net: Validate xmit SKBs right when we pull them out of the qdisc.
[deliverable/linux.git] / net / core / dev.c
... / ...
CommitLineData
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
76#include <linux/bitops.h>
77#include <linux/capability.h>
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
81#include <linux/hash.h>
82#include <linux/slab.h>
83#include <linux/sched.h>
84#include <linux/mutex.h>
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
94#include <linux/ethtool.h>
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
97#include <net/net_namespace.h>
98#include <net/sock.h>
99#include <linux/rtnetlink.h>
100#include <linux/stat.h>
101#include <net/dst.h>
102#include <net/pkt_sched.h>
103#include <net/checksum.h>
104#include <net/xfrm.h>
105#include <linux/highmem.h>
106#include <linux/init.h>
107#include <linux/module.h>
108#include <linux/netpoll.h>
109#include <linux/rcupdate.h>
110#include <linux/delay.h>
111#include <net/iw_handler.h>
112#include <asm/current.h>
113#include <linux/audit.h>
114#include <linux/dmaengine.h>
115#include <linux/err.h>
116#include <linux/ctype.h>
117#include <linux/if_arp.h>
118#include <linux/if_vlan.h>
119#include <linux/ip.h>
120#include <net/ip.h>
121#include <linux/ipv6.h>
122#include <linux/in.h>
123#include <linux/jhash.h>
124#include <linux/random.h>
125#include <trace/events/napi.h>
126#include <trace/events/net.h>
127#include <trace/events/skb.h>
128#include <linux/pci.h>
129#include <linux/inetdevice.h>
130#include <linux/cpu_rmap.h>
131#include <linux/static_key.h>
132#include <linux/hashtable.h>
133#include <linux/vmalloc.h>
134#include <linux/if_macvlan.h>
135#include <linux/errqueue.h>
136
137#include "net-sysfs.h"
138
139/* Instead of increasing this, you should create a hash table. */
140#define MAX_GRO_SKBS 8
141
142/* This should be increased if a protocol with a bigger head is added. */
143#define GRO_MAX_HEAD (MAX_HEADER + 128)
144
145static DEFINE_SPINLOCK(ptype_lock);
146static DEFINE_SPINLOCK(offload_lock);
147struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
148struct list_head ptype_all __read_mostly; /* Taps */
149static struct list_head offload_base __read_mostly;
150
151static int netif_rx_internal(struct sk_buff *skb);
152static int call_netdevice_notifiers_info(unsigned long val,
153 struct net_device *dev,
154 struct netdev_notifier_info *info);
155
156/*
157 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
158 * semaphore.
159 *
160 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
161 *
162 * Writers must hold the rtnl semaphore while they loop through the
163 * dev_base_head list, and hold dev_base_lock for writing when they do the
164 * actual updates. This allows pure readers to access the list even
165 * while a writer is preparing to update it.
166 *
167 * To put it another way, dev_base_lock is held for writing only to
168 * protect against pure readers; the rtnl semaphore provides the
169 * protection against other writers.
170 *
171 * See, for example usages, register_netdevice() and
172 * unregister_netdevice(), which must be called with the rtnl
173 * semaphore held.
174 */
175DEFINE_RWLOCK(dev_base_lock);
176EXPORT_SYMBOL(dev_base_lock);
177
178/* protects napi_hash addition/deletion and napi_gen_id */
179static DEFINE_SPINLOCK(napi_hash_lock);
180
181static unsigned int napi_gen_id;
182static DEFINE_HASHTABLE(napi_hash, 8);
183
184static seqcount_t devnet_rename_seq;
185
186static inline void dev_base_seq_inc(struct net *net)
187{
188 while (++net->dev_base_seq == 0);
189}
190
191static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
192{
193 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
194
195 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
196}
197
198static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
199{
200 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
201}
202
203static inline void rps_lock(struct softnet_data *sd)
204{
205#ifdef CONFIG_RPS
206 spin_lock(&sd->input_pkt_queue.lock);
207#endif
208}
209
210static inline void rps_unlock(struct softnet_data *sd)
211{
212#ifdef CONFIG_RPS
213 spin_unlock(&sd->input_pkt_queue.lock);
214#endif
215}
216
217/* Device list insertion */
218static void list_netdevice(struct net_device *dev)
219{
220 struct net *net = dev_net(dev);
221
222 ASSERT_RTNL();
223
224 write_lock_bh(&dev_base_lock);
225 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
226 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
227 hlist_add_head_rcu(&dev->index_hlist,
228 dev_index_hash(net, dev->ifindex));
229 write_unlock_bh(&dev_base_lock);
230
231 dev_base_seq_inc(net);
232}
233
234/* Device list removal
235 * caller must respect a RCU grace period before freeing/reusing dev
236 */
237static void unlist_netdevice(struct net_device *dev)
238{
239 ASSERT_RTNL();
240
241 /* Unlink dev from the device chain */
242 write_lock_bh(&dev_base_lock);
243 list_del_rcu(&dev->dev_list);
244 hlist_del_rcu(&dev->name_hlist);
245 hlist_del_rcu(&dev->index_hlist);
246 write_unlock_bh(&dev_base_lock);
247
248 dev_base_seq_inc(dev_net(dev));
249}
250
251/*
252 * Our notifier list
253 */
254
255static RAW_NOTIFIER_HEAD(netdev_chain);
256
257/*
258 * Device drivers call our routines to queue packets here. We empty the
259 * queue in the local softnet handler.
260 */
261
262DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
263EXPORT_PER_CPU_SYMBOL(softnet_data);
264
265#ifdef CONFIG_LOCKDEP
266/*
267 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
268 * according to dev->type
269 */
270static const unsigned short netdev_lock_type[] =
271 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
272 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
273 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
274 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
275 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
276 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
277 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
278 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
279 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
280 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
281 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
282 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
283 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
284 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
285 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
286
287static const char *const netdev_lock_name[] =
288 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
289 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
290 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
291 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
292 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
293 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
294 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
295 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
296 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
297 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
298 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
299 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
300 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
301 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
302 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
303
304static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
305static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
306
307static inline unsigned short netdev_lock_pos(unsigned short dev_type)
308{
309 int i;
310
311 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
312 if (netdev_lock_type[i] == dev_type)
313 return i;
314 /* the last key is used by default */
315 return ARRAY_SIZE(netdev_lock_type) - 1;
316}
317
318static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
319 unsigned short dev_type)
320{
321 int i;
322
323 i = netdev_lock_pos(dev_type);
324 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
325 netdev_lock_name[i]);
326}
327
328static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
329{
330 int i;
331
332 i = netdev_lock_pos(dev->type);
333 lockdep_set_class_and_name(&dev->addr_list_lock,
334 &netdev_addr_lock_key[i],
335 netdev_lock_name[i]);
336}
337#else
338static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 unsigned short dev_type)
340{
341}
342static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343{
344}
345#endif
346
347/*******************************************************************************
348
349 Protocol management and registration routines
350
351*******************************************************************************/
352
353/*
354 * Add a protocol ID to the list. Now that the input handler is
355 * smarter we can dispense with all the messy stuff that used to be
356 * here.
357 *
358 * BEWARE!!! Protocol handlers, mangling input packets,
359 * MUST BE last in hash buckets and checking protocol handlers
360 * MUST start from promiscuous ptype_all chain in net_bh.
361 * It is true now, do not change it.
362 * Explanation follows: if protocol handler, mangling packet, will
363 * be the first on list, it is not able to sense, that packet
364 * is cloned and should be copied-on-write, so that it will
365 * change it and subsequent readers will get broken packet.
366 * --ANK (980803)
367 */
368
369static inline struct list_head *ptype_head(const struct packet_type *pt)
370{
371 if (pt->type == htons(ETH_P_ALL))
372 return &ptype_all;
373 else
374 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
375}
376
377/**
378 * dev_add_pack - add packet handler
379 * @pt: packet type declaration
380 *
381 * Add a protocol handler to the networking stack. The passed &packet_type
382 * is linked into kernel lists and may not be freed until it has been
383 * removed from the kernel lists.
384 *
385 * This call does not sleep therefore it can not
386 * guarantee all CPU's that are in middle of receiving packets
387 * will see the new packet type (until the next received packet).
388 */
389
390void dev_add_pack(struct packet_type *pt)
391{
392 struct list_head *head = ptype_head(pt);
393
394 spin_lock(&ptype_lock);
395 list_add_rcu(&pt->list, head);
396 spin_unlock(&ptype_lock);
397}
398EXPORT_SYMBOL(dev_add_pack);
399
400/**
401 * __dev_remove_pack - remove packet handler
402 * @pt: packet type declaration
403 *
404 * Remove a protocol handler that was previously added to the kernel
405 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
406 * from the kernel lists and can be freed or reused once this function
407 * returns.
408 *
409 * The packet type might still be in use by receivers
410 * and must not be freed until after all the CPU's have gone
411 * through a quiescent state.
412 */
413void __dev_remove_pack(struct packet_type *pt)
414{
415 struct list_head *head = ptype_head(pt);
416 struct packet_type *pt1;
417
418 spin_lock(&ptype_lock);
419
420 list_for_each_entry(pt1, head, list) {
421 if (pt == pt1) {
422 list_del_rcu(&pt->list);
423 goto out;
424 }
425 }
426
427 pr_warn("dev_remove_pack: %p not found\n", pt);
428out:
429 spin_unlock(&ptype_lock);
430}
431EXPORT_SYMBOL(__dev_remove_pack);
432
433/**
434 * dev_remove_pack - remove packet handler
435 * @pt: packet type declaration
436 *
437 * Remove a protocol handler that was previously added to the kernel
438 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
439 * from the kernel lists and can be freed or reused once this function
440 * returns.
441 *
442 * This call sleeps to guarantee that no CPU is looking at the packet
443 * type after return.
444 */
445void dev_remove_pack(struct packet_type *pt)
446{
447 __dev_remove_pack(pt);
448
449 synchronize_net();
450}
451EXPORT_SYMBOL(dev_remove_pack);
452
453
454/**
455 * dev_add_offload - register offload handlers
456 * @po: protocol offload declaration
457 *
458 * Add protocol offload handlers to the networking stack. The passed
459 * &proto_offload is linked into kernel lists and may not be freed until
460 * it has been removed from the kernel lists.
461 *
462 * This call does not sleep therefore it can not
463 * guarantee all CPU's that are in middle of receiving packets
464 * will see the new offload handlers (until the next received packet).
465 */
466void dev_add_offload(struct packet_offload *po)
467{
468 struct list_head *head = &offload_base;
469
470 spin_lock(&offload_lock);
471 list_add_rcu(&po->list, head);
472 spin_unlock(&offload_lock);
473}
474EXPORT_SYMBOL(dev_add_offload);
475
476/**
477 * __dev_remove_offload - remove offload handler
478 * @po: packet offload declaration
479 *
480 * Remove a protocol offload handler that was previously added to the
481 * kernel offload handlers by dev_add_offload(). The passed &offload_type
482 * is removed from the kernel lists and can be freed or reused once this
483 * function returns.
484 *
485 * The packet type might still be in use by receivers
486 * and must not be freed until after all the CPU's have gone
487 * through a quiescent state.
488 */
489static void __dev_remove_offload(struct packet_offload *po)
490{
491 struct list_head *head = &offload_base;
492 struct packet_offload *po1;
493
494 spin_lock(&offload_lock);
495
496 list_for_each_entry(po1, head, list) {
497 if (po == po1) {
498 list_del_rcu(&po->list);
499 goto out;
500 }
501 }
502
503 pr_warn("dev_remove_offload: %p not found\n", po);
504out:
505 spin_unlock(&offload_lock);
506}
507
508/**
509 * dev_remove_offload - remove packet offload handler
510 * @po: packet offload declaration
511 *
512 * Remove a packet offload handler that was previously added to the kernel
513 * offload handlers by dev_add_offload(). The passed &offload_type is
514 * removed from the kernel lists and can be freed or reused once this
515 * function returns.
516 *
517 * This call sleeps to guarantee that no CPU is looking at the packet
518 * type after return.
519 */
520void dev_remove_offload(struct packet_offload *po)
521{
522 __dev_remove_offload(po);
523
524 synchronize_net();
525}
526EXPORT_SYMBOL(dev_remove_offload);
527
528/******************************************************************************
529
530 Device Boot-time Settings Routines
531
532*******************************************************************************/
533
534/* Boot time configuration table */
535static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
536
537/**
538 * netdev_boot_setup_add - add new setup entry
539 * @name: name of the device
540 * @map: configured settings for the device
541 *
542 * Adds new setup entry to the dev_boot_setup list. The function
543 * returns 0 on error and 1 on success. This is a generic routine to
544 * all netdevices.
545 */
546static int netdev_boot_setup_add(char *name, struct ifmap *map)
547{
548 struct netdev_boot_setup *s;
549 int i;
550
551 s = dev_boot_setup;
552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
553 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
554 memset(s[i].name, 0, sizeof(s[i].name));
555 strlcpy(s[i].name, name, IFNAMSIZ);
556 memcpy(&s[i].map, map, sizeof(s[i].map));
557 break;
558 }
559 }
560
561 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
562}
563
564/**
565 * netdev_boot_setup_check - check boot time settings
566 * @dev: the netdevice
567 *
568 * Check boot time settings for the device.
569 * The found settings are set for the device to be used
570 * later in the device probing.
571 * Returns 0 if no settings found, 1 if they are.
572 */
573int netdev_boot_setup_check(struct net_device *dev)
574{
575 struct netdev_boot_setup *s = dev_boot_setup;
576 int i;
577
578 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
579 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
580 !strcmp(dev->name, s[i].name)) {
581 dev->irq = s[i].map.irq;
582 dev->base_addr = s[i].map.base_addr;
583 dev->mem_start = s[i].map.mem_start;
584 dev->mem_end = s[i].map.mem_end;
585 return 1;
586 }
587 }
588 return 0;
589}
590EXPORT_SYMBOL(netdev_boot_setup_check);
591
592
593/**
594 * netdev_boot_base - get address from boot time settings
595 * @prefix: prefix for network device
596 * @unit: id for network device
597 *
598 * Check boot time settings for the base address of device.
599 * The found settings are set for the device to be used
600 * later in the device probing.
601 * Returns 0 if no settings found.
602 */
603unsigned long netdev_boot_base(const char *prefix, int unit)
604{
605 const struct netdev_boot_setup *s = dev_boot_setup;
606 char name[IFNAMSIZ];
607 int i;
608
609 sprintf(name, "%s%d", prefix, unit);
610
611 /*
612 * If device already registered then return base of 1
613 * to indicate not to probe for this interface
614 */
615 if (__dev_get_by_name(&init_net, name))
616 return 1;
617
618 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
619 if (!strcmp(name, s[i].name))
620 return s[i].map.base_addr;
621 return 0;
622}
623
624/*
625 * Saves at boot time configured settings for any netdevice.
626 */
627int __init netdev_boot_setup(char *str)
628{
629 int ints[5];
630 struct ifmap map;
631
632 str = get_options(str, ARRAY_SIZE(ints), ints);
633 if (!str || !*str)
634 return 0;
635
636 /* Save settings */
637 memset(&map, 0, sizeof(map));
638 if (ints[0] > 0)
639 map.irq = ints[1];
640 if (ints[0] > 1)
641 map.base_addr = ints[2];
642 if (ints[0] > 2)
643 map.mem_start = ints[3];
644 if (ints[0] > 3)
645 map.mem_end = ints[4];
646
647 /* Add new entry to the list */
648 return netdev_boot_setup_add(str, &map);
649}
650
651__setup("netdev=", netdev_boot_setup);
652
653/*******************************************************************************
654
655 Device Interface Subroutines
656
657*******************************************************************************/
658
659/**
660 * __dev_get_by_name - find a device by its name
661 * @net: the applicable net namespace
662 * @name: name to find
663 *
664 * Find an interface by name. Must be called under RTNL semaphore
665 * or @dev_base_lock. If the name is found a pointer to the device
666 * is returned. If the name is not found then %NULL is returned. The
667 * reference counters are not incremented so the caller must be
668 * careful with locks.
669 */
670
671struct net_device *__dev_get_by_name(struct net *net, const char *name)
672{
673 struct net_device *dev;
674 struct hlist_head *head = dev_name_hash(net, name);
675
676 hlist_for_each_entry(dev, head, name_hlist)
677 if (!strncmp(dev->name, name, IFNAMSIZ))
678 return dev;
679
680 return NULL;
681}
682EXPORT_SYMBOL(__dev_get_by_name);
683
684/**
685 * dev_get_by_name_rcu - find a device by its name
686 * @net: the applicable net namespace
687 * @name: name to find
688 *
689 * Find an interface by name.
690 * If the name is found a pointer to the device is returned.
691 * If the name is not found then %NULL is returned.
692 * The reference counters are not incremented so the caller must be
693 * careful with locks. The caller must hold RCU lock.
694 */
695
696struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
697{
698 struct net_device *dev;
699 struct hlist_head *head = dev_name_hash(net, name);
700
701 hlist_for_each_entry_rcu(dev, head, name_hlist)
702 if (!strncmp(dev->name, name, IFNAMSIZ))
703 return dev;
704
705 return NULL;
706}
707EXPORT_SYMBOL(dev_get_by_name_rcu);
708
709/**
710 * dev_get_by_name - find a device by its name
711 * @net: the applicable net namespace
712 * @name: name to find
713 *
714 * Find an interface by name. This can be called from any
715 * context and does its own locking. The returned handle has
716 * the usage count incremented and the caller must use dev_put() to
717 * release it when it is no longer needed. %NULL is returned if no
718 * matching device is found.
719 */
720
721struct net_device *dev_get_by_name(struct net *net, const char *name)
722{
723 struct net_device *dev;
724
725 rcu_read_lock();
726 dev = dev_get_by_name_rcu(net, name);
727 if (dev)
728 dev_hold(dev);
729 rcu_read_unlock();
730 return dev;
731}
732EXPORT_SYMBOL(dev_get_by_name);
733
734/**
735 * __dev_get_by_index - find a device by its ifindex
736 * @net: the applicable net namespace
737 * @ifindex: index of device
738 *
739 * Search for an interface by index. Returns %NULL if the device
740 * is not found or a pointer to the device. The device has not
741 * had its reference counter increased so the caller must be careful
742 * about locking. The caller must hold either the RTNL semaphore
743 * or @dev_base_lock.
744 */
745
746struct net_device *__dev_get_by_index(struct net *net, int ifindex)
747{
748 struct net_device *dev;
749 struct hlist_head *head = dev_index_hash(net, ifindex);
750
751 hlist_for_each_entry(dev, head, index_hlist)
752 if (dev->ifindex == ifindex)
753 return dev;
754
755 return NULL;
756}
757EXPORT_SYMBOL(__dev_get_by_index);
758
759/**
760 * dev_get_by_index_rcu - find a device by its ifindex
761 * @net: the applicable net namespace
762 * @ifindex: index of device
763 *
764 * Search for an interface by index. Returns %NULL if the device
765 * is not found or a pointer to the device. The device has not
766 * had its reference counter increased so the caller must be careful
767 * about locking. The caller must hold RCU lock.
768 */
769
770struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
771{
772 struct net_device *dev;
773 struct hlist_head *head = dev_index_hash(net, ifindex);
774
775 hlist_for_each_entry_rcu(dev, head, index_hlist)
776 if (dev->ifindex == ifindex)
777 return dev;
778
779 return NULL;
780}
781EXPORT_SYMBOL(dev_get_by_index_rcu);
782
783
784/**
785 * dev_get_by_index - find a device by its ifindex
786 * @net: the applicable net namespace
787 * @ifindex: index of device
788 *
789 * Search for an interface by index. Returns NULL if the device
790 * is not found or a pointer to the device. The device returned has
791 * had a reference added and the pointer is safe until the user calls
792 * dev_put to indicate they have finished with it.
793 */
794
795struct net_device *dev_get_by_index(struct net *net, int ifindex)
796{
797 struct net_device *dev;
798
799 rcu_read_lock();
800 dev = dev_get_by_index_rcu(net, ifindex);
801 if (dev)
802 dev_hold(dev);
803 rcu_read_unlock();
804 return dev;
805}
806EXPORT_SYMBOL(dev_get_by_index);
807
808/**
809 * netdev_get_name - get a netdevice name, knowing its ifindex.
810 * @net: network namespace
811 * @name: a pointer to the buffer where the name will be stored.
812 * @ifindex: the ifindex of the interface to get the name from.
813 *
814 * The use of raw_seqcount_begin() and cond_resched() before
815 * retrying is required as we want to give the writers a chance
816 * to complete when CONFIG_PREEMPT is not set.
817 */
818int netdev_get_name(struct net *net, char *name, int ifindex)
819{
820 struct net_device *dev;
821 unsigned int seq;
822
823retry:
824 seq = raw_seqcount_begin(&devnet_rename_seq);
825 rcu_read_lock();
826 dev = dev_get_by_index_rcu(net, ifindex);
827 if (!dev) {
828 rcu_read_unlock();
829 return -ENODEV;
830 }
831
832 strcpy(name, dev->name);
833 rcu_read_unlock();
834 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
835 cond_resched();
836 goto retry;
837 }
838
839 return 0;
840}
841
842/**
843 * dev_getbyhwaddr_rcu - find a device by its hardware address
844 * @net: the applicable net namespace
845 * @type: media type of device
846 * @ha: hardware address
847 *
848 * Search for an interface by MAC address. Returns NULL if the device
849 * is not found or a pointer to the device.
850 * The caller must hold RCU or RTNL.
851 * The returned device has not had its ref count increased
852 * and the caller must therefore be careful about locking
853 *
854 */
855
856struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
857 const char *ha)
858{
859 struct net_device *dev;
860
861 for_each_netdev_rcu(net, dev)
862 if (dev->type == type &&
863 !memcmp(dev->dev_addr, ha, dev->addr_len))
864 return dev;
865
866 return NULL;
867}
868EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
869
870struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
871{
872 struct net_device *dev;
873
874 ASSERT_RTNL();
875 for_each_netdev(net, dev)
876 if (dev->type == type)
877 return dev;
878
879 return NULL;
880}
881EXPORT_SYMBOL(__dev_getfirstbyhwtype);
882
883struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
884{
885 struct net_device *dev, *ret = NULL;
886
887 rcu_read_lock();
888 for_each_netdev_rcu(net, dev)
889 if (dev->type == type) {
890 dev_hold(dev);
891 ret = dev;
892 break;
893 }
894 rcu_read_unlock();
895 return ret;
896}
897EXPORT_SYMBOL(dev_getfirstbyhwtype);
898
899/**
900 * dev_get_by_flags_rcu - find any device with given flags
901 * @net: the applicable net namespace
902 * @if_flags: IFF_* values
903 * @mask: bitmask of bits in if_flags to check
904 *
905 * Search for any interface with the given flags. Returns NULL if a device
906 * is not found or a pointer to the device. Must be called inside
907 * rcu_read_lock(), and result refcount is unchanged.
908 */
909
910struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
911 unsigned short mask)
912{
913 struct net_device *dev, *ret;
914
915 ret = NULL;
916 for_each_netdev_rcu(net, dev) {
917 if (((dev->flags ^ if_flags) & mask) == 0) {
918 ret = dev;
919 break;
920 }
921 }
922 return ret;
923}
924EXPORT_SYMBOL(dev_get_by_flags_rcu);
925
926/**
927 * dev_valid_name - check if name is okay for network device
928 * @name: name string
929 *
930 * Network device names need to be valid file names to
931 * to allow sysfs to work. We also disallow any kind of
932 * whitespace.
933 */
934bool dev_valid_name(const char *name)
935{
936 if (*name == '\0')
937 return false;
938 if (strlen(name) >= IFNAMSIZ)
939 return false;
940 if (!strcmp(name, ".") || !strcmp(name, ".."))
941 return false;
942
943 while (*name) {
944 if (*name == '/' || isspace(*name))
945 return false;
946 name++;
947 }
948 return true;
949}
950EXPORT_SYMBOL(dev_valid_name);
951
952/**
953 * __dev_alloc_name - allocate a name for a device
954 * @net: network namespace to allocate the device name in
955 * @name: name format string
956 * @buf: scratch buffer and result name string
957 *
958 * Passed a format string - eg "lt%d" it will try and find a suitable
959 * id. It scans list of devices to build up a free map, then chooses
960 * the first empty slot. The caller must hold the dev_base or rtnl lock
961 * while allocating the name and adding the device in order to avoid
962 * duplicates.
963 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
964 * Returns the number of the unit assigned or a negative errno code.
965 */
966
967static int __dev_alloc_name(struct net *net, const char *name, char *buf)
968{
969 int i = 0;
970 const char *p;
971 const int max_netdevices = 8*PAGE_SIZE;
972 unsigned long *inuse;
973 struct net_device *d;
974
975 p = strnchr(name, IFNAMSIZ-1, '%');
976 if (p) {
977 /*
978 * Verify the string as this thing may have come from
979 * the user. There must be either one "%d" and no other "%"
980 * characters.
981 */
982 if (p[1] != 'd' || strchr(p + 2, '%'))
983 return -EINVAL;
984
985 /* Use one page as a bit array of possible slots */
986 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
987 if (!inuse)
988 return -ENOMEM;
989
990 for_each_netdev(net, d) {
991 if (!sscanf(d->name, name, &i))
992 continue;
993 if (i < 0 || i >= max_netdevices)
994 continue;
995
996 /* avoid cases where sscanf is not exact inverse of printf */
997 snprintf(buf, IFNAMSIZ, name, i);
998 if (!strncmp(buf, d->name, IFNAMSIZ))
999 set_bit(i, inuse);
1000 }
1001
1002 i = find_first_zero_bit(inuse, max_netdevices);
1003 free_page((unsigned long) inuse);
1004 }
1005
1006 if (buf != name)
1007 snprintf(buf, IFNAMSIZ, name, i);
1008 if (!__dev_get_by_name(net, buf))
1009 return i;
1010
1011 /* It is possible to run out of possible slots
1012 * when the name is long and there isn't enough space left
1013 * for the digits, or if all bits are used.
