net: Add net_dev_start_xmit trace event, exposing more skb fields
[deliverable/linux.git] / net / core / dev.c
... / ...
CommitLineData
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
76#include <linux/bitops.h>
77#include <linux/capability.h>
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
81#include <linux/hash.h>
82#include <linux/slab.h>
83#include <linux/sched.h>
84#include <linux/mutex.h>
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
94#include <linux/ethtool.h>
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
97#include <net/net_namespace.h>
98#include <net/sock.h>
99#include <linux/rtnetlink.h>
100#include <linux/stat.h>
101#include <net/dst.h>
102#include <net/pkt_sched.h>
103#include <net/checksum.h>
104#include <net/xfrm.h>
105#include <linux/highmem.h>
106#include <linux/init.h>
107#include <linux/module.h>
108#include <linux/netpoll.h>
109#include <linux/rcupdate.h>
110#include <linux/delay.h>
111#include <net/iw_handler.h>
112#include <asm/current.h>
113#include <linux/audit.h>
114#include <linux/dmaengine.h>
115#include <linux/err.h>
116#include <linux/ctype.h>
117#include <linux/if_arp.h>
118#include <linux/if_vlan.h>
119#include <linux/ip.h>
120#include <net/ip.h>
121#include <linux/ipv6.h>
122#include <linux/in.h>
123#include <linux/jhash.h>
124#include <linux/random.h>
125#include <trace/events/napi.h>
126#include <trace/events/net.h>
127#include <trace/events/skb.h>
128#include <linux/pci.h>
129#include <linux/inetdevice.h>
130#include <linux/cpu_rmap.h>
131#include <linux/static_key.h>
132#include <linux/hashtable.h>
133#include <linux/vmalloc.h>
134#include <linux/if_macvlan.h>
135
136#include "net-sysfs.h"
137
138/* Instead of increasing this, you should create a hash table. */
139#define MAX_GRO_SKBS 8
140
141/* This should be increased if a protocol with a bigger head is added. */
142#define GRO_MAX_HEAD (MAX_HEADER + 128)
143
144static DEFINE_SPINLOCK(ptype_lock);
145static DEFINE_SPINLOCK(offload_lock);
146struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
147struct list_head ptype_all __read_mostly; /* Taps */
148static struct list_head offload_base __read_mostly;
149
150/*
151 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
152 * semaphore.
153 *
154 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
155 *
156 * Writers must hold the rtnl semaphore while they loop through the
157 * dev_base_head list, and hold dev_base_lock for writing when they do the
158 * actual updates. This allows pure readers to access the list even
159 * while a writer is preparing to update it.
160 *
161 * To put it another way, dev_base_lock is held for writing only to
162 * protect against pure readers; the rtnl semaphore provides the
163 * protection against other writers.
164 *
165 * See, for example usages, register_netdevice() and
166 * unregister_netdevice(), which must be called with the rtnl
167 * semaphore held.
168 */
169DEFINE_RWLOCK(dev_base_lock);
170EXPORT_SYMBOL(dev_base_lock);
171
172/* protects napi_hash addition/deletion and napi_gen_id */
173static DEFINE_SPINLOCK(napi_hash_lock);
174
175static unsigned int napi_gen_id;
176static DEFINE_HASHTABLE(napi_hash, 8);
177
178static seqcount_t devnet_rename_seq;
179
180static inline void dev_base_seq_inc(struct net *net)
181{
182 while (++net->dev_base_seq == 0);
183}
184
185static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
186{
187 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
188
189 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
190}
191
192static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
193{
194 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
195}
196
197static inline void rps_lock(struct softnet_data *sd)
198{
199#ifdef CONFIG_RPS
200 spin_lock(&sd->input_pkt_queue.lock);
201#endif
202}
203
204static inline void rps_unlock(struct softnet_data *sd)
205{
206#ifdef CONFIG_RPS
207 spin_unlock(&sd->input_pkt_queue.lock);
208#endif
209}
210
211/* Device list insertion */
212static void list_netdevice(struct net_device *dev)
213{
214 struct net *net = dev_net(dev);
215
216 ASSERT_RTNL();
217
218 write_lock_bh(&dev_base_lock);
219 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
220 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
221 hlist_add_head_rcu(&dev->index_hlist,
222 dev_index_hash(net, dev->ifindex));
223 write_unlock_bh(&dev_base_lock);
224
225 dev_base_seq_inc(net);
226}
227
228/* Device list removal
229 * caller must respect a RCU grace period before freeing/reusing dev
230 */
231static void unlist_netdevice(struct net_device *dev)
232{
233 ASSERT_RTNL();
234
235 /* Unlink dev from the device chain */
236 write_lock_bh(&dev_base_lock);
237 list_del_rcu(&dev->dev_list);
238 hlist_del_rcu(&dev->name_hlist);
239 hlist_del_rcu(&dev->index_hlist);
240 write_unlock_bh(&dev_base_lock);
241
242 dev_base_seq_inc(dev_net(dev));
243}
244
245/*
246 * Our notifier list
247 */
248
249static RAW_NOTIFIER_HEAD(netdev_chain);
250
251/*
252 * Device drivers call our routines to queue packets here. We empty the
253 * queue in the local softnet handler.
254 */
255
256DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
257EXPORT_PER_CPU_SYMBOL(softnet_data);
258
259#ifdef CONFIG_LOCKDEP
260/*
261 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
262 * according to dev->type
263 */
264static const unsigned short netdev_lock_type[] =
265 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
266 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
267 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
268 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
269 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
270 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
271 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
272 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
273 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
274 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
275 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
276 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
277 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
278 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
279 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
280
281static const char *const netdev_lock_name[] =
282 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
283 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
284 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
285 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
286 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
287 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
288 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
289 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
290 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
291 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
292 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
293 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
294 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
295 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
296 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
297
298static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
299static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
300
301static inline unsigned short netdev_lock_pos(unsigned short dev_type)
302{
303 int i;
304
305 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
306 if (netdev_lock_type[i] == dev_type)
307 return i;
308 /* the last key is used by default */
309 return ARRAY_SIZE(netdev_lock_type) - 1;
310}
311
312static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
313 unsigned short dev_type)
314{
315 int i;
316
317 i = netdev_lock_pos(dev_type);
318 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
319 netdev_lock_name[i]);
320}
321
322static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
323{
324 int i;
325
326 i = netdev_lock_pos(dev->type);
327 lockdep_set_class_and_name(&dev->addr_list_lock,
328 &netdev_addr_lock_key[i],
329 netdev_lock_name[i]);
330}
331#else
332static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
333 unsigned short dev_type)
334{
335}
336static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337{
338}
339#endif
340
341/*******************************************************************************
342
343 Protocol management and registration routines
344
345*******************************************************************************/
346
347/*
348 * Add a protocol ID to the list. Now that the input handler is
349 * smarter we can dispense with all the messy stuff that used to be
350 * here.
351 *
352 * BEWARE!!! Protocol handlers, mangling input packets,
353 * MUST BE last in hash buckets and checking protocol handlers
354 * MUST start from promiscuous ptype_all chain in net_bh.
355 * It is true now, do not change it.
356 * Explanation follows: if protocol handler, mangling packet, will
357 * be the first on list, it is not able to sense, that packet
358 * is cloned and should be copied-on-write, so that it will
359 * change it and subsequent readers will get broken packet.
360 * --ANK (980803)
361 */
362
363static inline struct list_head *ptype_head(const struct packet_type *pt)
364{
365 if (pt->type == htons(ETH_P_ALL))
366 return &ptype_all;
367 else
368 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
369}
370
371/**
372 * dev_add_pack - add packet handler
373 * @pt: packet type declaration
374 *
375 * Add a protocol handler to the networking stack. The passed &packet_type
376 * is linked into kernel lists and may not be freed until it has been
377 * removed from the kernel lists.
378 *
379 * This call does not sleep therefore it can not
380 * guarantee all CPU's that are in middle of receiving packets
381 * will see the new packet type (until the next received packet).
382 */
383
384void dev_add_pack(struct packet_type *pt)
385{
386 struct list_head *head = ptype_head(pt);
387
388 spin_lock(&ptype_lock);
389 list_add_rcu(&pt->list, head);
390 spin_unlock(&ptype_lock);
391}
392EXPORT_SYMBOL(dev_add_pack);
393
394/**
395 * __dev_remove_pack - remove packet handler
396 * @pt: packet type declaration
397 *
398 * Remove a protocol handler that was previously added to the kernel
399 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
400 * from the kernel lists and can be freed or reused once this function
401 * returns.
402 *
403 * The packet type might still be in use by receivers
404 * and must not be freed until after all the CPU's have gone
405 * through a quiescent state.
406 */
407void __dev_remove_pack(struct packet_type *pt)
408{
409 struct list_head *head = ptype_head(pt);
410 struct packet_type *pt1;
411
412 spin_lock(&ptype_lock);
413
414 list_for_each_entry(pt1, head, list) {
415 if (pt == pt1) {
416 list_del_rcu(&pt->list);
417 goto out;
418 }
419 }
420
421 pr_warn("dev_remove_pack: %p not found\n", pt);
422out:
423 spin_unlock(&ptype_lock);
424}
425EXPORT_SYMBOL(__dev_remove_pack);
426
427/**
428 * dev_remove_pack - remove packet handler
429 * @pt: packet type declaration
430 *
431 * Remove a protocol handler that was previously added to the kernel
432 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
433 * from the kernel lists and can be freed or reused once this function
434 * returns.
435 *
436 * This call sleeps to guarantee that no CPU is looking at the packet
437 * type after return.
438 */
439void dev_remove_pack(struct packet_type *pt)
440{
441 __dev_remove_pack(pt);
442
443 synchronize_net();
444}
445EXPORT_SYMBOL(dev_remove_pack);
446
447
448/**
449 * dev_add_offload - register offload handlers
450 * @po: protocol offload declaration
451 *
452 * Add protocol offload handlers to the networking stack. The passed
453 * &proto_offload is linked into kernel lists and may not be freed until
454 * it has been removed from the kernel lists.
455 *
456 * This call does not sleep therefore it can not
457 * guarantee all CPU's that are in middle of receiving packets
458 * will see the new offload handlers (until the next received packet).
459 */
460void dev_add_offload(struct packet_offload *po)
461{
462 struct list_head *head = &offload_base;
463
464 spin_lock(&offload_lock);
465 list_add_rcu(&po->list, head);
466 spin_unlock(&offload_lock);
467}
468EXPORT_SYMBOL(dev_add_offload);
469
470/**
471 * __dev_remove_offload - remove offload handler
472 * @po: packet offload declaration
473 *
474 * Remove a protocol offload handler that was previously added to the
475 * kernel offload handlers by dev_add_offload(). The passed &offload_type
476 * is removed from the kernel lists and can be freed or reused once this
477 * function returns.
478 *
479 * The packet type might still be in use by receivers
480 * and must not be freed until after all the CPU's have gone
481 * through a quiescent state.
