1860 pt_prev = ptype;
1861 }
1862
1863 if (ptype_list == &ptype_all) {
1864 ptype_list = &dev->ptype_all;
1865 goto again;
1866 }
1867out_unlock:
1868 if (pt_prev)
1869 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1870 rcu_read_unlock();
1871}
1872
1873/**
1874 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1875 * @dev: Network device
1876 * @txq: number of queues available
1877 *
1878 * If real_num_tx_queues is changed the tc mappings may no longer be
1879 * valid. To resolve this verify the tc mapping remains valid and if
1880 * not NULL the mapping. With no priorities mapping to this
1881 * offset/count pair it will no longer be used. In the worst case TC0
1882 * is invalid nothing can be done so disable priority mappings. If is
1883 * expected that drivers will fix this mapping if they can before
1884 * calling netif_set_real_num_tx_queues.
1885 */
1886static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1887{
1888 int i;
1889 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1890
1891 /* If TC0 is invalidated disable TC mapping */
1892 if (tc->offset + tc->count > txq) {
1893 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1894 dev->num_tc = 0;
1895 return;
1896 }
1897
1898 /* Invalidated prio to tc mappings set to TC0 */
1899 for (i = 1; i < TC_BITMASK + 1; i++) {
1900 int q = netdev_get_prio_tc_map(dev, i);
1901
1902 tc = &dev->tc_to_txq[q];
1903 if (tc->offset + tc->count > txq) {
1904 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1905 i, q);
1906 netdev_set_prio_tc_map(dev, i, 0);
1907 }
1908 }
1909}
1910
1911#ifdef CONFIG_XPS
1912static DEFINE_MUTEX(xps_map_mutex);
1913#define xmap_dereference(P) \
1914 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1915
1916static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1917 int cpu, u16 index)
1918{
1919 struct xps_map *map = NULL;
1920 int pos;
1921
1922 if (dev_maps)
1923 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1924
1925 for (pos = 0; map && pos < map->len; pos++) {
1926 if (map->queues[pos] == index) {
1927 if (map->len > 1) {
1928 map->queues[pos] = map->queues[--map->len];
1929 } else {
1930 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1931 kfree_rcu(map, rcu);
1932 map = NULL;
1933 }
1934 break;
1935 }
1936 }
1937
1938 return map;
1939}
1940
1941static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1942{
1943 struct xps_dev_maps *dev_maps;
1944 int cpu, i;
1945 bool active = false;
1946
1947 mutex_lock(&xps_map_mutex);
1948 dev_maps = xmap_dereference(dev->xps_maps);
1949
1950 if (!dev_maps)
1951 goto out_no_maps;
1952
1953 for_each_possible_cpu(cpu) {
1954 for (i = index; i < dev->num_tx_queues; i++) {
1955 if (!remove_xps_queue(dev_maps, cpu, i))
1956 break;
1957 }
1958 if (i == dev->num_tx_queues)
1959 active = true;
1960 }
1961
1962 if (!active) {
1963 RCU_INIT_POINTER(dev->xps_maps, NULL);
1964 kfree_rcu(dev_maps, rcu);
1965 }
1966
1967 for (i = index; i < dev->num_tx_queues; i++)
1968 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1969 NUMA_NO_NODE);
1970
1971out_no_maps:
1972 mutex_unlock(&xps_map_mutex);
1973}
1974
1975static struct xps_map *expand_xps_map(struct xps_map *map,
1976 int cpu, u16 index)
1977{
1978 struct xps_map *new_map;
1979 int alloc_len = XPS_MIN_MAP_ALLOC;
1980 int i, pos;
1981
1982 for (pos = 0; map && pos < map->len; pos++) {
1983 if (map->queues[pos] != index)
1984 continue;
1985 return map;
1986 }
1987
1988 /* Need to add queue to this CPU's existing map */
1989 if (map) {
1990 if (pos < map->alloc_len)
1991 return map;
1992
1993 alloc_len = map->alloc_len * 2;
1994 }
1995
1996 /* Need to allocate new map to store queue on this CPU's map */
1997 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1998 cpu_to_node(cpu));
1999 if (!new_map)
2000 return NULL;
2001
2002 for (i = 0; i < pos; i++)
2003 new_map->queues[i] = map->queues[i];
2004 new_map->alloc_len = alloc_len;
2005 new_map->len = pos;
2006
2007 return new_map;
2008}
2009
2010int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2011 u16 index)
2012{
2013 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2014 struct xps_map *map, *new_map;
2015 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2016 int cpu, numa_node_id = -2;
2017 bool active = false;
2018
2019 mutex_lock(&xps_map_mutex);
2020
2021 dev_maps = xmap_dereference(dev->xps_maps);
2022
2023 /* allocate memory for queue storage */
2024 for_each_online_cpu(cpu) {
2025 if (!cpumask_test_cpu(cpu, mask))
2026 continue;
2027
2028 if (!new_dev_maps)
2029 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2030 if (!new_dev_maps) {
2031 mutex_unlock(&xps_map_mutex);
2032 return -ENOMEM;
2033 }
2034
2035 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2036 NULL;
2037
2038 map = expand_xps_map(map, cpu, index);
2039 if (!map)
2040 goto error;
2041
2042 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2043 }
2044
2045 if (!new_dev_maps)
2046 goto out_no_new_maps;
2047
2048 for_each_possible_cpu(cpu) {
2049 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2050 /* add queue to CPU maps */
2051 int pos = 0;
2052
2053 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2054 while ((pos < map->len) && (map->queues[pos] != index))
2055 pos++;
2056
2057 if (pos == map->len)
2058 map->queues[map->len++] = index;
2059#ifdef CONFIG_NUMA
2060 if (numa_node_id == -2)
2061 numa_node_id = cpu_to_node(cpu);
2062 else if (numa_node_id != cpu_to_node(cpu))
2063 numa_node_id = -1;
2064#endif
2065 } else if (dev_maps) {
2066 /* fill in the new device map from the old device map */
2067 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2068 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2069 }
2070
2071 }
2072
2073 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2074
2075 /* Cleanup old maps */
2076 if (dev_maps) {
2077 for_each_possible_cpu(cpu) {
2078 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2079 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2080 if (map && map != new_map)
2081 kfree_rcu(map, rcu);
2082 }
2083
2084 kfree_rcu(dev_maps, rcu);
2085 }
2086
2087 dev_maps = new_dev_maps;
2088 active = true;
2089
2090out_no_new_maps:
2091 /* update Tx queue numa node */
2092 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2093 (numa_node_id >= 0) ? numa_node_id :
2094 NUMA_NO_NODE);
2095
2096 if (!dev_maps)
2097 goto out_no_maps;
2098
2099 /* removes queue from unused CPUs */
2100 for_each_possible_cpu(cpu) {
2101 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2102 continue;
2103
2104 if (remove_xps_queue(dev_maps, cpu, index))
2105 active = true;
2106 }
2107
2108 /* free map if not active */
2109 if (!active) {
2110 RCU_INIT_POINTER(dev->xps_maps, NULL);
2111 kfree_rcu(dev_maps, rcu);
2112 }
2113
2114out_no_maps:
2115 mutex_unlock(&xps_map_mutex);
2116
2117 return 0;
2118error:
2119 /* remove any maps that we added */
2120 for_each_possible_cpu(cpu) {
2121 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2122 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2123 NULL;
2124 if (new_map && new_map != map)
2125 kfree(new_map);
2126 }
2127
2128 mutex_unlock(&xps_map_mutex);
2129
2130 kfree(new_dev_maps);
2131 return -ENOMEM;
2132}
2133EXPORT_SYMBOL(netif_set_xps_queue);
2134
2135#endif
2136/*
2137 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2138 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2139 */
2140int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2141{
2142 int rc;
2143
2144 if (txq < 1 || txq > dev->num_tx_queues)
2145 return -EINVAL;
2146
2147 if (dev->reg_state == NETREG_REGISTERED ||
2148 dev->reg_state == NETREG_UNREGISTERING) {
2149 ASSERT_RTNL();
2150
2151 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2152 txq);
2153 if (rc)
2154 return rc;
2155
2156 if (dev->num_tc)
2157 netif_setup_tc(dev, txq);
2158
2159 if (txq < dev->real_num_tx_queues) {
2160 qdisc_reset_all_tx_gt(dev, txq);
2161#ifdef CONFIG_XPS
2162 netif_reset_xps_queues_gt(dev, txq);
2163#endif
2164 }
2165 }
2166
2167 dev->real_num_tx_queues = txq;
2168 return 0;
2169}
2170EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2171
2172#ifdef CONFIG_SYSFS
2173/**
2174 * netif_set_real_num_rx_queues - set actual number of RX queues used
2175 * @dev: Network device
2176 * @rxq: Actual number of RX queues
2177 *
2178 * This must be called either with the rtnl_lock held or before
2179 * registration of the net device. Returns 0 on success, or a
2180 * negative error code. If called before registration, it always
2181 * succeeds.
2182 */
2183int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2184{
2185 int rc;
2186
2187 if (rxq < 1 || rxq > dev->num_rx_queues)
2188 return -EINVAL;
2189
2190 if (dev->reg_state == NETREG_REGISTERED) {
2191 ASSERT_RTNL();
2192
2193 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2194 rxq);
2195 if (rc)
2196 return rc;
2197 }
2198
2199 dev->real_num_rx_queues = rxq;
2200 return 0;
2201}
2202EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2203#endif
2204
2205/**
2206 * netif_get_num_default_rss_queues - default number of RSS queues
2207 *
2208 * This routine should set an upper limit on the number of RSS queues
2209 * used by default by multiqueue devices.
2210 */
2211int netif_get_num_default_rss_queues(void)
2212{
2213 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2214}
2215EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2216
2217static inline void __netif_reschedule(struct Qdisc *q)
2218{
2219 struct softnet_data *sd;
2220 unsigned long flags;
2221
2222 local_irq_save(flags);
2223 sd = this_cpu_ptr(&softnet_data);
2224 q->next_sched = NULL;
2225 *sd->output_queue_tailp = q;
2226 sd->output_queue_tailp = &q->next_sched;
2227 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2228 local_irq_restore(flags);
2229}
2230
2231void __netif_schedule(struct Qdisc *q)
2232{
2233 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2234 __netif_reschedule(q);
2235}
2236EXPORT_SYMBOL(__netif_schedule);
2237
2238struct dev_kfree_skb_cb {
2239 enum skb_free_reason reason;
2240};
2241
2242static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2243{
2244 return (struct dev_kfree_skb_cb *)skb->cb;
2245}
2246
2247void netif_schedule_queue(struct netdev_queue *txq)
2248{
2249 rcu_read_lock();
2250 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2251 struct Qdisc *q = rcu_dereference(txq->qdisc);
2252
2253 __netif_schedule(q);
2254 }
2255 rcu_read_unlock();
2256}
2257EXPORT_SYMBOL(netif_schedule_queue);
2258
2259/**
2260 * netif_wake_subqueue - allow sending packets on subqueue
2261 * @dev: network device
2262 * @queue_index: sub queue index
2263 *
2264 * Resume individual transmit queue of a device with multiple transmit queues.
2265 */
2266void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2267{
2268 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2269
2270 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2271 struct Qdisc *q;
2272
2273 rcu_read_lock();
2274 q = rcu_dereference(txq->qdisc);
2275 __netif_schedule(q);
2276 rcu_read_unlock();
2277 }
2278}
2279EXPORT_SYMBOL(netif_wake_subqueue);
2280
2281void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2282{
2283 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2284 struct Qdisc *q;
2285
2286 rcu_read_lock();
2287 q = rcu_dereference(dev_queue->qdisc);
2288 __netif_schedule(q);
2289 rcu_read_unlock();
2290 }
2291}
2292EXPORT_SYMBOL(netif_tx_wake_queue);
2293
2294void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2295{
2296 unsigned long flags;
2297
2298 if (likely(atomic_read(&skb->users) == 1)) {
2299 smp_rmb();
2300 atomic_set(&skb->users, 0);
2301 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2302 return;
2303 }
2304 get_kfree_skb_cb(skb)->reason = reason;
2305 local_irq_save(flags);
2306 skb->next = __this_cpu_read(softnet_data.completion_queue);
2307 __this_cpu_write(softnet_data.completion_queue, skb);
2308 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2309 local_irq_restore(flags);
2310}
2311EXPORT_SYMBOL(__dev_kfree_skb_irq);
2312
2313void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2314{
2315 if (in_irq() || irqs_disabled())
2316 __dev_kfree_skb_irq(skb, reason);
2317 else
2318 dev_kfree_skb(skb);
2319}
2320EXPORT_SYMBOL(__dev_kfree_skb_any);
2321
2322
2323/**
2324 * netif_device_detach - mark device as removed
2325 * @dev: network device
2326 *
2327 * Mark device as removed from system and therefore no longer available.
2328 */
2329void netif_device_detach(struct net_device *dev)
2330{
2331 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2332 netif_running(dev)) {
2333 netif_tx_stop_all_queues(dev);
2334 }
2335}
2336EXPORT_SYMBOL(netif_device_detach);
2337
2338/**
2339 * netif_device_attach - mark device as attached
2340 * @dev: network device
2341 *
2342 * Mark device as attached from system and restart if needed.
2343 */
2344void netif_device_attach(struct net_device *dev)
2345{
2346 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2347 netif_running(dev)) {
2348 netif_tx_wake_all_queues(dev);
2349 __netdev_watchdog_up(dev);
2350 }
2351}
2352EXPORT_SYMBOL(netif_device_attach);
2353
2354/*
2355 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2356 * to be used as a distribution range.
2357 */
2358u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2359 unsigned int num_tx_queues)
2360{
2361 u32 hash;
2362 u16 qoffset = 0;
2363 u16 qcount = num_tx_queues;
2364
2365 if (skb_rx_queue_recorded(skb)) {
2366 hash = skb_get_rx_queue(skb);
2367 while (unlikely(hash >= num_tx_queues))
2368 hash -= num_tx_queues;
2369 return hash;
2370 }
2371
2372 if (dev->num_tc) {
2373 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2374 qoffset = dev->tc_to_txq[tc].offset;
2375 qcount = dev->tc_to_txq[tc].count;
2376 }
2377
2378 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2379}
2380EXPORT_SYMBOL(__skb_tx_hash);
2381
2382static void skb_warn_bad_offload(const struct sk_buff *skb)
2383{
2384 static const netdev_features_t null_features = 0;
2385 struct net_device *dev = skb->dev;
2386 const char *driver = "";
2387
2388 if (!net_ratelimit())
2389 return;
2390
2391 if (dev && dev->dev.parent)
2392 driver = dev_driver_string(dev->dev.parent);
2393
2394 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2395 "gso_type=%d ip_summed=%d\n",
2396 driver, dev ? &dev->features : &null_features,
2397 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2398 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2399 skb_shinfo(skb)->gso_type, skb->ip_summed);
2400}
2401
2402/*
2403 * Invalidate hardware checksum when packet is to be mangled, and
2404 * complete checksum manually on outgoing path.
2405 */
2406int skb_checksum_help(struct sk_buff *skb)
2407{
2408 __wsum csum;
2409 int ret = 0, offset;
2410
2411 if (skb->ip_summed == CHECKSUM_COMPLETE)
2412 goto out_set_summed;
2413
2414 if (unlikely(skb_shinfo(skb)->gso_size)) {
2415 skb_warn_bad_offload(skb);
2416 return -EINVAL;
2417 }
2418
2419 /* Before computing a checksum, we should make sure no frag could
2420 * be modified by an external entity : checksum could be wrong.
2421 */
2422 if (skb_has_shared_frag(skb)) {
2423 ret = __skb_linearize(skb);
2424 if (ret)
2425 goto out;
2426 }
2427
2428 offset = skb_checksum_start_offset(skb);
2429 BUG_ON(offset >= skb_headlen(skb));
2430 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2431
2432 offset += skb->csum_offset;
2433 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2434
2435 if (skb_cloned(skb) &&
2436 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2437 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2438 if (ret)
2439 goto out;
2440 }
2441
2442 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2443out_set_summed:
2444 skb->ip_summed = CHECKSUM_NONE;
2445out:
2446 return ret;
2447}
2448EXPORT_SYMBOL(skb_checksum_help);
2449
2450__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2451{
2452 __be16 type = skb->protocol;
2453
2454 /* Tunnel gso handlers can set protocol to ethernet. */
2455 if (type == htons(ETH_P_TEB)) {
2456 struct ethhdr *eth;
2457
2458 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2459 return 0;
2460
2461 eth = (struct ethhdr *)skb_mac_header(skb);
2462 type = eth->h_proto;
2463 }
2464
2465 return __vlan_get_protocol(skb, type, depth);
2466}
2467
2468/**
2469 * skb_mac_gso_segment - mac layer segmentation handler.
2470 * @skb: buffer to segment
2471 * @features: features for the output path (see dev->features)
2472 */
2473struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2474 netdev_features_t features)
2475{
2476 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2477 struct packet_offload *ptype;
2478 int vlan_depth = skb->mac_len;
2479 __be16 type = skb_network_protocol(skb, &vlan_depth);
2480
2481 if (unlikely(!type))
2482 return ERR_PTR(-EINVAL);
2483
2484 __skb_pull(skb, vlan_depth);
2485
2486 rcu_read_lock();
2487 list_for_each_entry_rcu(ptype, &offload_base, list) {
2488 if (ptype->type == type && ptype->callbacks.gso_segment) {
2489 segs = ptype->callbacks.gso_segment(skb, features);
2490 break;
2491 }
2492 }
2493 rcu_read_unlock();
2494
2495 __skb_push(skb, skb->data - skb_mac_header(skb));
2496
2497 return segs;
2498}
2499EXPORT_SYMBOL(skb_mac_gso_segment);
2500
2501
2502/* openvswitch calls this on rx path, so we need a different check.
2503 */
2504static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2505{
2506 if (tx_path)
2507 return skb->ip_summed != CHECKSUM_PARTIAL;
2508 else
2509 return skb->ip_summed == CHECKSUM_NONE;
2510}
2511
2512/**
2513 * __skb_gso_segment - Perform segmentation on skb.
2514 * @skb: buffer to segment
2515 * @features: features for the output path (see dev->features)
2516 * @tx_path: whether it is called in TX path
2517 *
2518 * This function segments the given skb and returns a list of segments.
2519 *
2520 * It may return NULL if the skb requires no segmentation. This is
2521 * only possible when GSO is used for verifying header integrity.
2522 */
2523struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2524 netdev_features_t features, bool tx_path)
2525{
2526 if (unlikely(skb_needs_check(skb, tx_path))) {
2527 int err;
2528
2529 skb_warn_bad_offload(skb);
2530
2531 err = skb_cow_head(skb, 0);
2532 if (err < 0)
2533 return ERR_PTR(err);
2534 }
2535
2536 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2537 SKB_GSO_CB(skb)->encap_level = 0;
2538
2539 skb_reset_mac_header(skb);
2540 skb_reset_mac_len(skb);
2541
2542 return skb_mac_gso_segment(skb, features);
2543}
2544EXPORT_SYMBOL(__skb_gso_segment);
2545
2546/* Take action when hardware reception checksum errors are detected. */
2547#ifdef CONFIG_BUG
2548void netdev_rx_csum_fault(struct net_device *dev)
2549{
2550 if (net_ratelimit()) {
2551 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2552 dump_stack();
2553 }
2554}
2555EXPORT_SYMBOL(netdev_rx_csum_fault);
2556#endif
2557
2558/* Actually, we should eliminate this check as soon as we know, that:
2559 * 1. IOMMU is present and allows to map all the memory.
2560 * 2. No high memory really exists on this machine.
2561 */
2562
2563static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2564{
2565#ifdef CONFIG_HIGHMEM
2566 int i;
2567 if (!(dev->features & NETIF_F_HIGHDMA)) {
2568 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2569 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2570 if (PageHighMem(skb_frag_page(frag)))
2571 return 1;
2572 }
2573 }
2574
2575 if (PCI_DMA_BUS_IS_PHYS) {
2576 struct device *pdev = dev->dev.parent;
2577
2578 if (!pdev)
2579 return 0;
2580 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2581 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2582 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2583 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2584 return 1;
2585 }
2586 }
2587#endif
2588 return 0;
2589}
2590
2591/* If MPLS offload request, verify we are testing hardware MPLS features
2592 * instead of standard features for the netdev.