1014 */
1015 return -ENFILE;
1016}
1017
1018/**
1019 * dev_alloc_name - allocate a name for a device
1020 * @dev: device
1021 * @name: name format string
1022 *
1023 * Passed a format string - eg "lt%d" it will try and find a suitable
1024 * id. It scans list of devices to build up a free map, then chooses
1025 * the first empty slot. The caller must hold the dev_base or rtnl lock
1026 * while allocating the name and adding the device in order to avoid
1027 * duplicates.
1028 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1029 * Returns the number of the unit assigned or a negative errno code.
1030 */
1031
1032int dev_alloc_name(struct net_device *dev, const char *name)
1033{
1034 char buf[IFNAMSIZ];
1035 struct net *net;
1036 int ret;
1037
1038 BUG_ON(!dev_net(dev));
1039 net = dev_net(dev);
1040 ret = __dev_alloc_name(net, name, buf);
1041 if (ret >= 0)
1042 strlcpy(dev->name, buf, IFNAMSIZ);
1043 return ret;
1044}
1045EXPORT_SYMBOL(dev_alloc_name);
1046
1047static int dev_alloc_name_ns(struct net *net,
1048 struct net_device *dev,
1049 const char *name)
1050{
1051 char buf[IFNAMSIZ];
1052 int ret;
1053
1054 ret = __dev_alloc_name(net, name, buf);
1055 if (ret >= 0)
1056 strlcpy(dev->name, buf, IFNAMSIZ);
1057 return ret;
1058}
1059
1060static int dev_get_valid_name(struct net *net,
1061 struct net_device *dev,
1062 const char *name)
1063{
1064 BUG_ON(!net);
1065
1066 if (!dev_valid_name(name))
1067 return -EINVAL;
1068
1069 if (strchr(name, '%'))
1070 return dev_alloc_name_ns(net, dev, name);
1071 else if (__dev_get_by_name(net, name))
1072 return -EEXIST;
1073 else if (dev->name != name)
1074 strlcpy(dev->name, name, IFNAMSIZ);
1075
1076 return 0;
1077}
1078
1079/**
1080 * dev_change_name - change name of a device
1081 * @dev: device
1082 * @newname: name (or format string) must be at least IFNAMSIZ
1083 *
1084 * Change name of a device, can pass format strings "eth%d".
1085 * for wildcarding.
1086 */
1087int dev_change_name(struct net_device *dev, const char *newname)
1088{
1089 unsigned char old_assign_type;
1090 char oldname[IFNAMSIZ];
1091 int err = 0;
1092 int ret;
1093 struct net *net;
1094
1095 ASSERT_RTNL();
1096 BUG_ON(!dev_net(dev));
1097
1098 net = dev_net(dev);
1099 if (dev->flags & IFF_UP)
1100 return -EBUSY;
1101
1102 write_seqcount_begin(&devnet_rename_seq);
1103
1104 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1105 write_seqcount_end(&devnet_rename_seq);
1106 return 0;
1107 }
1108
1109 memcpy(oldname, dev->name, IFNAMSIZ);
1110
1111 err = dev_get_valid_name(net, dev, newname);
1112 if (err < 0) {
1113 write_seqcount_end(&devnet_rename_seq);
1114 return err;
1115 }
1116
1117 if (oldname[0] && !strchr(oldname, '%'))
1118 netdev_info(dev, "renamed from %s\n", oldname);
1119
1120 old_assign_type = dev->name_assign_type;
1121 dev->name_assign_type = NET_NAME_RENAMED;
1122
1123rollback:
1124 ret = device_rename(&dev->dev, dev->name);
1125 if (ret) {
1126 memcpy(dev->name, oldname, IFNAMSIZ);
1127 dev->name_assign_type = old_assign_type;
1128 write_seqcount_end(&devnet_rename_seq);
1129 return ret;
1130 }
1131
1132 write_seqcount_end(&devnet_rename_seq);
1133
1134 netdev_adjacent_rename_links(dev, oldname);
1135
1136 write_lock_bh(&dev_base_lock);
1137 hlist_del_rcu(&dev->name_hlist);
1138 write_unlock_bh(&dev_base_lock);
1139
1140 synchronize_rcu();
1141
1142 write_lock_bh(&dev_base_lock);
1143 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1144 write_unlock_bh(&dev_base_lock);
1145
1146 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1147 ret = notifier_to_errno(ret);
1148
1149 if (ret) {
1150 /* err >= 0 after dev_alloc_name() or stores the first errno */
1151 if (err >= 0) {
1152 err = ret;
1153 write_seqcount_begin(&devnet_rename_seq);
1154 memcpy(dev->name, oldname, IFNAMSIZ);
1155 memcpy(oldname, newname, IFNAMSIZ);
1156 dev->name_assign_type = old_assign_type;
1157 old_assign_type = NET_NAME_RENAMED;
1158 goto rollback;
1159 } else {
1160 pr_err("%s: name change rollback failed: %d\n",
1161 dev->name, ret);
1162 }
1163 }
1164
1165 return err;
1166}
1167
1168/**
1169 * dev_set_alias - change ifalias of a device
1170 * @dev: device
1171 * @alias: name up to IFALIASZ
1172 * @len: limit of bytes to copy from info
1173 *
1174 * Set ifalias for a device,
1175 */
1176int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1177{
1178 char *new_ifalias;
1179
1180 ASSERT_RTNL();
1181
1182 if (len >= IFALIASZ)
1183 return -EINVAL;
1184
1185 if (!len) {
1186 kfree(dev->ifalias);
1187 dev->ifalias = NULL;
1188 return 0;
1189 }
1190
1191 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1192 if (!new_ifalias)
1193 return -ENOMEM;
1194 dev->ifalias = new_ifalias;
1195
1196 strlcpy(dev->ifalias, alias, len+1);
1197 return len;
1198}
1199
1200
1201/**
1202 * netdev_features_change - device changes features
1203 * @dev: device to cause notification
1204 *
1205 * Called to indicate a device has changed features.
1206 */
1207void netdev_features_change(struct net_device *dev)
1208{
1209 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1210}
1211EXPORT_SYMBOL(netdev_features_change);
1212
1213/**
1214 * netdev_state_change - device changes state
1215 * @dev: device to cause notification
1216 *
1217 * Called to indicate a device has changed state. This function calls
1218 * the notifier chains for netdev_chain and sends a NEWLINK message
1219 * to the routing socket.
1220 */
1221void netdev_state_change(struct net_device *dev)
1222{
1223 if (dev->flags & IFF_UP) {
1224 struct netdev_notifier_change_info change_info;
1225
1226 change_info.flags_changed = 0;
1227 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1228 &change_info.info);
1229 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1230 }
1231}
1232EXPORT_SYMBOL(netdev_state_change);
1233
1234/**
1235 * netdev_notify_peers - notify network peers about existence of @dev
1236 * @dev: network device
1237 *
1238 * Generate traffic such that interested network peers are aware of
1239 * @dev, such as by generating a gratuitous ARP. This may be used when
1240 * a device wants to inform the rest of the network about some sort of
1241 * reconfiguration such as a failover event or virtual machine
1242 * migration.
1243 */
1244void netdev_notify_peers(struct net_device *dev)
1245{
1246 rtnl_lock();
1247 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1248 rtnl_unlock();
1249}
1250EXPORT_SYMBOL(netdev_notify_peers);
1251
1252static int __dev_open(struct net_device *dev)
1253{
1254 const struct net_device_ops *ops = dev->netdev_ops;
1255 int ret;
1256
1257 ASSERT_RTNL();
1258
1259 if (!netif_device_present(dev))
1260 return -ENODEV;
1261
1262 /* Block netpoll from trying to do any rx path servicing.
1263 * If we don't do this there is a chance ndo_poll_controller
1264 * or ndo_poll may be running while we open the device
1265 */
1266 netpoll_poll_disable(dev);
1267
1268 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1269 ret = notifier_to_errno(ret);
1270 if (ret)
1271 return ret;
1272
1273 set_bit(__LINK_STATE_START, &dev->state);
1274
1275 if (ops->ndo_validate_addr)
1276 ret = ops->ndo_validate_addr(dev);
1277
1278 if (!ret && ops->ndo_open)
1279 ret = ops->ndo_open(dev);
1280
1281 netpoll_poll_enable(dev);
1282
1283 if (ret)
1284 clear_bit(__LINK_STATE_START, &dev->state);
1285 else {
1286 dev->flags |= IFF_UP;
1287 net_dmaengine_get();
1288 dev_set_rx_mode(dev);
1289 dev_activate(dev);
1290 add_device_randomness(dev->dev_addr, dev->addr_len);
1291 }
1292
1293 return ret;
1294}
1295
1296/**
1297 * dev_open - prepare an interface for use.
1298 * @dev: device to open
1299 *
1300 * Takes a device from down to up state. The device's private open
1301 * function is invoked and then the multicast lists are loaded. Finally
1302 * the device is moved into the up state and a %NETDEV_UP message is
1303 * sent to the netdev notifier chain.
1304 *
1305 * Calling this function on an active interface is a nop. On a failure
1306 * a negative errno code is returned.
1307 */
1308int dev_open(struct net_device *dev)
1309{
1310 int ret;
1311
1312 if (dev->flags & IFF_UP)
1313 return 0;
1314
1315 ret = __dev_open(dev);
1316 if (ret < 0)
1317 return ret;
1318
1319 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1320 call_netdevice_notifiers(NETDEV_UP, dev);
1321
1322 return ret;
1323}
1324EXPORT_SYMBOL(dev_open);
1325
1326static int __dev_close_many(struct list_head *head)
1327{
1328 struct net_device *dev;
1329
1330 ASSERT_RTNL();
1331 might_sleep();
1332
1333 list_for_each_entry(dev, head, close_list) {
1334 /* Temporarily disable netpoll until the interface is down */
1335 netpoll_poll_disable(dev);
1336
1337 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1338
1339 clear_bit(__LINK_STATE_START, &dev->state);
1340
1341 /* Synchronize to scheduled poll. We cannot touch poll list, it
1342 * can be even on different cpu. So just clear netif_running().
1343 *
1344 * dev->stop() will invoke napi_disable() on all of it's
1345 * napi_struct instances on this device.
1346 */
1347 smp_mb__after_atomic(); /* Commit netif_running(). */
1348 }
1349
1350 dev_deactivate_many(head);
1351
1352 list_for_each_entry(dev, head, close_list) {
1353 const struct net_device_ops *ops = dev->netdev_ops;
1354
1355 /*
1356 * Call the device specific close. This cannot fail.
1357 * Only if device is UP
1358 *
1359 * We allow it to be called even after a DETACH hot-plug
1360 * event.
1361 */
1362 if (ops->ndo_stop)
1363 ops->ndo_stop(dev);
1364
1365 dev->flags &= ~IFF_UP;
1366 net_dmaengine_put();
1367 netpoll_poll_enable(dev);
1368 }
1369
1370 return 0;
1371}
1372
1373static int __dev_close(struct net_device *dev)
1374{
1375 int retval;
1376 LIST_HEAD(single);
1377
1378 list_add(&dev->close_list, &single);
1379 retval = __dev_close_many(&single);
1380 list_del(&single);
1381
1382 return retval;
1383}
1384
1385static int dev_close_many(struct list_head *head)
1386{
1387 struct net_device *dev, *tmp;
1388
1389 /* Remove the devices that don't need to be closed */
1390 list_for_each_entry_safe(dev, tmp, head, close_list)
1391 if (!(dev->flags & IFF_UP))
1392 list_del_init(&dev->close_list);
1393
1394 __dev_close_many(head);
1395
1396 list_for_each_entry_safe(dev, tmp, head, close_list) {
1397 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1398 call_netdevice_notifiers(NETDEV_DOWN, dev);
1399 list_del_init(&dev->close_list);
1400 }
1401
1402 return 0;
1403}
1404
1405/**
1406 * dev_close - shutdown an interface.
1407 * @dev: device to shutdown
1408 *
1409 * This function moves an active device into down state. A
1410 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1411 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1412 * chain.
1413 */
1414int dev_close(struct net_device *dev)
1415{
1416 if (dev->flags & IFF_UP) {
1417 LIST_HEAD(single);
1418
1419 list_add(&dev->close_list, &single);
1420 dev_close_many(&single);
1421 list_del(&single);
1422 }
1423 return 0;
1424}
1425EXPORT_SYMBOL(dev_close);
1426
1427
1428/**
1429 * dev_disable_lro - disable Large Receive Offload on a device
1430 * @dev: device
1431 *
1432 * Disable Large Receive Offload (LRO) on a net device. Must be
1433 * called under RTNL. This is needed if received packets may be
1434 * forwarded to another interface.
1435 */
1436void dev_disable_lro(struct net_device *dev)
1437{
1438 /*
1439 * If we're trying to disable lro on a vlan device
1440 * use the underlying physical device instead
1441 */
1442 if (is_vlan_dev(dev))
1443 dev = vlan_dev_real_dev(dev);
1444
1445 /* the same for macvlan devices */
1446 if (netif_is_macvlan(dev))
1447 dev = macvlan_dev_real_dev(dev);
1448
1449 dev->wanted_features &= ~NETIF_F_LRO;
1450 netdev_update_features(dev);
1451
1452 if (unlikely(dev->features & NETIF_F_LRO))
1453 netdev_WARN(dev, "failed to disable LRO!\n");
1454}
1455EXPORT_SYMBOL(dev_disable_lro);
1456
1457static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1458 struct net_device *dev)
1459{
1460 struct netdev_notifier_info info;
1461
1462 netdev_notifier_info_init(&info, dev);
1463 return nb->notifier_call(nb, val, &info);
1464}
1465
1466static int dev_boot_phase = 1;
1467
1468/**
1469 * register_netdevice_notifier - register a network notifier block
1470 * @nb: notifier
1471 *
1472 * Register a notifier to be called when network device events occur.
1473 * The notifier passed is linked into the kernel structures and must
1474 * not be reused until it has been unregistered. A negative errno code
1475 * is returned on a failure.
1476 *
1477 * When registered all registration and up events are replayed
1478 * to the new notifier to allow device to have a race free
1479 * view of the network device list.
1480 */
1481
1482int register_netdevice_notifier(struct notifier_block *nb)
1483{
1484 struct net_device *dev;
1485 struct net_device *last;
1486 struct net *net;
1487 int err;
1488
1489 rtnl_lock();
1490 err = raw_notifier_chain_register(&netdev_chain, nb);
1491 if (err)
1492 goto unlock;
1493 if (dev_boot_phase)
1494 goto unlock;
1495 for_each_net(net) {
1496 for_each_netdev(net, dev) {
1497 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1498 err = notifier_to_errno(err);
1499 if (err)
1500 goto rollback;
1501
1502 if (!(dev->flags & IFF_UP))
1503 continue;
1504
1505 call_netdevice_notifier(nb, NETDEV_UP, dev);
1506 }
1507 }
1508
1509unlock:
1510 rtnl_unlock();
1511 return err;
1512
1513rollback:
1514 last = dev;
1515 for_each_net(net) {
1516 for_each_netdev(net, dev) {
1517 if (dev == last)
1518 goto outroll;
1519
1520 if (dev->flags & IFF_UP) {
1521 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1522 dev);
1523 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1524 }
1525 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1526 }
1527 }
1528
1529outroll:
1530 raw_notifier_chain_unregister(&netdev_chain, nb);
1531 goto unlock;
1532}
1533EXPORT_SYMBOL(register_netdevice_notifier);
1534
1535/**
1536 * unregister_netdevice_notifier - unregister a network notifier block
1537 * @nb: notifier
1538 *
1539 * Unregister a notifier previously registered by
1540 * register_netdevice_notifier(). The notifier is unlinked into the
1541 * kernel structures and may then be reused. A negative errno code
1542 * is returned on a failure.
1543 *
1544 * After unregistering unregister and down device events are synthesized
1545 * for all devices on the device list to the removed notifier to remove
1546 * the need for special case cleanup code.
1547 */
1548
1549int unregister_netdevice_notifier(struct notifier_block *nb)
1550{
1551 struct net_device *dev;
1552 struct net *net;
1553 int err;
1554
1555 rtnl_lock();
1556 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1557 if (err)
1558 goto unlock;
1559
1560 for_each_net(net) {
1561 for_each_netdev(net, dev) {
1562 if (dev->flags & IFF_UP) {
1563 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1564 dev);
1565 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1566 }
1567 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1568 }
1569 }
1570unlock:
1571 rtnl_unlock();
1572 return err;
1573}
1574EXPORT_SYMBOL(unregister_netdevice_notifier);
1575
1576/**
1577 * call_netdevice_notifiers_info - call all network notifier blocks
1578 * @val: value passed unmodified to notifier function
1579 * @dev: net_device pointer passed unmodified to notifier function
1580 * @info: notifier information data
1581 *
1582 * Call all network notifier blocks. Parameters and return value
1583 * are as for raw_notifier_call_chain().
1584 */
1585
1586static int call_netdevice_notifiers_info(unsigned long val,
1587 struct net_device *dev,
1588 struct netdev_notifier_info *info)
1589{
1590 ASSERT_RTNL();
1591 netdev_notifier_info_init(info, dev);
1592 return raw_notifier_call_chain(&netdev_chain, val, info);
1593}
1594
1595/**
1596 * call_netdevice_notifiers - call all network notifier blocks
1597 * @val: value passed unmodified to notifier function
1598 * @dev: net_device pointer passed unmodified to notifier function
1599 *
1600 * Call all network notifier blocks. Parameters and return value
1601 * are as for raw_notifier_call_chain().
1602 */
1603
1604int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1605{
1606 struct netdev_notifier_info info;
1607
1608 return call_netdevice_notifiers_info(val, dev, &info);
1609}
1610EXPORT_SYMBOL(call_netdevice_notifiers);
1611
1612static struct static_key netstamp_needed __read_mostly;
1613#ifdef HAVE_JUMP_LABEL
1614/* We are not allowed to call static_key_slow_dec() from irq context
1615 * If net_disable_timestamp() is called from irq context, defer the
1616 * static_key_slow_dec() calls.
1617 */
1618static atomic_t netstamp_needed_deferred;
1619#endif
1620
1621void net_enable_timestamp(void)
1622{
1623#ifdef HAVE_JUMP_LABEL
1624 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1625
1626 if (deferred) {
1627 while (--deferred)
1628 static_key_slow_dec(&netstamp_needed);
1629 return;
1630 }
1631#endif
1632 static_key_slow_inc(&netstamp_needed);
1633}
1634EXPORT_SYMBOL(net_enable_timestamp);
1635
1636void net_disable_timestamp(void)
1637{
1638#ifdef HAVE_JUMP_LABEL
1639 if (in_interrupt()) {
1640 atomic_inc(&netstamp_needed_deferred);
1641 return;
1642 }
1643#endif
1644 static_key_slow_dec(&netstamp_needed);
1645}
1646EXPORT_SYMBOL(net_disable_timestamp);
1647
1648static inline void net_timestamp_set(struct sk_buff *skb)
1649{
1650 skb->tstamp.tv64 = 0;
1651 if (static_key_false(&netstamp_needed))
1652 __net_timestamp(skb);
1653}
1654
1655#define net_timestamp_check(COND, SKB) \
1656 if (static_key_false(&netstamp_needed)) { \
1657 if ((COND) && !(SKB)->tstamp.tv64) \
1658 __net_timestamp(SKB); \
1659 } \
1660
1661bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1662{
1663 unsigned int len;
1664
1665 if (!(dev->flags & IFF_UP))
1666 return false;
1667
1668 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1669 if (skb->len <= len)
1670 return true;
1671
1672 /* if TSO is enabled, we don't care about the length as the packet
1673 * could be forwarded without being segmented before
1674 */
1675 if (skb_is_gso(skb))
1676 return true;
1677
1678 return false;
1679}
1680EXPORT_SYMBOL_GPL(is_skb_forwardable);
1681
1682int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1683{
1684 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1685 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1686 atomic_long_inc(&dev->rx_dropped);
1687 kfree_skb(skb);
1688 return NET_RX_DROP;
1689 }
1690 }
1691
1692 if (unlikely(!is_skb_forwardable(dev, skb))) {
1693 atomic_long_inc(&dev->rx_dropped);
1694 kfree_skb(skb);
1695 return NET_RX_DROP;
1696 }
1697
1698 skb_scrub_packet(skb, true);
1699 skb->protocol = eth_type_trans(skb, dev);
1700
1701 return 0;
1702}
1703EXPORT_SYMBOL_GPL(__dev_forward_skb);
1704
1705/**
1706 * dev_forward_skb - loopback an skb to another netif
1707 *
1708 * @dev: destination network device
1709 * @skb: buffer to forward
1710 *
1711 * return values:
1712 * NET_RX_SUCCESS (no congestion)
1713 * NET_RX_DROP (packet was dropped, but freed)
1714 *
1715 * dev_forward_skb can be used for injecting an skb from the
1716 * start_xmit function of one device into the receive queue
1717 * of another device.
1718 *
1719 * The receiving device may be in another namespace, so
1720 * we have to clear all information in the skb that could
1721 * impact namespace isolation.
1722 */
1723int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1724{
1725 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1726}
1727EXPORT_SYMBOL_GPL(dev_forward_skb);
1728
1729static inline int deliver_skb(struct sk_buff *skb,
1730 struct packet_type *pt_prev,
1731 struct net_device *orig_dev)
1732{
1733 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1734 return -ENOMEM;
1735 atomic_inc(&skb->users);
1736 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1737}
1738
1739static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1740{
1741 if (!ptype->af_packet_priv || !skb->sk)
1742 return false;
1743
1744 if (ptype->id_match)
1745 return ptype->id_match(ptype, skb->sk);
1746 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1747 return true;
1748
1749 return false;
1750}
1751
1752/*
1753 * Support routine. Sends outgoing frames to any network
1754 * taps currently in use.
1755 */
1756
1757static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1758{
1759 struct packet_type *ptype;
1760 struct sk_buff *skb2 = NULL;
1761 struct packet_type *pt_prev = NULL;
1762
1763 rcu_read_lock();
1764 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1765 /* Never send packets back to the socket
1766 * they originated from - MvS (miquels@drinkel.ow.org)
1767 */
1768 if ((ptype->dev == dev || !ptype->dev) &&
1769 (!skb_loop_sk(ptype, skb))) {
1770 if (pt_prev) {
1771 deliver_skb(skb2, pt_prev, skb->dev);
1772 pt_prev = ptype;
1773 continue;
1774 }
1775
1776 skb2 = skb_clone(skb, GFP_ATOMIC);
1777 if (!skb2)
1778 break;
1779
1780 net_timestamp_set(skb2);
1781
1782 /* skb->nh should be correctly
1783 set by sender, so that the second statement is
1784 just protection against buggy protocols.
1785 */
1786 skb_reset_mac_header(skb2);
1787
1788 if (skb_network_header(skb2) < skb2->data ||
1789 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1790 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1791 ntohs(skb2->protocol),
1792 dev->name);
1793 skb_reset_network_header(skb2);
1794 }
1795
1796 skb2->transport_header = skb2->network_header;
1797 skb2->pkt_type = PACKET_OUTGOING;
1798 pt_prev = ptype;
1799 }
1800 }
1801 if (pt_prev)
1802 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1803 rcu_read_unlock();
1804}
1805
1806/**
1807 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1808 * @dev: Network device
1809 * @txq: number of queues available
1810 *
1811 * If real_num_tx_queues is changed the tc mappings may no longer be
1812 * valid. To resolve this verify the tc mapping remains valid and if
1813 * not NULL the mapping. With no priorities mapping to this
1814 * offset/count pair it will no longer be used. In the worst case TC0
1815 * is invalid nothing can be done so disable priority mappings. If is
1816 * expected that drivers will fix this mapping if they can before
1817 * calling netif_set_real_num_tx_queues.