482 */
483static void __dev_remove_offload(struct packet_offload *po)
484{
485 struct list_head *head = &offload_base;
486 struct packet_offload *po1;
487
488 spin_lock(&offload_lock);
489
490 list_for_each_entry(po1, head, list) {
491 if (po == po1) {
492 list_del_rcu(&po->list);
493 goto out;
494 }
495 }
496
497 pr_warn("dev_remove_offload: %p not found\n", po);
498out:
499 spin_unlock(&offload_lock);
500}
501
502/**
503 * dev_remove_offload - remove packet offload handler
504 * @po: packet offload declaration
505 *
506 * Remove a packet offload handler that was previously added to the kernel
507 * offload handlers by dev_add_offload(). The passed &offload_type is
508 * removed from the kernel lists and can be freed or reused once this
509 * function returns.
510 *
511 * This call sleeps to guarantee that no CPU is looking at the packet
512 * type after return.
513 */
514void dev_remove_offload(struct packet_offload *po)
515{
516 __dev_remove_offload(po);
517
518 synchronize_net();
519}
520EXPORT_SYMBOL(dev_remove_offload);
521
522/******************************************************************************
523
524 Device Boot-time Settings Routines
525
526*******************************************************************************/
527
528/* Boot time configuration table */
529static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
530
531/**
532 * netdev_boot_setup_add - add new setup entry
533 * @name: name of the device
534 * @map: configured settings for the device
535 *
536 * Adds new setup entry to the dev_boot_setup list. The function
537 * returns 0 on error and 1 on success. This is a generic routine to
538 * all netdevices.
539 */
540static int netdev_boot_setup_add(char *name, struct ifmap *map)
541{
542 struct netdev_boot_setup *s;
543 int i;
544
545 s = dev_boot_setup;
546 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
547 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
548 memset(s[i].name, 0, sizeof(s[i].name));
549 strlcpy(s[i].name, name, IFNAMSIZ);
550 memcpy(&s[i].map, map, sizeof(s[i].map));
551 break;
552 }
553 }
554
555 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
556}
557
558/**
559 * netdev_boot_setup_check - check boot time settings
560 * @dev: the netdevice
561 *
562 * Check boot time settings for the device.
563 * The found settings are set for the device to be used
564 * later in the device probing.
565 * Returns 0 if no settings found, 1 if they are.
566 */
567int netdev_boot_setup_check(struct net_device *dev)
568{
569 struct netdev_boot_setup *s = dev_boot_setup;
570 int i;
571
572 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
574 !strcmp(dev->name, s[i].name)) {
575 dev->irq = s[i].map.irq;
576 dev->base_addr = s[i].map.base_addr;
577 dev->mem_start = s[i].map.mem_start;
578 dev->mem_end = s[i].map.mem_end;
579 return 1;
580 }
581 }
582 return 0;
583}
584EXPORT_SYMBOL(netdev_boot_setup_check);
585
586
587/**
588 * netdev_boot_base - get address from boot time settings
589 * @prefix: prefix for network device
590 * @unit: id for network device
591 *
592 * Check boot time settings for the base address of device.
593 * The found settings are set for the device to be used
594 * later in the device probing.
595 * Returns 0 if no settings found.
596 */
597unsigned long netdev_boot_base(const char *prefix, int unit)
598{
599 const struct netdev_boot_setup *s = dev_boot_setup;
600 char name[IFNAMSIZ];
601 int i;
602
603 sprintf(name, "%s%d", prefix, unit);
604
605 /*
606 * If device already registered then return base of 1
607 * to indicate not to probe for this interface
608 */
609 if (__dev_get_by_name(&init_net, name))
610 return 1;
611
612 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
613 if (!strcmp(name, s[i].name))
614 return s[i].map.base_addr;
615 return 0;
616}
617
618/*
619 * Saves at boot time configured settings for any netdevice.
620 */
621int __init netdev_boot_setup(char *str)
622{
623 int ints[5];
624 struct ifmap map;
625
626 str = get_options(str, ARRAY_SIZE(ints), ints);
627 if (!str || !*str)
628 return 0;
629
630 /* Save settings */
631 memset(&map, 0, sizeof(map));
632 if (ints[0] > 0)
633 map.irq = ints[1];
634 if (ints[0] > 1)
635 map.base_addr = ints[2];
636 if (ints[0] > 2)
637 map.mem_start = ints[3];
638 if (ints[0] > 3)
639 map.mem_end = ints[4];
640
641 /* Add new entry to the list */
642 return netdev_boot_setup_add(str, &map);
643}
644
645__setup("netdev=", netdev_boot_setup);
646
647/*******************************************************************************
648
649 Device Interface Subroutines
650
651*******************************************************************************/
652
653/**
654 * __dev_get_by_name - find a device by its name
655 * @net: the applicable net namespace
656 * @name: name to find
657 *
658 * Find an interface by name. Must be called under RTNL semaphore
659 * or @dev_base_lock. If the name is found a pointer to the device
660 * is returned. If the name is not found then %NULL is returned. The
661 * reference counters are not incremented so the caller must be
662 * careful with locks.
663 */
664
665struct net_device *__dev_get_by_name(struct net *net, const char *name)
666{
667 struct net_device *dev;
668 struct hlist_head *head = dev_name_hash(net, name);
669
670 hlist_for_each_entry(dev, head, name_hlist)
671 if (!strncmp(dev->name, name, IFNAMSIZ))
672 return dev;
673
674 return NULL;
675}
676EXPORT_SYMBOL(__dev_get_by_name);
677
678/**
679 * dev_get_by_name_rcu - find a device by its name
680 * @net: the applicable net namespace
681 * @name: name to find
682 *
683 * Find an interface by name.
684 * If the name is found a pointer to the device is returned.
685 * If the name is not found then %NULL is returned.
686 * The reference counters are not incremented so the caller must be
687 * careful with locks. The caller must hold RCU lock.
688 */
689
690struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
691{
692 struct net_device *dev;
693 struct hlist_head *head = dev_name_hash(net, name);
694
695 hlist_for_each_entry_rcu(dev, head, name_hlist)
696 if (!strncmp(dev->name, name, IFNAMSIZ))
697 return dev;
698
699 return NULL;
700}
701EXPORT_SYMBOL(dev_get_by_name_rcu);
702
703/**
704 * dev_get_by_name - find a device by its name
705 * @net: the applicable net namespace
706 * @name: name to find
707 *
708 * Find an interface by name. This can be called from any
709 * context and does its own locking. The returned handle has
710 * the usage count incremented and the caller must use dev_put() to
711 * release it when it is no longer needed. %NULL is returned if no
712 * matching device is found.
713 */
714
715struct net_device *dev_get_by_name(struct net *net, const char *name)
716{
717 struct net_device *dev;
718
719 rcu_read_lock();
720 dev = dev_get_by_name_rcu(net, name);
721 if (dev)
722 dev_hold(dev);
723 rcu_read_unlock();
724 return dev;
725}
726EXPORT_SYMBOL(dev_get_by_name);
727
728/**
729 * __dev_get_by_index - find a device by its ifindex
730 * @net: the applicable net namespace
731 * @ifindex: index of device
732 *
733 * Search for an interface by index. Returns %NULL if the device
734 * is not found or a pointer to the device. The device has not
735 * had its reference counter increased so the caller must be careful
736 * about locking. The caller must hold either the RTNL semaphore
737 * or @dev_base_lock.
738 */
739
740struct net_device *__dev_get_by_index(struct net *net, int ifindex)
741{
742 struct net_device *dev;
743 struct hlist_head *head = dev_index_hash(net, ifindex);
744
745 hlist_for_each_entry(dev, head, index_hlist)
746 if (dev->ifindex == ifindex)
747 return dev;
748
749 return NULL;
750}
751EXPORT_SYMBOL(__dev_get_by_index);
752
753/**
754 * dev_get_by_index_rcu - find a device by its ifindex
755 * @net: the applicable net namespace
756 * @ifindex: index of device
757 *
758 * Search for an interface by index. Returns %NULL if the device
759 * is not found or a pointer to the device. The device has not
760 * had its reference counter increased so the caller must be careful
761 * about locking. The caller must hold RCU lock.
762 */
763
764struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
765{
766 struct net_device *dev;
767 struct hlist_head *head = dev_index_hash(net, ifindex);
768
769 hlist_for_each_entry_rcu(dev, head, index_hlist)
770 if (dev->ifindex == ifindex)
771 return dev;
772
773 return NULL;
774}
775EXPORT_SYMBOL(dev_get_by_index_rcu);
776
777
778/**
779 * dev_get_by_index - find a device by its ifindex
780 * @net: the applicable net namespace
781 * @ifindex: index of device
782 *
783 * Search for an interface by index. Returns NULL if the device
784 * is not found or a pointer to the device. The device returned has
785 * had a reference added and the pointer is safe until the user calls
786 * dev_put to indicate they have finished with it.
787 */
788
789struct net_device *dev_get_by_index(struct net *net, int ifindex)
790{
791 struct net_device *dev;
792
793 rcu_read_lock();
794 dev = dev_get_by_index_rcu(net, ifindex);
795 if (dev)
796 dev_hold(dev);
797 rcu_read_unlock();
798 return dev;
799}
800EXPORT_SYMBOL(dev_get_by_index);
801
802/**
803 * netdev_get_name - get a netdevice name, knowing its ifindex.
804 * @net: network namespace
805 * @name: a pointer to the buffer where the name will be stored.
806 * @ifindex: the ifindex of the interface to get the name from.
807 *
808 * The use of raw_seqcount_begin() and cond_resched() before
809 * retrying is required as we want to give the writers a chance
810 * to complete when CONFIG_PREEMPT is not set.
811 */
812int netdev_get_name(struct net *net, char *name, int ifindex)
813{
814 struct net_device *dev;
815 unsigned int seq;
816
817retry:
818 seq = raw_seqcount_begin(&devnet_rename_seq);
819 rcu_read_lock();
820 dev = dev_get_by_index_rcu(net, ifindex);
821 if (!dev) {
822 rcu_read_unlock();
823 return -ENODEV;
824 }
825
826 strcpy(name, dev->name);
827 rcu_read_unlock();
828 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
829 cond_resched();
830 goto retry;
831 }
832
833 return 0;
834}
835
836/**
837 * dev_getbyhwaddr_rcu - find a device by its hardware address
838 * @net: the applicable net namespace
839 * @type: media type of device
840 * @ha: hardware address
841 *
842 * Search for an interface by MAC address. Returns NULL if the device
843 * is not found or a pointer to the device.
844 * The caller must hold RCU or RTNL.
845 * The returned device has not had its ref count increased
846 * and the caller must therefore be careful about locking
847 *
848 */
849
850struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
851 const char *ha)
852{
853 struct net_device *dev;
854
855 for_each_netdev_rcu(net, dev)
856 if (dev->type == type &&
857 !memcmp(dev->dev_addr, ha, dev->addr_len))
858 return dev;
859
860 return NULL;
861}
862EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
863
864struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
865{
866 struct net_device *dev;
867
868 ASSERT_RTNL();
869 for_each_netdev(net, dev)
870 if (dev->type == type)
871 return dev;
872
873 return NULL;
874}
875EXPORT_SYMBOL(__dev_getfirstbyhwtype);
876
877struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
878{
879 struct net_device *dev, *ret = NULL;
880
881 rcu_read_lock();
882 for_each_netdev_rcu(net, dev)
883 if (dev->type == type) {
884 dev_hold(dev);
885 ret = dev;
886 break;
887 }
888 rcu_read_unlock();
889 return ret;
890}
891EXPORT_SYMBOL(dev_getfirstbyhwtype);
892
893/**
894 * dev_get_by_flags_rcu - find any device with given flags
895 * @net: the applicable net namespace
896 * @if_flags: IFF_* values
897 * @mask: bitmask of bits in if_flags to check
898 *
899 * Search for any interface with the given flags. Returns NULL if a device
900 * is not found or a pointer to the device. Must be called inside
901 * rcu_read_lock(), and result refcount is unchanged.