2593 */
2594#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2595static netdev_features_t net_mpls_features(struct sk_buff *skb,
2596 netdev_features_t features,
2597 __be16 type)
2598{
2599 if (eth_p_mpls(type))
2600 features &= skb->dev->mpls_features;
2601
2602 return features;
2603}
2604#else
2605static netdev_features_t net_mpls_features(struct sk_buff *skb,
2606 netdev_features_t features,
2607 __be16 type)
2608{
2609 return features;
2610}
2611#endif
2612
2613static netdev_features_t harmonize_features(struct sk_buff *skb,
2614 netdev_features_t features)
2615{
2616 int tmp;
2617 __be16 type;
2618
2619 type = skb_network_protocol(skb, &tmp);
2620 features = net_mpls_features(skb, features, type);
2621
2622 if (skb->ip_summed != CHECKSUM_NONE &&
2623 !can_checksum_protocol(features, type)) {
2624 features &= ~NETIF_F_ALL_CSUM;
2625 } else if (illegal_highdma(skb->dev, skb)) {
2626 features &= ~NETIF_F_SG;
2627 }
2628
2629 return features;
2630}
2631
2632netdev_features_t passthru_features_check(struct sk_buff *skb,
2633 struct net_device *dev,
2634 netdev_features_t features)
2635{
2636 return features;
2637}
2638EXPORT_SYMBOL(passthru_features_check);
2639
2640static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2641 struct net_device *dev,
2642 netdev_features_t features)
2643{
2644 return vlan_features_check(skb, features);
2645}
2646
2647netdev_features_t netif_skb_features(struct sk_buff *skb)
2648{
2649 struct net_device *dev = skb->dev;
2650 netdev_features_t features = dev->features;
2651 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2652
2653 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2654 features &= ~NETIF_F_GSO_MASK;
2655
2656 /* If encapsulation offload request, verify we are testing
2657 * hardware encapsulation features instead of standard
2658 * features for the netdev
2659 */
2660 if (skb->encapsulation)
2661 features &= dev->hw_enc_features;
2662
2663 if (skb_vlan_tagged(skb))
2664 features = netdev_intersect_features(features,
2665 dev->vlan_features |
2666 NETIF_F_HW_VLAN_CTAG_TX |
2667 NETIF_F_HW_VLAN_STAG_TX);
2668
2669 if (dev->netdev_ops->ndo_features_check)
2670 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2671 features);
2672 else
2673 features &= dflt_features_check(skb, dev, features);
2674
2675 return harmonize_features(skb, features);
2676}
2677EXPORT_SYMBOL(netif_skb_features);
2678
2679static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2680 struct netdev_queue *txq, bool more)
2681{
2682 unsigned int len;
2683 int rc;
2684
2685 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2686 dev_queue_xmit_nit(skb, dev);
2687
2688 len = skb->len;
2689 trace_net_dev_start_xmit(skb, dev);
2690 rc = netdev_start_xmit(skb, dev, txq, more);
2691 trace_net_dev_xmit(skb, rc, dev, len);
2692
2693 return rc;
2694}
2695
2696struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2697 struct netdev_queue *txq, int *ret)
2698{
2699 struct sk_buff *skb = first;
2700 int rc = NETDEV_TX_OK;
2701
2702 while (skb) {
2703 struct sk_buff *next = skb->next;
2704
2705 skb->next = NULL;
2706 rc = xmit_one(skb, dev, txq, next != NULL);
2707 if (unlikely(!dev_xmit_complete(rc))) {
2708 skb->next = next;
2709 goto out;
2710 }
2711
2712 skb = next;
2713 if (netif_xmit_stopped(txq) && skb) {
2714 rc = NETDEV_TX_BUSY;
2715 break;
2716 }
2717 }
2718
2719out:
2720 *ret = rc;
2721 return skb;
2722}
2723
2724static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2725 netdev_features_t features)
2726{
2727 if (skb_vlan_tag_present(skb) &&
2728 !vlan_hw_offload_capable(features, skb->vlan_proto))
2729 skb = __vlan_hwaccel_push_inside(skb);
2730 return skb;
2731}
2732
2733static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2734{
2735 netdev_features_t features;
2736
2737 if (skb->next)
2738 return skb;
2739
2740 features = netif_skb_features(skb);
2741 skb = validate_xmit_vlan(skb, features);
2742 if (unlikely(!skb))
2743 goto out_null;
2744
2745 if (netif_needs_gso(skb, features)) {
2746 struct sk_buff *segs;
2747
2748 segs = skb_gso_segment(skb, features);
2749 if (IS_ERR(segs)) {
2750 goto out_kfree_skb;
2751 } else if (segs) {
2752 consume_skb(skb);
2753 skb = segs;
2754 }
2755 } else {
2756 if (skb_needs_linearize(skb, features) &&
2757 __skb_linearize(skb))
2758 goto out_kfree_skb;
2759
2760 /* If packet is not checksummed and device does not
2761 * support checksumming for this protocol, complete
2762 * checksumming here.
2763 */
2764 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2765 if (skb->encapsulation)
2766 skb_set_inner_transport_header(skb,
2767 skb_checksum_start_offset(skb));
2768 else
2769 skb_set_transport_header(skb,
2770 skb_checksum_start_offset(skb));
2771 if (!(features & NETIF_F_ALL_CSUM) &&
2772 skb_checksum_help(skb))
2773 goto out_kfree_skb;
2774 }
2775 }
2776
2777 return skb;
2778
2779out_kfree_skb:
2780 kfree_skb(skb);
2781out_null:
2782 return NULL;
2783}
2784
2785struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2786{
2787 struct sk_buff *next, *head = NULL, *tail;
2788
2789 for (; skb != NULL; skb = next) {
2790 next = skb->next;
2791 skb->next = NULL;
2792
2793 /* in case skb wont be segmented, point to itself */
2794 skb->prev = skb;
2795
2796 skb = validate_xmit_skb(skb, dev);
2797 if (!skb)
2798 continue;
2799
2800 if (!head)
2801 head = skb;
2802 else
2803 tail->next = skb;
2804 /* If skb was segmented, skb->prev points to
2805 * the last segment. If not, it still contains skb.
2806 */
2807 tail = skb->prev;
2808 }
2809 return head;
2810}
2811
2812static void qdisc_pkt_len_init(struct sk_buff *skb)
2813{
2814 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2815
2816 qdisc_skb_cb(skb)->pkt_len = skb->len;
2817
2818 /* To get more precise estimation of bytes sent on wire,
2819 * we add to pkt_len the headers size of all segments
2820 */
2821 if (shinfo->gso_size) {
2822 unsigned int hdr_len;
2823 u16 gso_segs = shinfo->gso_segs;
2824
2825 /* mac layer + network layer */
2826 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2827
2828 /* + transport layer */
2829 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2830 hdr_len += tcp_hdrlen(skb);
2831 else
2832 hdr_len += sizeof(struct udphdr);
2833
2834 if (shinfo->gso_type & SKB_GSO_DODGY)
2835 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2836 shinfo->gso_size);
2837
2838 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2839 }
2840}
2841
2842static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2843 struct net_device *dev,
2844 struct netdev_queue *txq)
2845{
2846 spinlock_t *root_lock = qdisc_lock(q);
2847 bool contended;
2848 int rc;
2849
2850 qdisc_pkt_len_init(skb);
2851 qdisc_calculate_pkt_len(skb, q);
2852 /*
2853 * Heuristic to force contended enqueues to serialize on a
2854 * separate lock before trying to get qdisc main lock.
2855 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2856 * often and dequeue packets faster.
2857 */
2858 contended = qdisc_is_running(q);
2859 if (unlikely(contended))
2860 spin_lock(&q->busylock);
2861
2862 spin_lock(root_lock);
2863 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2864 kfree_skb(skb);
2865 rc = NET_XMIT_DROP;
2866 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2867 qdisc_run_begin(q)) {
2868 /*
2869 * This is a work-conserving queue; there are no old skbs
2870 * waiting to be sent out; and the qdisc is not running -
2871 * xmit the skb directly.
2872 */
2873
2874 qdisc_bstats_update(q, skb);
2875
2876 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2877 if (unlikely(contended)) {
2878 spin_unlock(&q->busylock);
2879 contended = false;
2880 }
2881 __qdisc_run(q);
2882 } else
2883 qdisc_run_end(q);
2884
2885 rc = NET_XMIT_SUCCESS;
2886 } else {
2887 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2888 if (qdisc_run_begin(q)) {
2889 if (unlikely(contended)) {
2890 spin_unlock(&q->busylock);
2891 contended = false;
2892 }
2893 __qdisc_run(q);
2894 }
2895 }
2896 spin_unlock(root_lock);
2897 if (unlikely(contended))
2898 spin_unlock(&q->busylock);
2899 return rc;
2900}
2901
2902#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2903static void skb_update_prio(struct sk_buff *skb)
2904{
2905 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2906
2907 if (!skb->priority && skb->sk && map) {
2908 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2909
2910 if (prioidx < map->priomap_len)
2911 skb->priority = map->priomap[prioidx];
2912 }
2913}
2914#else
2915#define skb_update_prio(skb)
2916#endif
2917
2918DEFINE_PER_CPU(int, xmit_recursion);
2919EXPORT_SYMBOL(xmit_recursion);
2920
2921#define RECURSION_LIMIT 10
2922
2923/**
2924 * dev_loopback_xmit - loop back @skb
2925 * @skb: buffer to transmit
2926 */
2927int dev_loopback_xmit(struct sock *sk, struct sk_buff *skb)
2928{
2929 skb_reset_mac_header(skb);
2930 __skb_pull(skb, skb_network_offset(skb));
2931 skb->pkt_type = PACKET_LOOPBACK;
2932 skb->ip_summed = CHECKSUM_UNNECESSARY;
2933 WARN_ON(!skb_dst(skb));
2934 skb_dst_force(skb);
2935 netif_rx_ni(skb);
2936 return 0;
2937}
2938EXPORT_SYMBOL(dev_loopback_xmit);
2939
2940static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2941{
2942#ifdef CONFIG_XPS
2943 struct xps_dev_maps *dev_maps;
2944 struct xps_map *map;
2945 int queue_index = -1;
2946
2947 rcu_read_lock();
2948 dev_maps = rcu_dereference(dev->xps_maps);
2949 if (dev_maps) {
2950 map = rcu_dereference(
2951 dev_maps->cpu_map[skb->sender_cpu - 1]);
2952 if (map) {
2953 if (map->len == 1)
2954 queue_index = map->queues[0];
2955 else
2956 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
2957 map->len)];
2958 if (unlikely(queue_index >= dev->real_num_tx_queues))
2959 queue_index = -1;
2960 }
2961 }
2962 rcu_read_unlock();
2963
2964 return queue_index;
2965#else
2966 return -1;
2967#endif
2968}
2969
2970static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
2971{
2972 struct sock *sk = skb->sk;
2973 int queue_index = sk_tx_queue_get(sk);
2974
2975 if (queue_index < 0 || skb->ooo_okay ||
2976 queue_index >= dev->real_num_tx_queues) {
2977 int new_index = get_xps_queue(dev, skb);
2978 if (new_index < 0)
2979 new_index = skb_tx_hash(dev, skb);
2980
2981 if (queue_index != new_index && sk &&
2982 rcu_access_pointer(sk->sk_dst_cache))
2983 sk_tx_queue_set(sk, new_index);
2984
2985 queue_index = new_index;
2986 }
2987
2988 return queue_index;
2989}
2990
2991struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2992 struct sk_buff *skb,
2993 void *accel_priv)
2994{
2995 int queue_index = 0;
2996
2997#ifdef CONFIG_XPS
2998 if (skb->sender_cpu == 0)
2999 skb->sender_cpu = raw_smp_processor_id() + 1;
3000#endif
3001
3002 if (dev->real_num_tx_queues != 1) {
3003 const struct net_device_ops *ops = dev->netdev_ops;
3004 if (ops->ndo_select_queue)
3005 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3006 __netdev_pick_tx);
3007 else
3008 queue_index = __netdev_pick_tx(dev, skb);
3009
3010 if (!accel_priv)
3011 queue_index = netdev_cap_txqueue(dev, queue_index);
3012 }
3013
3014 skb_set_queue_mapping(skb, queue_index);
3015 return netdev_get_tx_queue(dev, queue_index);
3016}
3017
3018/**
3019 * __dev_queue_xmit - transmit a buffer
3020 * @skb: buffer to transmit
3021 * @accel_priv: private data used for L2 forwarding offload
3022 *
3023 * Queue a buffer for transmission to a network device. The caller must
3024 * have set the device and priority and built the buffer before calling
3025 * this function. The function can be called from an interrupt.
3026 *
3027 * A negative errno code is returned on a failure. A success does not
3028 * guarantee the frame will be transmitted as it may be dropped due
3029 * to congestion or traffic shaping.
3030 *
3031 * -----------------------------------------------------------------------------------
3032 * I notice this method can also return errors from the queue disciplines,
3033 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3034 * be positive.
3035 *
3036 * Regardless of the return value, the skb is consumed, so it is currently
3037 * difficult to retry a send to this method. (You can bump the ref count
3038 * before sending to hold a reference for retry if you are careful.)
3039 *
3040 * When calling this method, interrupts MUST be enabled. This is because
3041 * the BH enable code must have IRQs enabled so that it will not deadlock.
3042 * --BLG
3043 */
3044static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3045{
3046 struct net_device *dev = skb->dev;
3047 struct netdev_queue *txq;
3048 struct Qdisc *q;
3049 int rc = -ENOMEM;
3050
3051 skb_reset_mac_header(skb);
3052
3053 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3054 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3055
3056 /* Disable soft irqs for various locks below. Also
3057 * stops preemption for RCU.
3058 */
3059 rcu_read_lock_bh();
3060
3061 skb_update_prio(skb);
3062
3063 /* If device/qdisc don't need skb->dst, release it right now while
3064 * its hot in this cpu cache.
3065 */
3066 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3067 skb_dst_drop(skb);
3068 else
3069 skb_dst_force(skb);
3070
3071 txq = netdev_pick_tx(dev, skb, accel_priv);
3072 q = rcu_dereference_bh(txq->qdisc);
3073
3074#ifdef CONFIG_NET_CLS_ACT
3075 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3076#endif
3077 trace_net_dev_queue(skb);
3078 if (q->enqueue) {
3079 rc = __dev_xmit_skb(skb, q, dev, txq);
3080 goto out;
3081 }
3082
3083 /* The device has no queue. Common case for software devices:
3084 loopback, all the sorts of tunnels...
3085
3086 Really, it is unlikely that netif_tx_lock protection is necessary
3087 here. (f.e. loopback and IP tunnels are clean ignoring statistics
3088 counters.)
3089 However, it is possible, that they rely on protection
3090 made by us here.
3091
3092 Check this and shot the lock. It is not prone from deadlocks.
3093 Either shot noqueue qdisc, it is even simpler 8)
3094 */
3095 if (dev->flags & IFF_UP) {
3096 int cpu = smp_processor_id(); /* ok because BHs are off */
3097
3098 if (txq->xmit_lock_owner != cpu) {
3099
3100 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3101 goto recursion_alert;
3102
3103 skb = validate_xmit_skb(skb, dev);
3104 if (!skb)
3105 goto drop;
3106
3107 HARD_TX_LOCK(dev, txq, cpu);
3108
3109 if (!netif_xmit_stopped(txq)) {
3110 __this_cpu_inc(xmit_recursion);
3111 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3112 __this_cpu_dec(xmit_recursion);
3113 if (dev_xmit_complete(rc)) {
3114 HARD_TX_UNLOCK(dev, txq);
3115 goto out;
3116 }
3117 }
3118 HARD_TX_UNLOCK(dev, txq);
3119 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3120 dev->name);
3121 } else {
3122 /* Recursion is detected! It is possible,
3123 * unfortunately
3124 */
3125recursion_alert:
3126 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3127 dev->name);
3128 }
3129 }
3130
3131 rc = -ENETDOWN;
3132drop:
3133 rcu_read_unlock_bh();
3134
3135 atomic_long_inc(&dev->tx_dropped);
3136 kfree_skb_list(skb);
3137 return rc;
3138out:
3139 rcu_read_unlock_bh();
3140 return rc;
3141}
3142
3143int dev_queue_xmit_sk(struct sock *sk, struct sk_buff *skb)
3144{
3145 return __dev_queue_xmit(skb, NULL);
3146}
3147EXPORT_SYMBOL(dev_queue_xmit_sk);
3148
3149int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3150{
3151 return __dev_queue_xmit(skb, accel_priv);
3152}
3153EXPORT_SYMBOL(dev_queue_xmit_accel);
3154
3155
3156/*=======================================================================
3157 Receiver routines
3158 =======================================================================*/
3159
3160int netdev_max_backlog __read_mostly = 1000;
3161EXPORT_SYMBOL(netdev_max_backlog);
3162
3163int netdev_tstamp_prequeue __read_mostly = 1;
3164int netdev_budget __read_mostly = 300;
3165int weight_p __read_mostly = 64; /* old backlog weight */
3166
3167/* Called with irq disabled */
3168static inline void ____napi_schedule(struct softnet_data *sd,
3169 struct napi_struct *napi)
3170{
3171 list_add_tail(&napi->poll_list, &sd->poll_list);
3172 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3173}
3174
3175#ifdef CONFIG_RPS
3176
3177/* One global table that all flow-based protocols share. */
3178struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3179EXPORT_SYMBOL(rps_sock_flow_table);
3180u32 rps_cpu_mask __read_mostly;
3181EXPORT_SYMBOL(rps_cpu_mask);
3182
3183struct static_key rps_needed __read_mostly;
3184
3185static struct rps_dev_flow *
3186set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3187 struct rps_dev_flow *rflow, u16 next_cpu)
3188{
3189 if (next_cpu < nr_cpu_ids) {
3190#ifdef CONFIG_RFS_ACCEL
3191 struct netdev_rx_queue *rxqueue;
3192 struct rps_dev_flow_table *flow_table;
3193 struct rps_dev_flow *old_rflow;
3194 u32 flow_id;
3195 u16 rxq_index;
3196 int rc;
3197
3198 /* Should we steer this flow to a different hardware queue? */
3199 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3200 !(dev->features & NETIF_F_NTUPLE))
3201 goto out;
3202 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3203 if (rxq_index == skb_get_rx_queue(skb))
3204 goto out;
3205
3206 rxqueue = dev->_rx + rxq_index;
3207 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3208 if (!flow_table)
3209 goto out;
3210 flow_id = skb_get_hash(skb) & flow_table->mask;
3211 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3212 rxq_index, flow_id);
3213 if (rc < 0)
3214 goto out;
3215 old_rflow = rflow;
3216 rflow = &flow_table->flows[flow_id];
3217 rflow->filter = rc;
3218 if (old_rflow->filter == rflow->filter)
3219 old_rflow->filter = RPS_NO_FILTER;
3220 out:
3221#endif
3222 rflow->last_qtail =
3223 per_cpu(softnet_data, next_cpu).input_queue_head;
3224 }
3225
3226 rflow->cpu = next_cpu;
3227 return rflow;
3228}
3229
3230/*
3231 * get_rps_cpu is called from netif_receive_skb and returns the target
3232 * CPU from the RPS map of the receiving queue for a given skb.
3233 * rcu_read_lock must be held on entry.
3234 */
3235static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3236 struct rps_dev_flow **rflowp)
3237{
3238 const struct rps_sock_flow_table *sock_flow_table;
3239 struct netdev_rx_queue *rxqueue = dev->_rx;
3240 struct rps_dev_flow_table *flow_table;
3241 struct rps_map *map;
3242 int cpu = -1;
3243 u32 tcpu;
3244 u32 hash;
3245
3246 if (skb_rx_queue_recorded(skb)) {
3247 u16 index = skb_get_rx_queue(skb);
3248
3249 if (unlikely(index >= dev->real_num_rx_queues)) {
3250 WARN_ONCE(dev->real_num_rx_queues > 1,
3251 "%s received packet on queue %u, but number "
3252 "of RX queues is %u\n",
3253 dev->name, index, dev->real_num_rx_queues);
3254 goto done;
3255 }
3256 rxqueue += index;
3257 }
3258
3259 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3260
3261 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3262 map = rcu_dereference(rxqueue->rps_map);
3263 if (!flow_table && !map)
3264 goto done;
3265
3266 skb_reset_network_header(skb);
3267 hash = skb_get_hash(skb);
3268 if (!hash)
3269 goto done;
3270
3271 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3272 if (flow_table && sock_flow_table) {
3273 struct rps_dev_flow *rflow;
3274 u32 next_cpu;
3275 u32 ident;
3276
3277 /* First check into global flow table if there is a match */
3278 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3279 if ((ident ^ hash) & ~rps_cpu_mask)
3280 goto try_rps;
3281
3282 next_cpu = ident & rps_cpu_mask;
3283
3284 /* OK, now we know there is a match,
3285 * we can look at the local (per receive queue) flow table
3286 */
3287 rflow = &flow_table->flows[hash & flow_table->mask];
3288 tcpu = rflow->cpu;
3289
3290 /*
3291 * If the desired CPU (where last recvmsg was done) is
3292 * different from current CPU (one in the rx-queue flow
3293 * table entry), switch if one of the following holds:
3294 * - Current CPU is unset (>= nr_cpu_ids).
3295 * - Current CPU is offline.
3296 * - The current CPU's queue tail has advanced beyond the
3297 * last packet that was enqueued using this table entry.
3298 * This guarantees that all previous packets for the flow
3299 * have been dequeued, thus preserving in order delivery.