1818 */
1819static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1820{
1821 int i;
1822 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1823
1824 /* If TC0 is invalidated disable TC mapping */
1825 if (tc->offset + tc->count > txq) {
1826 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1827 dev->num_tc = 0;
1828 return;
1829 }
1830
1831 /* Invalidated prio to tc mappings set to TC0 */
1832 for (i = 1; i < TC_BITMASK + 1; i++) {
1833 int q = netdev_get_prio_tc_map(dev, i);
1834
1835 tc = &dev->tc_to_txq[q];
1836 if (tc->offset + tc->count > txq) {
1837 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1838 i, q);
1839 netdev_set_prio_tc_map(dev, i, 0);
1840 }
1841 }
1842}
1843
1844#ifdef CONFIG_XPS
1845static DEFINE_MUTEX(xps_map_mutex);
1846#define xmap_dereference(P) \
1847 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1848
1849static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1850 int cpu, u16 index)
1851{
1852 struct xps_map *map = NULL;
1853 int pos;
1854
1855 if (dev_maps)
1856 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1857
1858 for (pos = 0; map && pos < map->len; pos++) {
1859 if (map->queues[pos] == index) {
1860 if (map->len > 1) {
1861 map->queues[pos] = map->queues[--map->len];
1862 } else {
1863 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1864 kfree_rcu(map, rcu);
1865 map = NULL;
1866 }
1867 break;
1868 }
1869 }
1870
1871 return map;
1872}
1873
1874static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1875{
1876 struct xps_dev_maps *dev_maps;
1877 int cpu, i;
1878 bool active = false;
1879
1880 mutex_lock(&xps_map_mutex);
1881 dev_maps = xmap_dereference(dev->xps_maps);
1882
1883 if (!dev_maps)
1884 goto out_no_maps;
1885
1886 for_each_possible_cpu(cpu) {
1887 for (i = index; i < dev->num_tx_queues; i++) {
1888 if (!remove_xps_queue(dev_maps, cpu, i))
1889 break;
1890 }
1891 if (i == dev->num_tx_queues)
1892 active = true;
1893 }
1894
1895 if (!active) {
1896 RCU_INIT_POINTER(dev->xps_maps, NULL);
1897 kfree_rcu(dev_maps, rcu);
1898 }
1899
1900 for (i = index; i < dev->num_tx_queues; i++)
1901 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1902 NUMA_NO_NODE);
1903
1904out_no_maps:
1905 mutex_unlock(&xps_map_mutex);
1906}
1907
1908static struct xps_map *expand_xps_map(struct xps_map *map,
1909 int cpu, u16 index)
1910{
1911 struct xps_map *new_map;
1912 int alloc_len = XPS_MIN_MAP_ALLOC;
1913 int i, pos;
1914
1915 for (pos = 0; map && pos < map->len; pos++) {
1916 if (map->queues[pos] != index)
1917 continue;
1918 return map;
1919 }
1920
1921 /* Need to add queue to this CPU's existing map */
1922 if (map) {
1923 if (pos < map->alloc_len)
1924 return map;
1925
1926 alloc_len = map->alloc_len * 2;
1927 }
1928
1929 /* Need to allocate new map to store queue on this CPU's map */
1930 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1931 cpu_to_node(cpu));
1932 if (!new_map)
1933 return NULL;
1934
1935 for (i = 0; i < pos; i++)
1936 new_map->queues[i] = map->queues[i];
1937 new_map->alloc_len = alloc_len;
1938 new_map->len = pos;
1939
1940 return new_map;
1941}
1942
1943int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1944 u16 index)
1945{
1946 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1947 struct xps_map *map, *new_map;
1948 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1949 int cpu, numa_node_id = -2;
1950 bool active = false;
1951
1952 mutex_lock(&xps_map_mutex);
1953
1954 dev_maps = xmap_dereference(dev->xps_maps);
1955
1956 /* allocate memory for queue storage */
1957 for_each_online_cpu(cpu) {
1958 if (!cpumask_test_cpu(cpu, mask))
1959 continue;
1960
1961 if (!new_dev_maps)
1962 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1963 if (!new_dev_maps) {
1964 mutex_unlock(&xps_map_mutex);
1965 return -ENOMEM;
1966 }
1967
1968 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1969 NULL;
1970
1971 map = expand_xps_map(map, cpu, index);
1972 if (!map)
1973 goto error;
1974
1975 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1976 }
1977
1978 if (!new_dev_maps)
1979 goto out_no_new_maps;
1980
1981 for_each_possible_cpu(cpu) {
1982 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1983 /* add queue to CPU maps */
1984 int pos = 0;
1985
1986 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1987 while ((pos < map->len) && (map->queues[pos] != index))
1988 pos++;
1989
1990 if (pos == map->len)
1991 map->queues[map->len++] = index;
1992#ifdef CONFIG_NUMA
1993 if (numa_node_id == -2)
1994 numa_node_id = cpu_to_node(cpu);
1995 else if (numa_node_id != cpu_to_node(cpu))
1996 numa_node_id = -1;
1997#endif
1998 } else if (dev_maps) {
1999 /* fill in the new device map from the old device map */
2000 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2001 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2002 }
2003
2004 }
2005
2006 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2007
2008 /* Cleanup old maps */
2009 if (dev_maps) {
2010 for_each_possible_cpu(cpu) {
2011 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2012 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2013 if (map && map != new_map)
2014 kfree_rcu(map, rcu);
2015 }
2016
2017 kfree_rcu(dev_maps, rcu);
2018 }
2019
2020 dev_maps = new_dev_maps;
2021 active = true;
2022
2023out_no_new_maps:
2024 /* update Tx queue numa node */
2025 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2026 (numa_node_id >= 0) ? numa_node_id :
2027 NUMA_NO_NODE);
2028
2029 if (!dev_maps)
2030 goto out_no_maps;
2031
2032 /* removes queue from unused CPUs */
2033 for_each_possible_cpu(cpu) {
2034 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2035 continue;
2036
2037 if (remove_xps_queue(dev_maps, cpu, index))
2038 active = true;
2039 }
2040
2041 /* free map if not active */
2042 if (!active) {
2043 RCU_INIT_POINTER(dev->xps_maps, NULL);
2044 kfree_rcu(dev_maps, rcu);
2045 }
2046
2047out_no_maps:
2048 mutex_unlock(&xps_map_mutex);
2049
2050 return 0;
2051error:
2052 /* remove any maps that we added */
2053 for_each_possible_cpu(cpu) {
2054 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2055 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2056 NULL;
2057 if (new_map && new_map != map)
2058 kfree(new_map);
2059 }
2060
2061 mutex_unlock(&xps_map_mutex);
2062
2063 kfree(new_dev_maps);
2064 return -ENOMEM;
2065}
2066EXPORT_SYMBOL(netif_set_xps_queue);
2067
2068#endif
2069/*
2070 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2071 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2072 */
2073int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2074{
2075 int rc;
2076
2077 if (txq < 1 || txq > dev->num_tx_queues)
2078 return -EINVAL;
2079
2080 if (dev->reg_state == NETREG_REGISTERED ||
2081 dev->reg_state == NETREG_UNREGISTERING) {
2082 ASSERT_RTNL();
2083
2084 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2085 txq);
2086 if (rc)
2087 return rc;
2088
2089 if (dev->num_tc)
2090 netif_setup_tc(dev, txq);
2091
2092 if (txq < dev->real_num_tx_queues) {
2093 qdisc_reset_all_tx_gt(dev, txq);
2094#ifdef CONFIG_XPS
2095 netif_reset_xps_queues_gt(dev, txq);
2096#endif
2097 }
2098 }
2099
2100 dev->real_num_tx_queues = txq;
2101 return 0;
2102}
2103EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2104
2105#ifdef CONFIG_SYSFS
2106/**
2107 * netif_set_real_num_rx_queues - set actual number of RX queues used
2108 * @dev: Network device
2109 * @rxq: Actual number of RX queues
2110 *
2111 * This must be called either with the rtnl_lock held or before
2112 * registration of the net device. Returns 0 on success, or a
2113 * negative error code. If called before registration, it always
2114 * succeeds.
2115 */
2116int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2117{
2118 int rc;
2119
2120 if (rxq < 1 || rxq > dev->num_rx_queues)
2121 return -EINVAL;
2122
2123 if (dev->reg_state == NETREG_REGISTERED) {
2124 ASSERT_RTNL();
2125
2126 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2127 rxq);
2128 if (rc)
2129 return rc;
2130 }
2131
2132 dev->real_num_rx_queues = rxq;
2133 return 0;
2134}
2135EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2136#endif
2137
2138/**
2139 * netif_get_num_default_rss_queues - default number of RSS queues
2140 *
2141 * This routine should set an upper limit on the number of RSS queues
2142 * used by default by multiqueue devices.
2143 */
2144int netif_get_num_default_rss_queues(void)
2145{
2146 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2147}
2148EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2149
2150static inline void __netif_reschedule(struct Qdisc *q)
2151{
2152 struct softnet_data *sd;
2153 unsigned long flags;
2154
2155 local_irq_save(flags);
2156 sd = &__get_cpu_var(softnet_data);
2157 q->next_sched = NULL;
2158 *sd->output_queue_tailp = q;
2159 sd->output_queue_tailp = &q->next_sched;
2160 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2161 local_irq_restore(flags);
2162}
2163
2164void __netif_schedule(struct Qdisc *q)
2165{
2166 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2167 __netif_reschedule(q);
2168}
2169EXPORT_SYMBOL(__netif_schedule);
2170
2171struct dev_kfree_skb_cb {
2172 enum skb_free_reason reason;
2173};
2174
2175static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2176{
2177 return (struct dev_kfree_skb_cb *)skb->cb;
2178}
2179
2180void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2181{
2182 unsigned long flags;
2183
2184 if (likely(atomic_read(&skb->users) == 1)) {
2185 smp_rmb();
2186 atomic_set(&skb->users, 0);
2187 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2188 return;
2189 }
2190 get_kfree_skb_cb(skb)->reason = reason;
2191 local_irq_save(flags);
2192 skb->next = __this_cpu_read(softnet_data.completion_queue);
2193 __this_cpu_write(softnet_data.completion_queue, skb);
2194 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2195 local_irq_restore(flags);
2196}
2197EXPORT_SYMBOL(__dev_kfree_skb_irq);
2198
2199void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2200{
2201 if (in_irq() || irqs_disabled())
2202 __dev_kfree_skb_irq(skb, reason);
2203 else
2204 dev_kfree_skb(skb);
2205}
2206EXPORT_SYMBOL(__dev_kfree_skb_any);
2207
2208
2209/**
2210 * netif_device_detach - mark device as removed
2211 * @dev: network device
2212 *
2213 * Mark device as removed from system and therefore no longer available.
2214 */
2215void netif_device_detach(struct net_device *dev)
2216{
2217 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2218 netif_running(dev)) {
2219 netif_tx_stop_all_queues(dev);
2220 }
2221}
2222EXPORT_SYMBOL(netif_device_detach);
2223
2224/**
2225 * netif_device_attach - mark device as attached
2226 * @dev: network device
2227 *
2228 * Mark device as attached from system and restart if needed.
2229 */
2230void netif_device_attach(struct net_device *dev)
2231{
2232 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2233 netif_running(dev)) {
2234 netif_tx_wake_all_queues(dev);
2235 __netdev_watchdog_up(dev);
2236 }
2237}
2238EXPORT_SYMBOL(netif_device_attach);
2239
2240static void skb_warn_bad_offload(const struct sk_buff *skb)
2241{
2242 static const netdev_features_t null_features = 0;
2243 struct net_device *dev = skb->dev;
2244 const char *driver = "";
2245
2246 if (!net_ratelimit())
2247 return;
2248
2249 if (dev && dev->dev.parent)
2250 driver = dev_driver_string(dev->dev.parent);
2251
2252 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2253 "gso_type=%d ip_summed=%d\n",
2254 driver, dev ? &dev->features : &null_features,
2255 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2256 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2257 skb_shinfo(skb)->gso_type, skb->ip_summed);
2258}
2259
2260/*
2261 * Invalidate hardware checksum when packet is to be mangled, and
2262 * complete checksum manually on outgoing path.
2263 */
2264int skb_checksum_help(struct sk_buff *skb)
2265{
2266 __wsum csum;
2267 int ret = 0, offset;
2268
2269 if (skb->ip_summed == CHECKSUM_COMPLETE)
2270 goto out_set_summed;
2271
2272 if (unlikely(skb_shinfo(skb)->gso_size)) {
2273 skb_warn_bad_offload(skb);
2274 return -EINVAL;
2275 }
2276
2277 /* Before computing a checksum, we should make sure no frag could
2278 * be modified by an external entity : checksum could be wrong.
2279 */
2280 if (skb_has_shared_frag(skb)) {
2281 ret = __skb_linearize(skb);
2282 if (ret)
2283 goto out;
2284 }
2285
2286 offset = skb_checksum_start_offset(skb);
2287 BUG_ON(offset >= skb_headlen(skb));
2288 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2289
2290 offset += skb->csum_offset;
2291 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2292
2293 if (skb_cloned(skb) &&
2294 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2295 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2296 if (ret)
2297 goto out;
2298 }
2299
2300 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2301out_set_summed:
2302 skb->ip_summed = CHECKSUM_NONE;
2303out:
2304 return ret;
2305}
2306EXPORT_SYMBOL(skb_checksum_help);
2307
2308__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2309{
2310 unsigned int vlan_depth = skb->mac_len;
2311 __be16 type = skb->protocol;
2312
2313 /* Tunnel gso handlers can set protocol to ethernet. */
2314 if (type == htons(ETH_P_TEB)) {
2315 struct ethhdr *eth;
2316
2317 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2318 return 0;
2319
2320 eth = (struct ethhdr *)skb_mac_header(skb);
2321 type = eth->h_proto;
2322 }
2323
2324 /* if skb->protocol is 802.1Q/AD then the header should already be
2325 * present at mac_len - VLAN_HLEN (if mac_len > 0), or at
2326 * ETH_HLEN otherwise
2327 */
2328 if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2329 if (vlan_depth) {
2330 if (WARN_ON(vlan_depth < VLAN_HLEN))
2331 return 0;
2332 vlan_depth -= VLAN_HLEN;
2333 } else {
2334 vlan_depth = ETH_HLEN;
2335 }
2336 do {
2337 struct vlan_hdr *vh;
2338
2339 if (unlikely(!pskb_may_pull(skb,
2340 vlan_depth + VLAN_HLEN)))
2341 return 0;
2342
2343 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2344 type = vh->h_vlan_encapsulated_proto;
2345 vlan_depth += VLAN_HLEN;
2346 } while (type == htons(ETH_P_8021Q) ||
2347 type == htons(ETH_P_8021AD));
2348 }
2349
2350 *depth = vlan_depth;
2351
2352 return type;
2353}
2354
2355/**
2356 * skb_mac_gso_segment - mac layer segmentation handler.
2357 * @skb: buffer to segment
2358 * @features: features for the output path (see dev->features)
2359 */
2360struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2361 netdev_features_t features)
2362{
2363 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2364 struct packet_offload *ptype;
2365 int vlan_depth = skb->mac_len;
2366 __be16 type = skb_network_protocol(skb, &vlan_depth);
2367
2368 if (unlikely(!type))
2369 return ERR_PTR(-EINVAL);
2370
2371 __skb_pull(skb, vlan_depth);
2372
2373 rcu_read_lock();
2374 list_for_each_entry_rcu(ptype, &offload_base, list) {
2375 if (ptype->type == type && ptype->callbacks.gso_segment) {
2376 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2377 int err;
2378
2379 err = ptype->callbacks.gso_send_check(skb);
2380 segs = ERR_PTR(err);
2381 if (err || skb_gso_ok(skb, features))
2382 break;
2383 __skb_push(skb, (skb->data -
2384 skb_network_header(skb)));
2385 }
2386 segs = ptype->callbacks.gso_segment(skb, features);
2387 break;
2388 }
2389 }
2390 rcu_read_unlock();
2391
2392 __skb_push(skb, skb->data - skb_mac_header(skb));
2393
2394 return segs;
2395}
2396EXPORT_SYMBOL(skb_mac_gso_segment);
2397
2398
2399/* openvswitch calls this on rx path, so we need a different check.
2400 */
2401static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2402{
2403 if (tx_path)
2404 return skb->ip_summed != CHECKSUM_PARTIAL;
2405 else
2406 return skb->ip_summed == CHECKSUM_NONE;
2407}
2408
2409/**
2410 * __skb_gso_segment - Perform segmentation on skb.
2411 * @skb: buffer to segment
2412 * @features: features for the output path (see dev->features)
2413 * @tx_path: whether it is called in TX path
2414 *
2415 * This function segments the given skb and returns a list of segments.
2416 *
2417 * It may return NULL if the skb requires no segmentation. This is
2418 * only possible when GSO is used for verifying header integrity.
2419 */
2420struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2421 netdev_features_t features, bool tx_path)
2422{
2423 if (unlikely(skb_needs_check(skb, tx_path))) {
2424 int err;
2425
2426 skb_warn_bad_offload(skb);
2427
2428 err = skb_cow_head(skb, 0);
2429 if (err < 0)
2430 return ERR_PTR(err);
2431 }
2432
2433 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2434 SKB_GSO_CB(skb)->encap_level = 0;
2435
2436 skb_reset_mac_header(skb);
2437 skb_reset_mac_len(skb);
2438
2439 return skb_mac_gso_segment(skb, features);
2440}
2441EXPORT_SYMBOL(__skb_gso_segment);
2442
2443/* Take action when hardware reception checksum errors are detected. */
2444#ifdef CONFIG_BUG
2445void netdev_rx_csum_fault(struct net_device *dev)
2446{
2447 if (net_ratelimit()) {
2448 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2449 dump_stack();
2450 }
2451}
2452EXPORT_SYMBOL(netdev_rx_csum_fault);
2453#endif
2454
2455/* Actually, we should eliminate this check as soon as we know, that:
2456 * 1. IOMMU is present and allows to map all the memory.
2457 * 2. No high memory really exists on this machine.
2458 */
2459
2460static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2461{
2462#ifdef CONFIG_HIGHMEM
2463 int i;
2464 if (!(dev->features & NETIF_F_HIGHDMA)) {
2465 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2466 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2467 if (PageHighMem(skb_frag_page(frag)))
2468 return 1;
2469 }
2470 }
2471
2472 if (PCI_DMA_BUS_IS_PHYS) {
2473 struct device *pdev = dev->dev.parent;
2474
2475 if (!pdev)
2476 return 0;
2477 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2478 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2479 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2480 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2481 return 1;
2482 }
2483 }
2484#endif
2485 return 0;
2486}
2487
2488struct dev_gso_cb {
2489 void (*destructor)(struct sk_buff *skb);
2490};
2491
2492#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2493
2494static void dev_gso_skb_destructor(struct sk_buff *skb)
2495{
2496 struct dev_gso_cb *cb;
2497
2498 kfree_skb_list(skb->next);
2499 skb->next = NULL;
2500
2501 cb = DEV_GSO_CB(skb);
2502 if (cb->destructor)
2503 cb->destructor(skb);
2504}
2505
2506/**
2507 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2508 * @skb: buffer to segment
2509 * @features: device features as applicable to this skb
2510 *
2511 * This function segments the given skb and stores the list of segments
2512 * in skb->next.
2513 */
2514static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2515{
2516 struct sk_buff *segs;
2517
2518 segs = skb_gso_segment(skb, features);
2519
2520 /* Verifying header integrity only. */
2521 if (!segs)
2522 return 0;
2523
2524 if (IS_ERR(segs))
2525 return PTR_ERR(segs);
2526
2527 skb->next = segs;
2528 DEV_GSO_CB(skb)->destructor = skb->destructor;
2529 skb->destructor = dev_gso_skb_destructor;
2530
2531 return 0;
2532}
2533
2534/* If MPLS offload request, verify we are testing hardware MPLS features
2535 * instead of standard features for the netdev.
2536 */
2537#ifdef CONFIG_NET_MPLS_GSO
2538static netdev_features_t net_mpls_features(struct sk_buff *skb,
2539 netdev_features_t features,
2540 __be16 type)
2541{
2542 if (type == htons(ETH_P_MPLS_UC) || type == htons(ETH_P_MPLS_MC))
2543 features &= skb->dev->mpls_features;
2544
2545 return features;
2546}
2547#else
2548static netdev_features_t net_mpls_features(struct sk_buff *skb,
2549 netdev_features_t features,
2550 __be16 type)
2551{
2552 return features;
2553}
2554#endif
2555
2556static netdev_features_t harmonize_features(struct sk_buff *skb,
2557 netdev_features_t features)
2558{
2559 int tmp;
2560 __be16 type;
2561
2562 type = skb_network_protocol(skb, &tmp);
2563 features = net_mpls_features(skb, features, type);
2564
2565 if (skb->ip_summed != CHECKSUM_NONE &&
2566 !can_checksum_protocol(features, type)) {
2567 features &= ~NETIF_F_ALL_CSUM;
2568 } else if (illegal_highdma(skb->dev, skb)) {
2569 features &= ~NETIF_F_SG;
2570 }
2571
2572 return features;
2573}
2574
2575netdev_features_t netif_skb_features(struct sk_buff *skb)
2576{
2577 __be16 protocol = skb->protocol;
2578 netdev_features_t features = skb->dev->features;
2579
2580 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2581 features &= ~NETIF_F_GSO_MASK;
2582
2583 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2584 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2585 protocol = veh->h_vlan_encapsulated_proto;
2586 } else if (!vlan_tx_tag_present(skb)) {
2587 return harmonize_features(skb, features);
2588 }
2589
2590 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX |
2591 NETIF_F_HW_VLAN_STAG_TX);
2592
2593 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2594 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2595 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX |
2596 NETIF_F_HW_VLAN_STAG_TX;
2597
2598 return harmonize_features(skb, features);
2599}
2600EXPORT_SYMBOL(netif_skb_features);
2601
2602static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2603 struct netdev_queue *txq, bool more)
2604{
2605 unsigned int len;
2606 int rc;
2607
2608 if (!list_empty(&ptype_all))
2609 dev_queue_xmit_nit(skb, dev);
2610
2611 len = skb->len;
2612 trace_net_dev_start_xmit(skb, dev);
2613 rc = netdev_start_xmit(skb, dev, txq, more);
2614 trace_net_dev_xmit(skb, rc, dev, len);
2615
2616 return rc;
2617}
2618
2619static struct sk_buff *xmit_list(struct sk_buff *first, struct net_device *dev,
2620 struct netdev_queue *txq, int *ret)
2621{
2622 struct sk_buff *skb = first;
2623 int rc = NETDEV_TX_OK;
2624
2625 while (skb) {
2626 struct sk_buff *next = skb->next;
2627
2628 skb->next = NULL;
2629 rc = xmit_one(skb, dev, txq, next != NULL);
2630 if (unlikely(!dev_xmit_complete(rc))) {
2631 skb->next = next;
2632 goto out;
2633 }
2634
2635 skb = next;
2636 if (netif_xmit_stopped(txq) && skb) {
2637 rc = NETDEV_TX_BUSY;
2638 break;
2639 }
2640 }
2641
2642out:
2643 *ret = rc;
2644 return skb;
2645}
2646
2647struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, netdev_features_t features)
2648{
2649 if (vlan_tx_tag_present(skb) &&
2650 !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2651 skb = __vlan_put_tag(skb, skb->vlan_proto,
2652 vlan_tx_tag_get(skb));
2653 if (skb)
2654 skb->vlan_tci = 0;
2655 }
2656 return skb;
2657}
2658
2659struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2660{
2661 netdev_features_t features;
2662
2663 if (skb->next)
2664 return skb;
2665
2666 /* If device doesn't need skb->dst, release it right now while
2667 * its hot in this cpu cache
2668 */
2669 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2670 skb_dst_drop(skb);
2671
2672 features = netif_skb_features(skb);
2673 skb = validate_xmit_vlan(skb, features);
2674 if (unlikely(!skb))
2675 goto out_null;
2676
2677 /* If encapsulation offload request, verify we are testing
2678 * hardware encapsulation features instead of standard
2679 * features for the netdev
2680 */
2681 if (skb->encapsulation)
2682 features &= dev->hw_enc_features;
2683
2684 if (netif_needs_gso(skb, features)) {
2685 if (unlikely(dev_gso_segment(skb, features)))
2686 goto out_kfree_skb;
2687 } else {
2688 if (skb_needs_linearize(skb, features) &&
2689 __skb_linearize(skb))
2690 goto out_kfree_skb;
2691
2692 /* If packet is not checksummed and device does not
2693 * support checksumming for this protocol, complete
2694 * checksumming here.
2695 */
2696 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2697 if (skb->encapsulation)
2698 skb_set_inner_transport_header(skb,
2699 skb_checksum_start_offset(skb));
2700 else
2701 skb_set_transport_header(skb,
2702 skb_checksum_start_offset(skb));
2703 if (!(features & NETIF_F_ALL_CSUM) &&
2704 skb_checksum_help(skb))
2705 goto out_kfree_skb;
2706 }
2707 }
2708
2709 return skb;
2710
2711out_kfree_skb:
2712 kfree_skb(skb);
2713out_null:
2714 return NULL;
2715}
2716
2717int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2718 struct netdev_queue *txq)
2719{
2720 int rc = NETDEV_TX_OK;
2721
2722 if (likely(!skb->next))
2723 return xmit_one(skb, dev, txq, false);
2724
2725 skb->next = xmit_list(skb->next, dev, txq, &rc);
2726 if (likely(skb->next == NULL)) {
2727 skb->destructor = DEV_GSO_CB(skb)->destructor;
2728 consume_skb(skb);
2729 return rc;
2730 }
2731
2732 kfree_skb(skb);
2733
2734 return rc;
2735}
2736EXPORT_SYMBOL_GPL(dev_hard_start_xmit);
2737
2738static void qdisc_pkt_len_init(struct sk_buff *skb)
2739{
2740 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2741
2742 qdisc_skb_cb(skb)->pkt_len = skb->len;
2743
2744 /* To get more precise estimation of bytes sent on wire,
2745 * we add to pkt_len the headers size of all segments
2746 */
2747 if (shinfo->gso_size) {
2748 unsigned int hdr_len;
2749 u16 gso_segs = shinfo->gso_segs;
2750
2751 /* mac layer + network layer */
2752 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2753
2754 /* + transport layer */
2755 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2756 hdr_len += tcp_hdrlen(skb);
2757 else
2758 hdr_len += sizeof(struct udphdr);
2759
2760 if (shinfo->gso_type & SKB_GSO_DODGY)
2761 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2762 shinfo->gso_size);
2763
2764 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2765 }
2766}
2767
2768static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2769 struct net_device *dev,
2770 struct netdev_queue *txq)
2771{
2772 spinlock_t *root_lock = qdisc_lock(q);
2773 bool contended;
2774 int rc;
2775
2776 qdisc_pkt_len_init(skb);
2777 qdisc_calculate_pkt_len(skb, q);
2778 /*
2779 * Heuristic to force contended enqueues to serialize on a
2780 * separate lock before trying to get qdisc main lock.
2781 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2782 * often and dequeue packets faster.
2783 */
2784 contended = qdisc_is_running(q);
2785 if (unlikely(contended))
2786 spin_lock(&q->busylock);
2787
2788 spin_lock(root_lock);
2789 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2790 kfree_skb(skb);
2791 rc = NET_XMIT_DROP;
2792 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2793 qdisc_run_begin(q)) {
2794 /*
2795 * This is a work-conserving queue; there are no old skbs
2796 * waiting to be sent out; and the qdisc is not running -
2797 * xmit the skb directly.