902 */
903
904struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
905 unsigned short mask)
906{
907 struct net_device *dev, *ret;
908
909 ret = NULL;
910 for_each_netdev_rcu(net, dev) {
911 if (((dev->flags ^ if_flags) & mask) == 0) {
912 ret = dev;
913 break;
914 }
915 }
916 return ret;
917}
918EXPORT_SYMBOL(dev_get_by_flags_rcu);
919
920/**
921 * dev_valid_name - check if name is okay for network device
922 * @name: name string
923 *
924 * Network device names need to be valid file names to
925 * to allow sysfs to work. We also disallow any kind of
926 * whitespace.
927 */
928bool dev_valid_name(const char *name)
929{
930 if (*name == '\0')
931 return false;
932 if (strlen(name) >= IFNAMSIZ)
933 return false;
934 if (!strcmp(name, ".") || !strcmp(name, ".."))
935 return false;
936
937 while (*name) {
938 if (*name == '/' || isspace(*name))
939 return false;
940 name++;
941 }
942 return true;
943}
944EXPORT_SYMBOL(dev_valid_name);
945
946/**
947 * __dev_alloc_name - allocate a name for a device
948 * @net: network namespace to allocate the device name in
949 * @name: name format string
950 * @buf: scratch buffer and result name string
951 *
952 * Passed a format string - eg "lt%d" it will try and find a suitable
953 * id. It scans list of devices to build up a free map, then chooses
954 * the first empty slot. The caller must hold the dev_base or rtnl lock
955 * while allocating the name and adding the device in order to avoid
956 * duplicates.
957 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
958 * Returns the number of the unit assigned or a negative errno code.
959 */
960
961static int __dev_alloc_name(struct net *net, const char *name, char *buf)
962{
963 int i = 0;
964 const char *p;
965 const int max_netdevices = 8*PAGE_SIZE;
966 unsigned long *inuse;
967 struct net_device *d;
968
969 p = strnchr(name, IFNAMSIZ-1, '%');
970 if (p) {
971 /*
972 * Verify the string as this thing may have come from
973 * the user. There must be either one "%d" and no other "%"
974 * characters.
975 */
976 if (p[1] != 'd' || strchr(p + 2, '%'))
977 return -EINVAL;
978
979 /* Use one page as a bit array of possible slots */
980 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
981 if (!inuse)
982 return -ENOMEM;
983
984 for_each_netdev(net, d) {
985 if (!sscanf(d->name, name, &i))
986 continue;
987 if (i < 0 || i >= max_netdevices)
988 continue;
989
990 /* avoid cases where sscanf is not exact inverse of printf */
991 snprintf(buf, IFNAMSIZ, name, i);
992 if (!strncmp(buf, d->name, IFNAMSIZ))
993 set_bit(i, inuse);
994 }
995
996 i = find_first_zero_bit(inuse, max_netdevices);
997 free_page((unsigned long) inuse);
998 }
999
1000 if (buf != name)
1001 snprintf(buf, IFNAMSIZ, name, i);
1002 if (!__dev_get_by_name(net, buf))
1003 return i;
1004
1005 /* It is possible to run out of possible slots
1006 * when the name is long and there isn't enough space left
1007 * for the digits, or if all bits are used.
1008 */
1009 return -ENFILE;
1010}
1011
1012/**
1013 * dev_alloc_name - allocate a name for a device
1014 * @dev: device
1015 * @name: name format string
1016 *
1017 * Passed a format string - eg "lt%d" it will try and find a suitable
1018 * id. It scans list of devices to build up a free map, then chooses
1019 * the first empty slot. The caller must hold the dev_base or rtnl lock
1020 * while allocating the name and adding the device in order to avoid
1021 * duplicates.
1022 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1023 * Returns the number of the unit assigned or a negative errno code.
1024 */
1025
1026int dev_alloc_name(struct net_device *dev, const char *name)
1027{
1028 char buf[IFNAMSIZ];
1029 struct net *net;
1030 int ret;
1031
1032 BUG_ON(!dev_net(dev));
1033 net = dev_net(dev);
1034 ret = __dev_alloc_name(net, name, buf);
1035 if (ret >= 0)
1036 strlcpy(dev->name, buf, IFNAMSIZ);
1037 return ret;
1038}
1039EXPORT_SYMBOL(dev_alloc_name);
1040
1041static int dev_alloc_name_ns(struct net *net,
1042 struct net_device *dev,
1043 const char *name)
1044{
1045 char buf[IFNAMSIZ];
1046 int ret;
1047
1048 ret = __dev_alloc_name(net, name, buf);
1049 if (ret >= 0)
1050 strlcpy(dev->name, buf, IFNAMSIZ);
1051 return ret;
1052}
1053
1054static int dev_get_valid_name(struct net *net,
1055 struct net_device *dev,
1056 const char *name)
1057{
1058 BUG_ON(!net);
1059
1060 if (!dev_valid_name(name))
1061 return -EINVAL;
1062
1063 if (strchr(name, '%'))
1064 return dev_alloc_name_ns(net, dev, name);
1065 else if (__dev_get_by_name(net, name))
1066 return -EEXIST;
1067 else if (dev->name != name)
1068 strlcpy(dev->name, name, IFNAMSIZ);
1069
1070 return 0;
1071}
1072
1073/**
1074 * dev_change_name - change name of a device
1075 * @dev: device
1076 * @newname: name (or format string) must be at least IFNAMSIZ
1077 *
1078 * Change name of a device, can pass format strings "eth%d".
1079 * for wildcarding.
1080 */
1081int dev_change_name(struct net_device *dev, const char *newname)
1082{
1083 char oldname[IFNAMSIZ];
1084 int err = 0;
1085 int ret;
1086 struct net *net;
1087
1088 ASSERT_RTNL();
1089 BUG_ON(!dev_net(dev));
1090
1091 net = dev_net(dev);
1092 if (dev->flags & IFF_UP)
1093 return -EBUSY;
1094
1095 write_seqcount_begin(&devnet_rename_seq);
1096
1097 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1098 write_seqcount_end(&devnet_rename_seq);
1099 return 0;
1100 }
1101
1102 memcpy(oldname, dev->name, IFNAMSIZ);
1103
1104 err = dev_get_valid_name(net, dev, newname);
1105 if (err < 0) {
1106 write_seqcount_end(&devnet_rename_seq);
1107 return err;
1108 }
1109
1110rollback:
1111 ret = device_rename(&dev->dev, dev->name);
1112 if (ret) {
1113 memcpy(dev->name, oldname, IFNAMSIZ);
1114 write_seqcount_end(&devnet_rename_seq);
1115 return ret;
1116 }
1117
1118 write_seqcount_end(&devnet_rename_seq);
1119
1120 write_lock_bh(&dev_base_lock);
1121 hlist_del_rcu(&dev->name_hlist);
1122 write_unlock_bh(&dev_base_lock);
1123
1124 synchronize_rcu();
1125
1126 write_lock_bh(&dev_base_lock);
1127 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1128 write_unlock_bh(&dev_base_lock);
1129
1130 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1131 ret = notifier_to_errno(ret);
1132
1133 if (ret) {
1134 /* err >= 0 after dev_alloc_name() or stores the first errno */
1135 if (err >= 0) {
1136 err = ret;
1137 write_seqcount_begin(&devnet_rename_seq);
1138 memcpy(dev->name, oldname, IFNAMSIZ);
1139 goto rollback;
1140 } else {
1141 pr_err("%s: name change rollback failed: %d\n",
1142 dev->name, ret);
1143 }
1144 }
1145
1146 return err;
1147}
1148
1149/**
1150 * dev_set_alias - change ifalias of a device
1151 * @dev: device
1152 * @alias: name up to IFALIASZ
1153 * @len: limit of bytes to copy from info
1154 *
1155 * Set ifalias for a device,
1156 */
1157int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1158{
1159 char *new_ifalias;
1160
1161 ASSERT_RTNL();
1162
1163 if (len >= IFALIASZ)
1164 return -EINVAL;
1165
1166 if (!len) {
1167 kfree(dev->ifalias);
1168 dev->ifalias = NULL;
1169 return 0;
1170 }
1171
1172 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1173 if (!new_ifalias)
1174 return -ENOMEM;
1175 dev->ifalias = new_ifalias;
1176
1177 strlcpy(dev->ifalias, alias, len+1);
1178 return len;
1179}
1180
1181
1182/**
1183 * netdev_features_change - device changes features
1184 * @dev: device to cause notification
1185 *
1186 * Called to indicate a device has changed features.
1187 */
1188void netdev_features_change(struct net_device *dev)
1189{
1190 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1191}
1192EXPORT_SYMBOL(netdev_features_change);
1193
1194/**
1195 * netdev_state_change - device changes state
1196 * @dev: device to cause notification
1197 *
1198 * Called to indicate a device has changed state. This function calls
1199 * the notifier chains for netdev_chain and sends a NEWLINK message
1200 * to the routing socket.
1201 */
1202void netdev_state_change(struct net_device *dev)
1203{
1204 if (dev->flags & IFF_UP) {
1205 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1206 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1207 }
1208}
1209EXPORT_SYMBOL(netdev_state_change);
1210
1211/**
1212 * netdev_notify_peers - notify network peers about existence of @dev
1213 * @dev: network device
1214 *
1215 * Generate traffic such that interested network peers are aware of
1216 * @dev, such as by generating a gratuitous ARP. This may be used when
1217 * a device wants to inform the rest of the network about some sort of
1218 * reconfiguration such as a failover event or virtual machine
1219 * migration.
1220 */
1221void netdev_notify_peers(struct net_device *dev)
1222{
1223 rtnl_lock();
1224 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1225 rtnl_unlock();
1226}
1227EXPORT_SYMBOL(netdev_notify_peers);
1228
1229static int __dev_open(struct net_device *dev)
1230{
1231 const struct net_device_ops *ops = dev->netdev_ops;
1232 int ret;
1233
1234 ASSERT_RTNL();
1235
1236 if (!netif_device_present(dev))
1237 return -ENODEV;
1238
1239 /* Block netpoll from trying to do any rx path servicing.
1240 * If we don't do this there is a chance ndo_poll_controller
1241 * or ndo_poll may be running while we open the device
1242 */
1243 netpoll_rx_disable(dev);
1244
1245 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1246 ret = notifier_to_errno(ret);
1247 if (ret)
1248 return ret;
1249
1250 set_bit(__LINK_STATE_START, &dev->state);
1251
1252 if (ops->ndo_validate_addr)
1253 ret = ops->ndo_validate_addr(dev);
1254
1255 if (!ret && ops->ndo_open)
1256 ret = ops->ndo_open(dev);
1257
1258 netpoll_rx_enable(dev);
1259
1260 if (ret)
1261 clear_bit(__LINK_STATE_START, &dev->state);
1262 else {
1263 dev->flags |= IFF_UP;
1264 net_dmaengine_get();
1265 dev_set_rx_mode(dev);
1266 dev_activate(dev);
1267 add_device_randomness(dev->dev_addr, dev->addr_len);
1268 }
1269
1270 return ret;
1271}
1272
1273/**
1274 * dev_open - prepare an interface for use.