3300 */
3301 if (unlikely(tcpu != next_cpu) &&
3302 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3303 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3304 rflow->last_qtail)) >= 0)) {
3305 tcpu = next_cpu;
3306 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3307 }
3308
3309 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3310 *rflowp = rflow;
3311 cpu = tcpu;
3312 goto done;
3313 }
3314 }
3315
3316try_rps:
3317
3318 if (map) {
3319 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3320 if (cpu_online(tcpu)) {
3321 cpu = tcpu;
3322 goto done;
3323 }
3324 }
3325
3326done:
3327 return cpu;
3328}
3329
3330#ifdef CONFIG_RFS_ACCEL
3331
3332/**
3333 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3334 * @dev: Device on which the filter was set
3335 * @rxq_index: RX queue index
3336 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3337 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3338 *
3339 * Drivers that implement ndo_rx_flow_steer() should periodically call
3340 * this function for each installed filter and remove the filters for
3341 * which it returns %true.
3342 */
3343bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3344 u32 flow_id, u16 filter_id)
3345{
3346 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3347 struct rps_dev_flow_table *flow_table;
3348 struct rps_dev_flow *rflow;
3349 bool expire = true;
3350 unsigned int cpu;
3351
3352 rcu_read_lock();
3353 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3354 if (flow_table && flow_id <= flow_table->mask) {
3355 rflow = &flow_table->flows[flow_id];
3356 cpu = ACCESS_ONCE(rflow->cpu);
3357 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3358 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3359 rflow->last_qtail) <
3360 (int)(10 * flow_table->mask)))
3361 expire = false;
3362 }
3363 rcu_read_unlock();
3364 return expire;
3365}
3366EXPORT_SYMBOL(rps_may_expire_flow);
3367
3368#endif /* CONFIG_RFS_ACCEL */
3369
3370/* Called from hardirq (IPI) context */
3371static void rps_trigger_softirq(void *data)
3372{
3373 struct softnet_data *sd = data;
3374
3375 ____napi_schedule(sd, &sd->backlog);
3376 sd->received_rps++;
3377}
3378
3379#endif /* CONFIG_RPS */
3380
3381/*
3382 * Check if this softnet_data structure is another cpu one
3383 * If yes, queue it to our IPI list and return 1
3384 * If no, return 0
3385 */
3386static int rps_ipi_queued(struct softnet_data *sd)
3387{
3388#ifdef CONFIG_RPS
3389 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3390
3391 if (sd != mysd) {
3392 sd->rps_ipi_next = mysd->rps_ipi_list;
3393 mysd->rps_ipi_list = sd;
3394
3395 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3396 return 1;
3397 }
3398#endif /* CONFIG_RPS */
3399 return 0;
3400}
3401
3402#ifdef CONFIG_NET_FLOW_LIMIT
3403int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3404#endif
3405
3406static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3407{
3408#ifdef CONFIG_NET_FLOW_LIMIT
3409 struct sd_flow_limit *fl;
3410 struct softnet_data *sd;
3411 unsigned int old_flow, new_flow;
3412
3413 if (qlen < (netdev_max_backlog >> 1))
3414 return false;
3415
3416 sd = this_cpu_ptr(&softnet_data);
3417
3418 rcu_read_lock();
3419 fl = rcu_dereference(sd->flow_limit);
3420 if (fl) {
3421 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3422 old_flow = fl->history[fl->history_head];
3423 fl->history[fl->history_head] = new_flow;
3424
3425 fl->history_head++;
3426 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3427
3428 if (likely(fl->buckets[old_flow]))
3429 fl->buckets[old_flow]--;
3430
3431 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3432 fl->count++;
3433 rcu_read_unlock();
3434 return true;
3435 }
3436 }
3437 rcu_read_unlock();
3438#endif
3439 return false;
3440}
3441
3442/*
3443 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3444 * queue (may be a remote CPU queue).
3445 */
3446static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3447 unsigned int *qtail)
3448{
3449 struct softnet_data *sd;
3450 unsigned long flags;
3451 unsigned int qlen;
3452
3453 sd = &per_cpu(softnet_data, cpu);
3454
3455 local_irq_save(flags);
3456
3457 rps_lock(sd);
3458 qlen = skb_queue_len(&sd->input_pkt_queue);
3459 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3460 if (qlen) {
3461enqueue:
3462 __skb_queue_tail(&sd->input_pkt_queue, skb);
3463 input_queue_tail_incr_save(sd, qtail);
3464 rps_unlock(sd);
3465 local_irq_restore(flags);
3466 return NET_RX_SUCCESS;
3467 }
3468
3469 /* Schedule NAPI for backlog device
3470 * We can use non atomic operation since we own the queue lock
3471 */
3472 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3473 if (!rps_ipi_queued(sd))
3474 ____napi_schedule(sd, &sd->backlog);
3475 }
3476 goto enqueue;
3477 }
3478
3479 sd->dropped++;
3480 rps_unlock(sd);
3481
3482 local_irq_restore(flags);
3483
3484 atomic_long_inc(&skb->dev->rx_dropped);
3485 kfree_skb(skb);
3486 return NET_RX_DROP;
3487}
3488
3489static int netif_rx_internal(struct sk_buff *skb)
3490{
3491 int ret;
3492
3493 net_timestamp_check(netdev_tstamp_prequeue, skb);
3494
3495 trace_netif_rx(skb);
3496#ifdef CONFIG_RPS
3497 if (static_key_false(&rps_needed)) {
3498 struct rps_dev_flow voidflow, *rflow = &voidflow;
3499 int cpu;
3500
3501 preempt_disable();
3502 rcu_read_lock();
3503
3504 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3505 if (cpu < 0)
3506 cpu = smp_processor_id();
3507
3508 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3509
3510 rcu_read_unlock();
3511 preempt_enable();
3512 } else
3513#endif
3514 {
3515 unsigned int qtail;
3516 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3517 put_cpu();
3518 }
3519 return ret;
3520}
3521
3522/**
3523 * netif_rx - post buffer to the network code
3524 * @skb: buffer to post
3525 *
3526 * This function receives a packet from a device driver and queues it for
3527 * the upper (protocol) levels to process. It always succeeds. The buffer
3528 * may be dropped during processing for congestion control or by the
3529 * protocol layers.
3530 *
3531 * return values:
3532 * NET_RX_SUCCESS (no congestion)
3533 * NET_RX_DROP (packet was dropped)
3534 *
3535 */
3536
3537int netif_rx(struct sk_buff *skb)
3538{
3539 trace_netif_rx_entry(skb);
3540
3541 return netif_rx_internal(skb);
3542}
3543EXPORT_SYMBOL(netif_rx);
3544
3545int netif_rx_ni(struct sk_buff *skb)
3546{
3547 int err;
3548
3549 trace_netif_rx_ni_entry(skb);
3550
3551 preempt_disable();
3552 err = netif_rx_internal(skb);
3553 if (local_softirq_pending())
3554 do_softirq();
3555 preempt_enable();
3556
3557 return err;
3558}
3559EXPORT_SYMBOL(netif_rx_ni);
3560
3561static void net_tx_action(struct softirq_action *h)
3562{
3563 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3564
3565 if (sd->completion_queue) {
3566 struct sk_buff *clist;
3567
3568 local_irq_disable();
3569 clist = sd->completion_queue;
3570 sd->completion_queue = NULL;
3571 local_irq_enable();
3572
3573 while (clist) {
3574 struct sk_buff *skb = clist;
3575 clist = clist->next;
3576
3577 WARN_ON(atomic_read(&skb->users));
3578 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3579 trace_consume_skb(skb);
3580 else
3581 trace_kfree_skb(skb, net_tx_action);
3582 __kfree_skb(skb);
3583 }
3584 }
3585
3586 if (sd->output_queue) {
3587 struct Qdisc *head;
3588
3589 local_irq_disable();
3590 head = sd->output_queue;
3591 sd->output_queue = NULL;
3592 sd->output_queue_tailp = &sd->output_queue;
3593 local_irq_enable();
3594
3595 while (head) {
3596 struct Qdisc *q = head;
3597 spinlock_t *root_lock;
3598
3599 head = head->next_sched;
3600
3601 root_lock = qdisc_lock(q);
3602 if (spin_trylock(root_lock)) {
3603 smp_mb__before_atomic();
3604 clear_bit(__QDISC_STATE_SCHED,
3605 &q->state);
3606 qdisc_run(q);
3607 spin_unlock(root_lock);
3608 } else {
3609 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3610 &q->state)) {
3611 __netif_reschedule(q);
3612 } else {
3613 smp_mb__before_atomic();
3614 clear_bit(__QDISC_STATE_SCHED,
3615 &q->state);
3616 }
3617 }
3618 }
3619 }
3620}
3621
3622#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3623 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3624/* This hook is defined here for ATM LANE */
3625int (*br_fdb_test_addr_hook)(struct net_device *dev,
3626 unsigned char *addr) __read_mostly;
3627EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3628#endif
3629
3630static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3631 struct packet_type **pt_prev,
3632 int *ret, struct net_device *orig_dev)
3633{
3634#ifdef CONFIG_NET_CLS_ACT
3635 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3636 struct tcf_result cl_res;
3637
3638 /* If there's at least one ingress present somewhere (so
3639 * we get here via enabled static key), remaining devices
3640 * that are not configured with an ingress qdisc will bail
3641 * out here.
3642 */
3643 if (!cl)
3644 return skb;
3645 if (*pt_prev) {
3646 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3647 *pt_prev = NULL;
3648 }
3649
3650 qdisc_skb_cb(skb)->pkt_len = skb->len;
3651 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3652 qdisc_bstats_update_cpu(cl->q, skb);
3653
3654 switch (tc_classify(skb, cl, &cl_res)) {
3655 case TC_ACT_OK:
3656 case TC_ACT_RECLASSIFY:
3657 skb->tc_index = TC_H_MIN(cl_res.classid);
3658 break;
3659 case TC_ACT_SHOT:
3660 qdisc_qstats_drop_cpu(cl->q);
3661 case TC_ACT_STOLEN:
3662 case TC_ACT_QUEUED:
3663 kfree_skb(skb);
3664 return NULL;
3665 default:
3666 break;
3667 }
3668#endif /* CONFIG_NET_CLS_ACT */
3669 return skb;
3670}
3671
3672/**
3673 * netdev_rx_handler_register - register receive handler
3674 * @dev: device to register a handler for
3675 * @rx_handler: receive handler to register
3676 * @rx_handler_data: data pointer that is used by rx handler
3677 *
3678 * Register a receive handler for a device. This handler will then be
3679 * called from __netif_receive_skb. A negative errno code is returned
3680 * on a failure.
3681 *
3682 * The caller must hold the rtnl_mutex.
3683 *
3684 * For a general description of rx_handler, see enum rx_handler_result.
3685 */
3686int netdev_rx_handler_register(struct net_device *dev,
3687 rx_handler_func_t *rx_handler,
3688 void *rx_handler_data)
3689{
3690 ASSERT_RTNL();
3691
3692 if (dev->rx_handler)
3693 return -EBUSY;
3694
3695 /* Note: rx_handler_data must be set before rx_handler */
3696 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3697 rcu_assign_pointer(dev->rx_handler, rx_handler);
3698
3699 return 0;
3700}
3701EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3702
3703/**
3704 * netdev_rx_handler_unregister - unregister receive handler
3705 * @dev: device to unregister a handler from
3706 *
3707 * Unregister a receive handler from a device.
3708 *
3709 * The caller must hold the rtnl_mutex.
3710 */
3711void netdev_rx_handler_unregister(struct net_device *dev)
3712{
3713
3714 ASSERT_RTNL();
3715 RCU_INIT_POINTER(dev->rx_handler, NULL);
3716 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3717 * section has a guarantee to see a non NULL rx_handler_data
3718 * as well.
3719 */
3720 synchronize_net();
3721 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3722}
3723EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3724
3725/*
3726 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3727 * the special handling of PFMEMALLOC skbs.
3728 */
3729static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3730{
3731 switch (skb->protocol) {
3732 case htons(ETH_P_ARP):
3733 case htons(ETH_P_IP):
3734 case htons(ETH_P_IPV6):
3735 case htons(ETH_P_8021Q):
3736 case htons(ETH_P_8021AD):
3737 return true;
3738 default:
3739 return false;
3740 }
3741}
3742
3743static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
3744 int *ret, struct net_device *orig_dev)
3745{
3746#ifdef CONFIG_NETFILTER_INGRESS
3747 if (nf_hook_ingress_active(skb)) {
3748 if (*pt_prev) {
3749 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3750 *pt_prev = NULL;
3751 }
3752
3753 return nf_hook_ingress(skb);
3754 }
3755#endif /* CONFIG_NETFILTER_INGRESS */
3756 return 0;
3757}
3758
3759static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3760{
3761 struct packet_type *ptype, *pt_prev;
3762 rx_handler_func_t *rx_handler;
3763 struct net_device *orig_dev;
3764 bool deliver_exact = false;
3765 int ret = NET_RX_DROP;
3766 __be16 type;
3767
3768 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3769
3770 trace_netif_receive_skb(skb);
3771
3772 orig_dev = skb->dev;
3773
3774 skb_reset_network_header(skb);
3775 if (!skb_transport_header_was_set(skb))
3776 skb_reset_transport_header(skb);
3777 skb_reset_mac_len(skb);
3778
3779 pt_prev = NULL;
3780
3781 rcu_read_lock();
3782
3783another_round:
3784 skb->skb_iif = skb->dev->ifindex;
3785
3786 __this_cpu_inc(softnet_data.processed);
3787
3788 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3789 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3790 skb = skb_vlan_untag(skb);
3791 if (unlikely(!skb))
3792 goto unlock;
3793 }
3794
3795#ifdef CONFIG_NET_CLS_ACT
3796 if (skb->tc_verd & TC_NCLS) {
3797 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3798 goto ncls;
3799 }
3800#endif
3801
3802 if (pfmemalloc)
3803 goto skip_taps;
3804
3805 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3806 if (pt_prev)
3807 ret = deliver_skb(skb, pt_prev, orig_dev);
3808 pt_prev = ptype;
3809 }
3810
3811 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3812 if (pt_prev)
3813 ret = deliver_skb(skb, pt_prev, orig_dev);
3814 pt_prev = ptype;
3815 }
3816
3817skip_taps:
3818#ifdef CONFIG_NET_INGRESS
3819 if (static_key_false(&ingress_needed)) {
3820 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3821 if (!skb)
3822 goto unlock;
3823
3824 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
3825 goto unlock;
3826 }
3827#endif
3828#ifdef CONFIG_NET_CLS_ACT
3829 skb->tc_verd = 0;
3830ncls:
3831#endif
3832 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3833 goto drop;
3834
3835 if (skb_vlan_tag_present(skb)) {
3836 if (pt_prev) {
3837 ret = deliver_skb(skb, pt_prev, orig_dev);
3838 pt_prev = NULL;
3839 }
3840 if (vlan_do_receive(&skb))
3841 goto another_round;
3842 else if (unlikely(!skb))
3843 goto unlock;
3844 }
3845
3846 rx_handler = rcu_dereference(skb->dev->rx_handler);
3847 if (rx_handler) {
3848 if (pt_prev) {
3849 ret = deliver_skb(skb, pt_prev, orig_dev);
3850 pt_prev = NULL;
3851 }
3852 switch (rx_handler(&skb)) {
3853 case RX_HANDLER_CONSUMED:
3854 ret = NET_RX_SUCCESS;
3855 goto unlock;
3856 case RX_HANDLER_ANOTHER:
3857 goto another_round;
3858 case RX_HANDLER_EXACT:
3859 deliver_exact = true;
3860 case RX_HANDLER_PASS:
3861 break;
3862 default:
3863 BUG();
3864 }
3865 }
3866
3867 if (unlikely(skb_vlan_tag_present(skb))) {
3868 if (skb_vlan_tag_get_id(skb))
3869 skb->pkt_type = PACKET_OTHERHOST;
3870 /* Note: we might in the future use prio bits
3871 * and set skb->priority like in vlan_do_receive()
3872 * For the time being, just ignore Priority Code Point
3873 */
3874 skb->vlan_tci = 0;
3875 }
3876
3877 type = skb->protocol;
3878
3879 /* deliver only exact match when indicated */
3880 if (likely(!deliver_exact)) {
3881 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3882 &ptype_base[ntohs(type) &
3883 PTYPE_HASH_MASK]);
3884 }
3885
3886 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3887 &orig_dev->ptype_specific);
3888
3889 if (unlikely(skb->dev != orig_dev)) {
3890 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3891 &skb->dev->ptype_specific);
3892 }
3893
3894 if (pt_prev) {
3895 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3896 goto drop;
3897 else
3898 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3899 } else {
3900drop:
3901 atomic_long_inc(&skb->dev->rx_dropped);
3902 kfree_skb(skb);
3903 /* Jamal, now you will not able to escape explaining
3904 * me how you were going to use this. :-)
3905 */
3906 ret = NET_RX_DROP;
3907 }
3908
3909unlock:
3910 rcu_read_unlock();
3911 return ret;
3912}
3913
3914static int __netif_receive_skb(struct sk_buff *skb)
3915{
3916 int ret;
3917
3918 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3919 unsigned long pflags = current->flags;
3920
3921 /*
3922 * PFMEMALLOC skbs are special, they should
3923 * - be delivered to SOCK_MEMALLOC sockets only
3924 * - stay away from userspace
3925 * - have bounded memory usage
3926 *
3927 * Use PF_MEMALLOC as this saves us from propagating the allocation
3928 * context down to all allocation sites.
3929 */
3930 current->flags |= PF_MEMALLOC;
3931 ret = __netif_receive_skb_core(skb, true);
3932 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3933 } else
3934 ret = __netif_receive_skb_core(skb, false);
3935
3936 return ret;
3937}
3938
3939static int netif_receive_skb_internal(struct sk_buff *skb)
3940{
3941 net_timestamp_check(netdev_tstamp_prequeue, skb);
3942
3943 if (skb_defer_rx_timestamp(skb))
3944 return NET_RX_SUCCESS;
3945
3946#ifdef CONFIG_RPS
3947 if (static_key_false(&rps_needed)) {
3948 struct rps_dev_flow voidflow, *rflow = &voidflow;
3949 int cpu, ret;
3950
3951 rcu_read_lock();
3952
3953 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3954
3955 if (cpu >= 0) {
3956 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3957 rcu_read_unlock();
3958 return ret;
3959 }
3960 rcu_read_unlock();
3961 }
3962#endif
3963 return __netif_receive_skb(skb);
3964}
3965
3966/**
3967 * netif_receive_skb - process receive buffer from network
3968 * @skb: buffer to process
3969 *
3970 * netif_receive_skb() is the main receive data processing function.
3971 * It always succeeds. The buffer may be dropped during processing
3972 * for congestion control or by the protocol layers.
3973 *
3974 * This function may only be called from softirq context and interrupts
3975 * should be enabled.
3976 *
3977 * Return values (usually ignored):
3978 * NET_RX_SUCCESS: no congestion
3979 * NET_RX_DROP: packet was dropped
3980 */
3981int netif_receive_skb_sk(struct sock *sk, struct sk_buff *skb)
3982{
3983 trace_netif_receive_skb_entry(skb);
3984
3985 return netif_receive_skb_internal(skb);
3986}
3987EXPORT_SYMBOL(netif_receive_skb_sk);
3988
3989/* Network device is going away, flush any packets still pending
3990 * Called with irqs disabled.
3991 */
3992static void flush_backlog(void *arg)
3993{
3994 struct net_device *dev = arg;
3995 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3996 struct sk_buff *skb, *tmp;
3997
3998 rps_lock(sd);
3999 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4000 if (skb->dev == dev) {
4001 __skb_unlink(skb, &sd->input_pkt_queue);
4002 kfree_skb(skb);
4003 input_queue_head_incr(sd);
4004 }
4005 }
4006 rps_unlock(sd);
4007
4008 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4009 if (skb->dev == dev) {
4010 __skb_unlink(skb, &sd->process_queue);
4011 kfree_skb(skb);
4012 input_queue_head_incr(sd);
4013 }
4014 }
4015}
4016
4017static int napi_gro_complete(struct sk_buff *skb)
4018{
4019 struct packet_offload *ptype;
4020 __be16 type = skb->protocol;
4021 struct list_head *head = &offload_base;
4022 int err = -ENOENT;
4023
4024 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4025
4026 if (NAPI_GRO_CB(skb)->count == 1) {
4027 skb_shinfo(skb)->gso_size = 0;
4028 goto out;
4029 }
4030
4031 rcu_read_lock();
4032 list_for_each_entry_rcu(ptype, head, list) {
4033 if (ptype->type != type || !ptype->callbacks.gro_complete)
4034 continue;
4035
4036 err = ptype->callbacks.gro_complete(skb, 0);
4037 break;
4038 }
4039 rcu_read_unlock();
4040
4041 if (err) {
4042 WARN_ON(&ptype->list == head);
4043 kfree_skb(skb);
4044 return NET_RX_SUCCESS;
4045 }
4046
4047out:
4048 return netif_receive_skb_internal(skb);
4049}
4050
4051/* napi->gro_list contains packets ordered by age.
4052 * youngest packets at the head of it.
4053 * Complete skbs in reverse order to reduce latencies.