2798 */
2799 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2800 skb_dst_force(skb);
2801
2802 qdisc_bstats_update(q, skb);
2803
2804 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2805 if (unlikely(contended)) {
2806 spin_unlock(&q->busylock);
2807 contended = false;
2808 }
2809 __qdisc_run(q);
2810 } else
2811 qdisc_run_end(q);
2812
2813 rc = NET_XMIT_SUCCESS;
2814 } else {
2815 skb_dst_force(skb);
2816 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2817 if (qdisc_run_begin(q)) {
2818 if (unlikely(contended)) {
2819 spin_unlock(&q->busylock);
2820 contended = false;
2821 }
2822 __qdisc_run(q);
2823 }
2824 }
2825 spin_unlock(root_lock);
2826 if (unlikely(contended))
2827 spin_unlock(&q->busylock);
2828 return rc;
2829}
2830
2831#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2832static void skb_update_prio(struct sk_buff *skb)
2833{
2834 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2835
2836 if (!skb->priority && skb->sk && map) {
2837 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2838
2839 if (prioidx < map->priomap_len)
2840 skb->priority = map->priomap[prioidx];
2841 }
2842}
2843#else
2844#define skb_update_prio(skb)
2845#endif
2846
2847static DEFINE_PER_CPU(int, xmit_recursion);
2848#define RECURSION_LIMIT 10
2849
2850/**
2851 * dev_loopback_xmit - loop back @skb
2852 * @skb: buffer to transmit
2853 */
2854int dev_loopback_xmit(struct sk_buff *skb)
2855{
2856 skb_reset_mac_header(skb);
2857 __skb_pull(skb, skb_network_offset(skb));
2858 skb->pkt_type = PACKET_LOOPBACK;
2859 skb->ip_summed = CHECKSUM_UNNECESSARY;
2860 WARN_ON(!skb_dst(skb));
2861 skb_dst_force(skb);
2862 netif_rx_ni(skb);
2863 return 0;
2864}
2865EXPORT_SYMBOL(dev_loopback_xmit);
2866
2867/**
2868 * __dev_queue_xmit - transmit a buffer
2869 * @skb: buffer to transmit
2870 * @accel_priv: private data used for L2 forwarding offload
2871 *
2872 * Queue a buffer for transmission to a network device. The caller must
2873 * have set the device and priority and built the buffer before calling
2874 * this function. The function can be called from an interrupt.
2875 *
2876 * A negative errno code is returned on a failure. A success does not
2877 * guarantee the frame will be transmitted as it may be dropped due
2878 * to congestion or traffic shaping.
2879 *
2880 * -----------------------------------------------------------------------------------
2881 * I notice this method can also return errors from the queue disciplines,
2882 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2883 * be positive.
2884 *
2885 * Regardless of the return value, the skb is consumed, so it is currently
2886 * difficult to retry a send to this method. (You can bump the ref count
2887 * before sending to hold a reference for retry if you are careful.)
2888 *
2889 * When calling this method, interrupts MUST be enabled. This is because
2890 * the BH enable code must have IRQs enabled so that it will not deadlock.
2891 * --BLG
2892 */
2893static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2894{
2895 struct net_device *dev = skb->dev;
2896 struct netdev_queue *txq;
2897 struct Qdisc *q;
2898 int rc = -ENOMEM;
2899
2900 skb_reset_mac_header(skb);
2901
2902 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2903 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2904
2905 /* Disable soft irqs for various locks below. Also
2906 * stops preemption for RCU.
2907 */
2908 rcu_read_lock_bh();
2909
2910 skb_update_prio(skb);
2911
2912 txq = netdev_pick_tx(dev, skb, accel_priv);
2913 q = rcu_dereference_bh(txq->qdisc);
2914
2915#ifdef CONFIG_NET_CLS_ACT
2916 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2917#endif
2918 trace_net_dev_queue(skb);
2919 if (q->enqueue) {
2920 rc = __dev_xmit_skb(skb, q, dev, txq);
2921 goto out;
2922 }
2923
2924 /* The device has no queue. Common case for software devices:
2925 loopback, all the sorts of tunnels...
2926
2927 Really, it is unlikely that netif_tx_lock protection is necessary
2928 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2929 counters.)
2930 However, it is possible, that they rely on protection
2931 made by us here.
2932
2933 Check this and shot the lock. It is not prone from deadlocks.
2934 Either shot noqueue qdisc, it is even simpler 8)
2935 */
2936 if (dev->flags & IFF_UP) {
2937 int cpu = smp_processor_id(); /* ok because BHs are off */
2938
2939 if (txq->xmit_lock_owner != cpu) {
2940
2941 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2942 goto recursion_alert;
2943
2944 HARD_TX_LOCK(dev, txq, cpu);
2945
2946 if (!netif_xmit_stopped(txq)) {
2947 __this_cpu_inc(xmit_recursion);
2948 rc = dev_hard_start_xmit(skb, dev, txq);
2949 __this_cpu_dec(xmit_recursion);
2950 if (dev_xmit_complete(rc)) {
2951 HARD_TX_UNLOCK(dev, txq);
2952 goto out;
2953 }
2954 }
2955 HARD_TX_UNLOCK(dev, txq);
2956 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2957 dev->name);
2958 } else {
2959 /* Recursion is detected! It is possible,
2960 * unfortunately
2961 */
2962recursion_alert:
2963 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2964 dev->name);
2965 }
2966 }
2967
2968 rc = -ENETDOWN;
2969 rcu_read_unlock_bh();
2970
2971 atomic_long_inc(&dev->tx_dropped);
2972 kfree_skb(skb);
2973 return rc;
2974out:
2975 rcu_read_unlock_bh();
2976 return rc;
2977}
2978
2979int dev_queue_xmit(struct sk_buff *skb)
2980{
2981 return __dev_queue_xmit(skb, NULL);
2982}
2983EXPORT_SYMBOL(dev_queue_xmit);
2984
2985int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
2986{
2987 return __dev_queue_xmit(skb, accel_priv);
2988}
2989EXPORT_SYMBOL(dev_queue_xmit_accel);
2990
2991
2992/*=======================================================================
2993 Receiver routines
2994 =======================================================================*/
2995
2996int netdev_max_backlog __read_mostly = 1000;
2997EXPORT_SYMBOL(netdev_max_backlog);
2998
2999int netdev_tstamp_prequeue __read_mostly = 1;
3000int netdev_budget __read_mostly = 300;
3001int weight_p __read_mostly = 64; /* old backlog weight */
3002
3003/* Called with irq disabled */
3004static inline void ____napi_schedule(struct softnet_data *sd,
3005 struct napi_struct *napi)
3006{
3007 list_add_tail(&napi->poll_list, &sd->poll_list);
3008 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3009}
3010
3011#ifdef CONFIG_RPS
3012
3013/* One global table that all flow-based protocols share. */
3014struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3015EXPORT_SYMBOL(rps_sock_flow_table);
3016
3017struct static_key rps_needed __read_mostly;
3018
3019static struct rps_dev_flow *
3020set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3021 struct rps_dev_flow *rflow, u16 next_cpu)
3022{
3023 if (next_cpu != RPS_NO_CPU) {
3024#ifdef CONFIG_RFS_ACCEL
3025 struct netdev_rx_queue *rxqueue;
3026 struct rps_dev_flow_table *flow_table;
3027 struct rps_dev_flow *old_rflow;
3028 u32 flow_id;
3029 u16 rxq_index;
3030 int rc;
3031
3032 /* Should we steer this flow to a different hardware queue? */
3033 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3034 !(dev->features & NETIF_F_NTUPLE))
3035 goto out;
3036 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3037 if (rxq_index == skb_get_rx_queue(skb))
3038 goto out;
3039
3040 rxqueue = dev->_rx + rxq_index;
3041 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3042 if (!flow_table)
3043 goto out;
3044 flow_id = skb_get_hash(skb) & flow_table->mask;
3045 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3046 rxq_index, flow_id);
3047 if (rc < 0)
3048 goto out;
3049 old_rflow = rflow;
3050 rflow = &flow_table->flows[flow_id];
3051 rflow->filter = rc;
3052 if (old_rflow->filter == rflow->filter)
3053 old_rflow->filter = RPS_NO_FILTER;
3054 out:
3055#endif
3056 rflow->last_qtail =
3057 per_cpu(softnet_data, next_cpu).input_queue_head;
3058 }
3059
3060 rflow->cpu = next_cpu;
3061 return rflow;
3062}
3063
3064/*
3065 * get_rps_cpu is called from netif_receive_skb and returns the target
3066 * CPU from the RPS map of the receiving queue for a given skb.
3067 * rcu_read_lock must be held on entry.
3068 */
3069static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3070 struct rps_dev_flow **rflowp)
3071{
3072 struct netdev_rx_queue *rxqueue;
3073 struct rps_map *map;
3074 struct rps_dev_flow_table *flow_table;
3075 struct rps_sock_flow_table *sock_flow_table;
3076 int cpu = -1;
3077 u16 tcpu;
3078 u32 hash;
3079
3080 if (skb_rx_queue_recorded(skb)) {
3081 u16 index = skb_get_rx_queue(skb);
3082 if (unlikely(index >= dev->real_num_rx_queues)) {
3083 WARN_ONCE(dev->real_num_rx_queues > 1,
3084 "%s received packet on queue %u, but number "
3085 "of RX queues is %u\n",
3086 dev->name, index, dev->real_num_rx_queues);
3087 goto done;
3088 }
3089 rxqueue = dev->_rx + index;
3090 } else
3091 rxqueue = dev->_rx;
3092
3093 map = rcu_dereference(rxqueue->rps_map);
3094 if (map) {
3095 if (map->len == 1 &&
3096 !rcu_access_pointer(rxqueue->rps_flow_table)) {
3097 tcpu = map->cpus[0];
3098 if (cpu_online(tcpu))
3099 cpu = tcpu;
3100 goto done;
3101 }
3102 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3103 goto done;
3104 }
3105
3106 skb_reset_network_header(skb);
3107 hash = skb_get_hash(skb);
3108 if (!hash)
3109 goto done;
3110
3111 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3112 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3113 if (flow_table && sock_flow_table) {
3114 u16 next_cpu;
3115 struct rps_dev_flow *rflow;
3116
3117 rflow = &flow_table->flows[hash & flow_table->mask];
3118 tcpu = rflow->cpu;
3119
3120 next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask];
3121
3122 /*
3123 * If the desired CPU (where last recvmsg was done) is
3124 * different from current CPU (one in the rx-queue flow
3125 * table entry), switch if one of the following holds:
3126 * - Current CPU is unset (equal to RPS_NO_CPU).
3127 * - Current CPU is offline.
3128 * - The current CPU's queue tail has advanced beyond the
3129 * last packet that was enqueued using this table entry.
3130 * This guarantees that all previous packets for the flow
3131 * have been dequeued, thus preserving in order delivery.
3132 */
3133 if (unlikely(tcpu != next_cpu) &&
3134 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3135 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3136 rflow->last_qtail)) >= 0)) {
3137 tcpu = next_cpu;
3138 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3139 }
3140
3141 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3142 *rflowp = rflow;
3143 cpu = tcpu;
3144 goto done;
3145 }
3146 }
3147
3148 if (map) {
3149 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3150 if (cpu_online(tcpu)) {
3151 cpu = tcpu;
3152 goto done;
3153 }
3154 }
3155
3156done:
3157 return cpu;
3158}
3159
3160#ifdef CONFIG_RFS_ACCEL
3161
3162/**
3163 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3164 * @dev: Device on which the filter was set
3165 * @rxq_index: RX queue index
3166 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3167 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3168 *
3169 * Drivers that implement ndo_rx_flow_steer() should periodically call
3170 * this function for each installed filter and remove the filters for
3171 * which it returns %true.
3172 */
3173bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3174 u32 flow_id, u16 filter_id)
3175{
3176 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3177 struct rps_dev_flow_table *flow_table;
3178 struct rps_dev_flow *rflow;
3179 bool expire = true;
3180 int cpu;
3181
3182 rcu_read_lock();
3183 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3184 if (flow_table && flow_id <= flow_table->mask) {
3185 rflow = &flow_table->flows[flow_id];
3186 cpu = ACCESS_ONCE(rflow->cpu);
3187 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3188 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3189 rflow->last_qtail) <
3190 (int)(10 * flow_table->mask)))
3191 expire = false;
3192 }
3193 rcu_read_unlock();
3194 return expire;
3195}
3196EXPORT_SYMBOL(rps_may_expire_flow);
3197
3198#endif /* CONFIG_RFS_ACCEL */
3199
3200/* Called from hardirq (IPI) context */
3201static void rps_trigger_softirq(void *data)
3202{
3203 struct softnet_data *sd = data;
3204
3205 ____napi_schedule(sd, &sd->backlog);
3206 sd->received_rps++;
3207}
3208
3209#endif /* CONFIG_RPS */
3210
3211/*
3212 * Check if this softnet_data structure is another cpu one
3213 * If yes, queue it to our IPI list and return 1
3214 * If no, return 0
3215 */
3216static int rps_ipi_queued(struct softnet_data *sd)
3217{
3218#ifdef CONFIG_RPS
3219 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3220
3221 if (sd != mysd) {
3222 sd->rps_ipi_next = mysd->rps_ipi_list;
3223 mysd->rps_ipi_list = sd;
3224
3225 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3226 return 1;
3227 }
3228#endif /* CONFIG_RPS */
3229 return 0;
3230}
3231
3232#ifdef CONFIG_NET_FLOW_LIMIT
3233int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3234#endif
3235
3236static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3237{
3238#ifdef CONFIG_NET_FLOW_LIMIT
3239 struct sd_flow_limit *fl;
3240 struct softnet_data *sd;
3241 unsigned int old_flow, new_flow;
3242
3243 if (qlen < (netdev_max_backlog >> 1))
3244 return false;
3245
3246 sd = &__get_cpu_var(softnet_data);
3247
3248 rcu_read_lock();
3249 fl = rcu_dereference(sd->flow_limit);
3250 if (fl) {
3251 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3252 old_flow = fl->history[fl->history_head];
3253 fl->history[fl->history_head] = new_flow;
3254
3255 fl->history_head++;
3256 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3257
3258 if (likely(fl->buckets[old_flow]))
3259 fl->buckets[old_flow]--;
3260
3261 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3262 fl->count++;
3263 rcu_read_unlock();
3264 return true;
3265 }
3266 }
3267 rcu_read_unlock();
3268#endif
3269 return false;
3270}
3271
3272/*
3273 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3274 * queue (may be a remote CPU queue).
3275 */
3276static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3277 unsigned int *qtail)
3278{
3279 struct softnet_data *sd;
3280 unsigned long flags;
3281 unsigned int qlen;
3282
3283 sd = &per_cpu(softnet_data, cpu);
3284
3285 local_irq_save(flags);
3286
3287 rps_lock(sd);
3288 qlen = skb_queue_len(&sd->input_pkt_queue);
3289 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3290 if (skb_queue_len(&sd->input_pkt_queue)) {
3291enqueue:
3292 __skb_queue_tail(&sd->input_pkt_queue, skb);
3293 input_queue_tail_incr_save(sd, qtail);
3294 rps_unlock(sd);
3295 local_irq_restore(flags);
3296 return NET_RX_SUCCESS;
3297 }
3298
3299 /* Schedule NAPI for backlog device
3300 * We can use non atomic operation since we own the queue lock
3301 */
3302 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3303 if (!rps_ipi_queued(sd))
3304 ____napi_schedule(sd, &sd->backlog);
3305 }
3306 goto enqueue;
3307 }
3308
3309 sd->dropped++;
3310 rps_unlock(sd);
3311
3312 local_irq_restore(flags);
3313
3314 atomic_long_inc(&skb->dev->rx_dropped);
3315 kfree_skb(skb);
3316 return NET_RX_DROP;
3317}
3318
3319static int netif_rx_internal(struct sk_buff *skb)
3320{
3321 int ret;
3322
3323 net_timestamp_check(netdev_tstamp_prequeue, skb);
3324
3325 trace_netif_rx(skb);
3326#ifdef CONFIG_RPS
3327 if (static_key_false(&rps_needed)) {
3328 struct rps_dev_flow voidflow, *rflow = &voidflow;
3329 int cpu;
3330
3331 preempt_disable();
3332 rcu_read_lock();
3333
3334 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3335 if (cpu < 0)
3336 cpu = smp_processor_id();
3337
3338 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3339
3340 rcu_read_unlock();
3341 preempt_enable();
3342 } else
3343#endif
3344 {
3345 unsigned int qtail;
3346 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3347 put_cpu();
3348 }
3349 return ret;
3350}
3351
3352/**
3353 * netif_rx - post buffer to the network code
3354 * @skb: buffer to post
3355 *
3356 * This function receives a packet from a device driver and queues it for
3357 * the upper (protocol) levels to process. It always succeeds. The buffer
3358 * may be dropped during processing for congestion control or by the
3359 * protocol layers.
3360 *
3361 * return values:
3362 * NET_RX_SUCCESS (no congestion)
3363 * NET_RX_DROP (packet was dropped)
3364 *
3365 */
3366
3367int netif_rx(struct sk_buff *skb)
3368{
3369 trace_netif_rx_entry(skb);
3370
3371 return netif_rx_internal(skb);
3372}
3373EXPORT_SYMBOL(netif_rx);
3374
3375int netif_rx_ni(struct sk_buff *skb)
3376{
3377 int err;
3378
3379 trace_netif_rx_ni_entry(skb);
3380
3381 preempt_disable();
3382 err = netif_rx_internal(skb);
3383 if (local_softirq_pending())
3384 do_softirq();
3385 preempt_enable();
3386
3387 return err;
3388}
3389EXPORT_SYMBOL(netif_rx_ni);
3390
3391static void net_tx_action(struct softirq_action *h)
3392{
3393 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3394
3395 if (sd->completion_queue) {
3396 struct sk_buff *clist;
3397
3398 local_irq_disable();
3399 clist = sd->completion_queue;
3400 sd->completion_queue = NULL;
3401 local_irq_enable();
3402
3403 while (clist) {
3404 struct sk_buff *skb = clist;
3405 clist = clist->next;
3406
3407 WARN_ON(atomic_read(&skb->users));
3408 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3409 trace_consume_skb(skb);
3410 else
3411 trace_kfree_skb(skb, net_tx_action);
3412 __kfree_skb(skb);
3413 }
3414 }
3415
3416 if (sd->output_queue) {
3417 struct Qdisc *head;
3418
3419 local_irq_disable();
3420 head = sd->output_queue;
3421 sd->output_queue = NULL;
3422 sd->output_queue_tailp = &sd->output_queue;
3423 local_irq_enable();
3424
3425 while (head) {
3426 struct Qdisc *q = head;
3427 spinlock_t *root_lock;
3428
3429 head = head->next_sched;
3430
3431 root_lock = qdisc_lock(q);
3432 if (spin_trylock(root_lock)) {
3433 smp_mb__before_atomic();
3434 clear_bit(__QDISC_STATE_SCHED,
3435 &q->state);
3436 qdisc_run(q);
3437 spin_unlock(root_lock);
3438 } else {
3439 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3440 &q->state)) {
3441 __netif_reschedule(q);
3442 } else {
3443 smp_mb__before_atomic();
3444 clear_bit(__QDISC_STATE_SCHED,
3445 &q->state);
3446 }
3447 }
3448 }
3449 }
3450}
3451
3452#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3453 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3454/* This hook is defined here for ATM LANE */
3455int (*br_fdb_test_addr_hook)(struct net_device *dev,
3456 unsigned char *addr) __read_mostly;
3457EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3458#endif
3459
3460#ifdef CONFIG_NET_CLS_ACT
3461/* TODO: Maybe we should just force sch_ingress to be compiled in
3462 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3463 * a compare and 2 stores extra right now if we dont have it on
3464 * but have CONFIG_NET_CLS_ACT
3465 * NOTE: This doesn't stop any functionality; if you dont have
3466 * the ingress scheduler, you just can't add policies on ingress.
3467 *
3468 */
3469static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3470{
3471 struct net_device *dev = skb->dev;
3472 u32 ttl = G_TC_RTTL(skb->tc_verd);
3473 int result = TC_ACT_OK;
3474 struct Qdisc *q;
3475
3476 if (unlikely(MAX_RED_LOOP < ttl++)) {
3477 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3478 skb->skb_iif, dev->ifindex);
3479 return TC_ACT_SHOT;
3480 }
3481
3482 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3483 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3484
3485 q = rxq->qdisc;
3486 if (q != &noop_qdisc) {
3487 spin_lock(qdisc_lock(q));
3488 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3489 result = qdisc_enqueue_root(skb, q);
3490 spin_unlock(qdisc_lock(q));
3491 }
3492
3493 return result;
3494}
3495
3496static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3497 struct packet_type **pt_prev,
3498 int *ret, struct net_device *orig_dev)
3499{
3500 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3501
3502 if (!rxq || rxq->qdisc == &noop_qdisc)
3503 goto out;
3504
3505 if (*pt_prev) {
3506 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3507 *pt_prev = NULL;
3508 }
3509
3510 switch (ing_filter(skb, rxq)) {
3511 case TC_ACT_SHOT:
3512 case TC_ACT_STOLEN:
3513 kfree_skb(skb);
3514 return NULL;
3515 }
3516
3517out:
3518 skb->tc_verd = 0;
3519 return skb;
3520}
3521#endif
3522
3523/**
3524 * netdev_rx_handler_register - register receive handler
3525 * @dev: device to register a handler for
3526 * @rx_handler: receive handler to register
3527 * @rx_handler_data: data pointer that is used by rx handler
3528 *
3529 * Register a receive handler for a device. This handler will then be
3530 * called from __netif_receive_skb. A negative errno code is returned
3531 * on a failure.
3532 *
3533 * The caller must hold the rtnl_mutex.
3534 *
3535 * For a general description of rx_handler, see enum rx_handler_result.
3536 */
3537int netdev_rx_handler_register(struct net_device *dev,
3538 rx_handler_func_t *rx_handler,
3539 void *rx_handler_data)
3540{
3541 ASSERT_RTNL();
3542
3543 if (dev->rx_handler)
3544 return -EBUSY;
3545
3546 /* Note: rx_handler_data must be set before rx_handler */
3547 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3548 rcu_assign_pointer(dev->rx_handler, rx_handler);
3549
3550 return 0;
3551}
3552EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3553
3554/**
3555 * netdev_rx_handler_unregister - unregister receive handler
3556 * @dev: device to unregister a handler from
3557 *
3558 * Unregister a receive handler from a device.
3559 *
3560 * The caller must hold the rtnl_mutex.
3561 */
3562void netdev_rx_handler_unregister(struct net_device *dev)
3563{
3564
3565 ASSERT_RTNL();
3566 RCU_INIT_POINTER(dev->rx_handler, NULL);
3567 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3568 * section has a guarantee to see a non NULL rx_handler_data
3569 * as well.
3570 */
3571 synchronize_net();
3572 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3573}
3574EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3575
3576/*
3577 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3578 * the special handling of PFMEMALLOC skbs.
3579 */
3580static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3581{
3582 switch (skb->protocol) {
3583 case htons(ETH_P_ARP):
3584 case htons(ETH_P_IP):
3585 case htons(ETH_P_IPV6):
3586 case htons(ETH_P_8021Q):
3587 case htons(ETH_P_8021AD):
3588 return true;
3589 default:
3590 return false;
3591 }
3592}
3593
3594static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3595{
3596 struct packet_type *ptype, *pt_prev;
3597 rx_handler_func_t *rx_handler;
3598 struct net_device *orig_dev;
3599 struct net_device *null_or_dev;
3600 bool deliver_exact = false;
3601 int ret = NET_RX_DROP;
3602 __be16 type;
3603
3604 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3605
3606 trace_netif_receive_skb(skb);
3607
3608 orig_dev = skb->dev;
3609
3610 skb_reset_network_header(skb);
3611 if (!skb_transport_header_was_set(skb))
3612 skb_reset_transport_header(skb);
3613 skb_reset_mac_len(skb);
3614
3615 pt_prev = NULL;
3616
3617 rcu_read_lock();
3618
3619another_round:
3620 skb->skb_iif = skb->dev->ifindex;
3621
3622 __this_cpu_inc(softnet_data.processed);
3623
3624 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3625 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3626 skb = skb_vlan_untag(skb);
3627 if (unlikely(!skb))
3628 goto unlock;
3629 }
3630
3631#ifdef CONFIG_NET_CLS_ACT
3632 if (skb->tc_verd & TC_NCLS) {
3633 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3634 goto ncls;
3635 }
3636#endif
3637
3638 if (pfmemalloc)
3639 goto skip_taps;
3640
3641 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3642 if (!ptype->dev || ptype->dev == skb->dev) {
3643 if (pt_prev)
3644 ret = deliver_skb(skb, pt_prev, orig_dev);
3645 pt_prev = ptype;
3646 }
3647 }
3648
3649skip_taps:
3650#ifdef CONFIG_NET_CLS_ACT
3651 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3652 if (!skb)
3653 goto unlock;
3654ncls:
3655#endif
3656
3657 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3658 goto drop;
3659
3660 if (vlan_tx_tag_present(skb)) {
3661 if (pt_prev) {
3662 ret = deliver_skb(skb, pt_prev, orig_dev);
3663 pt_prev = NULL;
3664 }
3665 if (vlan_do_receive(&skb))
3666 goto another_round;
3667 else if (unlikely(!skb))
3668 goto unlock;
3669 }
3670
3671 rx_handler = rcu_dereference(skb->dev->rx_handler);
3672 if (rx_handler) {
3673 if (pt_prev) {
3674 ret = deliver_skb(skb, pt_prev, orig_dev);
3675 pt_prev = NULL;
3676 }
3677 switch (rx_handler(&skb)) {
3678 case RX_HANDLER_CONSUMED:
3679 ret = NET_RX_SUCCESS;
3680 goto unlock;
3681 case RX_HANDLER_ANOTHER:
3682 goto another_round;
3683 case RX_HANDLER_EXACT:
3684 deliver_exact = true;
3685 case RX_HANDLER_PASS:
3686 break;
3687 default:
3688 BUG();
3689 }
3690 }
3691
3692 if (unlikely(vlan_tx_tag_present(skb))) {
3693 if (vlan_tx_tag_get_id(skb))
3694 skb->pkt_type = PACKET_OTHERHOST;
3695 /* Note: we might in the future use prio bits
3696 * and set skb->priority like in vlan_do_receive()
3697 * For the time being, just ignore Priority Code Point
3698 */
3699 skb->vlan_tci = 0;
3700 }
3701
3702 /* deliver only exact match when indicated */
3703 null_or_dev = deliver_exact ? skb->dev : NULL;
3704
3705 type = skb->protocol;
3706 list_for_each_entry_rcu(ptype,
3707 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3708 if (ptype->type == type &&
3709 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3710 ptype->dev == orig_dev)) {
3711 if (pt_prev)
3712 ret = deliver_skb(skb, pt_prev, orig_dev);
3713 pt_prev = ptype;
3714 }
3715 }
3716
3717 if (pt_prev) {
3718 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3719 goto drop;
3720 else
3721 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3722 } else {
3723drop:
3724 atomic_long_inc(&skb->dev->rx_dropped);
3725 kfree_skb(skb);
3726 /* Jamal, now you will not able to escape explaining
3727 * me how you were going to use this. :-)
3728 */
3729 ret = NET_RX_DROP;
3730 }
3731
3732unlock:
3733 rcu_read_unlock();
3734 return ret;
3735}
3736
3737static int __netif_receive_skb(struct sk_buff *skb)
3738{
3739 int ret;
3740
3741 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3742 unsigned long pflags = current->flags;
3743
3744 /*
3745 * PFMEMALLOC skbs are special, they should
3746 * - be delivered to SOCK_MEMALLOC sockets only
3747 * - stay away from userspace
3748 * - have bounded memory usage
3749 *
3750 * Use PF_MEMALLOC as this saves us from propagating the allocation
3751 * context down to all allocation sites.