1275 * @dev: device to open
1276 *
1277 * Takes a device from down to up state. The device's private open
1278 * function is invoked and then the multicast lists are loaded. Finally
1279 * the device is moved into the up state and a %NETDEV_UP message is
1280 * sent to the netdev notifier chain.
1281 *
1282 * Calling this function on an active interface is a nop. On a failure
1283 * a negative errno code is returned.
1284 */
1285int dev_open(struct net_device *dev)
1286{
1287 int ret;
1288
1289 if (dev->flags & IFF_UP)
1290 return 0;
1291
1292 ret = __dev_open(dev);
1293 if (ret < 0)
1294 return ret;
1295
1296 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1297 call_netdevice_notifiers(NETDEV_UP, dev);
1298
1299 return ret;
1300}
1301EXPORT_SYMBOL(dev_open);
1302
1303static int __dev_close_many(struct list_head *head)
1304{
1305 struct net_device *dev;
1306
1307 ASSERT_RTNL();
1308 might_sleep();
1309
1310 list_for_each_entry(dev, head, close_list) {
1311 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1312
1313 clear_bit(__LINK_STATE_START, &dev->state);
1314
1315 /* Synchronize to scheduled poll. We cannot touch poll list, it
1316 * can be even on different cpu. So just clear netif_running().
1317 *
1318 * dev->stop() will invoke napi_disable() on all of it's
1319 * napi_struct instances on this device.
1320 */
1321 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1322 }
1323
1324 dev_deactivate_many(head);
1325
1326 list_for_each_entry(dev, head, close_list) {
1327 const struct net_device_ops *ops = dev->netdev_ops;
1328
1329 /*
1330 * Call the device specific close. This cannot fail.
1331 * Only if device is UP
1332 *
1333 * We allow it to be called even after a DETACH hot-plug
1334 * event.
1335 */
1336 if (ops->ndo_stop)
1337 ops->ndo_stop(dev);
1338
1339 dev->flags &= ~IFF_UP;
1340 net_dmaengine_put();
1341 }
1342
1343 return 0;
1344}
1345
1346static int __dev_close(struct net_device *dev)
1347{
1348 int retval;
1349 LIST_HEAD(single);
1350
1351 /* Temporarily disable netpoll until the interface is down */
1352 netpoll_rx_disable(dev);
1353
1354 list_add(&dev->close_list, &single);
1355 retval = __dev_close_many(&single);
1356 list_del(&single);
1357
1358 netpoll_rx_enable(dev);
1359 return retval;
1360}
1361
1362static int dev_close_many(struct list_head *head)
1363{
1364 struct net_device *dev, *tmp;
1365
1366 /* Remove the devices that don't need to be closed */
1367 list_for_each_entry_safe(dev, tmp, head, close_list)
1368 if (!(dev->flags & IFF_UP))
1369 list_del_init(&dev->close_list);
1370
1371 __dev_close_many(head);
1372
1373 list_for_each_entry_safe(dev, tmp, head, close_list) {
1374 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1375 call_netdevice_notifiers(NETDEV_DOWN, dev);
1376 list_del_init(&dev->close_list);
1377 }
1378
1379 return 0;
1380}
1381
1382/**
1383 * dev_close - shutdown an interface.
1384 * @dev: device to shutdown
1385 *
1386 * This function moves an active device into down state. A
1387 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1388 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1389 * chain.
1390 */
1391int dev_close(struct net_device *dev)
1392{
1393 if (dev->flags & IFF_UP) {
1394 LIST_HEAD(single);
1395
1396 /* Block netpoll rx while the interface is going down */
1397 netpoll_rx_disable(dev);
1398
1399 list_add(&dev->close_list, &single);
1400 dev_close_many(&single);
1401 list_del(&single);
1402
1403 netpoll_rx_enable(dev);
1404 }
1405 return 0;
1406}
1407EXPORT_SYMBOL(dev_close);
1408
1409
1410/**
1411 * dev_disable_lro - disable Large Receive Offload on a device
1412 * @dev: device
1413 *
1414 * Disable Large Receive Offload (LRO) on a net device. Must be
1415 * called under RTNL. This is needed if received packets may be
1416 * forwarded to another interface.
1417 */
1418void dev_disable_lro(struct net_device *dev)
1419{
1420 /*
1421 * If we're trying to disable lro on a vlan device
1422 * use the underlying physical device instead
1423 */
1424 if (is_vlan_dev(dev))
1425 dev = vlan_dev_real_dev(dev);
1426
1427 /* the same for macvlan devices */
1428 if (netif_is_macvlan(dev))
1429 dev = macvlan_dev_real_dev(dev);
1430
1431 dev->wanted_features &= ~NETIF_F_LRO;
1432 netdev_update_features(dev);
1433
1434 if (unlikely(dev->features & NETIF_F_LRO))
1435 netdev_WARN(dev, "failed to disable LRO!\n");
1436}
1437EXPORT_SYMBOL(dev_disable_lro);
1438
1439static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1440 struct net_device *dev)
1441{
1442 struct netdev_notifier_info info;
1443
1444 netdev_notifier_info_init(&info, dev);
1445 return nb->notifier_call(nb, val, &info);
1446}
1447
1448static int dev_boot_phase = 1;
1449
1450/**
1451 * register_netdevice_notifier - register a network notifier block
1452 * @nb: notifier
1453 *
1454 * Register a notifier to be called when network device events occur.
1455 * The notifier passed is linked into the kernel structures and must
1456 * not be reused until it has been unregistered. A negative errno code
1457 * is returned on a failure.
1458 *
1459 * When registered all registration and up events are replayed
1460 * to the new notifier to allow device to have a race free
1461 * view of the network device list.
1462 */
1463
1464int register_netdevice_notifier(struct notifier_block *nb)
1465{
1466 struct net_device *dev;
1467 struct net_device *last;
1468 struct net *net;
1469 int err;
1470
1471 rtnl_lock();
1472 err = raw_notifier_chain_register(&netdev_chain, nb);
1473 if (err)
1474 goto unlock;
1475 if (dev_boot_phase)
1476 goto unlock;
1477 for_each_net(net) {
1478 for_each_netdev(net, dev) {
1479 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1480 err = notifier_to_errno(err);
1481 if (err)
1482 goto rollback;
1483
1484 if (!(dev->flags & IFF_UP))
1485 continue;
1486
1487 call_netdevice_notifier(nb, NETDEV_UP, dev);
1488 }
1489 }
1490
1491unlock:
1492 rtnl_unlock();
1493 return err;
1494
1495rollback:
1496 last = dev;
1497 for_each_net(net) {
1498 for_each_netdev(net, dev) {
1499 if (dev == last)
1500 goto outroll;
1501
1502 if (dev->flags & IFF_UP) {
1503 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1504 dev);
1505 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1506 }
1507 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1508 }
1509 }
1510
1511outroll:
1512 raw_notifier_chain_unregister(&netdev_chain, nb);
1513 goto unlock;
1514}
1515EXPORT_SYMBOL(register_netdevice_notifier);
1516
1517/**
1518 * unregister_netdevice_notifier - unregister a network notifier block
1519 * @nb: notifier
1520 *
1521 * Unregister a notifier previously registered by
1522 * register_netdevice_notifier(). The notifier is unlinked into the
1523 * kernel structures and may then be reused. A negative errno code
1524 * is returned on a failure.
1525 *
1526 * After unregistering unregister and down device events are synthesized
1527 * for all devices on the device list to the removed notifier to remove
1528 * the need for special case cleanup code.
1529 */
1530
1531int unregister_netdevice_notifier(struct notifier_block *nb)
1532{
1533 struct net_device *dev;
1534 struct net *net;
1535 int err;
1536
1537 rtnl_lock();
1538 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1539 if (err)
1540 goto unlock;
1541
1542 for_each_net(net) {
1543 for_each_netdev(net, dev) {
1544 if (dev->flags & IFF_UP) {
1545 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1546 dev);
1547 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1548 }
1549 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1550 }
1551 }
1552unlock:
1553 rtnl_unlock();
1554 return err;
1555}
1556EXPORT_SYMBOL(unregister_netdevice_notifier);
1557
1558/**
1559 * call_netdevice_notifiers_info - call all network notifier blocks
1560 * @val: value passed unmodified to notifier function
1561 * @dev: net_device pointer passed unmodified to notifier function
1562 * @info: notifier information data
1563 *
1564 * Call all network notifier blocks. Parameters and return value
1565 * are as for raw_notifier_call_chain().
1566 */
1567
1568static int call_netdevice_notifiers_info(unsigned long val,
1569 struct net_device *dev,
1570 struct netdev_notifier_info *info)
1571{
1572 ASSERT_RTNL();
1573 netdev_notifier_info_init(info, dev);
1574 return raw_notifier_call_chain(&netdev_chain, val, info);
1575}
1576
1577/**
1578 * call_netdevice_notifiers - call all network notifier blocks
1579 * @val: value passed unmodified to notifier function
1580 * @dev: net_device pointer passed unmodified to notifier function
1581 *
1582 * Call all network notifier blocks. Parameters and return value
1583 * are as for raw_notifier_call_chain().
1584 */
1585
1586int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1587{
1588 struct netdev_notifier_info info;
1589
1590 return call_netdevice_notifiers_info(val, dev, &info);
1591}
1592EXPORT_SYMBOL(call_netdevice_notifiers);
1593
1594static struct static_key netstamp_needed __read_mostly;
1595#ifdef HAVE_JUMP_LABEL
1596/* We are not allowed to call static_key_slow_dec() from irq context
1597 * If net_disable_timestamp() is called from irq context, defer the
1598 * static_key_slow_dec() calls.
1599 */
1600static atomic_t netstamp_needed_deferred;
1601#endif
1602
1603void net_enable_timestamp(void)
1604{
1605#ifdef HAVE_JUMP_LABEL
1606 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1607
1608 if (deferred) {
1609 while (--deferred)
1610 static_key_slow_dec(&netstamp_needed);
1611 return;
1612 }
1613#endif
1614 static_key_slow_inc(&netstamp_needed);
1615}
1616EXPORT_SYMBOL(net_enable_timestamp);
1617
1618void net_disable_timestamp(void)
1619{
1620#ifdef HAVE_JUMP_LABEL
1621 if (in_interrupt()) {
1622 atomic_inc(&netstamp_needed_deferred);
1623 return;
1624 }
1625#endif
1626 static_key_slow_dec(&netstamp_needed);
1627}
1628EXPORT_SYMBOL(net_disable_timestamp);
1629
1630static inline void net_timestamp_set(struct sk_buff *skb)
1631{
1632 skb->tstamp.tv64 = 0;
1633 if (static_key_false(&netstamp_needed))
1634 __net_timestamp(skb);
1635}
1636
1637#define net_timestamp_check(COND, SKB) \
1638 if (static_key_false(&netstamp_needed)) { \
1639 if ((COND) && !(SKB)->tstamp.tv64) \
1640 __net_timestamp(SKB); \
1641 } \
1642
1643static inline bool is_skb_forwardable(struct net_device *dev,
1644 struct sk_buff *skb)
1645{
1646 unsigned int len;
1647
1648 if (!(dev->flags & IFF_UP))
1649 return false;
1650
1651 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1652 if (skb->len <= len)
1653 return true;
1654
1655 /* if TSO is enabled, we don't care about the length as the packet
1656 * could be forwarded without being segmented before
1657 */
1658 if (skb_is_gso(skb))
1659 return true;
1660
1661 return false;
1662}
1663
1664/**
1665 * dev_forward_skb - loopback an skb to another netif
1666 *
1667 * @dev: destination network device
1668 * @skb: buffer to forward
1669 *
1670 * return values:
1671 * NET_RX_SUCCESS (no congestion)
1672 * NET_RX_DROP (packet was dropped, but freed)
1673 *
1674 * dev_forward_skb can be used for injecting an skb from the
1675 * start_xmit function of one device into the receive queue
1676 * of another device.