4054 */
4055void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4056{
4057 struct sk_buff *skb, *prev = NULL;
4058
4059 /* scan list and build reverse chain */
4060 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4061 skb->prev = prev;
4062 prev = skb;
4063 }
4064
4065 for (skb = prev; skb; skb = prev) {
4066 skb->next = NULL;
4067
4068 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4069 return;
4070
4071 prev = skb->prev;
4072 napi_gro_complete(skb);
4073 napi->gro_count--;
4074 }
4075
4076 napi->gro_list = NULL;
4077}
4078EXPORT_SYMBOL(napi_gro_flush);
4079
4080static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4081{
4082 struct sk_buff *p;
4083 unsigned int maclen = skb->dev->hard_header_len;
4084 u32 hash = skb_get_hash_raw(skb);
4085
4086 for (p = napi->gro_list; p; p = p->next) {
4087 unsigned long diffs;
4088
4089 NAPI_GRO_CB(p)->flush = 0;
4090
4091 if (hash != skb_get_hash_raw(p)) {
4092 NAPI_GRO_CB(p)->same_flow = 0;
4093 continue;
4094 }
4095
4096 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4097 diffs |= p->vlan_tci ^ skb->vlan_tci;
4098 if (maclen == ETH_HLEN)
4099 diffs |= compare_ether_header(skb_mac_header(p),
4100 skb_mac_header(skb));
4101 else if (!diffs)
4102 diffs = memcmp(skb_mac_header(p),
4103 skb_mac_header(skb),
4104 maclen);
4105 NAPI_GRO_CB(p)->same_flow = !diffs;
4106 }
4107}
4108
4109static void skb_gro_reset_offset(struct sk_buff *skb)
4110{
4111 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4112 const skb_frag_t *frag0 = &pinfo->frags[0];
4113
4114 NAPI_GRO_CB(skb)->data_offset = 0;
4115 NAPI_GRO_CB(skb)->frag0 = NULL;
4116 NAPI_GRO_CB(skb)->frag0_len = 0;
4117
4118 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4119 pinfo->nr_frags &&
4120 !PageHighMem(skb_frag_page(frag0))) {
4121 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4122 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4123 }
4124}
4125
4126static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4127{
4128 struct skb_shared_info *pinfo = skb_shinfo(skb);
4129
4130 BUG_ON(skb->end - skb->tail < grow);
4131
4132 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4133
4134 skb->data_len -= grow;
4135 skb->tail += grow;
4136
4137 pinfo->frags[0].page_offset += grow;
4138 skb_frag_size_sub(&pinfo->frags[0], grow);
4139
4140 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4141 skb_frag_unref(skb, 0);
4142 memmove(pinfo->frags, pinfo->frags + 1,
4143 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4144 }
4145}
4146
4147static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4148{
4149 struct sk_buff **pp = NULL;
4150 struct packet_offload *ptype;
4151 __be16 type = skb->protocol;
4152 struct list_head *head = &offload_base;
4153 int same_flow;
4154 enum gro_result ret;
4155 int grow;
4156
4157 if (!(skb->dev->features & NETIF_F_GRO))
4158 goto normal;
4159
4160 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4161 goto normal;
4162
4163 gro_list_prepare(napi, skb);
4164
4165 rcu_read_lock();
4166 list_for_each_entry_rcu(ptype, head, list) {
4167 if (ptype->type != type || !ptype->callbacks.gro_receive)
4168 continue;
4169
4170 skb_set_network_header(skb, skb_gro_offset(skb));
4171 skb_reset_mac_len(skb);
4172 NAPI_GRO_CB(skb)->same_flow = 0;
4173 NAPI_GRO_CB(skb)->flush = 0;
4174 NAPI_GRO_CB(skb)->free = 0;
4175 NAPI_GRO_CB(skb)->udp_mark = 0;
4176 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4177
4178 /* Setup for GRO checksum validation */
4179 switch (skb->ip_summed) {
4180 case CHECKSUM_COMPLETE:
4181 NAPI_GRO_CB(skb)->csum = skb->csum;
4182 NAPI_GRO_CB(skb)->csum_valid = 1;
4183 NAPI_GRO_CB(skb)->csum_cnt = 0;
4184 break;
4185 case CHECKSUM_UNNECESSARY:
4186 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4187 NAPI_GRO_CB(skb)->csum_valid = 0;
4188 break;
4189 default:
4190 NAPI_GRO_CB(skb)->csum_cnt = 0;
4191 NAPI_GRO_CB(skb)->csum_valid = 0;
4192 }
4193
4194 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4195 break;
4196 }
4197 rcu_read_unlock();
4198
4199 if (&ptype->list == head)
4200 goto normal;
4201
4202 same_flow = NAPI_GRO_CB(skb)->same_flow;
4203 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4204
4205 if (pp) {
4206 struct sk_buff *nskb = *pp;
4207
4208 *pp = nskb->next;
4209 nskb->next = NULL;
4210 napi_gro_complete(nskb);
4211 napi->gro_count--;
4212 }
4213
4214 if (same_flow)
4215 goto ok;
4216
4217 if (NAPI_GRO_CB(skb)->flush)
4218 goto normal;
4219
4220 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4221 struct sk_buff *nskb = napi->gro_list;
4222
4223 /* locate the end of the list to select the 'oldest' flow */
4224 while (nskb->next) {
4225 pp = &nskb->next;
4226 nskb = *pp;
4227 }
4228 *pp = NULL;
4229 nskb->next = NULL;
4230 napi_gro_complete(nskb);
4231 } else {
4232 napi->gro_count++;
4233 }
4234 NAPI_GRO_CB(skb)->count = 1;
4235 NAPI_GRO_CB(skb)->age = jiffies;
4236 NAPI_GRO_CB(skb)->last = skb;
4237 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4238 skb->next = napi->gro_list;
4239 napi->gro_list = skb;
4240 ret = GRO_HELD;
4241
4242pull:
4243 grow = skb_gro_offset(skb) - skb_headlen(skb);
4244 if (grow > 0)
4245 gro_pull_from_frag0(skb, grow);
4246ok:
4247 return ret;
4248
4249normal:
4250 ret = GRO_NORMAL;
4251 goto pull;
4252}
4253
4254struct packet_offload *gro_find_receive_by_type(__be16 type)
4255{
4256 struct list_head *offload_head = &offload_base;
4257 struct packet_offload *ptype;
4258
4259 list_for_each_entry_rcu(ptype, offload_head, list) {
4260 if (ptype->type != type || !ptype->callbacks.gro_receive)
4261 continue;
4262 return ptype;
4263 }
4264 return NULL;
4265}
4266EXPORT_SYMBOL(gro_find_receive_by_type);
4267
4268struct packet_offload *gro_find_complete_by_type(__be16 type)
4269{
4270 struct list_head *offload_head = &offload_base;
4271 struct packet_offload *ptype;
4272
4273 list_for_each_entry_rcu(ptype, offload_head, list) {
4274 if (ptype->type != type || !ptype->callbacks.gro_complete)
4275 continue;
4276 return ptype;
4277 }
4278 return NULL;
4279}
4280EXPORT_SYMBOL(gro_find_complete_by_type);
4281
4282static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4283{
4284 switch (ret) {
4285 case GRO_NORMAL:
4286 if (netif_receive_skb_internal(skb))
4287 ret = GRO_DROP;
4288 break;
4289
4290 case GRO_DROP:
4291 kfree_skb(skb);
4292 break;
4293
4294 case GRO_MERGED_FREE:
4295 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4296 kmem_cache_free(skbuff_head_cache, skb);
4297 else
4298 __kfree_skb(skb);
4299 break;
4300
4301 case GRO_HELD:
4302 case GRO_MERGED:
4303 break;
4304 }
4305
4306 return ret;
4307}
4308
4309gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4310{
4311 trace_napi_gro_receive_entry(skb);
4312
4313 skb_gro_reset_offset(skb);
4314
4315 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4316}
4317EXPORT_SYMBOL(napi_gro_receive);
4318
4319static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4320{
4321 if (unlikely(skb->pfmemalloc)) {
4322 consume_skb(skb);
4323 return;
4324 }
4325 __skb_pull(skb, skb_headlen(skb));
4326 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4327 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4328 skb->vlan_tci = 0;
4329 skb->dev = napi->dev;
4330 skb->skb_iif = 0;
4331 skb->encapsulation = 0;
4332 skb_shinfo(skb)->gso_type = 0;
4333 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4334
4335 napi->skb = skb;
4336}
4337
4338struct sk_buff *napi_get_frags(struct napi_struct *napi)
4339{
4340 struct sk_buff *skb = napi->skb;
4341
4342 if (!skb) {
4343 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4344 napi->skb = skb;
4345 }
4346 return skb;
4347}
4348EXPORT_SYMBOL(napi_get_frags);
4349
4350static gro_result_t napi_frags_finish(struct napi_struct *napi,
4351 struct sk_buff *skb,
4352 gro_result_t ret)
4353{
4354 switch (ret) {
4355 case GRO_NORMAL:
4356 case GRO_HELD:
4357 __skb_push(skb, ETH_HLEN);
4358 skb->protocol = eth_type_trans(skb, skb->dev);
4359 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4360 ret = GRO_DROP;
4361 break;
4362
4363 case GRO_DROP:
4364 case GRO_MERGED_FREE:
4365 napi_reuse_skb(napi, skb);
4366 break;
4367
4368 case GRO_MERGED:
4369 break;
4370 }
4371
4372 return ret;
4373}
4374
4375/* Upper GRO stack assumes network header starts at gro_offset=0
4376 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4377 * We copy ethernet header into skb->data to have a common layout.
4378 */
4379static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4380{
4381 struct sk_buff *skb = napi->skb;
4382 const struct ethhdr *eth;
4383 unsigned int hlen = sizeof(*eth);
4384
4385 napi->skb = NULL;
4386
4387 skb_reset_mac_header(skb);
4388 skb_gro_reset_offset(skb);
4389
4390 eth = skb_gro_header_fast(skb, 0);
4391 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4392 eth = skb_gro_header_slow(skb, hlen, 0);
4393 if (unlikely(!eth)) {
4394 napi_reuse_skb(napi, skb);
4395 return NULL;
4396 }
4397 } else {
4398 gro_pull_from_frag0(skb, hlen);
4399 NAPI_GRO_CB(skb)->frag0 += hlen;
4400 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4401 }
4402 __skb_pull(skb, hlen);
4403
4404 /*
4405 * This works because the only protocols we care about don't require
4406 * special handling.
4407 * We'll fix it up properly in napi_frags_finish()
4408 */
4409 skb->protocol = eth->h_proto;
4410
4411 return skb;
4412}
4413
4414gro_result_t napi_gro_frags(struct napi_struct *napi)
4415{
4416 struct sk_buff *skb = napi_frags_skb(napi);
4417
4418 if (!skb)
4419 return GRO_DROP;
4420
4421 trace_napi_gro_frags_entry(skb);
4422
4423 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4424}
4425EXPORT_SYMBOL(napi_gro_frags);
4426
4427/* Compute the checksum from gro_offset and return the folded value
4428 * after adding in any pseudo checksum.
4429 */
4430__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4431{
4432 __wsum wsum;
4433 __sum16 sum;
4434
4435 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4436
4437 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4438 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4439 if (likely(!sum)) {
4440 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4441 !skb->csum_complete_sw)
4442 netdev_rx_csum_fault(skb->dev);
4443 }
4444
4445 NAPI_GRO_CB(skb)->csum = wsum;
4446 NAPI_GRO_CB(skb)->csum_valid = 1;
4447
4448 return sum;
4449}
4450EXPORT_SYMBOL(__skb_gro_checksum_complete);
4451
4452/*
4453 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4454 * Note: called with local irq disabled, but exits with local irq enabled.
4455 */
4456static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4457{
4458#ifdef CONFIG_RPS
4459 struct softnet_data *remsd = sd->rps_ipi_list;
4460
4461 if (remsd) {
4462 sd->rps_ipi_list = NULL;
4463
4464 local_irq_enable();
4465
4466 /* Send pending IPI's to kick RPS processing on remote cpus. */
4467 while (remsd) {
4468 struct softnet_data *next = remsd->rps_ipi_next;
4469
4470 if (cpu_online(remsd->cpu))
4471 smp_call_function_single_async(remsd->cpu,
4472 &remsd->csd);
4473 remsd = next;
4474 }
4475 } else
4476#endif
4477 local_irq_enable();
4478}
4479
4480static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4481{
4482#ifdef CONFIG_RPS
4483 return sd->rps_ipi_list != NULL;
4484#else
4485 return false;
4486#endif
4487}
4488
4489static int process_backlog(struct napi_struct *napi, int quota)
4490{
4491 int work = 0;
4492 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4493
4494 /* Check if we have pending ipi, its better to send them now,
4495 * not waiting net_rx_action() end.
4496 */
4497 if (sd_has_rps_ipi_waiting(sd)) {
4498 local_irq_disable();
4499 net_rps_action_and_irq_enable(sd);
4500 }
4501
4502 napi->weight = weight_p;
4503 local_irq_disable();
4504 while (1) {
4505 struct sk_buff *skb;
4506
4507 while ((skb = __skb_dequeue(&sd->process_queue))) {
4508 local_irq_enable();
4509 __netif_receive_skb(skb);
4510 local_irq_disable();
4511 input_queue_head_incr(sd);
4512 if (++work >= quota) {
4513 local_irq_enable();
4514 return work;
4515 }
4516 }
4517
4518 rps_lock(sd);
4519 if (skb_queue_empty(&sd->input_pkt_queue)) {
4520 /*
4521 * Inline a custom version of __napi_complete().
4522 * only current cpu owns and manipulates this napi,
4523 * and NAPI_STATE_SCHED is the only possible flag set
4524 * on backlog.
4525 * We can use a plain write instead of clear_bit(),
4526 * and we dont need an smp_mb() memory barrier.
4527 */
4528 napi->state = 0;
4529 rps_unlock(sd);
4530
4531 break;
4532 }
4533
4534 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4535 &sd->process_queue);
4536 rps_unlock(sd);
4537 }
4538 local_irq_enable();
4539
4540 return work;
4541}
4542
4543/**
4544 * __napi_schedule - schedule for receive
4545 * @n: entry to schedule
4546 *
4547 * The entry's receive function will be scheduled to run.
4548 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4549 */
4550void __napi_schedule(struct napi_struct *n)
4551{
4552 unsigned long flags;
4553
4554 local_irq_save(flags);
4555 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4556 local_irq_restore(flags);
4557}
4558EXPORT_SYMBOL(__napi_schedule);
4559
4560/**
4561 * __napi_schedule_irqoff - schedule for receive
4562 * @n: entry to schedule
4563 *
4564 * Variant of __napi_schedule() assuming hard irqs are masked
4565 */
4566void __napi_schedule_irqoff(struct napi_struct *n)
4567{
4568 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4569}
4570EXPORT_SYMBOL(__napi_schedule_irqoff);
4571
4572void __napi_complete(struct napi_struct *n)
4573{
4574 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4575
4576 list_del_init(&n->poll_list);
4577 smp_mb__before_atomic();
4578 clear_bit(NAPI_STATE_SCHED, &n->state);
4579}
4580EXPORT_SYMBOL(__napi_complete);
4581
4582void napi_complete_done(struct napi_struct *n, int work_done)
4583{
4584 unsigned long flags;
4585
4586 /*
4587 * don't let napi dequeue from the cpu poll list
4588 * just in case its running on a different cpu
4589 */
4590 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4591 return;
4592
4593 if (n->gro_list) {
4594 unsigned long timeout = 0;
4595
4596 if (work_done)
4597 timeout = n->dev->gro_flush_timeout;
4598
4599 if (timeout)
4600 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4601 HRTIMER_MODE_REL_PINNED);
4602 else
4603 napi_gro_flush(n, false);
4604 }
4605 if (likely(list_empty(&n->poll_list))) {
4606 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4607 } else {
4608 /* If n->poll_list is not empty, we need to mask irqs */
4609 local_irq_save(flags);
4610 __napi_complete(n);
4611 local_irq_restore(flags);
4612 }
4613}
4614EXPORT_SYMBOL(napi_complete_done);
4615
4616/* must be called under rcu_read_lock(), as we dont take a reference */
4617struct napi_struct *napi_by_id(unsigned int napi_id)
4618{
4619 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4620 struct napi_struct *napi;
4621
4622 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4623 if (napi->napi_id == napi_id)
4624 return napi;
4625
4626 return NULL;
4627}
4628EXPORT_SYMBOL_GPL(napi_by_id);
4629
4630void napi_hash_add(struct napi_struct *napi)
4631{
4632 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4633
4634 spin_lock(&napi_hash_lock);
4635
4636 /* 0 is not a valid id, we also skip an id that is taken
4637 * we expect both events to be extremely rare
4638 */
4639 napi->napi_id = 0;
4640 while (!napi->napi_id) {
4641 napi->napi_id = ++napi_gen_id;
4642 if (napi_by_id(napi->napi_id))
4643 napi->napi_id = 0;
4644 }
4645
4646 hlist_add_head_rcu(&napi->napi_hash_node,
4647 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4648
4649 spin_unlock(&napi_hash_lock);
4650 }
4651}
4652EXPORT_SYMBOL_GPL(napi_hash_add);
4653
4654/* Warning : caller is responsible to make sure rcu grace period
4655 * is respected before freeing memory containing @napi
4656 */
4657void napi_hash_del(struct napi_struct *napi)
4658{
4659 spin_lock(&napi_hash_lock);
4660
4661 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4662 hlist_del_rcu(&napi->napi_hash_node);
4663
4664 spin_unlock(&napi_hash_lock);
4665}
4666EXPORT_SYMBOL_GPL(napi_hash_del);
4667
4668static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4669{
4670 struct napi_struct *napi;
4671
4672 napi = container_of(timer, struct napi_struct, timer);
4673 if (napi->gro_list)
4674 napi_schedule(napi);
4675
4676 return HRTIMER_NORESTART;
4677}
4678
4679void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4680 int (*poll)(struct napi_struct *, int), int weight)
4681{
4682 INIT_LIST_HEAD(&napi->poll_list);
4683 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4684 napi->timer.function = napi_watchdog;
4685 napi->gro_count = 0;
4686 napi->gro_list = NULL;
4687 napi->skb = NULL;
4688 napi->poll = poll;
4689 if (weight > NAPI_POLL_WEIGHT)
4690 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4691 weight, dev->name);
4692 napi->weight = weight;
4693 list_add(&napi->dev_list, &dev->napi_list);
4694 napi->dev = dev;
4695#ifdef CONFIG_NETPOLL
4696 spin_lock_init(&napi->poll_lock);
4697 napi->poll_owner = -1;
4698#endif
4699 set_bit(NAPI_STATE_SCHED, &napi->state);
4700}
4701EXPORT_SYMBOL(netif_napi_add);
4702
4703void napi_disable(struct napi_struct *n)
4704{
4705 might_sleep();
4706 set_bit(NAPI_STATE_DISABLE, &n->state);
4707
4708 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4709 msleep(1);
4710
4711 hrtimer_cancel(&n->timer);
4712
4713 clear_bit(NAPI_STATE_DISABLE, &n->state);
4714}
4715EXPORT_SYMBOL(napi_disable);
4716
4717void netif_napi_del(struct napi_struct *napi)
4718{
4719 list_del_init(&napi->dev_list);
4720 napi_free_frags(napi);
4721
4722 kfree_skb_list(napi->gro_list);
4723 napi->gro_list = NULL;
4724 napi->gro_count = 0;
4725}
4726EXPORT_SYMBOL(netif_napi_del);
4727
4728static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4729{
4730 void *have;
4731 int work, weight;
4732
4733 list_del_init(&n->poll_list);
4734
4735 have = netpoll_poll_lock(n);
4736
4737 weight = n->weight;
4738
4739 /* This NAPI_STATE_SCHED test is for avoiding a race
4740 * with netpoll's poll_napi(). Only the entity which
4741 * obtains the lock and sees NAPI_STATE_SCHED set will
4742 * actually make the ->poll() call. Therefore we avoid
4743 * accidentally calling ->poll() when NAPI is not scheduled.
4744 */
4745 work = 0;
4746 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4747 work = n->poll(n, weight);
4748 trace_napi_poll(n);
4749 }
4750
4751 WARN_ON_ONCE(work > weight);
4752
4753 if (likely(work < weight))
4754 goto out_unlock;
4755
4756 /* Drivers must not modify the NAPI state if they
4757 * consume the entire weight. In such cases this code
4758 * still "owns" the NAPI instance and therefore can
4759 * move the instance around on the list at-will.
4760 */
4761 if (unlikely(napi_disable_pending(n))) {
4762 napi_complete(n);
4763 goto out_unlock;
4764 }
4765
4766 if (n->gro_list) {
4767 /* flush too old packets
4768 * If HZ < 1000, flush all packets.
4769 */
4770 napi_gro_flush(n, HZ >= 1000);
4771 }
4772
4773 /* Some drivers may have called napi_schedule
4774 * prior to exhausting their budget.