3752 */
3753 current->flags |= PF_MEMALLOC;
3754 ret = __netif_receive_skb_core(skb, true);
3755 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3756 } else
3757 ret = __netif_receive_skb_core(skb, false);
3758
3759 return ret;
3760}
3761
3762static int netif_receive_skb_internal(struct sk_buff *skb)
3763{
3764 net_timestamp_check(netdev_tstamp_prequeue, skb);
3765
3766 if (skb_defer_rx_timestamp(skb))
3767 return NET_RX_SUCCESS;
3768
3769#ifdef CONFIG_RPS
3770 if (static_key_false(&rps_needed)) {
3771 struct rps_dev_flow voidflow, *rflow = &voidflow;
3772 int cpu, ret;
3773
3774 rcu_read_lock();
3775
3776 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3777
3778 if (cpu >= 0) {
3779 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3780 rcu_read_unlock();
3781 return ret;
3782 }
3783 rcu_read_unlock();
3784 }
3785#endif
3786 return __netif_receive_skb(skb);
3787}
3788
3789/**
3790 * netif_receive_skb - process receive buffer from network
3791 * @skb: buffer to process
3792 *
3793 * netif_receive_skb() is the main receive data processing function.
3794 * It always succeeds. The buffer may be dropped during processing
3795 * for congestion control or by the protocol layers.
3796 *
3797 * This function may only be called from softirq context and interrupts
3798 * should be enabled.
3799 *
3800 * Return values (usually ignored):
3801 * NET_RX_SUCCESS: no congestion
3802 * NET_RX_DROP: packet was dropped
3803 */
3804int netif_receive_skb(struct sk_buff *skb)
3805{
3806 trace_netif_receive_skb_entry(skb);
3807
3808 return netif_receive_skb_internal(skb);
3809}
3810EXPORT_SYMBOL(netif_receive_skb);
3811
3812/* Network device is going away, flush any packets still pending
3813 * Called with irqs disabled.
3814 */
3815static void flush_backlog(void *arg)
3816{
3817 struct net_device *dev = arg;
3818 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3819 struct sk_buff *skb, *tmp;
3820
3821 rps_lock(sd);
3822 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3823 if (skb->dev == dev) {
3824 __skb_unlink(skb, &sd->input_pkt_queue);
3825 kfree_skb(skb);
3826 input_queue_head_incr(sd);
3827 }
3828 }
3829 rps_unlock(sd);
3830
3831 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3832 if (skb->dev == dev) {
3833 __skb_unlink(skb, &sd->process_queue);
3834 kfree_skb(skb);
3835 input_queue_head_incr(sd);
3836 }
3837 }
3838}
3839
3840static int napi_gro_complete(struct sk_buff *skb)
3841{
3842 struct packet_offload *ptype;
3843 __be16 type = skb->protocol;
3844 struct list_head *head = &offload_base;
3845 int err = -ENOENT;
3846
3847 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3848
3849 if (NAPI_GRO_CB(skb)->count == 1) {
3850 skb_shinfo(skb)->gso_size = 0;
3851 goto out;
3852 }
3853
3854 rcu_read_lock();
3855 list_for_each_entry_rcu(ptype, head, list) {
3856 if (ptype->type != type || !ptype->callbacks.gro_complete)
3857 continue;
3858
3859 err = ptype->callbacks.gro_complete(skb, 0);
3860 break;
3861 }
3862 rcu_read_unlock();
3863
3864 if (err) {
3865 WARN_ON(&ptype->list == head);
3866 kfree_skb(skb);
3867 return NET_RX_SUCCESS;
3868 }
3869
3870out:
3871 return netif_receive_skb_internal(skb);
3872}
3873
3874/* napi->gro_list contains packets ordered by age.
3875 * youngest packets at the head of it.
3876 * Complete skbs in reverse order to reduce latencies.
3877 */
3878void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3879{
3880 struct sk_buff *skb, *prev = NULL;
3881
3882 /* scan list and build reverse chain */
3883 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3884 skb->prev = prev;
3885 prev = skb;
3886 }
3887
3888 for (skb = prev; skb; skb = prev) {
3889 skb->next = NULL;
3890
3891 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3892 return;
3893
3894 prev = skb->prev;
3895 napi_gro_complete(skb);
3896 napi->gro_count--;
3897 }
3898
3899 napi->gro_list = NULL;
3900}
3901EXPORT_SYMBOL(napi_gro_flush);
3902
3903static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3904{
3905 struct sk_buff *p;
3906 unsigned int maclen = skb->dev->hard_header_len;
3907 u32 hash = skb_get_hash_raw(skb);
3908
3909 for (p = napi->gro_list; p; p = p->next) {
3910 unsigned long diffs;
3911
3912 NAPI_GRO_CB(p)->flush = 0;
3913
3914 if (hash != skb_get_hash_raw(p)) {
3915 NAPI_GRO_CB(p)->same_flow = 0;
3916 continue;
3917 }
3918
3919 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3920 diffs |= p->vlan_tci ^ skb->vlan_tci;
3921 if (maclen == ETH_HLEN)
3922 diffs |= compare_ether_header(skb_mac_header(p),
3923 skb_mac_header(skb));
3924 else if (!diffs)
3925 diffs = memcmp(skb_mac_header(p),
3926 skb_mac_header(skb),
3927 maclen);
3928 NAPI_GRO_CB(p)->same_flow = !diffs;
3929 }
3930}
3931
3932static void skb_gro_reset_offset(struct sk_buff *skb)
3933{
3934 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3935 const skb_frag_t *frag0 = &pinfo->frags[0];
3936
3937 NAPI_GRO_CB(skb)->data_offset = 0;
3938 NAPI_GRO_CB(skb)->frag0 = NULL;
3939 NAPI_GRO_CB(skb)->frag0_len = 0;
3940
3941 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3942 pinfo->nr_frags &&
3943 !PageHighMem(skb_frag_page(frag0))) {
3944 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3945 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3946 }
3947}
3948
3949static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3950{
3951 struct skb_shared_info *pinfo = skb_shinfo(skb);
3952
3953 BUG_ON(skb->end - skb->tail < grow);
3954
3955 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3956
3957 skb->data_len -= grow;
3958 skb->tail += grow;
3959
3960 pinfo->frags[0].page_offset += grow;
3961 skb_frag_size_sub(&pinfo->frags[0], grow);
3962
3963 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3964 skb_frag_unref(skb, 0);
3965 memmove(pinfo->frags, pinfo->frags + 1,
3966 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
3967 }
3968}
3969
3970static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3971{
3972 struct sk_buff **pp = NULL;
3973 struct packet_offload *ptype;
3974 __be16 type = skb->protocol;
3975 struct list_head *head = &offload_base;
3976 int same_flow;
3977 enum gro_result ret;
3978 int grow;
3979
3980 if (!(skb->dev->features & NETIF_F_GRO))
3981 goto normal;
3982
3983 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3984 goto normal;
3985
3986 gro_list_prepare(napi, skb);
3987
3988 rcu_read_lock();
3989 list_for_each_entry_rcu(ptype, head, list) {
3990 if (ptype->type != type || !ptype->callbacks.gro_receive)
3991 continue;
3992
3993 skb_set_network_header(skb, skb_gro_offset(skb));
3994 skb_reset_mac_len(skb);
3995 NAPI_GRO_CB(skb)->same_flow = 0;
3996 NAPI_GRO_CB(skb)->flush = 0;
3997 NAPI_GRO_CB(skb)->free = 0;
3998 NAPI_GRO_CB(skb)->udp_mark = 0;
3999
4000 /* Setup for GRO checksum validation */
4001 switch (skb->ip_summed) {
4002 case CHECKSUM_COMPLETE:
4003 NAPI_GRO_CB(skb)->csum = skb->csum;
4004 NAPI_GRO_CB(skb)->csum_valid = 1;
4005 NAPI_GRO_CB(skb)->csum_cnt = 0;
4006 break;
4007 case CHECKSUM_UNNECESSARY:
4008 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4009 NAPI_GRO_CB(skb)->csum_valid = 0;
4010 break;
4011 default:
4012 NAPI_GRO_CB(skb)->csum_cnt = 0;
4013 NAPI_GRO_CB(skb)->csum_valid = 0;
4014 }
4015
4016 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4017 break;
4018 }
4019 rcu_read_unlock();
4020
4021 if (&ptype->list == head)
4022 goto normal;
4023
4024 same_flow = NAPI_GRO_CB(skb)->same_flow;
4025 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4026
4027 if (pp) {
4028 struct sk_buff *nskb = *pp;
4029
4030 *pp = nskb->next;
4031 nskb->next = NULL;
4032 napi_gro_complete(nskb);
4033 napi->gro_count--;
4034 }
4035
4036 if (same_flow)
4037 goto ok;
4038
4039 if (NAPI_GRO_CB(skb)->flush)
4040 goto normal;
4041
4042 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4043 struct sk_buff *nskb = napi->gro_list;
4044
4045 /* locate the end of the list to select the 'oldest' flow */
4046 while (nskb->next) {
4047 pp = &nskb->next;
4048 nskb = *pp;
4049 }
4050 *pp = NULL;
4051 nskb->next = NULL;
4052 napi_gro_complete(nskb);
4053 } else {
4054 napi->gro_count++;
4055 }
4056 NAPI_GRO_CB(skb)->count = 1;
4057 NAPI_GRO_CB(skb)->age = jiffies;
4058 NAPI_GRO_CB(skb)->last = skb;
4059 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4060 skb->next = napi->gro_list;
4061 napi->gro_list = skb;
4062 ret = GRO_HELD;
4063
4064pull:
4065 grow = skb_gro_offset(skb) - skb_headlen(skb);
4066 if (grow > 0)
4067 gro_pull_from_frag0(skb, grow);
4068ok:
4069 return ret;
4070
4071normal:
4072 ret = GRO_NORMAL;
4073 goto pull;
4074}
4075
4076struct packet_offload *gro_find_receive_by_type(__be16 type)
4077{
4078 struct list_head *offload_head = &offload_base;
4079 struct packet_offload *ptype;
4080
4081 list_for_each_entry_rcu(ptype, offload_head, list) {
4082 if (ptype->type != type || !ptype->callbacks.gro_receive)
4083 continue;
4084 return ptype;
4085 }
4086 return NULL;
4087}
4088EXPORT_SYMBOL(gro_find_receive_by_type);
4089
4090struct packet_offload *gro_find_complete_by_type(__be16 type)
4091{
4092 struct list_head *offload_head = &offload_base;
4093 struct packet_offload *ptype;
4094
4095 list_for_each_entry_rcu(ptype, offload_head, list) {
4096 if (ptype->type != type || !ptype->callbacks.gro_complete)
4097 continue;
4098 return ptype;
4099 }
4100 return NULL;
4101}
4102EXPORT_SYMBOL(gro_find_complete_by_type);
4103
4104static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4105{
4106 switch (ret) {
4107 case GRO_NORMAL:
4108 if (netif_receive_skb_internal(skb))
4109 ret = GRO_DROP;
4110 break;
4111
4112 case GRO_DROP:
4113 kfree_skb(skb);
4114 break;
4115
4116 case GRO_MERGED_FREE:
4117 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4118 kmem_cache_free(skbuff_head_cache, skb);
4119 else
4120 __kfree_skb(skb);
4121 break;
4122
4123 case GRO_HELD:
4124 case GRO_MERGED:
4125 break;
4126 }
4127
4128 return ret;
4129}
4130
4131gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4132{
4133 trace_napi_gro_receive_entry(skb);
4134
4135 skb_gro_reset_offset(skb);
4136
4137 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4138}
4139EXPORT_SYMBOL(napi_gro_receive);
4140
4141static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4142{
4143 __skb_pull(skb, skb_headlen(skb));
4144 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4145 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4146 skb->vlan_tci = 0;
4147 skb->dev = napi->dev;
4148 skb->skb_iif = 0;
4149 skb->encapsulation = 0;
4150 skb_shinfo(skb)->gso_type = 0;
4151 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4152
4153 napi->skb = skb;
4154}
4155
4156struct sk_buff *napi_get_frags(struct napi_struct *napi)
4157{
4158 struct sk_buff *skb = napi->skb;
4159
4160 if (!skb) {
4161 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
4162 napi->skb = skb;
4163 }
4164 return skb;
4165}
4166EXPORT_SYMBOL(napi_get_frags);
4167
4168static gro_result_t napi_frags_finish(struct napi_struct *napi,
4169 struct sk_buff *skb,
4170 gro_result_t ret)
4171{
4172 switch (ret) {
4173 case GRO_NORMAL:
4174 case GRO_HELD:
4175 __skb_push(skb, ETH_HLEN);
4176 skb->protocol = eth_type_trans(skb, skb->dev);
4177 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4178 ret = GRO_DROP;
4179 break;
4180
4181 case GRO_DROP:
4182 case GRO_MERGED_FREE:
4183 napi_reuse_skb(napi, skb);
4184 break;
4185
4186 case GRO_MERGED:
4187 break;
4188 }
4189
4190 return ret;
4191}
4192
4193/* Upper GRO stack assumes network header starts at gro_offset=0
4194 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4195 * We copy ethernet header into skb->data to have a common layout.
4196 */
4197static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4198{
4199 struct sk_buff *skb = napi->skb;
4200 const struct ethhdr *eth;
4201 unsigned int hlen = sizeof(*eth);
4202
4203 napi->skb = NULL;
4204
4205 skb_reset_mac_header(skb);
4206 skb_gro_reset_offset(skb);
4207
4208 eth = skb_gro_header_fast(skb, 0);
4209 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4210 eth = skb_gro_header_slow(skb, hlen, 0);
4211 if (unlikely(!eth)) {
4212 napi_reuse_skb(napi, skb);
4213 return NULL;
4214 }
4215 } else {
4216 gro_pull_from_frag0(skb, hlen);
4217 NAPI_GRO_CB(skb)->frag0 += hlen;
4218 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4219 }
4220 __skb_pull(skb, hlen);
4221
4222 /*
4223 * This works because the only protocols we care about don't require
4224 * special handling.
4225 * We'll fix it up properly in napi_frags_finish()
4226 */
4227 skb->protocol = eth->h_proto;
4228
4229 return skb;
4230}
4231
4232gro_result_t napi_gro_frags(struct napi_struct *napi)
4233{
4234 struct sk_buff *skb = napi_frags_skb(napi);
4235
4236 if (!skb)
4237 return GRO_DROP;
4238
4239 trace_napi_gro_frags_entry(skb);
4240
4241 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4242}
4243EXPORT_SYMBOL(napi_gro_frags);
4244
4245/* Compute the checksum from gro_offset and return the folded value
4246 * after adding in any pseudo checksum.
4247 */
4248__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4249{
4250 __wsum wsum;
4251 __sum16 sum;
4252
4253 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4254
4255 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4256 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4257 if (likely(!sum)) {
4258 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4259 !skb->csum_complete_sw)
4260 netdev_rx_csum_fault(skb->dev);
4261 }
4262
4263 NAPI_GRO_CB(skb)->csum = wsum;
4264 NAPI_GRO_CB(skb)->csum_valid = 1;
4265
4266 return sum;
4267}
4268EXPORT_SYMBOL(__skb_gro_checksum_complete);
4269
4270/*
4271 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4272 * Note: called with local irq disabled, but exits with local irq enabled.
4273 */
4274static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4275{
4276#ifdef CONFIG_RPS
4277 struct softnet_data *remsd = sd->rps_ipi_list;
4278
4279 if (remsd) {
4280 sd->rps_ipi_list = NULL;
4281
4282 local_irq_enable();
4283
4284 /* Send pending IPI's to kick RPS processing on remote cpus. */
4285 while (remsd) {
4286 struct softnet_data *next = remsd->rps_ipi_next;
4287
4288 if (cpu_online(remsd->cpu))
4289 smp_call_function_single_async(remsd->cpu,
4290 &remsd->csd);
4291 remsd = next;
4292 }
4293 } else
4294#endif
4295 local_irq_enable();
4296}
4297
4298static int process_backlog(struct napi_struct *napi, int quota)
4299{
4300 int work = 0;
4301 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4302
4303#ifdef CONFIG_RPS
4304 /* Check if we have pending ipi, its better to send them now,
4305 * not waiting net_rx_action() end.
4306 */
4307 if (sd->rps_ipi_list) {
4308 local_irq_disable();
4309 net_rps_action_and_irq_enable(sd);
4310 }
4311#endif
4312 napi->weight = weight_p;
4313 local_irq_disable();
4314 while (1) {
4315 struct sk_buff *skb;
4316
4317 while ((skb = __skb_dequeue(&sd->process_queue))) {
4318 local_irq_enable();
4319 __netif_receive_skb(skb);
4320 local_irq_disable();
4321 input_queue_head_incr(sd);
4322 if (++work >= quota) {
4323 local_irq_enable();
4324 return work;
4325 }
4326 }
4327
4328 rps_lock(sd);
4329 if (skb_queue_empty(&sd->input_pkt_queue)) {
4330 /*
4331 * Inline a custom version of __napi_complete().
4332 * only current cpu owns and manipulates this napi,
4333 * and NAPI_STATE_SCHED is the only possible flag set
4334 * on backlog.
4335 * We can use a plain write instead of clear_bit(),
4336 * and we dont need an smp_mb() memory barrier.
4337 */
4338 list_del(&napi->poll_list);
4339 napi->state = 0;
4340 rps_unlock(sd);
4341
4342 break;
4343 }
4344
4345 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4346 &sd->process_queue);
4347 rps_unlock(sd);
4348 }
4349 local_irq_enable();
4350
4351 return work;
4352}
4353
4354/**
4355 * __napi_schedule - schedule for receive
4356 * @n: entry to schedule
4357 *
4358 * The entry's receive function will be scheduled to run
4359 */
4360void __napi_schedule(struct napi_struct *n)
4361{
4362 unsigned long flags;
4363
4364 local_irq_save(flags);
4365 ____napi_schedule(&__get_cpu_var(softnet_data), n);
4366 local_irq_restore(flags);
4367}
4368EXPORT_SYMBOL(__napi_schedule);
4369
4370void __napi_complete(struct napi_struct *n)
4371{
4372 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4373 BUG_ON(n->gro_list);
4374
4375 list_del(&n->poll_list);
4376 smp_mb__before_atomic();
4377 clear_bit(NAPI_STATE_SCHED, &n->state);
4378}
4379EXPORT_SYMBOL(__napi_complete);
4380
4381void napi_complete(struct napi_struct *n)
4382{
4383 unsigned long flags;
4384
4385 /*
4386 * don't let napi dequeue from the cpu poll list
4387 * just in case its running on a different cpu
4388 */
4389 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4390 return;
4391
4392 napi_gro_flush(n, false);
4393 local_irq_save(flags);
4394 __napi_complete(n);
4395 local_irq_restore(flags);
4396}
4397EXPORT_SYMBOL(napi_complete);
4398
4399/* must be called under rcu_read_lock(), as we dont take a reference */
4400struct napi_struct *napi_by_id(unsigned int napi_id)
4401{
4402 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4403 struct napi_struct *napi;
4404
4405 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4406 if (napi->napi_id == napi_id)
4407 return napi;
4408
4409 return NULL;
4410}
4411EXPORT_SYMBOL_GPL(napi_by_id);
4412
4413void napi_hash_add(struct napi_struct *napi)
4414{
4415 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4416
4417 spin_lock(&napi_hash_lock);
4418
4419 /* 0 is not a valid id, we also skip an id that is taken
4420 * we expect both events to be extremely rare
4421 */
4422 napi->napi_id = 0;
4423 while (!napi->napi_id) {
4424 napi->napi_id = ++napi_gen_id;
4425 if (napi_by_id(napi->napi_id))
4426 napi->napi_id = 0;
4427 }
4428
4429 hlist_add_head_rcu(&napi->napi_hash_node,
4430 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4431
4432 spin_unlock(&napi_hash_lock);
4433 }
4434}
4435EXPORT_SYMBOL_GPL(napi_hash_add);
4436
4437/* Warning : caller is responsible to make sure rcu grace period
4438 * is respected before freeing memory containing @napi
4439 */
4440void napi_hash_del(struct napi_struct *napi)
4441{
4442 spin_lock(&napi_hash_lock);
4443
4444 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4445 hlist_del_rcu(&napi->napi_hash_node);
4446
4447 spin_unlock(&napi_hash_lock);
4448}
4449EXPORT_SYMBOL_GPL(napi_hash_del);
4450
4451void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4452 int (*poll)(struct napi_struct *, int), int weight)
4453{
4454 INIT_LIST_HEAD(&napi->poll_list);
4455 napi->gro_count = 0;
4456 napi->gro_list = NULL;
4457 napi->skb = NULL;
4458 napi->poll = poll;
4459 if (weight > NAPI_POLL_WEIGHT)
4460 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4461 weight, dev->name);
4462 napi->weight = weight;
4463 list_add(&napi->dev_list, &dev->napi_list);
4464 napi->dev = dev;
4465#ifdef CONFIG_NETPOLL
4466 spin_lock_init(&napi->poll_lock);
4467 napi->poll_owner = -1;
4468#endif
4469 set_bit(NAPI_STATE_SCHED, &napi->state);
4470}
4471EXPORT_SYMBOL(netif_napi_add);
4472
4473void netif_napi_del(struct napi_struct *napi)
4474{
4475 list_del_init(&napi->dev_list);
4476 napi_free_frags(napi);
4477
4478 kfree_skb_list(napi->gro_list);
4479 napi->gro_list = NULL;
4480 napi->gro_count = 0;
4481}
4482EXPORT_SYMBOL(netif_napi_del);
4483
4484static void net_rx_action(struct softirq_action *h)
4485{
4486 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4487 unsigned long time_limit = jiffies + 2;
4488 int budget = netdev_budget;
4489 void *have;
4490
4491 local_irq_disable();
4492
4493 while (!list_empty(&sd->poll_list)) {
4494 struct napi_struct *n;
4495 int work, weight;
4496
4497 /* If softirq window is exhuasted then punt.
4498 * Allow this to run for 2 jiffies since which will allow
4499 * an average latency of 1.5/HZ.
4500 */
4501 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4502 goto softnet_break;
4503
4504 local_irq_enable();
4505
4506 /* Even though interrupts have been re-enabled, this
4507 * access is safe because interrupts can only add new
4508 * entries to the tail of this list, and only ->poll()
4509 * calls can remove this head entry from the list.
4510 */
4511 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4512
4513 have = netpoll_poll_lock(n);
4514
4515 weight = n->weight;
4516
4517 /* This NAPI_STATE_SCHED test is for avoiding a race
4518 * with netpoll's poll_napi(). Only the entity which
4519 * obtains the lock and sees NAPI_STATE_SCHED set will
4520 * actually make the ->poll() call. Therefore we avoid
4521 * accidentally calling ->poll() when NAPI is not scheduled.
4522 */
4523 work = 0;
4524 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4525 work = n->poll(n, weight);
4526 trace_napi_poll(n);
4527 }
4528
4529 WARN_ON_ONCE(work > weight);
4530
4531 budget -= work;
4532
4533 local_irq_disable();
4534
4535 /* Drivers must not modify the NAPI state if they
4536 * consume the entire weight. In such cases this code
4537 * still "owns" the NAPI instance and therefore can
4538 * move the instance around on the list at-will.
4539 */
4540 if (unlikely(work == weight)) {
4541 if (unlikely(napi_disable_pending(n))) {
4542 local_irq_enable();
4543 napi_complete(n);
4544 local_irq_disable();
4545 } else {
4546 if (n->gro_list) {
4547 /* flush too old packets
4548 * If HZ < 1000, flush all packets.
4549 */
4550 local_irq_enable();
4551 napi_gro_flush(n, HZ >= 1000);
4552 local_irq_disable();
4553 }
4554 list_move_tail(&n->poll_list, &sd->poll_list);
4555 }
4556 }
4557
4558 netpoll_poll_unlock(have);
4559 }
4560out:
4561 net_rps_action_and_irq_enable(sd);
4562
4563#ifdef CONFIG_NET_DMA
4564 /*
4565 * There may not be any more sk_buffs coming right now, so push
4566 * any pending DMA copies to hardware
4567 */
4568 dma_issue_pending_all();
4569#endif
4570
4571 return;
4572
4573softnet_break:
4574 sd->time_squeeze++;
4575 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4576 goto out;
4577}
4578
4579struct netdev_adjacent {
4580 struct net_device *dev;
4581
4582 /* upper master flag, there can only be one master device per list */
4583 bool master;
4584
4585 /* counter for the number of times this device was added to us */
4586 u16 ref_nr;
4587
4588 /* private field for the users */
4589 void *private;
4590
4591 struct list_head list;
4592 struct rcu_head rcu;
4593};
4594
4595static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4596 struct net_device *adj_dev,
4597 struct list_head *adj_list)
4598{
4599 struct netdev_adjacent *adj;
4600
4601 list_for_each_entry(adj, adj_list, list) {
4602 if (adj->dev == adj_dev)
4603 return adj;
4604 }
4605 return NULL;
4606}
4607
4608/**
4609 * netdev_has_upper_dev - Check if device is linked to an upper device
4610 * @dev: device
4611 * @upper_dev: upper device to check
4612 *
4613 * Find out if a device is linked to specified upper device and return true
4614 * in case it is. Note that this checks only immediate upper device,
4615 * not through a complete stack of devices. The caller must hold the RTNL lock.