1677 *
1678 * The receiving device may be in another namespace, so
1679 * we have to clear all information in the skb that could
1680 * impact namespace isolation.
1681 */
1682int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1683{
1684 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1685 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1686 atomic_long_inc(&dev->rx_dropped);
1687 kfree_skb(skb);
1688 return NET_RX_DROP;
1689 }
1690 }
1691
1692 if (unlikely(!is_skb_forwardable(dev, skb))) {
1693 atomic_long_inc(&dev->rx_dropped);
1694 kfree_skb(skb);
1695 return NET_RX_DROP;
1696 }
1697
1698 skb_scrub_packet(skb, true);
1699 skb->protocol = eth_type_trans(skb, dev);
1700
1701 return netif_rx(skb);
1702}
1703EXPORT_SYMBOL_GPL(dev_forward_skb);
1704
1705static inline int deliver_skb(struct sk_buff *skb,
1706 struct packet_type *pt_prev,
1707 struct net_device *orig_dev)
1708{
1709 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1710 return -ENOMEM;
1711 atomic_inc(&skb->users);
1712 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1713}
1714
1715static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1716{
1717 if (!ptype->af_packet_priv || !skb->sk)
1718 return false;
1719
1720 if (ptype->id_match)
1721 return ptype->id_match(ptype, skb->sk);
1722 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1723 return true;
1724
1725 return false;
1726}
1727
1728/*
1729 * Support routine. Sends outgoing frames to any network
1730 * taps currently in use.
1731 */
1732
1733static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1734{
1735 struct packet_type *ptype;
1736 struct sk_buff *skb2 = NULL;
1737 struct packet_type *pt_prev = NULL;
1738
1739 rcu_read_lock();
1740 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1741 /* Never send packets back to the socket
1742 * they originated from - MvS (miquels@drinkel.ow.org)
1743 */
1744 if ((ptype->dev == dev || !ptype->dev) &&
1745 (!skb_loop_sk(ptype, skb))) {
1746 if (pt_prev) {
1747 deliver_skb(skb2, pt_prev, skb->dev);
1748 pt_prev = ptype;
1749 continue;
1750 }
1751
1752 skb2 = skb_clone(skb, GFP_ATOMIC);
1753 if (!skb2)
1754 break;
1755
1756 net_timestamp_set(skb2);
1757
1758 /* skb->nh should be correctly
1759 set by sender, so that the second statement is
1760 just protection against buggy protocols.
1761 */
1762 skb_reset_mac_header(skb2);
1763
1764 if (skb_network_header(skb2) < skb2->data ||
1765 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1766 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1767 ntohs(skb2->protocol),
1768 dev->name);
1769 skb_reset_network_header(skb2);
1770 }
1771
1772 skb2->transport_header = skb2->network_header;
1773 skb2->pkt_type = PACKET_OUTGOING;
1774 pt_prev = ptype;
1775 }
1776 }
1777 if (pt_prev)
1778 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1779 rcu_read_unlock();
1780}
1781
1782/**
1783 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1784 * @dev: Network device
1785 * @txq: number of queues available
1786 *
1787 * If real_num_tx_queues is changed the tc mappings may no longer be
1788 * valid. To resolve this verify the tc mapping remains valid and if
1789 * not NULL the mapping. With no priorities mapping to this
1790 * offset/count pair it will no longer be used. In the worst case TC0
1791 * is invalid nothing can be done so disable priority mappings. If is
1792 * expected that drivers will fix this mapping if they can before
1793 * calling netif_set_real_num_tx_queues.
1794 */
1795static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1796{
1797 int i;
1798 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1799
1800 /* If TC0 is invalidated disable TC mapping */
1801 if (tc->offset + tc->count > txq) {
1802 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1803 dev->num_tc = 0;
1804 return;
1805 }
1806
1807 /* Invalidated prio to tc mappings set to TC0 */
1808 for (i = 1; i < TC_BITMASK + 1; i++) {
1809 int q = netdev_get_prio_tc_map(dev, i);
1810
1811 tc = &dev->tc_to_txq[q];
1812 if (tc->offset + tc->count > txq) {
1813 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1814 i, q);
1815 netdev_set_prio_tc_map(dev, i, 0);
1816 }
1817 }
1818}
1819
1820#ifdef CONFIG_XPS
1821static DEFINE_MUTEX(xps_map_mutex);
1822#define xmap_dereference(P) \
1823 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1824
1825static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1826 int cpu, u16 index)
1827{
1828 struct xps_map *map = NULL;
1829 int pos;
1830
1831 if (dev_maps)
1832 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1833
1834 for (pos = 0; map && pos < map->len; pos++) {
1835 if (map->queues[pos] == index) {
1836 if (map->len > 1) {
1837 map->queues[pos] = map->queues[--map->len];
1838 } else {
1839 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1840 kfree_rcu(map, rcu);
1841 map = NULL;
1842 }
1843 break;
1844 }
1845 }
1846
1847 return map;
1848}
1849
1850static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1851{
1852 struct xps_dev_maps *dev_maps;
1853 int cpu, i;
1854 bool active = false;
1855
1856 mutex_lock(&xps_map_mutex);
1857 dev_maps = xmap_dereference(dev->xps_maps);
1858
1859 if (!dev_maps)
1860 goto out_no_maps;
1861
1862 for_each_possible_cpu(cpu) {
1863 for (i = index; i < dev->num_tx_queues; i++) {
1864 if (!remove_xps_queue(dev_maps, cpu, i))
1865 break;
1866 }
1867 if (i == dev->num_tx_queues)
1868 active = true;
1869 }
1870
1871 if (!active) {
1872 RCU_INIT_POINTER(dev->xps_maps, NULL);
1873 kfree_rcu(dev_maps, rcu);
1874 }
1875
1876 for (i = index; i < dev->num_tx_queues; i++)
1877 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1878 NUMA_NO_NODE);
1879
1880out_no_maps:
1881 mutex_unlock(&xps_map_mutex);
1882}
1883
1884static struct xps_map *expand_xps_map(struct xps_map *map,
1885 int cpu, u16 index)
1886{
1887 struct xps_map *new_map;
1888 int alloc_len = XPS_MIN_MAP_ALLOC;
1889 int i, pos;
1890
1891 for (pos = 0; map && pos < map->len; pos++) {
1892 if (map->queues[pos] != index)
1893 continue;
1894 return map;
1895 }
1896
1897 /* Need to add queue to this CPU's existing map */
1898 if (map) {
1899 if (pos < map->alloc_len)
1900 return map;
1901
1902 alloc_len = map->alloc_len * 2;
1903 }
1904
1905 /* Need to allocate new map to store queue on this CPU's map */
1906 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1907 cpu_to_node(cpu));
1908 if (!new_map)
1909 return NULL;
1910
1911 for (i = 0; i < pos; i++)
1912 new_map->queues[i] = map->queues[i];
1913 new_map->alloc_len = alloc_len;
1914 new_map->len = pos;
1915
1916 return new_map;
1917}
1918
1919int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1920 u16 index)
1921{
1922 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1923 struct xps_map *map, *new_map;
1924 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1925 int cpu, numa_node_id = -2;
1926 bool active = false;
1927
1928 mutex_lock(&xps_map_mutex);
1929
1930 dev_maps = xmap_dereference(dev->xps_maps);
1931
1932 /* allocate memory for queue storage */
1933 for_each_online_cpu(cpu) {
1934 if (!cpumask_test_cpu(cpu, mask))
1935 continue;
1936
1937 if (!new_dev_maps)
1938 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1939 if (!new_dev_maps) {
1940 mutex_unlock(&xps_map_mutex);
1941 return -ENOMEM;
1942 }
1943
1944 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1945 NULL;
1946
1947 map = expand_xps_map(map, cpu, index);
1948 if (!map)
1949 goto error;
1950
1951 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1952 }
1953
1954 if (!new_dev_maps)
1955 goto out_no_new_maps;
1956
1957 for_each_possible_cpu(cpu) {
1958 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1959 /* add queue to CPU maps */
1960 int pos = 0;
1961
1962 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1963 while ((pos < map->len) && (map->queues[pos] != index))
1964 pos++;
1965
1966 if (pos == map->len)
1967 map->queues[map->len++] = index;
1968#ifdef CONFIG_NUMA
1969 if (numa_node_id == -2)
1970 numa_node_id = cpu_to_node(cpu);
1971 else if (numa_node_id != cpu_to_node(cpu))
1972 numa_node_id = -1;
1973#endif
1974 } else if (dev_maps) {
1975 /* fill in the new device map from the old device map */
1976 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1977 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1978 }
1979
1980 }
1981
1982 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1983
1984 /* Cleanup old maps */
1985 if (dev_maps) {
1986 for_each_possible_cpu(cpu) {
1987 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1988 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1989 if (map && map != new_map)
1990 kfree_rcu(map, rcu);
1991 }
1992
1993 kfree_rcu(dev_maps, rcu);
1994 }
1995
1996 dev_maps = new_dev_maps;
1997 active = true;
1998
1999out_no_new_maps:
2000 /* update Tx queue numa node */
2001 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2002 (numa_node_id >= 0) ? numa_node_id :
2003 NUMA_NO_NODE);
2004
2005 if (!dev_maps)
2006 goto out_no_maps;
2007
2008 /* removes queue from unused CPUs */
2009 for_each_possible_cpu(cpu) {
2010 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2011 continue;
2012
2013 if (remove_xps_queue(dev_maps, cpu, index))
2014 active = true;
2015 }
2016
2017 /* free map if not active */
2018 if (!active) {
2019 RCU_INIT_POINTER(dev->xps_maps, NULL);
2020 kfree_rcu(dev_maps, rcu);
2021 }
2022
2023out_no_maps:
2024 mutex_unlock(&xps_map_mutex);
2025
2026 return 0;
2027error:
2028 /* remove any maps that we added */
2029 for_each_possible_cpu(cpu) {
2030 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2031 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2032 NULL;
2033 if (new_map && new_map != map)
2034 kfree(new_map);
2035 }
2036
2037 mutex_unlock(&xps_map_mutex);
2038
2039 kfree(new_dev_maps);
2040 return -ENOMEM;
2041}
2042EXPORT_SYMBOL(netif_set_xps_queue);
2043
2044#endif
2045/*
2046 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2047 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2048 */
2049int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2050{
2051 int rc;
2052
2053 if (txq < 1 || txq > dev->num_tx_queues)
2054 return -EINVAL;
2055
2056 if (dev->reg_state == NETREG_REGISTERED ||
2057 dev->reg_state == NETREG_UNREGISTERING) {
2058 ASSERT_RTNL();
2059
2060 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2061 txq);
2062 if (rc)
2063 return rc;
2064
2065 if (dev->num_tc)
2066 netif_setup_tc(dev, txq);
2067
2068 if (txq < dev->real_num_tx_queues) {
2069 qdisc_reset_all_tx_gt(dev, txq);
2070#ifdef CONFIG_XPS
2071 netif_reset_xps_queues_gt(dev, txq);
2072#endif
2073 }
2074 }
2075
2076 dev->real_num_tx_queues = txq;
2077 return 0;
2078}
2079EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2080
2081#ifdef CONFIG_RPS
2082/**
2083 * netif_set_real_num_rx_queues - set actual number of RX queues used
2084 * @dev: Network device
2085 * @rxq: Actual number of RX queues
2086 *
2087 * This must be called either with the rtnl_lock held or before
2088 * registration of the net device. Returns 0 on success, or a
2089 * negative error code. If called before registration, it always
2090 * succeeds.