4775 */
4776 if (unlikely(!list_empty(&n->poll_list))) {
4777 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4778 n->dev ? n->dev->name : "backlog");
4779 goto out_unlock;
4780 }
4781
4782 list_add_tail(&n->poll_list, repoll);
4783
4784out_unlock:
4785 netpoll_poll_unlock(have);
4786
4787 return work;
4788}
4789
4790static void net_rx_action(struct softirq_action *h)
4791{
4792 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4793 unsigned long time_limit = jiffies + 2;
4794 int budget = netdev_budget;
4795 LIST_HEAD(list);
4796 LIST_HEAD(repoll);
4797
4798 local_irq_disable();
4799 list_splice_init(&sd->poll_list, &list);
4800 local_irq_enable();
4801
4802 for (;;) {
4803 struct napi_struct *n;
4804
4805 if (list_empty(&list)) {
4806 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4807 return;
4808 break;
4809 }
4810
4811 n = list_first_entry(&list, struct napi_struct, poll_list);
4812 budget -= napi_poll(n, &repoll);
4813
4814 /* If softirq window is exhausted then punt.
4815 * Allow this to run for 2 jiffies since which will allow
4816 * an average latency of 1.5/HZ.
4817 */
4818 if (unlikely(budget <= 0 ||
4819 time_after_eq(jiffies, time_limit))) {
4820 sd->time_squeeze++;
4821 break;
4822 }
4823 }
4824
4825 local_irq_disable();
4826
4827 list_splice_tail_init(&sd->poll_list, &list);
4828 list_splice_tail(&repoll, &list);
4829 list_splice(&list, &sd->poll_list);
4830 if (!list_empty(&sd->poll_list))
4831 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4832
4833 net_rps_action_and_irq_enable(sd);
4834}
4835
4836struct netdev_adjacent {
4837 struct net_device *dev;
4838
4839 /* upper master flag, there can only be one master device per list */
4840 bool master;
4841
4842 /* counter for the number of times this device was added to us */
4843 u16 ref_nr;
4844
4845 /* private field for the users */
4846 void *private;
4847
4848 struct list_head list;
4849 struct rcu_head rcu;
4850};
4851
4852static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4853 struct net_device *adj_dev,
4854 struct list_head *adj_list)
4855{
4856 struct netdev_adjacent *adj;
4857
4858 list_for_each_entry(adj, adj_list, list) {
4859 if (adj->dev == adj_dev)
4860 return adj;
4861 }
4862 return NULL;
4863}
4864
4865/**
4866 * netdev_has_upper_dev - Check if device is linked to an upper device
4867 * @dev: device
4868 * @upper_dev: upper device to check
4869 *
4870 * Find out if a device is linked to specified upper device and return true
4871 * in case it is. Note that this checks only immediate upper device,
4872 * not through a complete stack of devices. The caller must hold the RTNL lock.
4873 */
4874bool netdev_has_upper_dev(struct net_device *dev,
4875 struct net_device *upper_dev)
4876{
4877 ASSERT_RTNL();
4878
4879 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4880}
4881EXPORT_SYMBOL(netdev_has_upper_dev);
4882
4883/**
4884 * netdev_has_any_upper_dev - Check if device is linked to some device
4885 * @dev: device
4886 *
4887 * Find out if a device is linked to an upper device and return true in case
4888 * it is. The caller must hold the RTNL lock.
4889 */
4890static bool netdev_has_any_upper_dev(struct net_device *dev)
4891{
4892 ASSERT_RTNL();
4893
4894 return !list_empty(&dev->all_adj_list.upper);
4895}
4896
4897/**
4898 * netdev_master_upper_dev_get - Get master upper device
4899 * @dev: device
4900 *
4901 * Find a master upper device and return pointer to it or NULL in case
4902 * it's not there. The caller must hold the RTNL lock.
4903 */
4904struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4905{
4906 struct netdev_adjacent *upper;
4907
4908 ASSERT_RTNL();
4909
4910 if (list_empty(&dev->adj_list.upper))
4911 return NULL;
4912
4913 upper = list_first_entry(&dev->adj_list.upper,
4914 struct netdev_adjacent, list);
4915 if (likely(upper->master))
4916 return upper->dev;
4917 return NULL;
4918}
4919EXPORT_SYMBOL(netdev_master_upper_dev_get);
4920
4921void *netdev_adjacent_get_private(struct list_head *adj_list)
4922{
4923 struct netdev_adjacent *adj;
4924
4925 adj = list_entry(adj_list, struct netdev_adjacent, list);
4926
4927 return adj->private;
4928}
4929EXPORT_SYMBOL(netdev_adjacent_get_private);
4930
4931/**
4932 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4933 * @dev: device
4934 * @iter: list_head ** of the current position
4935 *
4936 * Gets the next device from the dev's upper list, starting from iter
4937 * position. The caller must hold RCU read lock.
4938 */
4939struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4940 struct list_head **iter)
4941{
4942 struct netdev_adjacent *upper;
4943
4944 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4945
4946 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4947
4948 if (&upper->list == &dev->adj_list.upper)
4949 return NULL;
4950
4951 *iter = &upper->list;
4952
4953 return upper->dev;
4954}
4955EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4956
4957/**
4958 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4959 * @dev: device
4960 * @iter: list_head ** of the current position
4961 *
4962 * Gets the next device from the dev's upper list, starting from iter
4963 * position. The caller must hold RCU read lock.
4964 */
4965struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4966 struct list_head **iter)
4967{
4968 struct netdev_adjacent *upper;
4969
4970 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4971
4972 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4973
4974 if (&upper->list == &dev->all_adj_list.upper)
4975 return NULL;
4976
4977 *iter = &upper->list;
4978
4979 return upper->dev;
4980}
4981EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4982
4983/**
4984 * netdev_lower_get_next_private - Get the next ->private from the
4985 * lower neighbour list
4986 * @dev: device
4987 * @iter: list_head ** of the current position
4988 *
4989 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4990 * list, starting from iter position. The caller must hold either hold the
4991 * RTNL lock or its own locking that guarantees that the neighbour lower
4992 * list will remain unchainged.
4993 */
4994void *netdev_lower_get_next_private(struct net_device *dev,
4995 struct list_head **iter)
4996{
4997 struct netdev_adjacent *lower;
4998
4999 lower = list_entry(*iter, struct netdev_adjacent, list);
5000
5001 if (&lower->list == &dev->adj_list.lower)
5002 return NULL;
5003
5004 *iter = lower->list.next;
5005
5006 return lower->private;
5007}
5008EXPORT_SYMBOL(netdev_lower_get_next_private);
5009
5010/**
5011 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5012 * lower neighbour list, RCU
5013 * variant
5014 * @dev: device
5015 * @iter: list_head ** of the current position
5016 *
5017 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5018 * list, starting from iter position. The caller must hold RCU read lock.
5019 */
5020void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5021 struct list_head **iter)
5022{
5023 struct netdev_adjacent *lower;
5024
5025 WARN_ON_ONCE(!rcu_read_lock_held());
5026
5027 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5028
5029 if (&lower->list == &dev->adj_list.lower)
5030 return NULL;
5031
5032 *iter = &lower->list;
5033
5034 return lower->private;
5035}
5036EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5037
5038/**
5039 * netdev_lower_get_next - Get the next device from the lower neighbour
5040 * list
5041 * @dev: device
5042 * @iter: list_head ** of the current position
5043 *
5044 * Gets the next netdev_adjacent from the dev's lower neighbour
5045 * list, starting from iter position. The caller must hold RTNL lock or
5046 * its own locking that guarantees that the neighbour lower
5047 * list will remain unchainged.
5048 */
5049void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5050{
5051 struct netdev_adjacent *lower;
5052
5053 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5054
5055 if (&lower->list == &dev->adj_list.lower)
5056 return NULL;
5057
5058 *iter = &lower->list;
5059
5060 return lower->dev;
5061}
5062EXPORT_SYMBOL(netdev_lower_get_next);
5063
5064/**
5065 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5066 * lower neighbour list, RCU
5067 * variant
5068 * @dev: device
5069 *
5070 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5071 * list. The caller must hold RCU read lock.
5072 */
5073void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5074{
5075 struct netdev_adjacent *lower;
5076
5077 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5078 struct netdev_adjacent, list);
5079 if (lower)
5080 return lower->private;
5081 return NULL;
5082}
5083EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5084
5085/**
5086 * netdev_master_upper_dev_get_rcu - Get master upper device
5087 * @dev: device
5088 *
5089 * Find a master upper device and return pointer to it or NULL in case
5090 * it's not there. The caller must hold the RCU read lock.
5091 */
5092struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5093{
5094 struct netdev_adjacent *upper;
5095
5096 upper = list_first_or_null_rcu(&dev->adj_list.upper,
5097 struct netdev_adjacent, list);
5098 if (upper && likely(upper->master))
5099 return upper->dev;
5100 return NULL;
5101}
5102EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5103
5104static int netdev_adjacent_sysfs_add(struct net_device *dev,
5105 struct net_device *adj_dev,
5106 struct list_head *dev_list)
5107{
5108 char linkname[IFNAMSIZ+7];
5109 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5110 "upper_%s" : "lower_%s", adj_dev->name);
5111 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5112 linkname);
5113}
5114static void netdev_adjacent_sysfs_del(struct net_device *dev,
5115 char *name,
5116 struct list_head *dev_list)
5117{
5118 char linkname[IFNAMSIZ+7];
5119 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5120 "upper_%s" : "lower_%s", name);
5121 sysfs_remove_link(&(dev->dev.kobj), linkname);
5122}
5123
5124static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5125 struct net_device *adj_dev,
5126 struct list_head *dev_list)
5127{
5128 return (dev_list == &dev->adj_list.upper ||
5129 dev_list == &dev->adj_list.lower) &&
5130 net_eq(dev_net(dev), dev_net(adj_dev));
5131}
5132
5133static int __netdev_adjacent_dev_insert(struct net_device *dev,
5134 struct net_device *adj_dev,
5135 struct list_head *dev_list,
5136 void *private, bool master)
5137{
5138 struct netdev_adjacent *adj;
5139 int ret;
5140
5141 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5142
5143 if (adj) {
5144 adj->ref_nr++;
5145 return 0;
5146 }
5147
5148 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5149 if (!adj)
5150 return -ENOMEM;
5151
5152 adj->dev = adj_dev;
5153 adj->master = master;
5154 adj->ref_nr = 1;
5155 adj->private = private;
5156 dev_hold(adj_dev);
5157
5158 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5159 adj_dev->name, dev->name, adj_dev->name);
5160
5161 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5162 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5163 if (ret)
5164 goto free_adj;
5165 }
5166
5167 /* Ensure that master link is always the first item in list. */
5168 if (master) {
5169 ret = sysfs_create_link(&(dev->dev.kobj),
5170 &(adj_dev->dev.kobj), "master");
5171 if (ret)
5172 goto remove_symlinks;
5173
5174 list_add_rcu(&adj->list, dev_list);
5175 } else {
5176 list_add_tail_rcu(&adj->list, dev_list);
5177 }
5178
5179 return 0;
5180
5181remove_symlinks:
5182 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5183 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5184free_adj:
5185 kfree(adj);
5186 dev_put(adj_dev);
5187
5188 return ret;
5189}
5190
5191static void __netdev_adjacent_dev_remove(struct net_device *dev,
5192 struct net_device *adj_dev,
5193 struct list_head *dev_list)
5194{
5195 struct netdev_adjacent *adj;
5196
5197 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5198
5199 if (!adj) {
5200 pr_err("tried to remove device %s from %s\n",
5201 dev->name, adj_dev->name);
5202 BUG();
5203 }
5204
5205 if (adj->ref_nr > 1) {
5206 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5207 adj->ref_nr-1);
5208 adj->ref_nr--;
5209 return;
5210 }
5211
5212 if (adj->master)
5213 sysfs_remove_link(&(dev->dev.kobj), "master");
5214
5215 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5216 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5217
5218 list_del_rcu(&adj->list);
5219 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5220 adj_dev->name, dev->name, adj_dev->name);
5221 dev_put(adj_dev);
5222 kfree_rcu(adj, rcu);
5223}
5224
5225static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5226 struct net_device *upper_dev,
5227 struct list_head *up_list,
5228 struct list_head *down_list,
5229 void *private, bool master)
5230{
5231 int ret;
5232
5233 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5234 master);
5235 if (ret)
5236 return ret;
5237
5238 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5239 false);
5240 if (ret) {
5241 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5242 return ret;
5243 }
5244
5245 return 0;
5246}
5247
5248static int __netdev_adjacent_dev_link(struct net_device *dev,
5249 struct net_device *upper_dev)
5250{
5251 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5252 &dev->all_adj_list.upper,
5253 &upper_dev->all_adj_list.lower,
5254 NULL, false);
5255}
5256
5257static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5258 struct net_device *upper_dev,
5259 struct list_head *up_list,
5260 struct list_head *down_list)
5261{
5262 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5263 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5264}
5265
5266static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5267 struct net_device *upper_dev)
5268{
5269 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5270 &dev->all_adj_list.upper,
5271 &upper_dev->all_adj_list.lower);
5272}
5273
5274static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5275 struct net_device *upper_dev,
5276 void *private, bool master)
5277{
5278 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5279
5280 if (ret)
5281 return ret;
5282
5283 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5284 &dev->adj_list.upper,
5285 &upper_dev->adj_list.lower,
5286 private, master);
5287 if (ret) {
5288 __netdev_adjacent_dev_unlink(dev, upper_dev);
5289 return ret;
5290 }
5291
5292 return 0;
5293}
5294
5295static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5296 struct net_device *upper_dev)
5297{
5298 __netdev_adjacent_dev_unlink(dev, upper_dev);
5299 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5300 &dev->adj_list.upper,
5301 &upper_dev->adj_list.lower);
5302}
5303
5304static int __netdev_upper_dev_link(struct net_device *dev,
5305 struct net_device *upper_dev, bool master,
5306 void *private)
5307{
5308 struct netdev_adjacent *i, *j, *to_i, *to_j;
5309 int ret = 0;
5310
5311 ASSERT_RTNL();
5312
5313 if (dev == upper_dev)
5314 return -EBUSY;
5315
5316 /* To prevent loops, check if dev is not upper device to upper_dev. */
5317 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5318 return -EBUSY;
5319
5320 if (__netdev_find_adj(dev, upper_dev, &dev->adj_list.upper))
5321 return -EEXIST;
5322
5323 if (master && netdev_master_upper_dev_get(dev))
5324 return -EBUSY;
5325
5326 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5327 master);
5328 if (ret)
5329 return ret;
5330
5331 /* Now that we linked these devs, make all the upper_dev's
5332 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5333 * versa, and don't forget the devices itself. All of these
5334 * links are non-neighbours.
5335 */
5336 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5337 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5338 pr_debug("Interlinking %s with %s, non-neighbour\n",
5339 i->dev->name, j->dev->name);
5340 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5341 if (ret)
5342 goto rollback_mesh;
5343 }
5344 }
5345
5346 /* add dev to every upper_dev's upper device */
5347 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5348 pr_debug("linking %s's upper device %s with %s\n",
5349 upper_dev->name, i->dev->name, dev->name);
5350 ret = __netdev_adjacent_dev_link(dev, i->dev);
5351 if (ret)
5352 goto rollback_upper_mesh;
5353 }
5354
5355 /* add upper_dev to every dev's lower device */
5356 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5357 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5358 i->dev->name, upper_dev->name);
5359 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5360 if (ret)
5361 goto rollback_lower_mesh;
5362 }
5363
5364 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5365 return 0;
5366
5367rollback_lower_mesh:
5368 to_i = i;
5369 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5370 if (i == to_i)
5371 break;
5372 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5373 }
5374
5375 i = NULL;
5376
5377rollback_upper_mesh:
5378 to_i = i;
5379 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5380 if (i == to_i)
5381 break;
5382 __netdev_adjacent_dev_unlink(dev, i->dev);
5383 }
5384
5385 i = j = NULL;
5386
5387rollback_mesh:
5388 to_i = i;
5389 to_j = j;
5390 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5391 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5392 if (i == to_i && j == to_j)
5393 break;
5394 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5395 }
5396 if (i == to_i)
5397 break;
5398 }
5399
5400 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5401
5402 return ret;
5403}
5404
5405/**
5406 * netdev_upper_dev_link - Add a link to the upper device
5407 * @dev: device
5408 * @upper_dev: new upper device
5409 *
5410 * Adds a link to device which is upper to this one. The caller must hold
5411 * the RTNL lock. On a failure a negative errno code is returned.
5412 * On success the reference counts are adjusted and the function
5413 * returns zero.
5414 */
5415int netdev_upper_dev_link(struct net_device *dev,
5416 struct net_device *upper_dev)
5417{
5418 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5419}
5420EXPORT_SYMBOL(netdev_upper_dev_link);
5421
5422/**
5423 * netdev_master_upper_dev_link - Add a master link to the upper device
5424 * @dev: device
5425 * @upper_dev: new upper device
5426 *
5427 * Adds a link to device which is upper to this one. In this case, only
5428 * one master upper device can be linked, although other non-master devices
5429 * might be linked as well. The caller must hold the RTNL lock.
5430 * On a failure a negative errno code is returned. On success the reference
5431 * counts are adjusted and the function returns zero.
5432 */
5433int netdev_master_upper_dev_link(struct net_device *dev,
5434 struct net_device *upper_dev)
5435{
5436 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5437}
5438EXPORT_SYMBOL(netdev_master_upper_dev_link);
5439
5440int netdev_master_upper_dev_link_private(struct net_device *dev,
5441 struct net_device *upper_dev,
5442 void *private)
5443{
5444 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5445}
5446EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5447
5448/**
5449 * netdev_upper_dev_unlink - Removes a link to upper device
5450 * @dev: device
5451 * @upper_dev: new upper device
5452 *
5453 * Removes a link to device which is upper to this one. The caller must hold
5454 * the RTNL lock.
5455 */
5456void netdev_upper_dev_unlink(struct net_device *dev,
5457 struct net_device *upper_dev)
5458{
5459 struct netdev_adjacent *i, *j;
5460 ASSERT_RTNL();
5461
5462 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5463
5464 /* Here is the tricky part. We must remove all dev's lower
5465 * devices from all upper_dev's upper devices and vice
5466 * versa, to maintain the graph relationship.
5467 */
5468 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5469 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5470 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5471
5472 /* remove also the devices itself from lower/upper device
5473 * list
5474 */
5475 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5476 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5477
5478 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5479 __netdev_adjacent_dev_unlink(dev, i->dev);
5480
5481 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5482}
5483EXPORT_SYMBOL(netdev_upper_dev_unlink);
5484
5485/**
5486 * netdev_bonding_info_change - Dispatch event about slave change
5487 * @dev: device
5488 * @bonding_info: info to dispatch
5489 *
5490 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5491 * The caller must hold the RTNL lock.
5492 */
5493void netdev_bonding_info_change(struct net_device *dev,
5494 struct netdev_bonding_info *bonding_info)
5495{
5496 struct netdev_notifier_bonding_info info;
5497
5498 memcpy(&info.bonding_info, bonding_info,
5499 sizeof(struct netdev_bonding_info));
5500 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5501 &info.info);
5502}
5503EXPORT_SYMBOL(netdev_bonding_info_change);
5504
5505static void netdev_adjacent_add_links(struct net_device *dev)
5506{
5507 struct netdev_adjacent *iter;
5508
5509 struct net *net = dev_net(dev);
5510
5511 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5512 if (!net_eq(net,dev_net(iter->dev)))
5513 continue;
5514 netdev_adjacent_sysfs_add(iter->dev, dev,
5515 &iter->dev->adj_list.lower);
5516 netdev_adjacent_sysfs_add(dev, iter->dev,
5517 &dev->adj_list.upper);
5518 }
5519
5520 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5521 if (!net_eq(net,dev_net(iter->dev)))
5522 continue;
5523 netdev_adjacent_sysfs_add(iter->dev, dev,
5524 &iter->dev->adj_list.upper);
5525 netdev_adjacent_sysfs_add(dev, iter->dev,
5526 &dev->adj_list.lower);
5527 }
5528}
5529
5530static void netdev_adjacent_del_links(struct net_device *dev)
5531{
5532 struct netdev_adjacent *iter;
5533
5534 struct net *net = dev_net(dev);
5535
5536 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5537 if (!net_eq(net,dev_net(iter->dev)))
5538 continue;
5539 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5540 &iter->dev->adj_list.lower);
5541 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5542 &dev->adj_list.upper);
5543 }
5544
5545 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5546 if (!net_eq(net,dev_net(iter->dev)))
5547 continue;
5548 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5549 &iter->dev->adj_list.upper);
5550 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5551 &dev->adj_list.lower);
5552 }
5553}
5554
5555void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5556{
5557 struct netdev_adjacent *iter;
5558
5559 struct net *net = dev_net(dev);
5560
5561 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5562 if (!net_eq(net,dev_net(iter->dev)))
5563 continue;
5564 netdev_adjacent_sysfs_del(iter->dev, oldname,
5565 &iter->dev->adj_list.lower);
5566 netdev_adjacent_sysfs_add(iter->dev, dev,
5567 &iter->dev->adj_list.lower);
5568 }
5569
5570 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5571 if (!net_eq(net,dev_net(iter->dev)))
5572 continue;
5573 netdev_adjacent_sysfs_del(iter->dev, oldname,
5574 &iter->dev->adj_list.upper);
5575 netdev_adjacent_sysfs_add(iter->dev, dev,
5576 &iter->dev->adj_list.upper);
5577 }
5578}
5579
5580void *netdev_lower_dev_get_private(struct net_device *dev,
5581 struct net_device *lower_dev)
5582{
5583 struct netdev_adjacent *lower;
5584
5585 if (!lower_dev)
5586 return NULL;
5587 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5588 if (!lower)
5589 return NULL;
5590
5591 return lower->private;
5592}
5593EXPORT_SYMBOL(netdev_lower_dev_get_private);
5594
5595
5596int dev_get_nest_level(struct net_device *dev,
5597 bool (*type_check)(struct net_device *dev))
5598{
5599 struct net_device *lower = NULL;
5600 struct list_head *iter;
5601 int max_nest = -1;
5602 int nest;
5603
5604 ASSERT_RTNL();
5605
5606 netdev_for_each_lower_dev(dev, lower, iter) {
5607 nest = dev_get_nest_level(lower, type_check);
5608 if (max_nest < nest)
5609 max_nest = nest;
5610 }
5611
5612 if (type_check(dev))
5613 max_nest++;
5614
5615 return max_nest;
5616}
5617EXPORT_SYMBOL(dev_get_nest_level);
5618
5619static void dev_change_rx_flags(struct net_device *dev, int flags)
5620{
5621 const struct net_device_ops *ops = dev->netdev_ops;
5622
5623 if (ops->ndo_change_rx_flags)
5624 ops->ndo_change_rx_flags(dev, flags);
5625}
5626
5627static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5628{
5629 unsigned int old_flags = dev->flags;
5630 kuid_t uid;
5631 kgid_t gid;
5632
5633 ASSERT_RTNL();
5634
5635 dev->flags |= IFF_PROMISC;
5636 dev->promiscuity += inc;
5637 if (dev->promiscuity == 0) {
5638 /*
5639 * Avoid overflow.