4616 */
4617bool netdev_has_upper_dev(struct net_device *dev,
4618 struct net_device *upper_dev)
4619{
4620 ASSERT_RTNL();
4621
4622 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4623}
4624EXPORT_SYMBOL(netdev_has_upper_dev);
4625
4626/**
4627 * netdev_has_any_upper_dev - Check if device is linked to some device
4628 * @dev: device
4629 *
4630 * Find out if a device is linked to an upper device and return true in case
4631 * it is. The caller must hold the RTNL lock.
4632 */
4633static bool netdev_has_any_upper_dev(struct net_device *dev)
4634{
4635 ASSERT_RTNL();
4636
4637 return !list_empty(&dev->all_adj_list.upper);
4638}
4639
4640/**
4641 * netdev_master_upper_dev_get - Get master upper device
4642 * @dev: device
4643 *
4644 * Find a master upper device and return pointer to it or NULL in case
4645 * it's not there. The caller must hold the RTNL lock.
4646 */
4647struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4648{
4649 struct netdev_adjacent *upper;
4650
4651 ASSERT_RTNL();
4652
4653 if (list_empty(&dev->adj_list.upper))
4654 return NULL;
4655
4656 upper = list_first_entry(&dev->adj_list.upper,
4657 struct netdev_adjacent, list);
4658 if (likely(upper->master))
4659 return upper->dev;
4660 return NULL;
4661}
4662EXPORT_SYMBOL(netdev_master_upper_dev_get);
4663
4664void *netdev_adjacent_get_private(struct list_head *adj_list)
4665{
4666 struct netdev_adjacent *adj;
4667
4668 adj = list_entry(adj_list, struct netdev_adjacent, list);
4669
4670 return adj->private;
4671}
4672EXPORT_SYMBOL(netdev_adjacent_get_private);
4673
4674/**
4675 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4676 * @dev: device
4677 * @iter: list_head ** of the current position
4678 *
4679 * Gets the next device from the dev's upper list, starting from iter
4680 * position. The caller must hold RCU read lock.
4681 */
4682struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4683 struct list_head **iter)
4684{
4685 struct netdev_adjacent *upper;
4686
4687 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4688
4689 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4690
4691 if (&upper->list == &dev->adj_list.upper)
4692 return NULL;
4693
4694 *iter = &upper->list;
4695
4696 return upper->dev;
4697}
4698EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4699
4700/**
4701 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4702 * @dev: device
4703 * @iter: list_head ** of the current position
4704 *
4705 * Gets the next device from the dev's upper list, starting from iter
4706 * position. The caller must hold RCU read lock.
4707 */
4708struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4709 struct list_head **iter)
4710{
4711 struct netdev_adjacent *upper;
4712
4713 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4714
4715 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4716
4717 if (&upper->list == &dev->all_adj_list.upper)
4718 return NULL;
4719
4720 *iter = &upper->list;
4721
4722 return upper->dev;
4723}
4724EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4725
4726/**
4727 * netdev_lower_get_next_private - Get the next ->private from the
4728 * lower neighbour list
4729 * @dev: device
4730 * @iter: list_head ** of the current position
4731 *
4732 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4733 * list, starting from iter position. The caller must hold either hold the
4734 * RTNL lock or its own locking that guarantees that the neighbour lower
4735 * list will remain unchainged.
4736 */
4737void *netdev_lower_get_next_private(struct net_device *dev,
4738 struct list_head **iter)
4739{
4740 struct netdev_adjacent *lower;
4741
4742 lower = list_entry(*iter, struct netdev_adjacent, list);
4743
4744 if (&lower->list == &dev->adj_list.lower)
4745 return NULL;
4746
4747 *iter = lower->list.next;
4748
4749 return lower->private;
4750}
4751EXPORT_SYMBOL(netdev_lower_get_next_private);
4752
4753/**
4754 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4755 * lower neighbour list, RCU
4756 * variant
4757 * @dev: device
4758 * @iter: list_head ** of the current position
4759 *
4760 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4761 * list, starting from iter position. The caller must hold RCU read lock.
4762 */
4763void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4764 struct list_head **iter)
4765{
4766 struct netdev_adjacent *lower;
4767
4768 WARN_ON_ONCE(!rcu_read_lock_held());
4769
4770 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4771
4772 if (&lower->list == &dev->adj_list.lower)
4773 return NULL;
4774
4775 *iter = &lower->list;
4776
4777 return lower->private;
4778}
4779EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4780
4781/**
4782 * netdev_lower_get_next - Get the next device from the lower neighbour
4783 * list
4784 * @dev: device
4785 * @iter: list_head ** of the current position
4786 *
4787 * Gets the next netdev_adjacent from the dev's lower neighbour
4788 * list, starting from iter position. The caller must hold RTNL lock or
4789 * its own locking that guarantees that the neighbour lower
4790 * list will remain unchainged.
4791 */
4792void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4793{
4794 struct netdev_adjacent *lower;
4795
4796 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4797
4798 if (&lower->list == &dev->adj_list.lower)
4799 return NULL;
4800
4801 *iter = &lower->list;
4802
4803 return lower->dev;
4804}
4805EXPORT_SYMBOL(netdev_lower_get_next);
4806
4807/**
4808 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4809 * lower neighbour list, RCU
4810 * variant
4811 * @dev: device
4812 *
4813 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4814 * list. The caller must hold RCU read lock.
4815 */
4816void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4817{
4818 struct netdev_adjacent *lower;
4819
4820 lower = list_first_or_null_rcu(&dev->adj_list.lower,
4821 struct netdev_adjacent, list);
4822 if (lower)
4823 return lower->private;
4824 return NULL;
4825}
4826EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4827
4828/**
4829 * netdev_master_upper_dev_get_rcu - Get master upper device
4830 * @dev: device
4831 *
4832 * Find a master upper device and return pointer to it or NULL in case
4833 * it's not there. The caller must hold the RCU read lock.
4834 */
4835struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4836{
4837 struct netdev_adjacent *upper;
4838
4839 upper = list_first_or_null_rcu(&dev->adj_list.upper,
4840 struct netdev_adjacent, list);
4841 if (upper && likely(upper->master))
4842 return upper->dev;
4843 return NULL;
4844}
4845EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4846
4847static int netdev_adjacent_sysfs_add(struct net_device *dev,
4848 struct net_device *adj_dev,
4849 struct list_head *dev_list)
4850{
4851 char linkname[IFNAMSIZ+7];
4852 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4853 "upper_%s" : "lower_%s", adj_dev->name);
4854 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4855 linkname);
4856}
4857static void netdev_adjacent_sysfs_del(struct net_device *dev,
4858 char *name,
4859 struct list_head *dev_list)
4860{
4861 char linkname[IFNAMSIZ+7];
4862 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4863 "upper_%s" : "lower_%s", name);
4864 sysfs_remove_link(&(dev->dev.kobj), linkname);
4865}
4866
4867#define netdev_adjacent_is_neigh_list(dev, dev_list) \
4868 (dev_list == &dev->adj_list.upper || \
4869 dev_list == &dev->adj_list.lower)
4870
4871static int __netdev_adjacent_dev_insert(struct net_device *dev,
4872 struct net_device *adj_dev,
4873 struct list_head *dev_list,
4874 void *private, bool master)
4875{
4876 struct netdev_adjacent *adj;
4877 int ret;
4878
4879 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4880
4881 if (adj) {
4882 adj->ref_nr++;
4883 return 0;
4884 }
4885
4886 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4887 if (!adj)
4888 return -ENOMEM;
4889
4890 adj->dev = adj_dev;
4891 adj->master = master;
4892 adj->ref_nr = 1;
4893 adj->private = private;
4894 dev_hold(adj_dev);
4895
4896 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4897 adj_dev->name, dev->name, adj_dev->name);
4898
4899 if (netdev_adjacent_is_neigh_list(dev, dev_list)) {
4900 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
4901 if (ret)
4902 goto free_adj;
4903 }
4904
4905 /* Ensure that master link is always the first item in list. */
4906 if (master) {
4907 ret = sysfs_create_link(&(dev->dev.kobj),
4908 &(adj_dev->dev.kobj), "master");
4909 if (ret)
4910 goto remove_symlinks;
4911
4912 list_add_rcu(&adj->list, dev_list);
4913 } else {
4914 list_add_tail_rcu(&adj->list, dev_list);
4915 }
4916
4917 return 0;
4918
4919remove_symlinks:
4920 if (netdev_adjacent_is_neigh_list(dev, dev_list))
4921 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4922free_adj:
4923 kfree(adj);
4924 dev_put(adj_dev);
4925
4926 return ret;
4927}
4928
4929static void __netdev_adjacent_dev_remove(struct net_device *dev,
4930 struct net_device *adj_dev,
4931 struct list_head *dev_list)
4932{
4933 struct netdev_adjacent *adj;
4934
4935 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4936
4937 if (!adj) {
4938 pr_err("tried to remove device %s from %s\n",
4939 dev->name, adj_dev->name);
4940 BUG();
4941 }
4942
4943 if (adj->ref_nr > 1) {
4944 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4945 adj->ref_nr-1);
4946 adj->ref_nr--;
4947 return;
4948 }
4949
4950 if (adj->master)
4951 sysfs_remove_link(&(dev->dev.kobj), "master");
4952
4953 if (netdev_adjacent_is_neigh_list(dev, dev_list))
4954 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4955
4956 list_del_rcu(&adj->list);
4957 pr_debug("dev_put for %s, because link removed from %s to %s\n",
4958 adj_dev->name, dev->name, adj_dev->name);
4959 dev_put(adj_dev);
4960 kfree_rcu(adj, rcu);
4961}
4962
4963static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4964 struct net_device *upper_dev,
4965 struct list_head *up_list,
4966 struct list_head *down_list,
4967 void *private, bool master)
4968{
4969 int ret;
4970
4971 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4972 master);
4973 if (ret)
4974 return ret;
4975
4976 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
4977 false);
4978 if (ret) {
4979 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4980 return ret;
4981 }
4982
4983 return 0;
4984}
4985
4986static int __netdev_adjacent_dev_link(struct net_device *dev,
4987 struct net_device *upper_dev)
4988{
4989 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
4990 &dev->all_adj_list.upper,
4991 &upper_dev->all_adj_list.lower,
4992 NULL, false);
4993}
4994
4995static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
4996 struct net_device *upper_dev,
4997 struct list_head *up_list,
4998 struct list_head *down_list)
4999{
5000 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5001 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5002}
5003
5004static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5005 struct net_device *upper_dev)
5006{
5007 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5008 &dev->all_adj_list.upper,
5009 &upper_dev->all_adj_list.lower);
5010}
5011
5012static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5013 struct net_device *upper_dev,
5014 void *private, bool master)
5015{
5016 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5017
5018 if (ret)
5019 return ret;
5020
5021 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5022 &dev->adj_list.upper,
5023 &upper_dev->adj_list.lower,
5024 private, master);
5025 if (ret) {
5026 __netdev_adjacent_dev_unlink(dev, upper_dev);
5027 return ret;
5028 }
5029
5030 return 0;
5031}
5032
5033static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5034 struct net_device *upper_dev)
5035{
5036 __netdev_adjacent_dev_unlink(dev, upper_dev);
5037 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5038 &dev->adj_list.upper,
5039 &upper_dev->adj_list.lower);
5040}
5041
5042static int __netdev_upper_dev_link(struct net_device *dev,
5043 struct net_device *upper_dev, bool master,
5044 void *private)
5045{
5046 struct netdev_adjacent *i, *j, *to_i, *to_j;
5047 int ret = 0;
5048
5049 ASSERT_RTNL();
5050
5051 if (dev == upper_dev)
5052 return -EBUSY;
5053
5054 /* To prevent loops, check if dev is not upper device to upper_dev. */
5055 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5056 return -EBUSY;
5057
5058 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
5059 return -EEXIST;
5060
5061 if (master && netdev_master_upper_dev_get(dev))
5062 return -EBUSY;
5063
5064 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5065 master);
5066 if (ret)
5067 return ret;
5068
5069 /* Now that we linked these devs, make all the upper_dev's
5070 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5071 * versa, and don't forget the devices itself. All of these
5072 * links are non-neighbours.
5073 */
5074 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5075 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5076 pr_debug("Interlinking %s with %s, non-neighbour\n",
5077 i->dev->name, j->dev->name);
5078 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5079 if (ret)
5080 goto rollback_mesh;
5081 }
5082 }
5083
5084 /* add dev to every upper_dev's upper device */
5085 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5086 pr_debug("linking %s's upper device %s with %s\n",
5087 upper_dev->name, i->dev->name, dev->name);
5088 ret = __netdev_adjacent_dev_link(dev, i->dev);
5089 if (ret)
5090 goto rollback_upper_mesh;
5091 }
5092
5093 /* add upper_dev to every dev's lower device */
5094 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5095 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5096 i->dev->name, upper_dev->name);
5097 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5098 if (ret)
5099 goto rollback_lower_mesh;
5100 }
5101
5102 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5103 return 0;
5104
5105rollback_lower_mesh:
5106 to_i = i;
5107 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5108 if (i == to_i)
5109 break;
5110 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5111 }
5112
5113 i = NULL;
5114
5115rollback_upper_mesh:
5116 to_i = i;
5117 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5118 if (i == to_i)
5119 break;
5120 __netdev_adjacent_dev_unlink(dev, i->dev);
5121 }
5122
5123 i = j = NULL;
5124
5125rollback_mesh:
5126 to_i = i;
5127 to_j = j;
5128 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5129 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5130 if (i == to_i && j == to_j)
5131 break;
5132 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5133 }
5134 if (i == to_i)
5135 break;
5136 }
5137
5138 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5139
5140 return ret;
5141}
5142
5143/**
5144 * netdev_upper_dev_link - Add a link to the upper device
5145 * @dev: device
5146 * @upper_dev: new upper device
5147 *
5148 * Adds a link to device which is upper to this one. The caller must hold
5149 * the RTNL lock. On a failure a negative errno code is returned.
5150 * On success the reference counts are adjusted and the function
5151 * returns zero.
5152 */
5153int netdev_upper_dev_link(struct net_device *dev,
5154 struct net_device *upper_dev)
5155{
5156 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5157}
5158EXPORT_SYMBOL(netdev_upper_dev_link);
5159
5160/**
5161 * netdev_master_upper_dev_link - Add a master link to the upper device
5162 * @dev: device
5163 * @upper_dev: new upper device
5164 *
5165 * Adds a link to device which is upper to this one. In this case, only
5166 * one master upper device can be linked, although other non-master devices
5167 * might be linked as well. The caller must hold the RTNL lock.
5168 * On a failure a negative errno code is returned. On success the reference
5169 * counts are adjusted and the function returns zero.
5170 */
5171int netdev_master_upper_dev_link(struct net_device *dev,
5172 struct net_device *upper_dev)
5173{
5174 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5175}
5176EXPORT_SYMBOL(netdev_master_upper_dev_link);
5177
5178int netdev_master_upper_dev_link_private(struct net_device *dev,
5179 struct net_device *upper_dev,
5180 void *private)
5181{
5182 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5183}
5184EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5185
5186/**
5187 * netdev_upper_dev_unlink - Removes a link to upper device
5188 * @dev: device
5189 * @upper_dev: new upper device
5190 *
5191 * Removes a link to device which is upper to this one. The caller must hold
5192 * the RTNL lock.
5193 */
5194void netdev_upper_dev_unlink(struct net_device *dev,
5195 struct net_device *upper_dev)
5196{
5197 struct netdev_adjacent *i, *j;
5198 ASSERT_RTNL();
5199
5200 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5201
5202 /* Here is the tricky part. We must remove all dev's lower
5203 * devices from all upper_dev's upper devices and vice
5204 * versa, to maintain the graph relationship.
5205 */
5206 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5207 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5208 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5209
5210 /* remove also the devices itself from lower/upper device
5211 * list
5212 */
5213 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5214 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5215
5216 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5217 __netdev_adjacent_dev_unlink(dev, i->dev);
5218
5219 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5220}
5221EXPORT_SYMBOL(netdev_upper_dev_unlink);
5222
5223void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5224{
5225 struct netdev_adjacent *iter;
5226
5227 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5228 netdev_adjacent_sysfs_del(iter->dev, oldname,
5229 &iter->dev->adj_list.lower);
5230 netdev_adjacent_sysfs_add(iter->dev, dev,
5231 &iter->dev->adj_list.lower);
5232 }
5233
5234 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5235 netdev_adjacent_sysfs_del(iter->dev, oldname,
5236 &iter->dev->adj_list.upper);
5237 netdev_adjacent_sysfs_add(iter->dev, dev,
5238 &iter->dev->adj_list.upper);
5239 }
5240}
5241
5242void *netdev_lower_dev_get_private(struct net_device *dev,
5243 struct net_device *lower_dev)
5244{
5245 struct netdev_adjacent *lower;
5246
5247 if (!lower_dev)
5248 return NULL;
5249 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5250 if (!lower)
5251 return NULL;
5252
5253 return lower->private;
5254}
5255EXPORT_SYMBOL(netdev_lower_dev_get_private);
5256
5257
5258int dev_get_nest_level(struct net_device *dev,
5259 bool (*type_check)(struct net_device *dev))
5260{
5261 struct net_device *lower = NULL;
5262 struct list_head *iter;
5263 int max_nest = -1;
5264 int nest;
5265
5266 ASSERT_RTNL();
5267
5268 netdev_for_each_lower_dev(dev, lower, iter) {
5269 nest = dev_get_nest_level(lower, type_check);
5270 if (max_nest < nest)
5271 max_nest = nest;
5272 }
5273
5274 if (type_check(dev))
5275 max_nest++;
5276
5277 return max_nest;
5278}
5279EXPORT_SYMBOL(dev_get_nest_level);
5280
5281static void dev_change_rx_flags(struct net_device *dev, int flags)
5282{
5283 const struct net_device_ops *ops = dev->netdev_ops;
5284
5285 if (ops->ndo_change_rx_flags)
5286 ops->ndo_change_rx_flags(dev, flags);
5287}
5288
5289static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5290{
5291 unsigned int old_flags = dev->flags;
5292 kuid_t uid;
5293 kgid_t gid;
5294
5295 ASSERT_RTNL();
5296
5297 dev->flags |= IFF_PROMISC;
5298 dev->promiscuity += inc;
5299 if (dev->promiscuity == 0) {
5300 /*
5301 * Avoid overflow.
5302 * If inc causes overflow, untouch promisc and return error.
5303 */
5304 if (inc < 0)
5305 dev->flags &= ~IFF_PROMISC;
5306 else {
5307 dev->promiscuity -= inc;
5308 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5309 dev->name);
5310 return -EOVERFLOW;
5311 }
5312 }
5313 if (dev->flags != old_flags) {
5314 pr_info("device %s %s promiscuous mode\n",
5315 dev->name,
5316 dev->flags & IFF_PROMISC ? "entered" : "left");
5317 if (audit_enabled) {
5318 current_uid_gid(&uid, &gid);
5319 audit_log(current->audit_context, GFP_ATOMIC,
5320 AUDIT_ANOM_PROMISCUOUS,
5321 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5322 dev->name, (dev->flags & IFF_PROMISC),
5323 (old_flags & IFF_PROMISC),
5324 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5325 from_kuid(&init_user_ns, uid),
5326 from_kgid(&init_user_ns, gid),
5327 audit_get_sessionid(current));
5328 }
5329
5330 dev_change_rx_flags(dev, IFF_PROMISC);
5331 }
5332 if (notify)
5333 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5334 return 0;
5335}
5336
5337/**
5338 * dev_set_promiscuity - update promiscuity count on a device
5339 * @dev: device
5340 * @inc: modifier
5341 *
5342 * Add or remove promiscuity from a device. While the count in the device
5343 * remains above zero the interface remains promiscuous. Once it hits zero
5344 * the device reverts back to normal filtering operation. A negative inc
5345 * value is used to drop promiscuity on the device.
5346 * Return 0 if successful or a negative errno code on error.
5347 */
5348int dev_set_promiscuity(struct net_device *dev, int inc)
5349{
5350 unsigned int old_flags = dev->flags;
5351 int err;
5352
5353 err = __dev_set_promiscuity(dev, inc, true);
5354 if (err < 0)
5355 return err;
5356 if (dev->flags != old_flags)
5357 dev_set_rx_mode(dev);
5358 return err;
5359}
5360EXPORT_SYMBOL(dev_set_promiscuity);
5361
5362static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5363{
5364 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5365
5366 ASSERT_RTNL();
5367
5368 dev->flags |= IFF_ALLMULTI;
5369 dev->allmulti += inc;
5370 if (dev->allmulti == 0) {
5371 /*
5372 * Avoid overflow.
5373 * If inc causes overflow, untouch allmulti and return error.
5374 */
5375 if (inc < 0)
5376 dev->flags &= ~IFF_ALLMULTI;
5377 else {
5378 dev->allmulti -= inc;
5379 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5380 dev->name);
5381 return -EOVERFLOW;
5382 }
5383 }
5384 if (dev->flags ^ old_flags) {
5385 dev_change_rx_flags(dev, IFF_ALLMULTI);
5386 dev_set_rx_mode(dev);
5387 if (notify)
5388 __dev_notify_flags(dev, old_flags,
5389 dev->gflags ^ old_gflags);
5390 }
5391 return 0;
5392}
5393
5394/**
5395 * dev_set_allmulti - update allmulti count on a device
5396 * @dev: device
5397 * @inc: modifier
5398 *
5399 * Add or remove reception of all multicast frames to a device. While the
5400 * count in the device remains above zero the interface remains listening
5401 * to all interfaces. Once it hits zero the device reverts back to normal
5402 * filtering operation. A negative @inc value is used to drop the counter
5403 * when releasing a resource needing all multicasts.
5404 * Return 0 if successful or a negative errno code on error.
5405 */
5406
5407int dev_set_allmulti(struct net_device *dev, int inc)
5408{
5409 return __dev_set_allmulti(dev, inc, true);
5410}
5411EXPORT_SYMBOL(dev_set_allmulti);
5412
5413/*
5414 * Upload unicast and multicast address lists to device and
5415 * configure RX filtering. When the device doesn't support unicast
5416 * filtering it is put in promiscuous mode while unicast addresses
5417 * are present.
5418 */
5419void __dev_set_rx_mode(struct net_device *dev)
5420{
5421 const struct net_device_ops *ops = dev->netdev_ops;
5422
5423 /* dev_open will call this function so the list will stay sane. */
5424 if (!(dev->flags&IFF_UP))
5425 return;
5426
5427 if (!netif_device_present(dev))
5428 return;
5429
5430 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5431 /* Unicast addresses changes may only happen under the rtnl,
5432 * therefore calling __dev_set_promiscuity here is safe.
5433 */
5434 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5435 __dev_set_promiscuity(dev, 1, false);
5436 dev->uc_promisc = true;
5437 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5438 __dev_set_promiscuity(dev, -1, false);
5439 dev->uc_promisc = false;
5440 }
5441 }
5442
5443 if (ops->ndo_set_rx_mode)
5444 ops->ndo_set_rx_mode(dev);
5445}
5446
5447void dev_set_rx_mode(struct net_device *dev)
5448{
5449 netif_addr_lock_bh(dev);
5450 __dev_set_rx_mode(dev);
5451 netif_addr_unlock_bh(dev);
5452}
5453
5454/**
5455 * dev_get_flags - get flags reported to userspace
5456 * @dev: device
5457 *
5458 * Get the combination of flag bits exported through APIs to userspace.
5459 */
5460unsigned int dev_get_flags(const struct net_device *dev)
5461{
5462 unsigned int flags;
5463
5464 flags = (dev->flags & ~(IFF_PROMISC |
5465 IFF_ALLMULTI |
5466 IFF_RUNNING |
5467 IFF_LOWER_UP |
5468 IFF_DORMANT)) |
5469 (dev->gflags & (IFF_PROMISC |
5470 IFF_ALLMULTI));
5471
5472 if (netif_running(dev)) {
5473 if (netif_oper_up(dev))
5474 flags |= IFF_RUNNING;
5475 if (netif_carrier_ok(dev))
5476 flags |= IFF_LOWER_UP;
5477 if (netif_dormant(dev))
5478 flags |= IFF_DORMANT;
5479 }
5480
5481 return flags;
5482}
5483EXPORT_SYMBOL(dev_get_flags);
5484
5485int __dev_change_flags(struct net_device *dev, unsigned int flags)
5486{
5487 unsigned int old_flags = dev->flags;
5488 int ret;
5489
5490 ASSERT_RTNL();
5491
5492 /*
5493 * Set the flags on our device.
5494 */
5495
5496 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5497 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5498 IFF_AUTOMEDIA)) |
5499 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5500 IFF_ALLMULTI));
5501
5502 /*
5503 * Load in the correct multicast list now the flags have changed.
5504 */
5505
5506 if ((old_flags ^ flags) & IFF_MULTICAST)
5507 dev_change_rx_flags(dev, IFF_MULTICAST);
5508
5509 dev_set_rx_mode(dev);
5510
5511 /*
5512 * Have we downed the interface. We handle IFF_UP ourselves
5513 * according to user attempts to set it, rather than blindly
5514 * setting it.