2091 */
2092int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2093{
2094 int rc;
2095
2096 if (rxq < 1 || rxq > dev->num_rx_queues)
2097 return -EINVAL;
2098
2099 if (dev->reg_state == NETREG_REGISTERED) {
2100 ASSERT_RTNL();
2101
2102 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2103 rxq);
2104 if (rc)
2105 return rc;
2106 }
2107
2108 dev->real_num_rx_queues = rxq;
2109 return 0;
2110}
2111EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2112#endif
2113
2114/**
2115 * netif_get_num_default_rss_queues - default number of RSS queues
2116 *
2117 * This routine should set an upper limit on the number of RSS queues
2118 * used by default by multiqueue devices.
2119 */
2120int netif_get_num_default_rss_queues(void)
2121{
2122 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2123}
2124EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2125
2126static inline void __netif_reschedule(struct Qdisc *q)
2127{
2128 struct softnet_data *sd;
2129 unsigned long flags;
2130
2131 local_irq_save(flags);
2132 sd = &__get_cpu_var(softnet_data);
2133 q->next_sched = NULL;
2134 *sd->output_queue_tailp = q;
2135 sd->output_queue_tailp = &q->next_sched;
2136 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2137 local_irq_restore(flags);
2138}
2139
2140void __netif_schedule(struct Qdisc *q)
2141{
2142 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2143 __netif_reschedule(q);
2144}
2145EXPORT_SYMBOL(__netif_schedule);
2146
2147struct dev_kfree_skb_cb {
2148 enum skb_free_reason reason;
2149};
2150
2151static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2152{
2153 return (struct dev_kfree_skb_cb *)skb->cb;
2154}
2155
2156void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2157{
2158 unsigned long flags;
2159
2160 if (likely(atomic_read(&skb->users) == 1)) {
2161 smp_rmb();
2162 atomic_set(&skb->users, 0);
2163 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2164 return;
2165 }
2166 get_kfree_skb_cb(skb)->reason = reason;
2167 local_irq_save(flags);
2168 skb->next = __this_cpu_read(softnet_data.completion_queue);
2169 __this_cpu_write(softnet_data.completion_queue, skb);
2170 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2171 local_irq_restore(flags);
2172}
2173EXPORT_SYMBOL(__dev_kfree_skb_irq);
2174
2175void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2176{
2177 if (in_irq() || irqs_disabled())
2178 __dev_kfree_skb_irq(skb, reason);
2179 else
2180 dev_kfree_skb(skb);
2181}
2182EXPORT_SYMBOL(__dev_kfree_skb_any);
2183
2184
2185/**
2186 * netif_device_detach - mark device as removed
2187 * @dev: network device
2188 *
2189 * Mark device as removed from system and therefore no longer available.
2190 */
2191void netif_device_detach(struct net_device *dev)
2192{
2193 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2194 netif_running(dev)) {
2195 netif_tx_stop_all_queues(dev);
2196 }
2197}
2198EXPORT_SYMBOL(netif_device_detach);
2199
2200/**
2201 * netif_device_attach - mark device as attached
2202 * @dev: network device
2203 *
2204 * Mark device as attached from system and restart if needed.
2205 */
2206void netif_device_attach(struct net_device *dev)
2207{
2208 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2209 netif_running(dev)) {
2210 netif_tx_wake_all_queues(dev);
2211 __netdev_watchdog_up(dev);
2212 }
2213}
2214EXPORT_SYMBOL(netif_device_attach);
2215
2216static void skb_warn_bad_offload(const struct sk_buff *skb)
2217{
2218 static const netdev_features_t null_features = 0;
2219 struct net_device *dev = skb->dev;
2220 const char *driver = "";
2221
2222 if (!net_ratelimit())
2223 return;
2224
2225 if (dev && dev->dev.parent)
2226 driver = dev_driver_string(dev->dev.parent);
2227
2228 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2229 "gso_type=%d ip_summed=%d\n",
2230 driver, dev ? &dev->features : &null_features,
2231 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2232 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2233 skb_shinfo(skb)->gso_type, skb->ip_summed);
2234}
2235
2236/*
2237 * Invalidate hardware checksum when packet is to be mangled, and
2238 * complete checksum manually on outgoing path.
2239 */
2240int skb_checksum_help(struct sk_buff *skb)
2241{
2242 __wsum csum;
2243 int ret = 0, offset;
2244
2245 if (skb->ip_summed == CHECKSUM_COMPLETE)
2246 goto out_set_summed;
2247
2248 if (unlikely(skb_shinfo(skb)->gso_size)) {
2249 skb_warn_bad_offload(skb);
2250 return -EINVAL;
2251 }
2252
2253 /* Before computing a checksum, we should make sure no frag could
2254 * be modified by an external entity : checksum could be wrong.
2255 */
2256 if (skb_has_shared_frag(skb)) {
2257 ret = __skb_linearize(skb);
2258 if (ret)
2259 goto out;
2260 }
2261
2262 offset = skb_checksum_start_offset(skb);
2263 BUG_ON(offset >= skb_headlen(skb));
2264 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2265
2266 offset += skb->csum_offset;
2267 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2268
2269 if (skb_cloned(skb) &&
2270 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2271 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2272 if (ret)
2273 goto out;
2274 }
2275
2276 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2277out_set_summed:
2278 skb->ip_summed = CHECKSUM_NONE;
2279out:
2280 return ret;
2281}
2282EXPORT_SYMBOL(skb_checksum_help);
2283
2284__be16 skb_network_protocol(struct sk_buff *skb)
2285{
2286 __be16 type = skb->protocol;
2287 int vlan_depth = ETH_HLEN;
2288
2289 /* Tunnel gso handlers can set protocol to ethernet. */
2290 if (type == htons(ETH_P_TEB)) {
2291 struct ethhdr *eth;
2292
2293 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2294 return 0;
2295
2296 eth = (struct ethhdr *)skb_mac_header(skb);
2297 type = eth->h_proto;
2298 }
2299
2300 while (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2301 struct vlan_hdr *vh;
2302
2303 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2304 return 0;
2305
2306 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2307 type = vh->h_vlan_encapsulated_proto;
2308 vlan_depth += VLAN_HLEN;
2309 }
2310
2311 return type;
2312}
2313
2314/**
2315 * skb_mac_gso_segment - mac layer segmentation handler.
2316 * @skb: buffer to segment
2317 * @features: features for the output path (see dev->features)
2318 */
2319struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2320 netdev_features_t features)
2321{
2322 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2323 struct packet_offload *ptype;
2324 __be16 type = skb_network_protocol(skb);
2325
2326 if (unlikely(!type))
2327 return ERR_PTR(-EINVAL);
2328
2329 __skb_pull(skb, skb->mac_len);
2330
2331 rcu_read_lock();
2332 list_for_each_entry_rcu(ptype, &offload_base, list) {
2333 if (ptype->type == type && ptype->callbacks.gso_segment) {
2334 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2335 int err;
2336
2337 err = ptype->callbacks.gso_send_check(skb);
2338 segs = ERR_PTR(err);
2339 if (err || skb_gso_ok(skb, features))
2340 break;
2341 __skb_push(skb, (skb->data -
2342 skb_network_header(skb)));
2343 }
2344 segs = ptype->callbacks.gso_segment(skb, features);
2345 break;
2346 }
2347 }
2348 rcu_read_unlock();
2349
2350 __skb_push(skb, skb->data - skb_mac_header(skb));
2351
2352 return segs;
2353}
2354EXPORT_SYMBOL(skb_mac_gso_segment);
2355
2356
2357/* openvswitch calls this on rx path, so we need a different check.
2358 */
2359static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2360{
2361 if (tx_path)
2362 return skb->ip_summed != CHECKSUM_PARTIAL;
2363 else
2364 return skb->ip_summed == CHECKSUM_NONE;
2365}
2366
2367/**
2368 * __skb_gso_segment - Perform segmentation on skb.
2369 * @skb: buffer to segment
2370 * @features: features for the output path (see dev->features)
2371 * @tx_path: whether it is called in TX path
2372 *
2373 * This function segments the given skb and returns a list of segments.
2374 *
2375 * It may return NULL if the skb requires no segmentation. This is
2376 * only possible when GSO is used for verifying header integrity.
2377 */
2378struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2379 netdev_features_t features, bool tx_path)
2380{
2381 if (unlikely(skb_needs_check(skb, tx_path))) {
2382 int err;
2383
2384 skb_warn_bad_offload(skb);
2385
2386 if (skb_header_cloned(skb) &&
2387 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2388 return ERR_PTR(err);
2389 }
2390
2391 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2392 SKB_GSO_CB(skb)->encap_level = 0;
2393
2394 skb_reset_mac_header(skb);
2395 skb_reset_mac_len(skb);
2396
2397 return skb_mac_gso_segment(skb, features);
2398}
2399EXPORT_SYMBOL(__skb_gso_segment);
2400
2401/* Take action when hardware reception checksum errors are detected. */
2402#ifdef CONFIG_BUG
2403void netdev_rx_csum_fault(struct net_device *dev)
2404{
2405 if (net_ratelimit()) {
2406 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2407 dump_stack();
2408 }
2409}
2410EXPORT_SYMBOL(netdev_rx_csum_fault);
2411#endif
2412
2413/* Actually, we should eliminate this check as soon as we know, that:
2414 * 1. IOMMU is present and allows to map all the memory.
2415 * 2. No high memory really exists on this machine.
2416 */
2417
2418static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2419{
2420#ifdef CONFIG_HIGHMEM
2421 int i;
2422 if (!(dev->features & NETIF_F_HIGHDMA)) {
2423 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2424 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2425 if (PageHighMem(skb_frag_page(frag)))
2426 return 1;
2427 }
2428 }
2429
2430 if (PCI_DMA_BUS_IS_PHYS) {
2431 struct device *pdev = dev->dev.parent;
2432
2433 if (!pdev)
2434 return 0;
2435 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2436 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2437 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2438 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2439 return 1;
2440 }
2441 }
2442#endif
2443 return 0;
2444}
2445
2446struct dev_gso_cb {
2447 void (*destructor)(struct sk_buff *skb);
2448};
2449
2450#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2451
2452static void dev_gso_skb_destructor(struct sk_buff *skb)
2453{
2454 struct dev_gso_cb *cb;
2455
2456 kfree_skb_list(skb->next);
2457 skb->next = NULL;
2458
2459 cb = DEV_GSO_CB(skb);
2460 if (cb->destructor)
2461 cb->destructor(skb);
2462}
2463
2464/**
2465 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2466 * @skb: buffer to segment
2467 * @features: device features as applicable to this skb
2468 *
2469 * This function segments the given skb and stores the list of segments
2470 * in skb->next.