5640 * If inc causes overflow, untouch promisc and return error.
5641 */
5642 if (inc < 0)
5643 dev->flags &= ~IFF_PROMISC;
5644 else {
5645 dev->promiscuity -= inc;
5646 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5647 dev->name);
5648 return -EOVERFLOW;
5649 }
5650 }
5651 if (dev->flags != old_flags) {
5652 pr_info("device %s %s promiscuous mode\n",
5653 dev->name,
5654 dev->flags & IFF_PROMISC ? "entered" : "left");
5655 if (audit_enabled) {
5656 current_uid_gid(&uid, &gid);
5657 audit_log(current->audit_context, GFP_ATOMIC,
5658 AUDIT_ANOM_PROMISCUOUS,
5659 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5660 dev->name, (dev->flags & IFF_PROMISC),
5661 (old_flags & IFF_PROMISC),
5662 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5663 from_kuid(&init_user_ns, uid),
5664 from_kgid(&init_user_ns, gid),
5665 audit_get_sessionid(current));
5666 }
5667
5668 dev_change_rx_flags(dev, IFF_PROMISC);
5669 }
5670 if (notify)
5671 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5672 return 0;
5673}
5674
5675/**
5676 * dev_set_promiscuity - update promiscuity count on a device
5677 * @dev: device
5678 * @inc: modifier
5679 *
5680 * Add or remove promiscuity from a device. While the count in the device
5681 * remains above zero the interface remains promiscuous. Once it hits zero
5682 * the device reverts back to normal filtering operation. A negative inc
5683 * value is used to drop promiscuity on the device.
5684 * Return 0 if successful or a negative errno code on error.
5685 */
5686int dev_set_promiscuity(struct net_device *dev, int inc)
5687{
5688 unsigned int old_flags = dev->flags;
5689 int err;
5690
5691 err = __dev_set_promiscuity(dev, inc, true);
5692 if (err < 0)
5693 return err;
5694 if (dev->flags != old_flags)
5695 dev_set_rx_mode(dev);
5696 return err;
5697}
5698EXPORT_SYMBOL(dev_set_promiscuity);
5699
5700static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5701{
5702 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5703
5704 ASSERT_RTNL();
5705
5706 dev->flags |= IFF_ALLMULTI;
5707 dev->allmulti += inc;
5708 if (dev->allmulti == 0) {
5709 /*
5710 * Avoid overflow.
5711 * If inc causes overflow, untouch allmulti and return error.
5712 */
5713 if (inc < 0)
5714 dev->flags &= ~IFF_ALLMULTI;
5715 else {
5716 dev->allmulti -= inc;
5717 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5718 dev->name);
5719 return -EOVERFLOW;
5720 }
5721 }
5722 if (dev->flags ^ old_flags) {
5723 dev_change_rx_flags(dev, IFF_ALLMULTI);
5724 dev_set_rx_mode(dev);
5725 if (notify)
5726 __dev_notify_flags(dev, old_flags,
5727 dev->gflags ^ old_gflags);
5728 }
5729 return 0;
5730}
5731
5732/**
5733 * dev_set_allmulti - update allmulti count on a device
5734 * @dev: device
5735 * @inc: modifier
5736 *
5737 * Add or remove reception of all multicast frames to a device. While the
5738 * count in the device remains above zero the interface remains listening
5739 * to all interfaces. Once it hits zero the device reverts back to normal
5740 * filtering operation. A negative @inc value is used to drop the counter
5741 * when releasing a resource needing all multicasts.
5742 * Return 0 if successful or a negative errno code on error.
5743 */
5744
5745int dev_set_allmulti(struct net_device *dev, int inc)
5746{
5747 return __dev_set_allmulti(dev, inc, true);
5748}
5749EXPORT_SYMBOL(dev_set_allmulti);
5750
5751/*
5752 * Upload unicast and multicast address lists to device and
5753 * configure RX filtering. When the device doesn't support unicast
5754 * filtering it is put in promiscuous mode while unicast addresses
5755 * are present.
5756 */
5757void __dev_set_rx_mode(struct net_device *dev)
5758{
5759 const struct net_device_ops *ops = dev->netdev_ops;
5760
5761 /* dev_open will call this function so the list will stay sane. */
5762 if (!(dev->flags&IFF_UP))
5763 return;
5764
5765 if (!netif_device_present(dev))
5766 return;
5767
5768 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5769 /* Unicast addresses changes may only happen under the rtnl,
5770 * therefore calling __dev_set_promiscuity here is safe.
5771 */
5772 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5773 __dev_set_promiscuity(dev, 1, false);
5774 dev->uc_promisc = true;
5775 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5776 __dev_set_promiscuity(dev, -1, false);
5777 dev->uc_promisc = false;
5778 }
5779 }
5780
5781 if (ops->ndo_set_rx_mode)
5782 ops->ndo_set_rx_mode(dev);
5783}
5784
5785void dev_set_rx_mode(struct net_device *dev)
5786{
5787 netif_addr_lock_bh(dev);
5788 __dev_set_rx_mode(dev);
5789 netif_addr_unlock_bh(dev);
5790}
5791
5792/**
5793 * dev_get_flags - get flags reported to userspace
5794 * @dev: device
5795 *
5796 * Get the combination of flag bits exported through APIs to userspace.
5797 */
5798unsigned int dev_get_flags(const struct net_device *dev)
5799{
5800 unsigned int flags;
5801
5802 flags = (dev->flags & ~(IFF_PROMISC |
5803 IFF_ALLMULTI |
5804 IFF_RUNNING |
5805 IFF_LOWER_UP |
5806 IFF_DORMANT)) |
5807 (dev->gflags & (IFF_PROMISC |
5808 IFF_ALLMULTI));
5809
5810 if (netif_running(dev)) {
5811 if (netif_oper_up(dev))
5812 flags |= IFF_RUNNING;
5813 if (netif_carrier_ok(dev))
5814 flags |= IFF_LOWER_UP;
5815 if (netif_dormant(dev))
5816 flags |= IFF_DORMANT;
5817 }
5818
5819 return flags;
5820}
5821EXPORT_SYMBOL(dev_get_flags);
5822
5823int __dev_change_flags(struct net_device *dev, unsigned int flags)
5824{
5825 unsigned int old_flags = dev->flags;
5826 int ret;
5827
5828 ASSERT_RTNL();
5829
5830 /*
5831 * Set the flags on our device.
5832 */
5833
5834 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5835 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5836 IFF_AUTOMEDIA)) |
5837 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5838 IFF_ALLMULTI));
5839
5840 /*
5841 * Load in the correct multicast list now the flags have changed.
5842 */
5843
5844 if ((old_flags ^ flags) & IFF_MULTICAST)
5845 dev_change_rx_flags(dev, IFF_MULTICAST);
5846
5847 dev_set_rx_mode(dev);
5848
5849 /*
5850 * Have we downed the interface. We handle IFF_UP ourselves
5851 * according to user attempts to set it, rather than blindly
5852 * setting it.
5853 */
5854
5855 ret = 0;
5856 if ((old_flags ^ flags) & IFF_UP)
5857 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5858
5859 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5860 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5861 unsigned int old_flags = dev->flags;
5862
5863 dev->gflags ^= IFF_PROMISC;
5864
5865 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5866 if (dev->flags != old_flags)
5867 dev_set_rx_mode(dev);
5868 }
5869
5870 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5871 is important. Some (broken) drivers set IFF_PROMISC, when
5872 IFF_ALLMULTI is requested not asking us and not reporting.
5873 */
5874 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5875 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5876
5877 dev->gflags ^= IFF_ALLMULTI;
5878 __dev_set_allmulti(dev, inc, false);
5879 }
5880
5881 return ret;
5882}
5883
5884void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5885 unsigned int gchanges)
5886{
5887 unsigned int changes = dev->flags ^ old_flags;
5888
5889 if (gchanges)
5890 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5891
5892 if (changes & IFF_UP) {
5893 if (dev->flags & IFF_UP)
5894 call_netdevice_notifiers(NETDEV_UP, dev);
5895 else
5896 call_netdevice_notifiers(NETDEV_DOWN, dev);
5897 }
5898
5899 if (dev->flags & IFF_UP &&
5900 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5901 struct netdev_notifier_change_info change_info;
5902
5903 change_info.flags_changed = changes;
5904 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5905 &change_info.info);
5906 }
5907}
5908
5909/**
5910 * dev_change_flags - change device settings
5911 * @dev: device
5912 * @flags: device state flags
5913 *
5914 * Change settings on device based state flags. The flags are
5915 * in the userspace exported format.
5916 */
5917int dev_change_flags(struct net_device *dev, unsigned int flags)
5918{
5919 int ret;
5920 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5921
5922 ret = __dev_change_flags(dev, flags);
5923 if (ret < 0)
5924 return ret;
5925
5926 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5927 __dev_notify_flags(dev, old_flags, changes);
5928 return ret;
5929}
5930EXPORT_SYMBOL(dev_change_flags);
5931
5932static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5933{
5934 const struct net_device_ops *ops = dev->netdev_ops;
5935
5936 if (ops->ndo_change_mtu)
5937 return ops->ndo_change_mtu(dev, new_mtu);
5938
5939 dev->mtu = new_mtu;
5940 return 0;
5941}
5942
5943/**
5944 * dev_set_mtu - Change maximum transfer unit
5945 * @dev: device
5946 * @new_mtu: new transfer unit
5947 *
5948 * Change the maximum transfer size of the network device.
5949 */
5950int dev_set_mtu(struct net_device *dev, int new_mtu)
5951{
5952 int err, orig_mtu;
5953
5954 if (new_mtu == dev->mtu)
5955 return 0;
5956
5957 /* MTU must be positive. */
5958 if (new_mtu < 0)
5959 return -EINVAL;
5960
5961 if (!netif_device_present(dev))
5962 return -ENODEV;
5963
5964 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5965 err = notifier_to_errno(err);
5966 if (err)
5967 return err;
5968
5969 orig_mtu = dev->mtu;
5970 err = __dev_set_mtu(dev, new_mtu);
5971
5972 if (!err) {
5973 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5974 err = notifier_to_errno(err);
5975 if (err) {
5976 /* setting mtu back and notifying everyone again,
5977 * so that they have a chance to revert changes.
5978 */
5979 __dev_set_mtu(dev, orig_mtu);
5980 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5981 }
5982 }
5983 return err;
5984}
5985EXPORT_SYMBOL(dev_set_mtu);
5986
5987/**
5988 * dev_set_group - Change group this device belongs to
5989 * @dev: device
5990 * @new_group: group this device should belong to
5991 */
5992void dev_set_group(struct net_device *dev, int new_group)
5993{
5994 dev->group = new_group;
5995}
5996EXPORT_SYMBOL(dev_set_group);
5997
5998/**
5999 * dev_set_mac_address - Change Media Access Control Address
6000 * @dev: device
6001 * @sa: new address
6002 *
6003 * Change the hardware (MAC) address of the device
6004 */
6005int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6006{
6007 const struct net_device_ops *ops = dev->netdev_ops;
6008 int err;
6009
6010 if (!ops->ndo_set_mac_address)
6011 return -EOPNOTSUPP;
6012 if (sa->sa_family != dev->type)
6013 return -EINVAL;
6014 if (!netif_device_present(dev))
6015 return -ENODEV;
6016 err = ops->ndo_set_mac_address(dev, sa);
6017 if (err)
6018 return err;
6019 dev->addr_assign_type = NET_ADDR_SET;
6020 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6021 add_device_randomness(dev->dev_addr, dev->addr_len);
6022 return 0;
6023}
6024EXPORT_SYMBOL(dev_set_mac_address);
6025
6026/**
6027 * dev_change_carrier - Change device carrier
6028 * @dev: device
6029 * @new_carrier: new value
6030 *
6031 * Change device carrier
6032 */
6033int dev_change_carrier(struct net_device *dev, bool new_carrier)
6034{
6035 const struct net_device_ops *ops = dev->netdev_ops;
6036
6037 if (!ops->ndo_change_carrier)
6038 return -EOPNOTSUPP;
6039 if (!netif_device_present(dev))
6040 return -ENODEV;
6041 return ops->ndo_change_carrier(dev, new_carrier);
6042}
6043EXPORT_SYMBOL(dev_change_carrier);
6044
6045/**
6046 * dev_get_phys_port_id - Get device physical port ID
6047 * @dev: device
6048 * @ppid: port ID
6049 *
6050 * Get device physical port ID
6051 */
6052int dev_get_phys_port_id(struct net_device *dev,
6053 struct netdev_phys_item_id *ppid)
6054{
6055 const struct net_device_ops *ops = dev->netdev_ops;
6056
6057 if (!ops->ndo_get_phys_port_id)
6058 return -EOPNOTSUPP;
6059 return ops->ndo_get_phys_port_id(dev, ppid);
6060}
6061EXPORT_SYMBOL(dev_get_phys_port_id);
6062
6063/**
6064 * dev_get_phys_port_name - Get device physical port name
6065 * @dev: device
6066 * @name: port name
6067 *
6068 * Get device physical port name
6069 */
6070int dev_get_phys_port_name(struct net_device *dev,
6071 char *name, size_t len)
6072{
6073 const struct net_device_ops *ops = dev->netdev_ops;
6074
6075 if (!ops->ndo_get_phys_port_name)
6076 return -EOPNOTSUPP;
6077 return ops->ndo_get_phys_port_name(dev, name, len);
6078}
6079EXPORT_SYMBOL(dev_get_phys_port_name);
6080
6081/**
6082 * dev_new_index - allocate an ifindex
6083 * @net: the applicable net namespace
6084 *
6085 * Returns a suitable unique value for a new device interface
6086 * number. The caller must hold the rtnl semaphore or the
6087 * dev_base_lock to be sure it remains unique.
6088 */
6089static int dev_new_index(struct net *net)
6090{
6091 int ifindex = net->ifindex;
6092 for (;;) {
6093 if (++ifindex <= 0)
6094 ifindex = 1;
6095 if (!__dev_get_by_index(net, ifindex))
6096 return net->ifindex = ifindex;
6097 }
6098}
6099
6100/* Delayed registration/unregisteration */
6101static LIST_HEAD(net_todo_list);
6102DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6103
6104static void net_set_todo(struct net_device *dev)
6105{
6106 list_add_tail(&dev->todo_list, &net_todo_list);
6107 dev_net(dev)->dev_unreg_count++;
6108}
6109
6110static void rollback_registered_many(struct list_head *head)
6111{
6112 struct net_device *dev, *tmp;
6113 LIST_HEAD(close_head);
6114
6115 BUG_ON(dev_boot_phase);
6116 ASSERT_RTNL();
6117
6118 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6119 /* Some devices call without registering
6120 * for initialization unwind. Remove those
6121 * devices and proceed with the remaining.
6122 */
6123 if (dev->reg_state == NETREG_UNINITIALIZED) {
6124 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6125 dev->name, dev);
6126
6127 WARN_ON(1);
6128 list_del(&dev->unreg_list);
6129 continue;
6130 }
6131 dev->dismantle = true;
6132 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6133 }
6134
6135 /* If device is running, close it first. */
6136 list_for_each_entry(dev, head, unreg_list)
6137 list_add_tail(&dev->close_list, &close_head);
6138 dev_close_many(&close_head, true);
6139
6140 list_for_each_entry(dev, head, unreg_list) {
6141 /* And unlink it from device chain. */
6142 unlist_netdevice(dev);
6143
6144 dev->reg_state = NETREG_UNREGISTERING;
6145 }
6146
6147 synchronize_net();
6148
6149 list_for_each_entry(dev, head, unreg_list) {
6150 struct sk_buff *skb = NULL;
6151
6152 /* Shutdown queueing discipline. */
6153 dev_shutdown(dev);
6154
6155
6156 /* Notify protocols, that we are about to destroy
6157 this device. They should clean all the things.
6158 */
6159 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6160
6161 if (!dev->rtnl_link_ops ||
6162 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6163 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6164 GFP_KERNEL);
6165
6166 /*
6167 * Flush the unicast and multicast chains
6168 */
6169 dev_uc_flush(dev);
6170 dev_mc_flush(dev);
6171
6172 if (dev->netdev_ops->ndo_uninit)
6173 dev->netdev_ops->ndo_uninit(dev);
6174
6175 if (skb)
6176 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6177
6178 /* Notifier chain MUST detach us all upper devices. */
6179 WARN_ON(netdev_has_any_upper_dev(dev));
6180
6181 /* Remove entries from kobject tree */
6182 netdev_unregister_kobject(dev);
6183#ifdef CONFIG_XPS
6184 /* Remove XPS queueing entries */
6185 netif_reset_xps_queues_gt(dev, 0);
6186#endif
6187 }
6188
6189 synchronize_net();
6190
6191 list_for_each_entry(dev, head, unreg_list)
6192 dev_put(dev);
6193}
6194
6195static void rollback_registered(struct net_device *dev)
6196{
6197 LIST_HEAD(single);
6198
6199 list_add(&dev->unreg_list, &single);
6200 rollback_registered_many(&single);
6201 list_del(&single);
6202}
6203
6204static netdev_features_t netdev_fix_features(struct net_device *dev,
6205 netdev_features_t features)
6206{
6207 /* Fix illegal checksum combinations */
6208 if ((features & NETIF_F_HW_CSUM) &&
6209 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6210 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6211 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6212 }
6213
6214 /* TSO requires that SG is present as well. */
6215 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6216 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6217 features &= ~NETIF_F_ALL_TSO;
6218 }
6219
6220 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6221 !(features & NETIF_F_IP_CSUM)) {
6222 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6223 features &= ~NETIF_F_TSO;
6224 features &= ~NETIF_F_TSO_ECN;
6225 }
6226
6227 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6228 !(features & NETIF_F_IPV6_CSUM)) {
6229 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6230 features &= ~NETIF_F_TSO6;
6231 }
6232
6233 /* TSO ECN requires that TSO is present as well. */
6234 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6235 features &= ~NETIF_F_TSO_ECN;
6236
6237 /* Software GSO depends on SG. */
6238 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6239 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6240 features &= ~NETIF_F_GSO;
6241 }
6242
6243 /* UFO needs SG and checksumming */
6244 if (features & NETIF_F_UFO) {
6245 /* maybe split UFO into V4 and V6? */
6246 if (!((features & NETIF_F_GEN_CSUM) ||
6247 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6248 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6249 netdev_dbg(dev,
6250 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6251 features &= ~NETIF_F_UFO;
6252 }
6253
6254 if (!(features & NETIF_F_SG)) {
6255 netdev_dbg(dev,
6256 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6257 features &= ~NETIF_F_UFO;
6258 }
6259 }
6260
6261#ifdef CONFIG_NET_RX_BUSY_POLL
6262 if (dev->netdev_ops->ndo_busy_poll)
6263 features |= NETIF_F_BUSY_POLL;
6264 else
6265#endif
6266 features &= ~NETIF_F_BUSY_POLL;
6267
6268 return features;
6269}
6270
6271int __netdev_update_features(struct net_device *dev)
6272{
6273 netdev_features_t features;
6274 int err = 0;
6275
6276 ASSERT_RTNL();
6277
6278 features = netdev_get_wanted_features(dev);
6279
6280 if (dev->netdev_ops->ndo_fix_features)
6281 features = dev->netdev_ops->ndo_fix_features(dev, features);
6282
6283 /* driver might be less strict about feature dependencies */
6284 features = netdev_fix_features(dev, features);
6285
6286 if (dev->features == features)
6287 return 0;
6288
6289 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6290 &dev->features, &features);
6291
6292 if (dev->netdev_ops->ndo_set_features)
6293 err = dev->netdev_ops->ndo_set_features(dev, features);
6294
6295 if (unlikely(err < 0)) {
6296 netdev_err(dev,
6297 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6298 err, &features, &dev->features);
6299 return -1;
6300 }
6301
6302 if (!err)
6303 dev->features = features;
6304
6305 return 1;
6306}
6307
6308/**
6309 * netdev_update_features - recalculate device features
6310 * @dev: the device to check
6311 *
6312 * Recalculate dev->features set and send notifications if it
6313 * has changed. Should be called after driver or hardware dependent
6314 * conditions might have changed that influence the features.