5515 */
5516
5517 ret = 0;
5518 if ((old_flags ^ flags) & IFF_UP)
5519 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5520
5521 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5522 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5523 unsigned int old_flags = dev->flags;
5524
5525 dev->gflags ^= IFF_PROMISC;
5526
5527 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5528 if (dev->flags != old_flags)
5529 dev_set_rx_mode(dev);
5530 }
5531
5532 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5533 is important. Some (broken) drivers set IFF_PROMISC, when
5534 IFF_ALLMULTI is requested not asking us and not reporting.
5535 */
5536 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5537 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5538
5539 dev->gflags ^= IFF_ALLMULTI;
5540 __dev_set_allmulti(dev, inc, false);
5541 }
5542
5543 return ret;
5544}
5545
5546void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5547 unsigned int gchanges)
5548{
5549 unsigned int changes = dev->flags ^ old_flags;
5550
5551 if (gchanges)
5552 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5553
5554 if (changes & IFF_UP) {
5555 if (dev->flags & IFF_UP)
5556 call_netdevice_notifiers(NETDEV_UP, dev);
5557 else
5558 call_netdevice_notifiers(NETDEV_DOWN, dev);
5559 }
5560
5561 if (dev->flags & IFF_UP &&
5562 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5563 struct netdev_notifier_change_info change_info;
5564
5565 change_info.flags_changed = changes;
5566 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5567 &change_info.info);
5568 }
5569}
5570
5571/**
5572 * dev_change_flags - change device settings
5573 * @dev: device
5574 * @flags: device state flags
5575 *
5576 * Change settings on device based state flags. The flags are
5577 * in the userspace exported format.
5578 */
5579int dev_change_flags(struct net_device *dev, unsigned int flags)
5580{
5581 int ret;
5582 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5583
5584 ret = __dev_change_flags(dev, flags);
5585 if (ret < 0)
5586 return ret;
5587
5588 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5589 __dev_notify_flags(dev, old_flags, changes);
5590 return ret;
5591}
5592EXPORT_SYMBOL(dev_change_flags);
5593
5594static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5595{
5596 const struct net_device_ops *ops = dev->netdev_ops;
5597
5598 if (ops->ndo_change_mtu)
5599 return ops->ndo_change_mtu(dev, new_mtu);
5600
5601 dev->mtu = new_mtu;
5602 return 0;
5603}
5604
5605/**
5606 * dev_set_mtu - Change maximum transfer unit
5607 * @dev: device
5608 * @new_mtu: new transfer unit
5609 *
5610 * Change the maximum transfer size of the network device.
5611 */
5612int dev_set_mtu(struct net_device *dev, int new_mtu)
5613{
5614 int err, orig_mtu;
5615
5616 if (new_mtu == dev->mtu)
5617 return 0;
5618
5619 /* MTU must be positive. */
5620 if (new_mtu < 0)
5621 return -EINVAL;
5622
5623 if (!netif_device_present(dev))
5624 return -ENODEV;
5625
5626 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5627 err = notifier_to_errno(err);
5628 if (err)
5629 return err;
5630
5631 orig_mtu = dev->mtu;
5632 err = __dev_set_mtu(dev, new_mtu);
5633
5634 if (!err) {
5635 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5636 err = notifier_to_errno(err);
5637 if (err) {
5638 /* setting mtu back and notifying everyone again,
5639 * so that they have a chance to revert changes.
5640 */
5641 __dev_set_mtu(dev, orig_mtu);
5642 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5643 }
5644 }
5645 return err;
5646}
5647EXPORT_SYMBOL(dev_set_mtu);
5648
5649/**
5650 * dev_set_group - Change group this device belongs to
5651 * @dev: device
5652 * @new_group: group this device should belong to
5653 */
5654void dev_set_group(struct net_device *dev, int new_group)
5655{
5656 dev->group = new_group;
5657}
5658EXPORT_SYMBOL(dev_set_group);
5659
5660/**
5661 * dev_set_mac_address - Change Media Access Control Address
5662 * @dev: device
5663 * @sa: new address
5664 *
5665 * Change the hardware (MAC) address of the device
5666 */
5667int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5668{
5669 const struct net_device_ops *ops = dev->netdev_ops;
5670 int err;
5671
5672 if (!ops->ndo_set_mac_address)
5673 return -EOPNOTSUPP;
5674 if (sa->sa_family != dev->type)
5675 return -EINVAL;
5676 if (!netif_device_present(dev))
5677 return -ENODEV;
5678 err = ops->ndo_set_mac_address(dev, sa);
5679 if (err)
5680 return err;
5681 dev->addr_assign_type = NET_ADDR_SET;
5682 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5683 add_device_randomness(dev->dev_addr, dev->addr_len);
5684 return 0;
5685}
5686EXPORT_SYMBOL(dev_set_mac_address);
5687
5688/**
5689 * dev_change_carrier - Change device carrier
5690 * @dev: device
5691 * @new_carrier: new value
5692 *
5693 * Change device carrier
5694 */
5695int dev_change_carrier(struct net_device *dev, bool new_carrier)
5696{
5697 const struct net_device_ops *ops = dev->netdev_ops;
5698
5699 if (!ops->ndo_change_carrier)
5700 return -EOPNOTSUPP;
5701 if (!netif_device_present(dev))
5702 return -ENODEV;
5703 return ops->ndo_change_carrier(dev, new_carrier);
5704}
5705EXPORT_SYMBOL(dev_change_carrier);
5706
5707/**
5708 * dev_get_phys_port_id - Get device physical port ID
5709 * @dev: device
5710 * @ppid: port ID
5711 *
5712 * Get device physical port ID
5713 */
5714int dev_get_phys_port_id(struct net_device *dev,
5715 struct netdev_phys_port_id *ppid)
5716{
5717 const struct net_device_ops *ops = dev->netdev_ops;
5718
5719 if (!ops->ndo_get_phys_port_id)
5720 return -EOPNOTSUPP;
5721 return ops->ndo_get_phys_port_id(dev, ppid);
5722}
5723EXPORT_SYMBOL(dev_get_phys_port_id);
5724
5725/**
5726 * dev_new_index - allocate an ifindex
5727 * @net: the applicable net namespace
5728 *
5729 * Returns a suitable unique value for a new device interface
5730 * number. The caller must hold the rtnl semaphore or the
5731 * dev_base_lock to be sure it remains unique.
5732 */
5733static int dev_new_index(struct net *net)
5734{
5735 int ifindex = net->ifindex;
5736 for (;;) {
5737 if (++ifindex <= 0)
5738 ifindex = 1;
5739 if (!__dev_get_by_index(net, ifindex))
5740 return net->ifindex = ifindex;
5741 }
5742}
5743
5744/* Delayed registration/unregisteration */
5745static LIST_HEAD(net_todo_list);
5746DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5747
5748static void net_set_todo(struct net_device *dev)
5749{
5750 list_add_tail(&dev->todo_list, &net_todo_list);
5751 dev_net(dev)->dev_unreg_count++;
5752}
5753
5754static void rollback_registered_many(struct list_head *head)
5755{
5756 struct net_device *dev, *tmp;
5757 LIST_HEAD(close_head);
5758
5759 BUG_ON(dev_boot_phase);
5760 ASSERT_RTNL();
5761
5762 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5763 /* Some devices call without registering
5764 * for initialization unwind. Remove those
5765 * devices and proceed with the remaining.
5766 */
5767 if (dev->reg_state == NETREG_UNINITIALIZED) {
5768 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5769 dev->name, dev);
5770
5771 WARN_ON(1);
5772 list_del(&dev->unreg_list);
5773 continue;
5774 }
5775 dev->dismantle = true;
5776 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5777 }
5778
5779 /* If device is running, close it first. */
5780 list_for_each_entry(dev, head, unreg_list)
5781 list_add_tail(&dev->close_list, &close_head);
5782 dev_close_many(&close_head);
5783
5784 list_for_each_entry(dev, head, unreg_list) {
5785 /* And unlink it from device chain. */
5786 unlist_netdevice(dev);
5787
5788 dev->reg_state = NETREG_UNREGISTERING;
5789 }
5790
5791 synchronize_net();
5792
5793 list_for_each_entry(dev, head, unreg_list) {
5794 /* Shutdown queueing discipline. */
5795 dev_shutdown(dev);
5796
5797
5798 /* Notify protocols, that we are about to destroy
5799 this device. They should clean all the things.
5800 */
5801 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5802
5803 /*
5804 * Flush the unicast and multicast chains
5805 */
5806 dev_uc_flush(dev);
5807 dev_mc_flush(dev);
5808
5809 if (dev->netdev_ops->ndo_uninit)
5810 dev->netdev_ops->ndo_uninit(dev);
5811
5812 if (!dev->rtnl_link_ops ||
5813 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5814 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5815
5816 /* Notifier chain MUST detach us all upper devices. */
5817 WARN_ON(netdev_has_any_upper_dev(dev));
5818
5819 /* Remove entries from kobject tree */
5820 netdev_unregister_kobject(dev);
5821#ifdef CONFIG_XPS
5822 /* Remove XPS queueing entries */
5823 netif_reset_xps_queues_gt(dev, 0);
5824#endif
5825 }
5826
5827 synchronize_net();
5828
5829 list_for_each_entry(dev, head, unreg_list)
5830 dev_put(dev);
5831}
5832
5833static void rollback_registered(struct net_device *dev)
5834{
5835 LIST_HEAD(single);
5836
5837 list_add(&dev->unreg_list, &single);
5838 rollback_registered_many(&single);
5839 list_del(&single);
5840}
5841
5842static netdev_features_t netdev_fix_features(struct net_device *dev,
5843 netdev_features_t features)
5844{
5845 /* Fix illegal checksum combinations */
5846 if ((features & NETIF_F_HW_CSUM) &&
5847 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5848 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5849 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5850 }
5851
5852 /* TSO requires that SG is present as well. */
5853 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5854 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5855 features &= ~NETIF_F_ALL_TSO;
5856 }
5857
5858 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5859 !(features & NETIF_F_IP_CSUM)) {
5860 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5861 features &= ~NETIF_F_TSO;
5862 features &= ~NETIF_F_TSO_ECN;
5863 }
5864
5865 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5866 !(features & NETIF_F_IPV6_CSUM)) {
5867 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5868 features &= ~NETIF_F_TSO6;
5869 }
5870
5871 /* TSO ECN requires that TSO is present as well. */
5872 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5873 features &= ~NETIF_F_TSO_ECN;
5874
5875 /* Software GSO depends on SG. */
5876 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5877 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5878 features &= ~NETIF_F_GSO;
5879 }
5880
5881 /* UFO needs SG and checksumming */
5882 if (features & NETIF_F_UFO) {
5883 /* maybe split UFO into V4 and V6? */
5884 if (!((features & NETIF_F_GEN_CSUM) ||
5885 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5886 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5887 netdev_dbg(dev,
5888 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5889 features &= ~NETIF_F_UFO;
5890 }
5891
5892 if (!(features & NETIF_F_SG)) {
5893 netdev_dbg(dev,
5894 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5895 features &= ~NETIF_F_UFO;
5896 }
5897 }
5898
5899#ifdef CONFIG_NET_RX_BUSY_POLL
5900 if (dev->netdev_ops->ndo_busy_poll)
5901 features |= NETIF_F_BUSY_POLL;
5902 else
5903#endif
5904 features &= ~NETIF_F_BUSY_POLL;
5905
5906 return features;
5907}
5908
5909int __netdev_update_features(struct net_device *dev)
5910{
5911 netdev_features_t features;
5912 int err = 0;
5913
5914 ASSERT_RTNL();
5915
5916 features = netdev_get_wanted_features(dev);
5917
5918 if (dev->netdev_ops->ndo_fix_features)
5919 features = dev->netdev_ops->ndo_fix_features(dev, features);
5920
5921 /* driver might be less strict about feature dependencies */
5922 features = netdev_fix_features(dev, features);
5923
5924 if (dev->features == features)
5925 return 0;
5926
5927 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5928 &dev->features, &features);
5929
5930 if (dev->netdev_ops->ndo_set_features)
5931 err = dev->netdev_ops->ndo_set_features(dev, features);
5932
5933 if (unlikely(err < 0)) {
5934 netdev_err(dev,
5935 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5936 err, &features, &dev->features);
5937 return -1;
5938 }
5939
5940 if (!err)
5941 dev->features = features;
5942
5943 return 1;
5944}
5945
5946/**
5947 * netdev_update_features - recalculate device features
5948 * @dev: the device to check
5949 *
5950 * Recalculate dev->features set and send notifications if it
5951 * has changed. Should be called after driver or hardware dependent
5952 * conditions might have changed that influence the features.
5953 */
5954void netdev_update_features(struct net_device *dev)
5955{
5956 if (__netdev_update_features(dev))
5957 netdev_features_change(dev);
5958}
5959EXPORT_SYMBOL(netdev_update_features);
5960
5961/**
5962 * netdev_change_features - recalculate device features
5963 * @dev: the device to check
5964 *
5965 * Recalculate dev->features set and send notifications even
5966 * if they have not changed. Should be called instead of
5967 * netdev_update_features() if also dev->vlan_features might
5968 * have changed to allow the changes to be propagated to stacked
5969 * VLAN devices.
5970 */
5971void netdev_change_features(struct net_device *dev)
5972{
5973 __netdev_update_features(dev);
5974 netdev_features_change(dev);
5975}
5976EXPORT_SYMBOL(netdev_change_features);
5977
5978/**
5979 * netif_stacked_transfer_operstate - transfer operstate
5980 * @rootdev: the root or lower level device to transfer state from
5981 * @dev: the device to transfer operstate to
5982 *
5983 * Transfer operational state from root to device. This is normally
5984 * called when a stacking relationship exists between the root
5985 * device and the device(a leaf device).
5986 */
5987void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5988 struct net_device *dev)
5989{
5990 if (rootdev->operstate == IF_OPER_DORMANT)
5991 netif_dormant_on(dev);
5992 else
5993 netif_dormant_off(dev);
5994
5995 if (netif_carrier_ok(rootdev)) {
5996 if (!netif_carrier_ok(dev))
5997 netif_carrier_on(dev);
5998 } else {
5999 if (netif_carrier_ok(dev))
6000 netif_carrier_off(dev);
6001 }
6002}
6003EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6004
6005#ifdef CONFIG_SYSFS
6006static int netif_alloc_rx_queues(struct net_device *dev)
6007{
6008 unsigned int i, count = dev->num_rx_queues;
6009 struct netdev_rx_queue *rx;
6010
6011 BUG_ON(count < 1);
6012
6013 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
6014 if (!rx)
6015 return -ENOMEM;
6016
6017 dev->_rx = rx;
6018
6019 for (i = 0; i < count; i++)
6020 rx[i].dev = dev;
6021 return 0;
6022}
6023#endif
6024
6025static void netdev_init_one_queue(struct net_device *dev,
6026 struct netdev_queue *queue, void *_unused)
6027{
6028 /* Initialize queue lock */
6029 spin_lock_init(&queue->_xmit_lock);
6030 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6031 queue->xmit_lock_owner = -1;
6032 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6033 queue->dev = dev;
6034#ifdef CONFIG_BQL
6035 dql_init(&queue->dql, HZ);
6036#endif
6037}
6038
6039static void netif_free_tx_queues(struct net_device *dev)
6040{
6041 kvfree(dev->_tx);
6042}
6043
6044static int netif_alloc_netdev_queues(struct net_device *dev)
6045{
6046 unsigned int count = dev->num_tx_queues;
6047 struct netdev_queue *tx;
6048 size_t sz = count * sizeof(*tx);
6049
6050 BUG_ON(count < 1 || count > 0xffff);
6051
6052 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6053 if (!tx) {
6054 tx = vzalloc(sz);
6055 if (!tx)
6056 return -ENOMEM;
6057 }
6058 dev->_tx = tx;
6059
6060 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6061 spin_lock_init(&dev->tx_global_lock);
6062
6063 return 0;
6064}
6065
6066/**
6067 * register_netdevice - register a network device
6068 * @dev: device to register
6069 *
6070 * Take a completed network device structure and add it to the kernel
6071 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6072 * chain. 0 is returned on success. A negative errno code is returned
6073 * on a failure to set up the device, or if the name is a duplicate.
6074 *
6075 * Callers must hold the rtnl semaphore. You may want
6076 * register_netdev() instead of this.
6077 *
6078 * BUGS:
6079 * The locking appears insufficient to guarantee two parallel registers
6080 * will not get the same name.
6081 */
6082
6083int register_netdevice(struct net_device *dev)
6084{
6085 int ret;
6086 struct net *net = dev_net(dev);
6087
6088 BUG_ON(dev_boot_phase);
6089 ASSERT_RTNL();
6090
6091 might_sleep();
6092
6093 /* When net_device's are persistent, this will be fatal. */
6094 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6095 BUG_ON(!net);
6096
6097 spin_lock_init(&dev->addr_list_lock);
6098 netdev_set_addr_lockdep_class(dev);
6099
6100 dev->iflink = -1;
6101
6102 ret = dev_get_valid_name(net, dev, dev->name);
6103 if (ret < 0)
6104 goto out;
6105
6106 /* Init, if this function is available */
6107 if (dev->netdev_ops->ndo_init) {
6108 ret = dev->netdev_ops->ndo_init(dev);
6109 if (ret) {
6110 if (ret > 0)
6111 ret = -EIO;
6112 goto out;
6113 }
6114 }
6115
6116 if (((dev->hw_features | dev->features) &
6117 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6118 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6119 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6120 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6121 ret = -EINVAL;
6122 goto err_uninit;
6123 }
6124
6125 ret = -EBUSY;
6126 if (!dev->ifindex)
6127 dev->ifindex = dev_new_index(net);
6128 else if (__dev_get_by_index(net, dev->ifindex))
6129 goto err_uninit;
6130
6131 if (dev->iflink == -1)
6132 dev->iflink = dev->ifindex;
6133
6134 /* Transfer changeable features to wanted_features and enable
6135 * software offloads (GSO and GRO).
6136 */
6137 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6138 dev->features |= NETIF_F_SOFT_FEATURES;
6139 dev->wanted_features = dev->features & dev->hw_features;
6140
6141 if (!(dev->flags & IFF_LOOPBACK)) {
6142 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6143 }
6144
6145 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6146 */
6147 dev->vlan_features |= NETIF_F_HIGHDMA;
6148
6149 /* Make NETIF_F_SG inheritable to tunnel devices.
6150 */
6151 dev->hw_enc_features |= NETIF_F_SG;
6152
6153 /* Make NETIF_F_SG inheritable to MPLS.
6154 */
6155 dev->mpls_features |= NETIF_F_SG;
6156
6157 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6158 ret = notifier_to_errno(ret);
6159 if (ret)
6160 goto err_uninit;
6161
6162 ret = netdev_register_kobject(dev);
6163 if (ret)
6164 goto err_uninit;
6165 dev->reg_state = NETREG_REGISTERED;
6166
6167 __netdev_update_features(dev);
6168
6169 /*
6170 * Default initial state at registry is that the
6171 * device is present.
6172 */
6173
6174 set_bit(__LINK_STATE_PRESENT, &dev->state);
6175
6176 linkwatch_init_dev(dev);
6177
6178 dev_init_scheduler(dev);
6179 dev_hold(dev);
6180 list_netdevice(dev);
6181 add_device_randomness(dev->dev_addr, dev->addr_len);
6182
6183 /* If the device has permanent device address, driver should
6184 * set dev_addr and also addr_assign_type should be set to
6185 * NET_ADDR_PERM (default value).
6186 */
6187 if (dev->addr_assign_type == NET_ADDR_PERM)
6188 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6189
6190 /* Notify protocols, that a new device appeared. */
6191 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6192 ret = notifier_to_errno(ret);
6193 if (ret) {
6194 rollback_registered(dev);
6195 dev->reg_state = NETREG_UNREGISTERED;
6196 }
6197 /*
6198 * Prevent userspace races by waiting until the network
6199 * device is fully setup before sending notifications.
6200 */
6201 if (!dev->rtnl_link_ops ||
6202 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6203 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6204
6205out:
6206 return ret;
6207
6208err_uninit:
6209 if (dev->netdev_ops->ndo_uninit)
6210 dev->netdev_ops->ndo_uninit(dev);
6211 goto out;
6212}
6213EXPORT_SYMBOL(register_netdevice);
6214
6215/**
6216 * init_dummy_netdev - init a dummy network device for NAPI
6217 * @dev: device to init
6218 *
6219 * This takes a network device structure and initialize the minimum
6220 * amount of fields so it can be used to schedule NAPI polls without
6221 * registering a full blown interface. This is to be used by drivers
6222 * that need to tie several hardware interfaces to a single NAPI
6223 * poll scheduler due to HW limitations.
6224 */
6225int init_dummy_netdev(struct net_device *dev)
6226{
6227 /* Clear everything. Note we don't initialize spinlocks
6228 * are they aren't supposed to be taken by any of the
6229 * NAPI code and this dummy netdev is supposed to be
6230 * only ever used for NAPI polls
6231 */
6232 memset(dev, 0, sizeof(struct net_device));
6233
6234 /* make sure we BUG if trying to hit standard
6235 * register/unregister code path
6236 */
6237 dev->reg_state = NETREG_DUMMY;
6238
6239 /* NAPI wants this */
6240 INIT_LIST_HEAD(&dev->napi_list);
6241
6242 /* a dummy interface is started by default */
6243 set_bit(__LINK_STATE_PRESENT, &dev->state);
6244 set_bit(__LINK_STATE_START, &dev->state);
6245
6246 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6247 * because users of this 'device' dont need to change
6248 * its refcount.
6249 */
6250
6251 return 0;
6252}
6253EXPORT_SYMBOL_GPL(init_dummy_netdev);
6254
6255
6256/**
6257 * register_netdev - register a network device
6258 * @dev: device to register
6259 *
6260 * Take a completed network device structure and add it to the kernel
6261 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6262 * chain. 0 is returned on success. A negative errno code is returned
6263 * on a failure to set up the device, or if the name is a duplicate.
6264 *
6265 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6266 * and expands the device name if you passed a format string to
6267 * alloc_netdev.
6268 */
6269int register_netdev(struct net_device *dev)
6270{
6271 int err;
6272
6273 rtnl_lock();
6274 err = register_netdevice(dev);
6275 rtnl_unlock();
6276 return err;
6277}
6278EXPORT_SYMBOL(register_netdev);
6279
6280int netdev_refcnt_read(const struct net_device *dev)
6281{
6282 int i, refcnt = 0;
6283
6284 for_each_possible_cpu(i)
6285 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6286 return refcnt;
6287}
6288EXPORT_SYMBOL(netdev_refcnt_read);
6289
6290/**
6291 * netdev_wait_allrefs - wait until all references are gone.
6292 * @dev: target net_device
6293 *
6294 * This is called when unregistering network devices.
6295 *
6296 * Any protocol or device that holds a reference should register
6297 * for netdevice notification, and cleanup and put back the
6298 * reference if they receive an UNREGISTER event.
6299 * We can get stuck here if buggy protocols don't correctly
6300 * call dev_put.
6301 */
6302static void netdev_wait_allrefs(struct net_device *dev)
6303{
6304 unsigned long rebroadcast_time, warning_time;
6305 int refcnt;
6306
6307 linkwatch_forget_dev(dev);
6308
6309 rebroadcast_time = warning_time = jiffies;
6310 refcnt = netdev_refcnt_read(dev);
6311
6312 while (refcnt != 0) {
6313 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6314 rtnl_lock();
6315
6316 /* Rebroadcast unregister notification */
6317 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6318
6319 __rtnl_unlock();
6320 rcu_barrier();
6321 rtnl_lock();
6322
6323 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6324 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6325 &dev->state)) {
6326 /* We must not have linkwatch events
6327 * pending on unregister. If this
6328 * happens, we simply run the queue
6329 * unscheduled, resulting in a noop
6330 * for this device.
6331 */
6332 linkwatch_run_queue();
6333 }
6334
6335 __rtnl_unlock();
6336
6337 rebroadcast_time = jiffies;
6338 }
6339
6340 msleep(250);
6341
6342 refcnt = netdev_refcnt_read(dev);
6343
6344 if (time_after(jiffies, warning_time + 10 * HZ)) {
6345 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6346 dev->name, refcnt);
6347 warning_time = jiffies;
6348 }
6349 }
6350}
6351
6352/* The sequence is:
6353 *
6354 * rtnl_lock();
6355 * ...
6356 * register_netdevice(x1);
6357 * register_netdevice(x2);
6358 * ...
6359 * unregister_netdevice(y1);
6360 * unregister_netdevice(y2);
6361 * ...
6362 * rtnl_unlock();
6363 * free_netdev(y1);
6364 * free_netdev(y2);
6365 *
6366 * We are invoked by rtnl_unlock().
6367 * This allows us to deal with problems:
6368 * 1) We can delete sysfs objects which invoke hotplug
6369 * without deadlocking with linkwatch via keventd.
6370 * 2) Since we run with the RTNL semaphore not held, we can sleep
6371 * safely in order to wait for the netdev refcnt to drop to zero.
6372 *
6373 * We must not return until all unregister events added during
6374 * the interval the lock was held have been completed.
6375 */
6376void netdev_run_todo(void)
6377{
6378 struct list_head list;
6379
6380 /* Snapshot list, allow later requests */
6381 list_replace_init(&net_todo_list, &list);
6382
6383 __rtnl_unlock();
6384
6385
6386 /* Wait for rcu callbacks to finish before next phase */
6387 if (!list_empty(&list))
6388 rcu_barrier();
6389
6390 while (!list_empty(&list)) {
6391 struct net_device *dev
6392 = list_first_entry(&list, struct net_device, todo_list);
6393 list_del(&dev->todo_list);
6394
6395 rtnl_lock();
6396 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6397 __rtnl_unlock();
6398
6399 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6400 pr_err("network todo '%s' but state %d\n",
6401 dev->name, dev->reg_state);
6402 dump_stack();
6403 continue;
6404 }
6405
6406 dev->reg_state = NETREG_UNREGISTERED;
6407
6408 on_each_cpu(flush_backlog, dev, 1);
6409
6410 netdev_wait_allrefs(dev);
6411
6412 /* paranoia */
6413 BUG_ON(netdev_refcnt_read(dev));
6414 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6415 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6416 WARN_ON(dev->dn_ptr);
6417
6418 if (dev->destructor)
6419 dev->destructor(dev);
6420
6421 /* Report a network device has been unregistered */
6422 rtnl_lock();
6423 dev_net(dev)->dev_unreg_count--;
6424 __rtnl_unlock();
6425 wake_up(&netdev_unregistering_wq);
6426
6427 /* Free network device */
6428 kobject_put(&dev->dev.kobj);
6429 }
6430}
6431
6432/* Convert net_device_stats to rtnl_link_stats64. They have the same
6433 * fields in the same order, with only the type differing.