2471 */
2472static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2473{
2474 struct sk_buff *segs;
2475
2476 segs = skb_gso_segment(skb, features);
2477
2478 /* Verifying header integrity only. */
2479 if (!segs)
2480 return 0;
2481
2482 if (IS_ERR(segs))
2483 return PTR_ERR(segs);
2484
2485 skb->next = segs;
2486 DEV_GSO_CB(skb)->destructor = skb->destructor;
2487 skb->destructor = dev_gso_skb_destructor;
2488
2489 return 0;
2490}
2491
2492static netdev_features_t harmonize_features(struct sk_buff *skb,
2493 netdev_features_t features)
2494{
2495 if (skb->ip_summed != CHECKSUM_NONE &&
2496 !can_checksum_protocol(features, skb_network_protocol(skb))) {
2497 features &= ~NETIF_F_ALL_CSUM;
2498 } else if (illegal_highdma(skb->dev, skb)) {
2499 features &= ~NETIF_F_SG;
2500 }
2501
2502 return features;
2503}
2504
2505netdev_features_t netif_skb_features(struct sk_buff *skb)
2506{
2507 __be16 protocol = skb->protocol;
2508 netdev_features_t features = skb->dev->features;
2509
2510 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2511 features &= ~NETIF_F_GSO_MASK;
2512
2513 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2514 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2515 protocol = veh->h_vlan_encapsulated_proto;
2516 } else if (!vlan_tx_tag_present(skb)) {
2517 return harmonize_features(skb, features);
2518 }
2519
2520 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX |
2521 NETIF_F_HW_VLAN_STAG_TX);
2522
2523 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2524 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2525 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX |
2526 NETIF_F_HW_VLAN_STAG_TX;
2527
2528 return harmonize_features(skb, features);
2529}
2530EXPORT_SYMBOL(netif_skb_features);
2531
2532int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2533 struct netdev_queue *txq)
2534{
2535 const struct net_device_ops *ops = dev->netdev_ops;
2536 int rc = NETDEV_TX_OK;
2537 unsigned int skb_len;
2538
2539 if (likely(!skb->next)) {
2540 netdev_features_t features;
2541
2542 /*
2543 * If device doesn't need skb->dst, release it right now while
2544 * its hot in this cpu cache
2545 */
2546 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2547 skb_dst_drop(skb);
2548
2549 features = netif_skb_features(skb);
2550
2551 if (vlan_tx_tag_present(skb) &&
2552 !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2553 skb = __vlan_put_tag(skb, skb->vlan_proto,
2554 vlan_tx_tag_get(skb));
2555 if (unlikely(!skb))
2556 goto out;
2557
2558 skb->vlan_tci = 0;
2559 }
2560
2561 /* If encapsulation offload request, verify we are testing
2562 * hardware encapsulation features instead of standard
2563 * features for the netdev
2564 */
2565 if (skb->encapsulation)
2566 features &= dev->hw_enc_features;
2567
2568 if (netif_needs_gso(skb, features)) {
2569 if (unlikely(dev_gso_segment(skb, features)))
2570 goto out_kfree_skb;
2571 if (skb->next)
2572 goto gso;
2573 } else {
2574 if (skb_needs_linearize(skb, features) &&
2575 __skb_linearize(skb))
2576 goto out_kfree_skb;
2577
2578 /* If packet is not checksummed and device does not
2579 * support checksumming for this protocol, complete
2580 * checksumming here.
2581 */
2582 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2583 if (skb->encapsulation)
2584 skb_set_inner_transport_header(skb,
2585 skb_checksum_start_offset(skb));
2586 else
2587 skb_set_transport_header(skb,
2588 skb_checksum_start_offset(skb));
2589 if (!(features & NETIF_F_ALL_CSUM) &&
2590 skb_checksum_help(skb))
2591 goto out_kfree_skb;
2592 }
2593 }
2594
2595 if (!list_empty(&ptype_all))
2596 dev_queue_xmit_nit(skb, dev);
2597
2598 skb_len = skb->len;
2599 trace_net_dev_start_xmit(skb, dev);
2600 rc = ops->ndo_start_xmit(skb, dev);
2601 trace_net_dev_xmit(skb, rc, dev, skb_len);
2602 if (rc == NETDEV_TX_OK)
2603 txq_trans_update(txq);
2604 return rc;
2605 }
2606
2607gso:
2608 do {
2609 struct sk_buff *nskb = skb->next;
2610
2611 skb->next = nskb->next;
2612 nskb->next = NULL;
2613
2614 if (!list_empty(&ptype_all))
2615 dev_queue_xmit_nit(nskb, dev);
2616
2617 skb_len = nskb->len;
2618 trace_net_dev_start_xmit(nskb, dev);
2619 rc = ops->ndo_start_xmit(nskb, dev);
2620 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2621 if (unlikely(rc != NETDEV_TX_OK)) {
2622 if (rc & ~NETDEV_TX_MASK)
2623 goto out_kfree_gso_skb;
2624 nskb->next = skb->next;
2625 skb->next = nskb;
2626 return rc;
2627 }
2628 txq_trans_update(txq);
2629 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2630 return NETDEV_TX_BUSY;
2631 } while (skb->next);
2632
2633out_kfree_gso_skb:
2634 if (likely(skb->next == NULL)) {
2635 skb->destructor = DEV_GSO_CB(skb)->destructor;
2636 consume_skb(skb);
2637 return rc;
2638 }
2639out_kfree_skb:
2640 kfree_skb(skb);
2641out:
2642 return rc;
2643}
2644EXPORT_SYMBOL_GPL(dev_hard_start_xmit);
2645
2646static void qdisc_pkt_len_init(struct sk_buff *skb)
2647{
2648 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2649
2650 qdisc_skb_cb(skb)->pkt_len = skb->len;
2651
2652 /* To get more precise estimation of bytes sent on wire,
2653 * we add to pkt_len the headers size of all segments
2654 */
2655 if (shinfo->gso_size) {
2656 unsigned int hdr_len;
2657 u16 gso_segs = shinfo->gso_segs;
2658
2659 /* mac layer + network layer */
2660 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2661
2662 /* + transport layer */
2663 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2664 hdr_len += tcp_hdrlen(skb);
2665 else
2666 hdr_len += sizeof(struct udphdr);
2667
2668 if (shinfo->gso_type & SKB_GSO_DODGY)
2669 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2670 shinfo->gso_size);
2671
2672 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2673 }
2674}
2675
2676static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2677 struct net_device *dev,
2678 struct netdev_queue *txq)
2679{
2680 spinlock_t *root_lock = qdisc_lock(q);
2681 bool contended;
2682 int rc;
2683
2684 qdisc_pkt_len_init(skb);
2685 qdisc_calculate_pkt_len(skb, q);
2686 /*
2687 * Heuristic to force contended enqueues to serialize on a
2688 * separate lock before trying to get qdisc main lock.
2689 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2690 * and dequeue packets faster.
2691 */
2692 contended = qdisc_is_running(q);
2693 if (unlikely(contended))
2694 spin_lock(&q->busylock);
2695
2696 spin_lock(root_lock);
2697 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2698 kfree_skb(skb);
2699 rc = NET_XMIT_DROP;
2700 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2701 qdisc_run_begin(q)) {
2702 /*
2703 * This is a work-conserving queue; there are no old skbs
2704 * waiting to be sent out; and the qdisc is not running -
2705 * xmit the skb directly.
2706 */
2707 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2708 skb_dst_force(skb);
2709
2710 qdisc_bstats_update(q, skb);
2711
2712 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2713 if (unlikely(contended)) {
2714 spin_unlock(&q->busylock);
2715 contended = false;
2716 }
2717 __qdisc_run(q);
2718 } else
2719 qdisc_run_end(q);
2720
2721 rc = NET_XMIT_SUCCESS;
2722 } else {
2723 skb_dst_force(skb);
2724 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2725 if (qdisc_run_begin(q)) {
2726 if (unlikely(contended)) {
2727 spin_unlock(&q->busylock);
2728 contended = false;
2729 }
2730 __qdisc_run(q);
2731 }
2732 }
2733 spin_unlock(root_lock);
2734 if (unlikely(contended))
2735 spin_unlock(&q->busylock);
2736 return rc;
2737}
2738
2739#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2740static void skb_update_prio(struct sk_buff *skb)
2741{
2742 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2743
2744 if (!skb->priority && skb->sk && map) {
2745 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2746
2747 if (prioidx < map->priomap_len)
2748 skb->priority = map->priomap[prioidx];
2749 }
2750}
2751#else
2752#define skb_update_prio(skb)
2753#endif
2754
2755static DEFINE_PER_CPU(int, xmit_recursion);
2756#define RECURSION_LIMIT 10
2757
2758/**
2759 * dev_loopback_xmit - loop back @skb
2760 * @skb: buffer to transmit
2761 */
2762int dev_loopback_xmit(struct sk_buff *skb)
2763{
2764 skb_reset_mac_header(skb);
2765 __skb_pull(skb, skb_network_offset(skb));
2766 skb->pkt_type = PACKET_LOOPBACK;
2767 skb->ip_summed = CHECKSUM_UNNECESSARY;
2768 WARN_ON(!skb_dst(skb));
2769 skb_dst_force(skb);
2770 netif_rx_ni(skb);
2771 return 0;
2772}
2773EXPORT_SYMBOL(dev_loopback_xmit);
2774
2775/**
2776 * dev_queue_xmit - transmit a buffer
2777 * @skb: buffer to transmit
2778 *
2779 * Queue a buffer for transmission to a network device. The caller must
2780 * have set the device and priority and built the buffer before calling
2781 * this function. The function can be called from an interrupt.
2782 *
2783 * A negative errno code is returned on a failure. A success does not
2784 * guarantee the frame will be transmitted as it may be dropped due
2785 * to congestion or traffic shaping.
2786 *
2787 * -----------------------------------------------------------------------------------
2788 * I notice this method can also return errors from the queue disciplines,
2789 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2790 * be positive.
2791 *
2792 * Regardless of the return value, the skb is consumed, so it is currently
2793 * difficult to retry a send to this method. (You can bump the ref count
2794 * before sending to hold a reference for retry if you are careful.)
2795 *
2796 * When calling this method, interrupts MUST be enabled. This is because
2797 * the BH enable code must have IRQs enabled so that it will not deadlock.
2798 * --BLG
2799 */
2800int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2801{
2802 struct net_device *dev = skb->dev;
2803 struct netdev_queue *txq;
2804 struct Qdisc *q;
2805 int rc = -ENOMEM;
2806
2807 skb_reset_mac_header(skb);
2808
2809 /* Disable soft irqs for various locks below. Also
2810 * stops preemption for RCU.