6315 */
6316void netdev_update_features(struct net_device *dev)
6317{
6318 if (__netdev_update_features(dev))
6319 netdev_features_change(dev);
6320}
6321EXPORT_SYMBOL(netdev_update_features);
6322
6323/**
6324 * netdev_change_features - recalculate device features
6325 * @dev: the device to check
6326 *
6327 * Recalculate dev->features set and send notifications even
6328 * if they have not changed. Should be called instead of
6329 * netdev_update_features() if also dev->vlan_features might
6330 * have changed to allow the changes to be propagated to stacked
6331 * VLAN devices.
6332 */
6333void netdev_change_features(struct net_device *dev)
6334{
6335 __netdev_update_features(dev);
6336 netdev_features_change(dev);
6337}
6338EXPORT_SYMBOL(netdev_change_features);
6339
6340/**
6341 * netif_stacked_transfer_operstate - transfer operstate
6342 * @rootdev: the root or lower level device to transfer state from
6343 * @dev: the device to transfer operstate to
6344 *
6345 * Transfer operational state from root to device. This is normally
6346 * called when a stacking relationship exists between the root
6347 * device and the device(a leaf device).
6348 */
6349void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6350 struct net_device *dev)
6351{
6352 if (rootdev->operstate == IF_OPER_DORMANT)
6353 netif_dormant_on(dev);
6354 else
6355 netif_dormant_off(dev);
6356
6357 if (netif_carrier_ok(rootdev)) {
6358 if (!netif_carrier_ok(dev))
6359 netif_carrier_on(dev);
6360 } else {
6361 if (netif_carrier_ok(dev))
6362 netif_carrier_off(dev);
6363 }
6364}
6365EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6366
6367#ifdef CONFIG_SYSFS
6368static int netif_alloc_rx_queues(struct net_device *dev)
6369{
6370 unsigned int i, count = dev->num_rx_queues;
6371 struct netdev_rx_queue *rx;
6372 size_t sz = count * sizeof(*rx);
6373
6374 BUG_ON(count < 1);
6375
6376 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6377 if (!rx) {
6378 rx = vzalloc(sz);
6379 if (!rx)
6380 return -ENOMEM;
6381 }
6382 dev->_rx = rx;
6383
6384 for (i = 0; i < count; i++)
6385 rx[i].dev = dev;
6386 return 0;
6387}
6388#endif
6389
6390static void netdev_init_one_queue(struct net_device *dev,
6391 struct netdev_queue *queue, void *_unused)
6392{
6393 /* Initialize queue lock */
6394 spin_lock_init(&queue->_xmit_lock);
6395 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6396 queue->xmit_lock_owner = -1;
6397 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6398 queue->dev = dev;
6399#ifdef CONFIG_BQL
6400 dql_init(&queue->dql, HZ);
6401#endif
6402}
6403
6404static void netif_free_tx_queues(struct net_device *dev)
6405{
6406 kvfree(dev->_tx);
6407}
6408
6409static int netif_alloc_netdev_queues(struct net_device *dev)
6410{
6411 unsigned int count = dev->num_tx_queues;
6412 struct netdev_queue *tx;
6413 size_t sz = count * sizeof(*tx);
6414
6415 BUG_ON(count < 1 || count > 0xffff);
6416
6417 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6418 if (!tx) {
6419 tx = vzalloc(sz);
6420 if (!tx)
6421 return -ENOMEM;
6422 }
6423 dev->_tx = tx;
6424
6425 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6426 spin_lock_init(&dev->tx_global_lock);
6427
6428 return 0;
6429}
6430
6431void netif_tx_stop_all_queues(struct net_device *dev)
6432{
6433 unsigned int i;
6434
6435 for (i = 0; i < dev->num_tx_queues; i++) {
6436 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6437 netif_tx_stop_queue(txq);
6438 }
6439}
6440EXPORT_SYMBOL(netif_tx_stop_all_queues);
6441
6442/**
6443 * register_netdevice - register a network device
6444 * @dev: device to register
6445 *
6446 * Take a completed network device structure and add it to the kernel
6447 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6448 * chain. 0 is returned on success. A negative errno code is returned
6449 * on a failure to set up the device, or if the name is a duplicate.
6450 *
6451 * Callers must hold the rtnl semaphore. You may want
6452 * register_netdev() instead of this.
6453 *
6454 * BUGS:
6455 * The locking appears insufficient to guarantee two parallel registers
6456 * will not get the same name.
6457 */
6458
6459int register_netdevice(struct net_device *dev)
6460{
6461 int ret;
6462 struct net *net = dev_net(dev);
6463
6464 BUG_ON(dev_boot_phase);
6465 ASSERT_RTNL();
6466
6467 might_sleep();
6468
6469 /* When net_device's are persistent, this will be fatal. */
6470 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6471 BUG_ON(!net);
6472
6473 spin_lock_init(&dev->addr_list_lock);
6474 netdev_set_addr_lockdep_class(dev);
6475
6476 ret = dev_get_valid_name(net, dev, dev->name);
6477 if (ret < 0)
6478 goto out;
6479
6480 /* Init, if this function is available */
6481 if (dev->netdev_ops->ndo_init) {
6482 ret = dev->netdev_ops->ndo_init(dev);
6483 if (ret) {
6484 if (ret > 0)
6485 ret = -EIO;
6486 goto out;
6487 }
6488 }
6489
6490 if (((dev->hw_features | dev->features) &
6491 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6492 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6493 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6494 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6495 ret = -EINVAL;
6496 goto err_uninit;
6497 }
6498
6499 ret = -EBUSY;
6500 if (!dev->ifindex)
6501 dev->ifindex = dev_new_index(net);
6502 else if (__dev_get_by_index(net, dev->ifindex))
6503 goto err_uninit;
6504
6505 /* Transfer changeable features to wanted_features and enable
6506 * software offloads (GSO and GRO).
6507 */
6508 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6509 dev->features |= NETIF_F_SOFT_FEATURES;
6510 dev->wanted_features = dev->features & dev->hw_features;
6511
6512 if (!(dev->flags & IFF_LOOPBACK)) {
6513 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6514 }
6515
6516 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6517 */
6518 dev->vlan_features |= NETIF_F_HIGHDMA;
6519
6520 /* Make NETIF_F_SG inheritable to tunnel devices.
6521 */
6522 dev->hw_enc_features |= NETIF_F_SG;
6523
6524 /* Make NETIF_F_SG inheritable to MPLS.
6525 */
6526 dev->mpls_features |= NETIF_F_SG;
6527
6528 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6529 ret = notifier_to_errno(ret);
6530 if (ret)
6531 goto err_uninit;
6532
6533 ret = netdev_register_kobject(dev);
6534 if (ret)
6535 goto err_uninit;
6536 dev->reg_state = NETREG_REGISTERED;
6537
6538 __netdev_update_features(dev);
6539
6540 /*
6541 * Default initial state at registry is that the
6542 * device is present.
6543 */
6544
6545 set_bit(__LINK_STATE_PRESENT, &dev->state);
6546
6547 linkwatch_init_dev(dev);
6548
6549 dev_init_scheduler(dev);
6550 dev_hold(dev);
6551 list_netdevice(dev);
6552 add_device_randomness(dev->dev_addr, dev->addr_len);
6553
6554 /* If the device has permanent device address, driver should
6555 * set dev_addr and also addr_assign_type should be set to
6556 * NET_ADDR_PERM (default value).
6557 */
6558 if (dev->addr_assign_type == NET_ADDR_PERM)
6559 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6560
6561 /* Notify protocols, that a new device appeared. */
6562 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6563 ret = notifier_to_errno(ret);
6564 if (ret) {
6565 rollback_registered(dev);
6566 dev->reg_state = NETREG_UNREGISTERED;
6567 }
6568 /*
6569 * Prevent userspace races by waiting until the network
6570 * device is fully setup before sending notifications.
6571 */
6572 if (!dev->rtnl_link_ops ||
6573 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6574 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6575
6576out:
6577 return ret;
6578
6579err_uninit:
6580 if (dev->netdev_ops->ndo_uninit)
6581 dev->netdev_ops->ndo_uninit(dev);
6582 goto out;
6583}
6584EXPORT_SYMBOL(register_netdevice);
6585
6586/**
6587 * init_dummy_netdev - init a dummy network device for NAPI
6588 * @dev: device to init
6589 *
6590 * This takes a network device structure and initialize the minimum
6591 * amount of fields so it can be used to schedule NAPI polls without
6592 * registering a full blown interface. This is to be used by drivers
6593 * that need to tie several hardware interfaces to a single NAPI
6594 * poll scheduler due to HW limitations.
6595 */
6596int init_dummy_netdev(struct net_device *dev)
6597{
6598 /* Clear everything. Note we don't initialize spinlocks
6599 * are they aren't supposed to be taken by any of the
6600 * NAPI code and this dummy netdev is supposed to be
6601 * only ever used for NAPI polls
6602 */
6603 memset(dev, 0, sizeof(struct net_device));
6604
6605 /* make sure we BUG if trying to hit standard
6606 * register/unregister code path
6607 */
6608 dev->reg_state = NETREG_DUMMY;
6609
6610 /* NAPI wants this */
6611 INIT_LIST_HEAD(&dev->napi_list);
6612
6613 /* a dummy interface is started by default */
6614 set_bit(__LINK_STATE_PRESENT, &dev->state);
6615 set_bit(__LINK_STATE_START, &dev->state);
6616
6617 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6618 * because users of this 'device' dont need to change
6619 * its refcount.
6620 */
6621
6622 return 0;
6623}
6624EXPORT_SYMBOL_GPL(init_dummy_netdev);
6625
6626
6627/**
6628 * register_netdev - register a network device
6629 * @dev: device to register
6630 *
6631 * Take a completed network device structure and add it to the kernel
6632 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6633 * chain. 0 is returned on success. A negative errno code is returned
6634 * on a failure to set up the device, or if the name is a duplicate.
6635 *
6636 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6637 * and expands the device name if you passed a format string to
6638 * alloc_netdev.
6639 */
6640int register_netdev(struct net_device *dev)
6641{
6642 int err;
6643
6644 rtnl_lock();
6645 err = register_netdevice(dev);
6646 rtnl_unlock();
6647 return err;
6648}
6649EXPORT_SYMBOL(register_netdev);
6650
6651int netdev_refcnt_read(const struct net_device *dev)
6652{
6653 int i, refcnt = 0;
6654
6655 for_each_possible_cpu(i)
6656 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6657 return refcnt;
6658}
6659EXPORT_SYMBOL(netdev_refcnt_read);
6660
6661/**
6662 * netdev_wait_allrefs - wait until all references are gone.
6663 * @dev: target net_device
6664 *
6665 * This is called when unregistering network devices.
6666 *
6667 * Any protocol or device that holds a reference should register
6668 * for netdevice notification, and cleanup and put back the
6669 * reference if they receive an UNREGISTER event.
6670 * We can get stuck here if buggy protocols don't correctly
6671 * call dev_put.
6672 */
6673static void netdev_wait_allrefs(struct net_device *dev)
6674{
6675 unsigned long rebroadcast_time, warning_time;
6676 int refcnt;
6677
6678 linkwatch_forget_dev(dev);
6679
6680 rebroadcast_time = warning_time = jiffies;
6681 refcnt = netdev_refcnt_read(dev);
6682
6683 while (refcnt != 0) {
6684 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6685 rtnl_lock();
6686
6687 /* Rebroadcast unregister notification */
6688 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6689
6690 __rtnl_unlock();
6691 rcu_barrier();
6692 rtnl_lock();
6693
6694 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6695 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6696 &dev->state)) {
6697 /* We must not have linkwatch events
6698 * pending on unregister. If this
6699 * happens, we simply run the queue
6700 * unscheduled, resulting in a noop
6701 * for this device.
6702 */
6703 linkwatch_run_queue();
6704 }
6705
6706 __rtnl_unlock();
6707
6708 rebroadcast_time = jiffies;
6709 }
6710
6711 msleep(250);
6712
6713 refcnt = netdev_refcnt_read(dev);
6714
6715 if (time_after(jiffies, warning_time + 10 * HZ)) {
6716 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6717 dev->name, refcnt);
6718 warning_time = jiffies;
6719 }
6720 }
6721}
6722
6723/* The sequence is:
6724 *
6725 * rtnl_lock();
6726 * ...
6727 * register_netdevice(x1);
6728 * register_netdevice(x2);
6729 * ...
6730 * unregister_netdevice(y1);
6731 * unregister_netdevice(y2);
6732 * ...
6733 * rtnl_unlock();
6734 * free_netdev(y1);
6735 * free_netdev(y2);
6736 *
6737 * We are invoked by rtnl_unlock().
6738 * This allows us to deal with problems:
6739 * 1) We can delete sysfs objects which invoke hotplug
6740 * without deadlocking with linkwatch via keventd.
6741 * 2) Since we run with the RTNL semaphore not held, we can sleep
6742 * safely in order to wait for the netdev refcnt to drop to zero.
6743 *
6744 * We must not return until all unregister events added during
6745 * the interval the lock was held have been completed.
6746 */
6747void netdev_run_todo(void)
6748{
6749 struct list_head list;
6750
6751 /* Snapshot list, allow later requests */
6752 list_replace_init(&net_todo_list, &list);
6753
6754 __rtnl_unlock();
6755
6756
6757 /* Wait for rcu callbacks to finish before next phase */
6758 if (!list_empty(&list))
6759 rcu_barrier();
6760
6761 while (!list_empty(&list)) {
6762 struct net_device *dev
6763 = list_first_entry(&list, struct net_device, todo_list);
6764 list_del(&dev->todo_list);
6765
6766 rtnl_lock();
6767 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6768 __rtnl_unlock();
6769
6770 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6771 pr_err("network todo '%s' but state %d\n",
6772 dev->name, dev->reg_state);
6773 dump_stack();
6774 continue;
6775 }
6776
6777 dev->reg_state = NETREG_UNREGISTERED;
6778
6779 on_each_cpu(flush_backlog, dev, 1);
6780
6781 netdev_wait_allrefs(dev);
6782
6783 /* paranoia */
6784 BUG_ON(netdev_refcnt_read(dev));
6785 BUG_ON(!list_empty(&dev->ptype_all));
6786 BUG_ON(!list_empty(&dev->ptype_specific));
6787 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6788 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6789 WARN_ON(dev->dn_ptr);
6790
6791 if (dev->destructor)
6792 dev->destructor(dev);
6793
6794 /* Report a network device has been unregistered */
6795 rtnl_lock();
6796 dev_net(dev)->dev_unreg_count--;
6797 __rtnl_unlock();
6798 wake_up(&netdev_unregistering_wq);
6799
6800 /* Free network device */
6801 kobject_put(&dev->dev.kobj);
6802 }
6803}
6804
6805/* Convert net_device_stats to rtnl_link_stats64. They have the same
6806 * fields in the same order, with only the type differing.
6807 */
6808void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6809 const struct net_device_stats *netdev_stats)
6810{
6811#if BITS_PER_LONG == 64
6812 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6813 memcpy(stats64, netdev_stats, sizeof(*stats64));
6814#else
6815 size_t i, n = sizeof(*stats64) / sizeof(u64);
6816 const unsigned long *src = (const unsigned long *)netdev_stats;
6817 u64 *dst = (u64 *)stats64;
6818
6819 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6820 sizeof(*stats64) / sizeof(u64));
6821 for (i = 0; i < n; i++)
6822 dst[i] = src[i];
6823#endif
6824}
6825EXPORT_SYMBOL(netdev_stats_to_stats64);
6826
6827/**
6828 * dev_get_stats - get network device statistics
6829 * @dev: device to get statistics from
6830 * @storage: place to store stats
6831 *
6832 * Get network statistics from device. Return @storage.
6833 * The device driver may provide its own method by setting
6834 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6835 * otherwise the internal statistics structure is used.
6836 */
6837struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6838 struct rtnl_link_stats64 *storage)
6839{
6840 const struct net_device_ops *ops = dev->netdev_ops;
6841
6842 if (ops->ndo_get_stats64) {
6843 memset(storage, 0, sizeof(*storage));
6844 ops->ndo_get_stats64(dev, storage);
6845 } else if (ops->ndo_get_stats) {
6846 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6847 } else {
6848 netdev_stats_to_stats64(storage, &dev->stats);
6849 }
6850 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6851 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6852 return storage;
6853}
6854EXPORT_SYMBOL(dev_get_stats);
6855
6856struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6857{
6858 struct netdev_queue *queue = dev_ingress_queue(dev);
6859
6860#ifdef CONFIG_NET_CLS_ACT
6861 if (queue)
6862 return queue;
6863 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6864 if (!queue)
6865 return NULL;
6866 netdev_init_one_queue(dev, queue, NULL);
6867 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
6868 queue->qdisc_sleeping = &noop_qdisc;
6869 rcu_assign_pointer(dev->ingress_queue, queue);
6870#endif
6871 return queue;
6872}
6873
6874static const struct ethtool_ops default_ethtool_ops;
6875
6876void netdev_set_default_ethtool_ops(struct net_device *dev,
6877 const struct ethtool_ops *ops)
6878{
6879 if (dev->ethtool_ops == &default_ethtool_ops)
6880 dev->ethtool_ops = ops;
6881}
6882EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6883
6884void netdev_freemem(struct net_device *dev)
6885{
6886 char *addr = (char *)dev - dev->padded;
6887
6888 kvfree(addr);
6889}
6890
6891/**
6892 * alloc_netdev_mqs - allocate network device
6893 * @sizeof_priv: size of private data to allocate space for
6894 * @name: device name format string
6895 * @name_assign_type: origin of device name
6896 * @setup: callback to initialize device
6897 * @txqs: the number of TX subqueues to allocate
6898 * @rxqs: the number of RX subqueues to allocate
6899 *
6900 * Allocates a struct net_device with private data area for driver use
6901 * and performs basic initialization. Also allocates subqueue structs
6902 * for each queue on the device.
6903 */
6904struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6905 unsigned char name_assign_type,
6906 void (*setup)(struct net_device *),
6907 unsigned int txqs, unsigned int rxqs)
6908{
6909 struct net_device *dev;
6910 size_t alloc_size;
6911 struct net_device *p;
6912
6913 BUG_ON(strlen(name) >= sizeof(dev->name));
6914
6915 if (txqs < 1) {
6916 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6917 return NULL;
6918 }
6919
6920#ifdef CONFIG_SYSFS
6921 if (rxqs < 1) {
6922 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6923 return NULL;
6924 }
6925#endif
6926
6927 alloc_size = sizeof(struct net_device);
6928 if (sizeof_priv) {
6929 /* ensure 32-byte alignment of private area */
6930 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6931 alloc_size += sizeof_priv;
6932 }
6933 /* ensure 32-byte alignment of whole construct */
6934 alloc_size += NETDEV_ALIGN - 1;
6935
6936 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6937 if (!p)
6938 p = vzalloc(alloc_size);
6939 if (!p)
6940 return NULL;
6941
6942 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6943 dev->padded = (char *)dev - (char *)p;
6944
6945 dev->pcpu_refcnt = alloc_percpu(int);
6946 if (!dev->pcpu_refcnt)
6947 goto free_dev;
6948
6949 if (dev_addr_init(dev))
6950 goto free_pcpu;
6951
6952 dev_mc_init(dev);
6953 dev_uc_init(dev);
6954
6955 dev_net_set(dev, &init_net);
6956
6957 dev->gso_max_size = GSO_MAX_SIZE;
6958 dev->gso_max_segs = GSO_MAX_SEGS;
6959 dev->gso_min_segs = 0;
6960
6961 INIT_LIST_HEAD(&dev->napi_list);
6962 INIT_LIST_HEAD(&dev->unreg_list);
6963 INIT_LIST_HEAD(&dev->close_list);
6964 INIT_LIST_HEAD(&dev->link_watch_list);
6965 INIT_LIST_HEAD(&dev->adj_list.upper);
6966 INIT_LIST_HEAD(&dev->adj_list.lower);
6967 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6968 INIT_LIST_HEAD(&dev->all_adj_list.lower);
6969 INIT_LIST_HEAD(&dev->ptype_all);
6970 INIT_LIST_HEAD(&dev->ptype_specific);
6971 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
6972 setup(dev);
6973
6974 dev->num_tx_queues = txqs;
6975 dev->real_num_tx_queues = txqs;
6976 if (netif_alloc_netdev_queues(dev))
6977 goto free_all;
6978
6979#ifdef CONFIG_SYSFS
6980 dev->num_rx_queues = rxqs;
6981 dev->real_num_rx_queues = rxqs;
6982 if (netif_alloc_rx_queues(dev))
6983 goto free_all;
6984#endif
6985
6986 strcpy(dev->name, name);
6987 dev->name_assign_type = name_assign_type;
6988 dev->group = INIT_NETDEV_GROUP;
6989 if (!dev->ethtool_ops)
6990 dev->ethtool_ops = &default_ethtool_ops;
6991
6992 nf_hook_ingress_init(dev);
6993
6994 return dev;
6995
6996free_all:
6997 free_netdev(dev);
6998 return NULL;
6999
7000free_pcpu:
7001 free_percpu(dev->pcpu_refcnt);
7002free_dev:
7003 netdev_freemem(dev);
7004 return NULL;
7005}
7006EXPORT_SYMBOL(alloc_netdev_mqs);
7007
7008/**
7009 * free_netdev - free network device
7010 * @dev: device
7011 *
7012 * This function does the last stage of destroying an allocated device
7013 * interface. The reference to the device object is released.