6434 */
6435void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6436 const struct net_device_stats *netdev_stats)
6437{
6438#if BITS_PER_LONG == 64
6439 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6440 memcpy(stats64, netdev_stats, sizeof(*stats64));
6441#else
6442 size_t i, n = sizeof(*stats64) / sizeof(u64);
6443 const unsigned long *src = (const unsigned long *)netdev_stats;
6444 u64 *dst = (u64 *)stats64;
6445
6446 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6447 sizeof(*stats64) / sizeof(u64));
6448 for (i = 0; i < n; i++)
6449 dst[i] = src[i];
6450#endif
6451}
6452EXPORT_SYMBOL(netdev_stats_to_stats64);
6453
6454/**
6455 * dev_get_stats - get network device statistics
6456 * @dev: device to get statistics from
6457 * @storage: place to store stats
6458 *
6459 * Get network statistics from device. Return @storage.
6460 * The device driver may provide its own method by setting
6461 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6462 * otherwise the internal statistics structure is used.
6463 */
6464struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6465 struct rtnl_link_stats64 *storage)
6466{
6467 const struct net_device_ops *ops = dev->netdev_ops;
6468
6469 if (ops->ndo_get_stats64) {
6470 memset(storage, 0, sizeof(*storage));
6471 ops->ndo_get_stats64(dev, storage);
6472 } else if (ops->ndo_get_stats) {
6473 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6474 } else {
6475 netdev_stats_to_stats64(storage, &dev->stats);
6476 }
6477 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6478 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6479 return storage;
6480}
6481EXPORT_SYMBOL(dev_get_stats);
6482
6483struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6484{
6485 struct netdev_queue *queue = dev_ingress_queue(dev);
6486
6487#ifdef CONFIG_NET_CLS_ACT
6488 if (queue)
6489 return queue;
6490 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6491 if (!queue)
6492 return NULL;
6493 netdev_init_one_queue(dev, queue, NULL);
6494 queue->qdisc = &noop_qdisc;
6495 queue->qdisc_sleeping = &noop_qdisc;
6496 rcu_assign_pointer(dev->ingress_queue, queue);
6497#endif
6498 return queue;
6499}
6500
6501static const struct ethtool_ops default_ethtool_ops;
6502
6503void netdev_set_default_ethtool_ops(struct net_device *dev,
6504 const struct ethtool_ops *ops)
6505{
6506 if (dev->ethtool_ops == &default_ethtool_ops)
6507 dev->ethtool_ops = ops;
6508}
6509EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6510
6511void netdev_freemem(struct net_device *dev)
6512{
6513 char *addr = (char *)dev - dev->padded;
6514
6515 kvfree(addr);
6516}
6517
6518/**
6519 * alloc_netdev_mqs - allocate network device
6520 * @sizeof_priv: size of private data to allocate space for
6521 * @name: device name format string
6522 * @name_assign_type: origin of device name
6523 * @setup: callback to initialize device
6524 * @txqs: the number of TX subqueues to allocate
6525 * @rxqs: the number of RX subqueues to allocate
6526 *
6527 * Allocates a struct net_device with private data area for driver use
6528 * and performs basic initialization. Also allocates subqueue structs
6529 * for each queue on the device.
6530 */
6531struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6532 unsigned char name_assign_type,
6533 void (*setup)(struct net_device *),
6534 unsigned int txqs, unsigned int rxqs)
6535{
6536 struct net_device *dev;
6537 size_t alloc_size;
6538 struct net_device *p;
6539
6540 BUG_ON(strlen(name) >= sizeof(dev->name));
6541
6542 if (txqs < 1) {
6543 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6544 return NULL;
6545 }
6546
6547#ifdef CONFIG_SYSFS
6548 if (rxqs < 1) {
6549 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6550 return NULL;
6551 }
6552#endif
6553
6554 alloc_size = sizeof(struct net_device);
6555 if (sizeof_priv) {
6556 /* ensure 32-byte alignment of private area */
6557 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6558 alloc_size += sizeof_priv;
6559 }
6560 /* ensure 32-byte alignment of whole construct */
6561 alloc_size += NETDEV_ALIGN - 1;
6562
6563 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6564 if (!p)
6565 p = vzalloc(alloc_size);
6566 if (!p)
6567 return NULL;
6568
6569 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6570 dev->padded = (char *)dev - (char *)p;
6571
6572 dev->pcpu_refcnt = alloc_percpu(int);
6573 if (!dev->pcpu_refcnt)
6574 goto free_dev;
6575
6576 if (dev_addr_init(dev))
6577 goto free_pcpu;
6578
6579 dev_mc_init(dev);
6580 dev_uc_init(dev);
6581
6582 dev_net_set(dev, &init_net);
6583
6584 dev->gso_max_size = GSO_MAX_SIZE;
6585 dev->gso_max_segs = GSO_MAX_SEGS;
6586
6587 INIT_LIST_HEAD(&dev->napi_list);
6588 INIT_LIST_HEAD(&dev->unreg_list);
6589 INIT_LIST_HEAD(&dev->close_list);
6590 INIT_LIST_HEAD(&dev->link_watch_list);
6591 INIT_LIST_HEAD(&dev->adj_list.upper);
6592 INIT_LIST_HEAD(&dev->adj_list.lower);
6593 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6594 INIT_LIST_HEAD(&dev->all_adj_list.lower);
6595 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6596 setup(dev);
6597
6598 dev->num_tx_queues = txqs;
6599 dev->real_num_tx_queues = txqs;
6600 if (netif_alloc_netdev_queues(dev))
6601 goto free_all;
6602
6603#ifdef CONFIG_SYSFS
6604 dev->num_rx_queues = rxqs;
6605 dev->real_num_rx_queues = rxqs;
6606 if (netif_alloc_rx_queues(dev))
6607 goto free_all;
6608#endif
6609
6610 strcpy(dev->name, name);
6611 dev->name_assign_type = name_assign_type;
6612 dev->group = INIT_NETDEV_GROUP;
6613 if (!dev->ethtool_ops)
6614 dev->ethtool_ops = &default_ethtool_ops;
6615 return dev;
6616
6617free_all:
6618 free_netdev(dev);
6619 return NULL;
6620
6621free_pcpu:
6622 free_percpu(dev->pcpu_refcnt);
6623free_dev:
6624 netdev_freemem(dev);
6625 return NULL;
6626}
6627EXPORT_SYMBOL(alloc_netdev_mqs);
6628
6629/**
6630 * free_netdev - free network device
6631 * @dev: device
6632 *
6633 * This function does the last stage of destroying an allocated device
6634 * interface. The reference to the device object is released.
6635 * If this is the last reference then it will be freed.
6636 */
6637void free_netdev(struct net_device *dev)
6638{
6639 struct napi_struct *p, *n;
6640
6641 release_net(dev_net(dev));
6642
6643 netif_free_tx_queues(dev);
6644#ifdef CONFIG_SYSFS
6645 kfree(dev->_rx);
6646#endif
6647
6648 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6649
6650 /* Flush device addresses */
6651 dev_addr_flush(dev);
6652
6653 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6654 netif_napi_del(p);
6655
6656 free_percpu(dev->pcpu_refcnt);
6657 dev->pcpu_refcnt = NULL;
6658
6659 /* Compatibility with error handling in drivers */
6660 if (dev->reg_state == NETREG_UNINITIALIZED) {
6661 netdev_freemem(dev);
6662 return;
6663 }
6664
6665 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6666 dev->reg_state = NETREG_RELEASED;
6667
6668 /* will free via device release */
6669 put_device(&dev->dev);
6670}
6671EXPORT_SYMBOL(free_netdev);
6672
6673/**
6674 * synchronize_net - Synchronize with packet receive processing
6675 *
6676 * Wait for packets currently being received to be done.
6677 * Does not block later packets from starting.
6678 */
6679void synchronize_net(void)
6680{
6681 might_sleep();
6682 if (rtnl_is_locked())
6683 synchronize_rcu_expedited();
6684 else
6685 synchronize_rcu();
6686}
6687EXPORT_SYMBOL(synchronize_net);
6688
6689/**
6690 * unregister_netdevice_queue - remove device from the kernel
6691 * @dev: device
6692 * @head: list
6693 *
6694 * This function shuts down a device interface and removes it
6695 * from the kernel tables.
6696 * If head not NULL, device is queued to be unregistered later.
6697 *
6698 * Callers must hold the rtnl semaphore. You may want
6699 * unregister_netdev() instead of this.
6700 */
6701
6702void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6703{
6704 ASSERT_RTNL();
6705
6706 if (head) {
6707 list_move_tail(&dev->unreg_list, head);
6708 } else {
6709 rollback_registered(dev);
6710 /* Finish processing unregister after unlock */
6711 net_set_todo(dev);
6712 }
6713}
6714EXPORT_SYMBOL(unregister_netdevice_queue);
6715
6716/**
6717 * unregister_netdevice_many - unregister many devices
6718 * @head: list of devices
6719 *
6720 * Note: As most callers use a stack allocated list_head,
6721 * we force a list_del() to make sure stack wont be corrupted later.
6722 */
6723void unregister_netdevice_many(struct list_head *head)
6724{
6725 struct net_device *dev;
6726
6727 if (!list_empty(head)) {
6728 rollback_registered_many(head);
6729 list_for_each_entry(dev, head, unreg_list)
6730 net_set_todo(dev);
6731 list_del(head);
6732 }
6733}
6734EXPORT_SYMBOL(unregister_netdevice_many);
6735
6736/**
6737 * unregister_netdev - remove device from the kernel
6738 * @dev: device
6739 *
6740 * This function shuts down a device interface and removes it
6741 * from the kernel tables.
6742 *
6743 * This is just a wrapper for unregister_netdevice that takes
6744 * the rtnl semaphore. In general you want to use this and not
6745 * unregister_netdevice.
6746 */
6747void unregister_netdev(struct net_device *dev)
6748{
6749 rtnl_lock();
6750 unregister_netdevice(dev);
6751 rtnl_unlock();
6752}
6753EXPORT_SYMBOL(unregister_netdev);
6754
6755/**
6756 * dev_change_net_namespace - move device to different nethost namespace
6757 * @dev: device
6758 * @net: network namespace
6759 * @pat: If not NULL name pattern to try if the current device name
6760 * is already taken in the destination network namespace.
6761 *
6762 * This function shuts down a device interface and moves it
6763 * to a new network namespace. On success 0 is returned, on
6764 * a failure a netagive errno code is returned.
6765 *
6766 * Callers must hold the rtnl semaphore.
6767 */
6768
6769int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6770{
6771 int err;
6772
6773 ASSERT_RTNL();
6774
6775 /* Don't allow namespace local devices to be moved. */
6776 err = -EINVAL;
6777 if (dev->features & NETIF_F_NETNS_LOCAL)
6778 goto out;
6779
6780 /* Ensure the device has been registrered */
6781 if (dev->reg_state != NETREG_REGISTERED)
6782 goto out;
6783
6784 /* Get out if there is nothing todo */
6785 err = 0;
6786 if (net_eq(dev_net(dev), net))
6787 goto out;
6788
6789 /* Pick the destination device name, and ensure
6790 * we can use it in the destination network namespace.
6791 */
6792 err = -EEXIST;
6793 if (__dev_get_by_name(net, dev->name)) {
6794 /* We get here if we can't use the current device name */
6795 if (!pat)
6796 goto out;
6797 if (dev_get_valid_name(net, dev, pat) < 0)
6798 goto out;
6799 }
6800
6801 /*
6802 * And now a mini version of register_netdevice unregister_netdevice.
6803 */
6804
6805 /* If device is running close it first. */
6806 dev_close(dev);
6807
6808 /* And unlink it from device chain */
6809 err = -ENODEV;
6810 unlist_netdevice(dev);
6811
6812 synchronize_net();
6813
6814 /* Shutdown queueing discipline. */
6815 dev_shutdown(dev);
6816
6817 /* Notify protocols, that we are about to destroy
6818 this device. They should clean all the things.
6819
6820 Note that dev->reg_state stays at NETREG_REGISTERED.
6821 This is wanted because this way 8021q and macvlan know
6822 the device is just moving and can keep their slaves up.
6823 */
6824 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6825 rcu_barrier();
6826 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6827 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6828
6829 /*
6830 * Flush the unicast and multicast chains
6831 */
6832 dev_uc_flush(dev);
6833 dev_mc_flush(dev);
6834
6835 /* Send a netdev-removed uevent to the old namespace */
6836 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6837
6838 /* Actually switch the network namespace */
6839 dev_net_set(dev, net);
6840
6841 /* If there is an ifindex conflict assign a new one */
6842 if (__dev_get_by_index(net, dev->ifindex)) {
6843 int iflink = (dev->iflink == dev->ifindex);
6844 dev->ifindex = dev_new_index(net);
6845 if (iflink)
6846 dev->iflink = dev->ifindex;
6847 }
6848
6849 /* Send a netdev-add uevent to the new namespace */
6850 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6851
6852 /* Fixup kobjects */
6853 err = device_rename(&dev->dev, dev->name);
6854 WARN_ON(err);
6855
6856 /* Add the device back in the hashes */
6857 list_netdevice(dev);
6858
6859 /* Notify protocols, that a new device appeared. */
6860 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6861
6862 /*
6863 * Prevent userspace races by waiting until the network
6864 * device is fully setup before sending notifications.
6865 */
6866 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6867
6868 synchronize_net();
6869 err = 0;
6870out:
6871 return err;
6872}
6873EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6874
6875static int dev_cpu_callback(struct notifier_block *nfb,
6876 unsigned long action,
6877 void *ocpu)
6878{
6879 struct sk_buff **list_skb;
6880 struct sk_buff *skb;
6881 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6882 struct softnet_data *sd, *oldsd;
6883
6884 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6885 return NOTIFY_OK;
6886
6887 local_irq_disable();
6888 cpu = smp_processor_id();
6889 sd = &per_cpu(softnet_data, cpu);
6890 oldsd = &per_cpu(softnet_data, oldcpu);
6891
6892 /* Find end of our completion_queue. */
6893 list_skb = &sd->completion_queue;
6894 while (*list_skb)
6895 list_skb = &(*list_skb)->next;
6896 /* Append completion queue from offline CPU. */
6897 *list_skb = oldsd->completion_queue;
6898 oldsd->completion_queue = NULL;
6899
6900 /* Append output queue from offline CPU. */
6901 if (oldsd->output_queue) {
6902 *sd->output_queue_tailp = oldsd->output_queue;
6903 sd->output_queue_tailp = oldsd->output_queue_tailp;
6904 oldsd->output_queue = NULL;
6905 oldsd->output_queue_tailp = &oldsd->output_queue;
6906 }
6907 /* Append NAPI poll list from offline CPU. */
6908 if (!list_empty(&oldsd->poll_list)) {
6909 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6910 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6911 }
6912
6913 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6914 local_irq_enable();
6915
6916 /* Process offline CPU's input_pkt_queue */
6917 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6918 netif_rx_internal(skb);
6919 input_queue_head_incr(oldsd);
6920 }
6921 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6922 netif_rx_internal(skb);
6923 input_queue_head_incr(oldsd);
6924 }
6925
6926 return NOTIFY_OK;
6927}
6928
6929
6930/**
6931 * netdev_increment_features - increment feature set by one
6932 * @all: current feature set
6933 * @one: new feature set
6934 * @mask: mask feature set
6935 *
6936 * Computes a new feature set after adding a device with feature set
6937 * @one to the master device with current feature set @all. Will not
6938 * enable anything that is off in @mask. Returns the new feature set.
6939 */
6940netdev_features_t netdev_increment_features(netdev_features_t all,
6941 netdev_features_t one, netdev_features_t mask)
6942{
6943 if (mask & NETIF_F_GEN_CSUM)
6944 mask |= NETIF_F_ALL_CSUM;
6945 mask |= NETIF_F_VLAN_CHALLENGED;
6946
6947 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6948 all &= one | ~NETIF_F_ALL_FOR_ALL;
6949
6950 /* If one device supports hw checksumming, set for all. */
6951 if (all & NETIF_F_GEN_CSUM)
6952 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6953
6954 return all;
6955}
6956EXPORT_SYMBOL(netdev_increment_features);
6957
6958static struct hlist_head * __net_init netdev_create_hash(void)
6959{
6960 int i;
6961 struct hlist_head *hash;
6962
6963 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6964 if (hash != NULL)
6965 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6966 INIT_HLIST_HEAD(&hash[i]);
6967
6968 return hash;
6969}
6970
6971/* Initialize per network namespace state */
6972static int __net_init netdev_init(struct net *net)
6973{
6974 if (net != &init_net)
6975 INIT_LIST_HEAD(&net->dev_base_head);
6976
6977 net->dev_name_head = netdev_create_hash();
6978 if (net->dev_name_head == NULL)
6979 goto err_name;
6980
6981 net->dev_index_head = netdev_create_hash();
6982 if (net->dev_index_head == NULL)
6983 goto err_idx;
6984
6985 return 0;
6986
6987err_idx:
6988 kfree(net->dev_name_head);
6989err_name:
6990 return -ENOMEM;
6991}
6992
6993/**
6994 * netdev_drivername - network driver for the device
6995 * @dev: network device
6996 *
6997 * Determine network driver for device.
6998 */
6999const char *netdev_drivername(const struct net_device *dev)
7000{
7001 const struct device_driver *driver;
7002 const struct device *parent;
7003 const char *empty = "";
7004
7005 parent = dev->dev.parent;
7006 if (!parent)
7007 return empty;
7008
7009 driver = parent->driver;
7010 if (driver && driver->name)
7011 return driver->name;
7012 return empty;
7013}
7014
7015static int __netdev_printk(const char *level, const struct net_device *dev,
7016 struct va_format *vaf)
7017{
7018 int r;
7019
7020 if (dev && dev->dev.parent) {
7021 r = dev_printk_emit(level[1] - '0',
7022 dev->dev.parent,
7023 "%s %s %s%s: %pV",
7024 dev_driver_string(dev->dev.parent),
7025 dev_name(dev->dev.parent),
7026 netdev_name(dev), netdev_reg_state(dev),
7027 vaf);
7028 } else if (dev) {
7029 r = printk("%s%s%s: %pV", level, netdev_name(dev),
7030 netdev_reg_state(dev), vaf);
7031 } else {
7032 r = printk("%s(NULL net_device): %pV", level, vaf);
7033 }
7034
7035 return r;
7036}
7037
7038int netdev_printk(const char *level, const struct net_device *dev,
7039 const char *format, ...)
7040{
7041 struct va_format vaf;
7042 va_list args;
7043 int r;
7044
7045 va_start(args, format);
7046
7047 vaf.fmt = format;
7048 vaf.va = &args;
7049
7050 r = __netdev_printk(level, dev, &vaf);
7051
7052 va_end(args);
7053
7054 return r;
7055}
7056EXPORT_SYMBOL(netdev_printk);
7057
7058#define define_netdev_printk_level(func, level) \
7059int func(const struct net_device *dev, const char *fmt, ...) \
7060{ \
7061 int r; \
7062 struct va_format vaf; \
7063 va_list args; \
7064 \
7065 va_start(args, fmt); \
7066 \
7067 vaf.fmt = fmt; \
7068 vaf.va = &args; \
7069 \
7070 r = __netdev_printk(level, dev, &vaf); \
7071 \
7072 va_end(args); \
7073 \
7074 return r; \
7075} \
7076EXPORT_SYMBOL(func);
7077
7078define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7079define_netdev_printk_level(netdev_alert, KERN_ALERT);
7080define_netdev_printk_level(netdev_crit, KERN_CRIT);
7081define_netdev_printk_level(netdev_err, KERN_ERR);
7082define_netdev_printk_level(netdev_warn, KERN_WARNING);
7083define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7084define_netdev_printk_level(netdev_info, KERN_INFO);
7085
7086static void __net_exit netdev_exit(struct net *net)
7087{
7088 kfree(net->dev_name_head);
7089 kfree(net->dev_index_head);
7090}
7091
7092static struct pernet_operations __net_initdata netdev_net_ops = {
7093 .init = netdev_init,
7094 .exit = netdev_exit,
7095};
7096
7097static void __net_exit default_device_exit(struct net *net)
7098{
7099 struct net_device *dev, *aux;
7100 /*
7101 * Push all migratable network devices back to the
7102 * initial network namespace
7103 */
7104 rtnl_lock();
7105 for_each_netdev_safe(net, dev, aux) {
7106 int err;
7107 char fb_name[IFNAMSIZ];
7108
7109 /* Ignore unmoveable devices (i.e. loopback) */
7110 if (dev->features & NETIF_F_NETNS_LOCAL)
7111 continue;
7112
7113 /* Leave virtual devices for the generic cleanup */
7114 if (dev->rtnl_link_ops)
7115 continue;
7116
7117 /* Push remaining network devices to init_net */
7118 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7119 err = dev_change_net_namespace(dev, &init_net, fb_name);
7120 if (err) {
7121 pr_emerg("%s: failed to move %s to init_net: %d\n",
7122 __func__, dev->name, err);
7123 BUG();
7124 }
7125 }
7126 rtnl_unlock();
7127}
7128
7129static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7130{
7131 /* Return with the rtnl_lock held when there are no network
7132 * devices unregistering in any network namespace in net_list.
7133 */
7134 struct net *net;
7135 bool unregistering;
7136 DEFINE_WAIT(wait);
7137
7138 for (;;) {
7139 prepare_to_wait(&netdev_unregistering_wq, &wait,
7140 TASK_UNINTERRUPTIBLE);
7141 unregistering = false;
7142 rtnl_lock();
7143 list_for_each_entry(net, net_list, exit_list) {
7144 if (net->dev_unreg_count > 0) {
7145 unregistering = true;
7146 break;
7147 }
7148 }
7149 if (!unregistering)
7150 break;
7151 __rtnl_unlock();
7152 schedule();
7153 }
7154 finish_wait(&netdev_unregistering_wq, &wait);
7155}
7156
7157static void __net_exit default_device_exit_batch(struct list_head *net_list)
7158{
7159 /* At exit all network devices most be removed from a network
7160 * namespace. Do this in the reverse order of registration.
7161 * Do this across as many network namespaces as possible to
7162 * improve batching efficiency.
7163 */
7164 struct net_device *dev;
7165 struct net *net;
7166 LIST_HEAD(dev_kill_list);
7167
7168 /* To prevent network device cleanup code from dereferencing
7169 * loopback devices or network devices that have been freed
7170 * wait here for all pending unregistrations to complete,
7171 * before unregistring the loopback device and allowing the
7172 * network namespace be freed.
7173 *
7174 * The netdev todo list containing all network devices
7175 * unregistrations that happen in default_device_exit_batch
7176 * will run in the rtnl_unlock() at the end of
7177 * default_device_exit_batch.
7178 */
7179 rtnl_lock_unregistering(net_list);
7180 list_for_each_entry(net, net_list, exit_list) {
7181 for_each_netdev_reverse(net, dev) {
7182 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7183 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7184 else
7185 unregister_netdevice_queue(dev, &dev_kill_list);
7186 }
7187 }
7188 unregister_netdevice_many(&dev_kill_list);
7189 rtnl_unlock();
7190}
7191
7192static struct pernet_operations __net_initdata default_device_ops = {
7193 .exit = default_device_exit,
7194 .exit_batch = default_device_exit_batch,
7195};
7196
7197/*
7198 * Initialize the DEV module. At boot time this walks the device list and
7199 * unhooks any devices that fail to initialise (normally hardware not
7200 * present) and leaves us with a valid list of present and active devices.
7201 *
7202 */
7203
7204/*
7205 * This is called single threaded during boot, so no need
7206 * to take the rtnl semaphore.
7207 */
7208static int __init net_dev_init(void)
7209{
7210 int i, rc = -ENOMEM;
7211
7212 BUG_ON(!dev_boot_phase);
7213
7214 if (dev_proc_init())
7215 goto out;
7216
7217 if (netdev_kobject_init())
7218 goto out;
7219
7220 INIT_LIST_HEAD(&ptype_all);
7221 for (i = 0; i < PTYPE_HASH_SIZE; i++)
7222 INIT_LIST_HEAD(&ptype_base[i]);
7223
7224 INIT_LIST_HEAD(&offload_base);
7225
7226 if (register_pernet_subsys(&netdev_net_ops))
7227 goto out;
7228
7229 /*
7230 * Initialise the packet receive queues.
7231 */
7232
7233 for_each_possible_cpu(i) {
7234 struct softnet_data *sd = &per_cpu(softnet_data, i);
7235
7236 skb_queue_head_init(&sd->input_pkt_queue);
7237 skb_queue_head_init(&sd->process_queue);
7238 INIT_LIST_HEAD(&sd->poll_list);
7239 sd->output_queue_tailp = &sd->output_queue;
7240#ifdef CONFIG_RPS
7241 sd->csd.func = rps_trigger_softirq;
7242 sd->csd.info = sd;
7243 sd->cpu = i;
7244#endif
7245
7246 sd->backlog.poll = process_backlog;
7247 sd->backlog.weight = weight_p;
7248 }
7249
7250 dev_boot_phase = 0;
7251
7252 /* The loopback device is special if any other network devices
7253 * is present in a network namespace the loopback device must
7254 * be present. Since we now dynamically allocate and free the
7255 * loopback device ensure this invariant is maintained by
7256 * keeping the loopback device as the first device on the
7257 * list of network devices. Ensuring the loopback devices
7258 * is the first device that appears and the last network device
7259 * that disappears.
7260 */
7261 if (register_pernet_device(&loopback_net_ops))
7262 goto out;
7263
7264 if (register_pernet_device(&default_device_ops))
7265 goto out;
7266
7267 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7268 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7269
7270 hotcpu_notifier(dev_cpu_callback, 0);
7271 dst_init();
7272 rc = 0;
7273out:
7274 return rc;
7275}
7276
7277subsys_initcall(net_dev_init);
This page took 0.068625 seconds and 5 git commands to generate.