7014 * If this is the last reference then it will be freed.
7015 */
7016void free_netdev(struct net_device *dev)
7017{
7018 struct napi_struct *p, *n;
7019
7020 netif_free_tx_queues(dev);
7021#ifdef CONFIG_SYSFS
7022 kvfree(dev->_rx);
7023#endif
7024
7025 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7026
7027 /* Flush device addresses */
7028 dev_addr_flush(dev);
7029
7030 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7031 netif_napi_del(p);
7032
7033 free_percpu(dev->pcpu_refcnt);
7034 dev->pcpu_refcnt = NULL;
7035
7036 /* Compatibility with error handling in drivers */
7037 if (dev->reg_state == NETREG_UNINITIALIZED) {
7038 netdev_freemem(dev);
7039 return;
7040 }
7041
7042 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7043 dev->reg_state = NETREG_RELEASED;
7044
7045 /* will free via device release */
7046 put_device(&dev->dev);
7047}
7048EXPORT_SYMBOL(free_netdev);
7049
7050/**
7051 * synchronize_net - Synchronize with packet receive processing
7052 *
7053 * Wait for packets currently being received to be done.
7054 * Does not block later packets from starting.
7055 */
7056void synchronize_net(void)
7057{
7058 might_sleep();
7059 if (rtnl_is_locked())
7060 synchronize_rcu_expedited();
7061 else
7062 synchronize_rcu();
7063}
7064EXPORT_SYMBOL(synchronize_net);
7065
7066/**
7067 * unregister_netdevice_queue - remove device from the kernel
7068 * @dev: device
7069 * @head: list
7070 *
7071 * This function shuts down a device interface and removes it
7072 * from the kernel tables.
7073 * If head not NULL, device is queued to be unregistered later.
7074 *
7075 * Callers must hold the rtnl semaphore. You may want
7076 * unregister_netdev() instead of this.
7077 */
7078
7079void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7080{
7081 ASSERT_RTNL();
7082
7083 if (head) {
7084 list_move_tail(&dev->unreg_list, head);
7085 } else {
7086 rollback_registered(dev);
7087 /* Finish processing unregister after unlock */
7088 net_set_todo(dev);
7089 }
7090}
7091EXPORT_SYMBOL(unregister_netdevice_queue);
7092
7093/**
7094 * unregister_netdevice_many - unregister many devices
7095 * @head: list of devices
7096 *
7097 * Note: As most callers use a stack allocated list_head,
7098 * we force a list_del() to make sure stack wont be corrupted later.
7099 */
7100void unregister_netdevice_many(struct list_head *head)
7101{
7102 struct net_device *dev;
7103
7104 if (!list_empty(head)) {
7105 rollback_registered_many(head);
7106 list_for_each_entry(dev, head, unreg_list)
7107 net_set_todo(dev);
7108 list_del(head);
7109 }
7110}
7111EXPORT_SYMBOL(unregister_netdevice_many);
7112
7113/**
7114 * unregister_netdev - remove device from the kernel
7115 * @dev: device
7116 *
7117 * This function shuts down a device interface and removes it
7118 * from the kernel tables.
7119 *
7120 * This is just a wrapper for unregister_netdevice that takes
7121 * the rtnl semaphore. In general you want to use this and not
7122 * unregister_netdevice.
7123 */
7124void unregister_netdev(struct net_device *dev)
7125{
7126 rtnl_lock();
7127 unregister_netdevice(dev);
7128 rtnl_unlock();
7129}
7130EXPORT_SYMBOL(unregister_netdev);
7131
7132/**
7133 * dev_change_net_namespace - move device to different nethost namespace
7134 * @dev: device
7135 * @net: network namespace
7136 * @pat: If not NULL name pattern to try if the current device name
7137 * is already taken in the destination network namespace.
7138 *
7139 * This function shuts down a device interface and moves it
7140 * to a new network namespace. On success 0 is returned, on
7141 * a failure a netagive errno code is returned.
7142 *
7143 * Callers must hold the rtnl semaphore.
7144 */
7145
7146int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7147{
7148 int err;
7149
7150 ASSERT_RTNL();
7151
7152 /* Don't allow namespace local devices to be moved. */
7153 err = -EINVAL;
7154 if (dev->features & NETIF_F_NETNS_LOCAL)
7155 goto out;
7156
7157 /* Ensure the device has been registrered */
7158 if (dev->reg_state != NETREG_REGISTERED)
7159 goto out;
7160
7161 /* Get out if there is nothing todo */
7162 err = 0;
7163 if (net_eq(dev_net(dev), net))
7164 goto out;
7165
7166 /* Pick the destination device name, and ensure
7167 * we can use it in the destination network namespace.
7168 */
7169 err = -EEXIST;
7170 if (__dev_get_by_name(net, dev->name)) {
7171 /* We get here if we can't use the current device name */
7172 if (!pat)
7173 goto out;
7174 if (dev_get_valid_name(net, dev, pat) < 0)
7175 goto out;
7176 }
7177
7178 /*
7179 * And now a mini version of register_netdevice unregister_netdevice.
7180 */
7181
7182 /* If device is running close it first. */
7183 dev_close(dev);
7184
7185 /* And unlink it from device chain */
7186 err = -ENODEV;
7187 unlist_netdevice(dev);
7188
7189 synchronize_net();
7190
7191 /* Shutdown queueing discipline. */
7192 dev_shutdown(dev);
7193
7194 /* Notify protocols, that we are about to destroy
7195 this device. They should clean all the things.
7196
7197 Note that dev->reg_state stays at NETREG_REGISTERED.
7198 This is wanted because this way 8021q and macvlan know
7199 the device is just moving and can keep their slaves up.
7200 */
7201 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7202 rcu_barrier();
7203 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7204 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7205
7206 /*
7207 * Flush the unicast and multicast chains
7208 */
7209 dev_uc_flush(dev);
7210 dev_mc_flush(dev);
7211
7212 /* Send a netdev-removed uevent to the old namespace */
7213 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7214 netdev_adjacent_del_links(dev);
7215
7216 /* Actually switch the network namespace */
7217 dev_net_set(dev, net);
7218
7219 /* If there is an ifindex conflict assign a new one */
7220 if (__dev_get_by_index(net, dev->ifindex))
7221 dev->ifindex = dev_new_index(net);
7222
7223 /* Send a netdev-add uevent to the new namespace */
7224 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7225 netdev_adjacent_add_links(dev);
7226
7227 /* Fixup kobjects */
7228 err = device_rename(&dev->dev, dev->name);
7229 WARN_ON(err);
7230
7231 /* Add the device back in the hashes */
7232 list_netdevice(dev);
7233
7234 /* Notify protocols, that a new device appeared. */
7235 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7236
7237 /*
7238 * Prevent userspace races by waiting until the network
7239 * device is fully setup before sending notifications.
7240 */
7241 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7242
7243 synchronize_net();
7244 err = 0;
7245out:
7246 return err;
7247}
7248EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7249
7250static int dev_cpu_callback(struct notifier_block *nfb,
7251 unsigned long action,
7252 void *ocpu)
7253{
7254 struct sk_buff **list_skb;
7255 struct sk_buff *skb;
7256 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7257 struct softnet_data *sd, *oldsd;
7258
7259 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7260 return NOTIFY_OK;
7261
7262 local_irq_disable();
7263 cpu = smp_processor_id();
7264 sd = &per_cpu(softnet_data, cpu);
7265 oldsd = &per_cpu(softnet_data, oldcpu);
7266
7267 /* Find end of our completion_queue. */
7268 list_skb = &sd->completion_queue;
7269 while (*list_skb)
7270 list_skb = &(*list_skb)->next;
7271 /* Append completion queue from offline CPU. */
7272 *list_skb = oldsd->completion_queue;
7273 oldsd->completion_queue = NULL;
7274
7275 /* Append output queue from offline CPU. */
7276 if (oldsd->output_queue) {
7277 *sd->output_queue_tailp = oldsd->output_queue;
7278 sd->output_queue_tailp = oldsd->output_queue_tailp;
7279 oldsd->output_queue = NULL;
7280 oldsd->output_queue_tailp = &oldsd->output_queue;
7281 }
7282 /* Append NAPI poll list from offline CPU, with one exception :
7283 * process_backlog() must be called by cpu owning percpu backlog.
7284 * We properly handle process_queue & input_pkt_queue later.
7285 */
7286 while (!list_empty(&oldsd->poll_list)) {
7287 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7288 struct napi_struct,
7289 poll_list);
7290
7291 list_del_init(&napi->poll_list);
7292 if (napi->poll == process_backlog)
7293 napi->state = 0;
7294 else
7295 ____napi_schedule(sd, napi);
7296 }
7297
7298 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7299 local_irq_enable();
7300
7301 /* Process offline CPU's input_pkt_queue */
7302 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7303 netif_rx_ni(skb);
7304 input_queue_head_incr(oldsd);
7305 }
7306 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7307 netif_rx_ni(skb);
7308 input_queue_head_incr(oldsd);
7309 }
7310
7311 return NOTIFY_OK;
7312}
7313
7314
7315/**
7316 * netdev_increment_features - increment feature set by one
7317 * @all: current feature set
7318 * @one: new feature set
7319 * @mask: mask feature set
7320 *
7321 * Computes a new feature set after adding a device with feature set
7322 * @one to the master device with current feature set @all. Will not
7323 * enable anything that is off in @mask. Returns the new feature set.
7324 */
7325netdev_features_t netdev_increment_features(netdev_features_t all,
7326 netdev_features_t one, netdev_features_t mask)
7327{
7328 if (mask & NETIF_F_GEN_CSUM)
7329 mask |= NETIF_F_ALL_CSUM;
7330 mask |= NETIF_F_VLAN_CHALLENGED;
7331
7332 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7333 all &= one | ~NETIF_F_ALL_FOR_ALL;
7334
7335 /* If one device supports hw checksumming, set for all. */
7336 if (all & NETIF_F_GEN_CSUM)
7337 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7338
7339 return all;
7340}
7341EXPORT_SYMBOL(netdev_increment_features);
7342
7343static struct hlist_head * __net_init netdev_create_hash(void)
7344{
7345 int i;
7346 struct hlist_head *hash;
7347
7348 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7349 if (hash != NULL)
7350 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7351 INIT_HLIST_HEAD(&hash[i]);
7352
7353 return hash;
7354}
7355
7356/* Initialize per network namespace state */
7357static int __net_init netdev_init(struct net *net)
7358{
7359 if (net != &init_net)
7360 INIT_LIST_HEAD(&net->dev_base_head);
7361
7362 net->dev_name_head = netdev_create_hash();
7363 if (net->dev_name_head == NULL)
7364 goto err_name;
7365
7366 net->dev_index_head = netdev_create_hash();
7367 if (net->dev_index_head == NULL)
7368 goto err_idx;
7369
7370 return 0;
7371
7372err_idx:
7373 kfree(net->dev_name_head);
7374err_name:
7375 return -ENOMEM;
7376}
7377
7378/**
7379 * netdev_drivername - network driver for the device
7380 * @dev: network device
7381 *
7382 * Determine network driver for device.
7383 */
7384const char *netdev_drivername(const struct net_device *dev)
7385{
7386 const struct device_driver *driver;
7387 const struct device *parent;
7388 const char *empty = "";
7389
7390 parent = dev->dev.parent;
7391 if (!parent)
7392 return empty;
7393
7394 driver = parent->driver;
7395 if (driver && driver->name)
7396 return driver->name;
7397 return empty;
7398}
7399
7400static void __netdev_printk(const char *level, const struct net_device *dev,
7401 struct va_format *vaf)
7402{
7403 if (dev && dev->dev.parent) {
7404 dev_printk_emit(level[1] - '0',
7405 dev->dev.parent,
7406 "%s %s %s%s: %pV",
7407 dev_driver_string(dev->dev.parent),
7408 dev_name(dev->dev.parent),
7409 netdev_name(dev), netdev_reg_state(dev),
7410 vaf);
7411 } else if (dev) {
7412 printk("%s%s%s: %pV",
7413 level, netdev_name(dev), netdev_reg_state(dev), vaf);
7414 } else {
7415 printk("%s(NULL net_device): %pV", level, vaf);
7416 }
7417}
7418
7419void netdev_printk(const char *level, const struct net_device *dev,
7420 const char *format, ...)
7421{
7422 struct va_format vaf;
7423 va_list args;
7424
7425 va_start(args, format);
7426
7427 vaf.fmt = format;
7428 vaf.va = &args;
7429
7430 __netdev_printk(level, dev, &vaf);
7431
7432 va_end(args);
7433}
7434EXPORT_SYMBOL(netdev_printk);
7435
7436#define define_netdev_printk_level(func, level) \
7437void func(const struct net_device *dev, const char *fmt, ...) \
7438{ \
7439 struct va_format vaf; \
7440 va_list args; \
7441 \
7442 va_start(args, fmt); \
7443 \
7444 vaf.fmt = fmt; \
7445 vaf.va = &args; \
7446 \
7447 __netdev_printk(level, dev, &vaf); \
7448 \
7449 va_end(args); \
7450} \
7451EXPORT_SYMBOL(func);
7452
7453define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7454define_netdev_printk_level(netdev_alert, KERN_ALERT);
7455define_netdev_printk_level(netdev_crit, KERN_CRIT);
7456define_netdev_printk_level(netdev_err, KERN_ERR);
7457define_netdev_printk_level(netdev_warn, KERN_WARNING);
7458define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7459define_netdev_printk_level(netdev_info, KERN_INFO);
7460
7461static void __net_exit netdev_exit(struct net *net)
7462{
7463 kfree(net->dev_name_head);
7464 kfree(net->dev_index_head);
7465}
7466
7467static struct pernet_operations __net_initdata netdev_net_ops = {
7468 .init = netdev_init,
7469 .exit = netdev_exit,
7470};
7471
7472static void __net_exit default_device_exit(struct net *net)
7473{
7474 struct net_device *dev, *aux;
7475 /*
7476 * Push all migratable network devices back to the
7477 * initial network namespace
7478 */
7479 rtnl_lock();
7480 for_each_netdev_safe(net, dev, aux) {
7481 int err;
7482 char fb_name[IFNAMSIZ];
7483
7484 /* Ignore unmoveable devices (i.e. loopback) */
7485 if (dev->features & NETIF_F_NETNS_LOCAL)
7486 continue;
7487
7488 /* Leave virtual devices for the generic cleanup */
7489 if (dev->rtnl_link_ops)
7490 continue;
7491
7492 /* Push remaining network devices to init_net */
7493 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7494 err = dev_change_net_namespace(dev, &init_net, fb_name);
7495 if (err) {
7496 pr_emerg("%s: failed to move %s to init_net: %d\n",
7497 __func__, dev->name, err);
7498 BUG();
7499 }
7500 }
7501 rtnl_unlock();
7502}
7503
7504static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7505{
7506 /* Return with the rtnl_lock held when there are no network
7507 * devices unregistering in any network namespace in net_list.
7508 */
7509 struct net *net;
7510 bool unregistering;
7511 DEFINE_WAIT_FUNC(wait, woken_wake_function);
7512
7513 add_wait_queue(&netdev_unregistering_wq, &wait);
7514 for (;;) {
7515 unregistering = false;
7516 rtnl_lock();
7517 list_for_each_entry(net, net_list, exit_list) {
7518 if (net->dev_unreg_count > 0) {
7519 unregistering = true;
7520 break;
7521 }
7522 }
7523 if (!unregistering)
7524 break;
7525 __rtnl_unlock();
7526
7527 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7528 }
7529 remove_wait_queue(&netdev_unregistering_wq, &wait);
7530}
7531
7532static void __net_exit default_device_exit_batch(struct list_head *net_list)
7533{
7534 /* At exit all network devices most be removed from a network
7535 * namespace. Do this in the reverse order of registration.
7536 * Do this across as many network namespaces as possible to
7537 * improve batching efficiency.
7538 */
7539 struct net_device *dev;
7540 struct net *net;
7541 LIST_HEAD(dev_kill_list);
7542
7543 /* To prevent network device cleanup code from dereferencing
7544 * loopback devices or network devices that have been freed
7545 * wait here for all pending unregistrations to complete,
7546 * before unregistring the loopback device and allowing the
7547 * network namespace be freed.
7548 *
7549 * The netdev todo list containing all network devices
7550 * unregistrations that happen in default_device_exit_batch
7551 * will run in the rtnl_unlock() at the end of
7552 * default_device_exit_batch.
7553 */
7554 rtnl_lock_unregistering(net_list);
7555 list_for_each_entry(net, net_list, exit_list) {
7556 for_each_netdev_reverse(net, dev) {
7557 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7558 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7559 else
7560 unregister_netdevice_queue(dev, &dev_kill_list);
7561 }
7562 }
7563 unregister_netdevice_many(&dev_kill_list);
7564 rtnl_unlock();
7565}
7566
7567static struct pernet_operations __net_initdata default_device_ops = {
7568 .exit = default_device_exit,
7569 .exit_batch = default_device_exit_batch,
7570};
7571
7572/*
7573 * Initialize the DEV module. At boot time this walks the device list and
7574 * unhooks any devices that fail to initialise (normally hardware not
7575 * present) and leaves us with a valid list of present and active devices.
7576 *
7577 */
7578
7579/*
7580 * This is called single threaded during boot, so no need
7581 * to take the rtnl semaphore.
7582 */
7583static int __init net_dev_init(void)
7584{
7585 int i, rc = -ENOMEM;
7586
7587 BUG_ON(!dev_boot_phase);
7588
7589 if (dev_proc_init())
7590 goto out;
7591
7592 if (netdev_kobject_init())
7593 goto out;
7594
7595 INIT_LIST_HEAD(&ptype_all);
7596 for (i = 0; i < PTYPE_HASH_SIZE; i++)
7597 INIT_LIST_HEAD(&ptype_base[i]);
7598
7599 INIT_LIST_HEAD(&offload_base);
7600
7601 if (register_pernet_subsys(&netdev_net_ops))
7602 goto out;
7603
7604 /*
7605 * Initialise the packet receive queues.
7606 */
7607
7608 for_each_possible_cpu(i) {
7609 struct softnet_data *sd = &per_cpu(softnet_data, i);
7610
7611 skb_queue_head_init(&sd->input_pkt_queue);
7612 skb_queue_head_init(&sd->process_queue);
7613 INIT_LIST_HEAD(&sd->poll_list);
7614 sd->output_queue_tailp = &sd->output_queue;
7615#ifdef CONFIG_RPS
7616 sd->csd.func = rps_trigger_softirq;
7617 sd->csd.info = sd;
7618 sd->cpu = i;
7619#endif
7620
7621 sd->backlog.poll = process_backlog;
7622 sd->backlog.weight = weight_p;
7623 }
7624
7625 dev_boot_phase = 0;
7626
7627 /* The loopback device is special if any other network devices
7628 * is present in a network namespace the loopback device must
7629 * be present. Since we now dynamically allocate and free the
7630 * loopback device ensure this invariant is maintained by
7631 * keeping the loopback device as the first device on the
7632 * list of network devices. Ensuring the loopback devices
7633 * is the first device that appears and the last network device
7634 * that disappears.
7635 */
7636 if (register_pernet_device(&loopback_net_ops))
7637 goto out;
7638
7639 if (register_pernet_device(&default_device_ops))
7640 goto out;
7641
7642 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7643 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7644
7645 hotcpu_notifier(dev_cpu_callback, 0);
7646 dst_init();
7647 rc = 0;
7648out:
7649 return rc;
7650}
7651
7652subsys_initcall(net_dev_init);
This page took 0.050972 seconds and 5 git commands to generate.