2811 */
2812 rcu_read_lock_bh();
2813
2814 skb_update_prio(skb);
2815
2816 txq = netdev_pick_tx(dev, skb, accel_priv);
2817 q = rcu_dereference_bh(txq->qdisc);
2818
2819#ifdef CONFIG_NET_CLS_ACT
2820 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2821#endif
2822 trace_net_dev_queue(skb);
2823 if (q->enqueue) {
2824 rc = __dev_xmit_skb(skb, q, dev, txq);
2825 goto out;
2826 }
2827
2828 /* The device has no queue. Common case for software devices:
2829 loopback, all the sorts of tunnels...
2830
2831 Really, it is unlikely that netif_tx_lock protection is necessary
2832 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2833 counters.)
2834 However, it is possible, that they rely on protection
2835 made by us here.
2836
2837 Check this and shot the lock. It is not prone from deadlocks.
2838 Either shot noqueue qdisc, it is even simpler 8)
2839 */
2840 if (dev->flags & IFF_UP) {
2841 int cpu = smp_processor_id(); /* ok because BHs are off */
2842
2843 if (txq->xmit_lock_owner != cpu) {
2844
2845 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2846 goto recursion_alert;
2847
2848 HARD_TX_LOCK(dev, txq, cpu);
2849
2850 if (!netif_xmit_stopped(txq)) {
2851 __this_cpu_inc(xmit_recursion);
2852 rc = dev_hard_start_xmit(skb, dev, txq);
2853 __this_cpu_dec(xmit_recursion);
2854 if (dev_xmit_complete(rc)) {
2855 HARD_TX_UNLOCK(dev, txq);
2856 goto out;
2857 }
2858 }
2859 HARD_TX_UNLOCK(dev, txq);
2860 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2861 dev->name);
2862 } else {
2863 /* Recursion is detected! It is possible,
2864 * unfortunately
2865 */
2866recursion_alert:
2867 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2868 dev->name);
2869 }
2870 }
2871
2872 rc = -ENETDOWN;
2873 rcu_read_unlock_bh();
2874
2875 kfree_skb(skb);
2876 return rc;
2877out:
2878 rcu_read_unlock_bh();
2879 return rc;
2880}
2881
2882int dev_queue_xmit(struct sk_buff *skb)
2883{
2884 return __dev_queue_xmit(skb, NULL);
2885}
2886EXPORT_SYMBOL(dev_queue_xmit);
2887
2888int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
2889{
2890 return __dev_queue_xmit(skb, accel_priv);
2891}
2892EXPORT_SYMBOL(dev_queue_xmit_accel);
2893
2894
2895/*=======================================================================
2896 Receiver routines
2897 =======================================================================*/
2898
2899int netdev_max_backlog __read_mostly = 1000;
2900EXPORT_SYMBOL(netdev_max_backlog);
2901
2902int netdev_tstamp_prequeue __read_mostly = 1;
2903int netdev_budget __read_mostly = 300;
2904int weight_p __read_mostly = 64; /* old backlog weight */
2905
2906/* Called with irq disabled */
2907static inline void ____napi_schedule(struct softnet_data *sd,
2908 struct napi_struct *napi)
2909{
2910 list_add_tail(&napi->poll_list, &sd->poll_list);
2911 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2912}
2913
2914#ifdef CONFIG_RPS
2915
2916/* One global table that all flow-based protocols share. */
2917struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2918EXPORT_SYMBOL(rps_sock_flow_table);
2919
2920struct static_key rps_needed __read_mostly;
2921
2922static struct rps_dev_flow *
2923set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2924 struct rps_dev_flow *rflow, u16 next_cpu)
2925{
2926 if (next_cpu != RPS_NO_CPU) {
2927#ifdef CONFIG_RFS_ACCEL
2928 struct netdev_rx_queue *rxqueue;
2929 struct rps_dev_flow_table *flow_table;
2930 struct rps_dev_flow *old_rflow;
2931 u32 flow_id;
2932 u16 rxq_index;
2933 int rc;
2934
2935 /* Should we steer this flow to a different hardware queue? */
2936 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2937 !(dev->features & NETIF_F_NTUPLE))
2938 goto out;
2939 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2940 if (rxq_index == skb_get_rx_queue(skb))
2941 goto out;
2942
2943 rxqueue = dev->_rx + rxq_index;
2944 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2945 if (!flow_table)
2946 goto out;
2947 flow_id = skb->rxhash & flow_table->mask;
2948 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2949 rxq_index, flow_id);
2950 if (rc < 0)
2951 goto out;
2952 old_rflow = rflow;
2953 rflow = &flow_table->flows[flow_id];
2954 rflow->filter = rc;
2955 if (old_rflow->filter == rflow->filter)
2956 old_rflow->filter = RPS_NO_FILTER;
2957 out:
2958#endif
2959 rflow->last_qtail =
2960 per_cpu(softnet_data, next_cpu).input_queue_head;
2961 }
2962
2963 rflow->cpu = next_cpu;
2964 return rflow;
2965}
2966
2967/*
2968 * get_rps_cpu is called from netif_receive_skb and returns the target
2969 * CPU from the RPS map of the receiving queue for a given skb.
2970 * rcu_read_lock must be held on entry.
2971 */
2972static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2973 struct rps_dev_flow **rflowp)
2974{
2975 struct netdev_rx_queue *rxqueue;
2976 struct rps_map *map;
2977 struct rps_dev_flow_table *flow_table;
2978 struct rps_sock_flow_table *sock_flow_table;
2979 int cpu = -1;
2980 u16 tcpu;
2981
2982 if (skb_rx_queue_recorded(skb)) {
2983 u16 index = skb_get_rx_queue(skb);
2984 if (unlikely(index >= dev->real_num_rx_queues)) {
2985 WARN_ONCE(dev->real_num_rx_queues > 1,
2986 "%s received packet on queue %u, but number "
2987 "of RX queues is %u\n",
2988 dev->name, index, dev->real_num_rx_queues);
2989 goto done;
2990 }
2991 rxqueue = dev->_rx + index;
2992 } else
2993 rxqueue = dev->_rx;
2994
2995 map = rcu_dereference(rxqueue->rps_map);
2996 if (map) {
2997 if (map->len == 1 &&
2998 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2999 tcpu = map->cpus[0];
3000 if (cpu_online(tcpu))
3001 cpu = tcpu;
3002 goto done;
3003 }
3004 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3005 goto done;
3006 }
3007
3008 skb_reset_network_header(skb);
3009 if (!skb_get_hash(skb))
3010 goto done;
3011
3012 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3013 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3014 if (flow_table && sock_flow_table) {
3015 u16 next_cpu;
3016 struct rps_dev_flow *rflow;
3017
3018 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
3019 tcpu = rflow->cpu;
3020
3021 next_cpu = sock_flow_table->ents[skb->rxhash &
3022 sock_flow_table->mask];
3023
3024 /*
3025 * If the desired CPU (where last recvmsg was done) is
3026 * different from current CPU (one in the rx-queue flow
3027 * table entry), switch if one of the following holds:
3028 * - Current CPU is unset (equal to RPS_NO_CPU).
3029 * - Current CPU is offline.
3030 * - The current CPU's queue tail has advanced beyond the
3031 * last packet that was enqueued using this table entry.
3032 * This guarantees that all previous packets for the flow
3033 * have been dequeued, thus preserving in order delivery.
3034 */
3035 if (unlikely(tcpu != next_cpu) &&
3036 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3037 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3038 rflow->last_qtail)) >= 0)) {
3039 tcpu = next_cpu;
3040 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3041 }
3042
3043 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3044 *rflowp = rflow;
3045 cpu = tcpu;
3046 goto done;
3047 }
3048 }
3049
3050 if (map) {
3051 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
3052
3053 if (cpu_online(tcpu)) {
3054 cpu = tcpu;
3055 goto done;
3056 }
3057 }
3058
3059done:
3060 return cpu;
3061}
3062
3063#ifdef CONFIG_RFS_ACCEL
3064
3065/**
3066 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3067 * @dev: Device on which the filter was set
3068 * @rxq_index: RX queue index
3069 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3070 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3071 *
3072 * Drivers that implement ndo_rx_flow_steer() should periodically call
3073 * this function for each installed filter and remove the filters for
3074 * which it returns %true.
3075 */
3076bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3077 u32 flow_id, u16 filter_id)
3078{
3079 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3080 struct rps_dev_flow_table *flow_table;
3081 struct rps_dev_flow *rflow;
3082 bool expire = true;
3083 int cpu;
3084
3085 rcu_read_lock();
3086 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3087 if (flow_table && flow_id <= flow_table->mask) {
3088 rflow = &flow_table->flows[flow_id];
3089 cpu = ACCESS_ONCE(rflow->cpu);
3090 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3091 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3092 rflow->last_qtail) <
3093 (int)(10 * flow_table->mask)))
3094 expire = false;
3095 }
3096 rcu_read_unlock();
3097 return expire;
3098}
3099EXPORT_SYMBOL(rps_may_expire_flow);
3100
3101#endif /* CONFIG_RFS_ACCEL */
3102
3103/* Called from hardirq (IPI) context */
3104static void rps_trigger_softirq(void *data)
3105{
3106 struct softnet_data *sd = data;
3107
3108 ____napi_schedule(sd, &sd->backlog);
3109 sd->received_rps++;
3110}
3111
3112#endif /* CONFIG_RPS */
3113
3114/*
3115 * Check if this softnet_data structure is another cpu one
3116 * If yes, queue it to our IPI list and return 1
3117 * If no, return 0
3118 */
3119static int rps_ipi_queued(struct softnet_data *sd)
3120{
3121#ifdef CONFIG_RPS
3122 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3123
3124 if (sd != mysd) {
3125 sd->rps_ipi_next = mysd->rps_ipi_list;
3126 mysd->rps_ipi_list = sd;
3127
3128 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3129 return 1;
3130 }
3131#endif /* CONFIG_RPS */
3132 return 0;
3133}
3134
3135#ifdef CONFIG_NET_FLOW_LIMIT
3136int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3137#endif
3138
3139static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3140{
3141#ifdef CONFIG_NET_FLOW_LIMIT
3142 struct sd_flow_limit *fl;
3143 struct softnet_data *sd;
3144 unsigned int old_flow, new_flow;
3145
3146 if (qlen < (netdev_max_backlog >> 1))
3147 return false;
3148
3149 sd = &__get_cpu_var(softnet_data);
3150
3151 rcu_read_lock();
3152 fl = rcu_dereference(sd->flow_limit);
3153 if (fl) {
3154 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3155 old_flow = fl->history[fl->history_head];
3156 fl->history[fl->history_head] = new_flow;
3157
3158 fl->history_head++;
3159 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3160
3161 if (likely(fl->buckets[old_flow]))
3162 fl->buckets[old_flow]--;
3163
3164 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3165 fl->count++;
3166 rcu_read_unlock();
3167 return true;
3168 }
3169 }
3170 rcu_read_unlock();
3171#endif
3172 return false;
3173}
3174
3175/*
3176 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3177 * queue (may be a remote CPU queue).
3178 */
3179static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3180 unsigned int *qtail)
3181{
3182 struct softnet_data *sd;
3183 unsigned long flags;
3184 unsigned int qlen;
3185
3186 sd = &per_cpu(softnet_data, cpu);
3187
3188 local_irq_save(flags);
3189
3190 rps_lock(sd);
3191 qlen = skb_queue_len(&sd->input_pkt_queue);
3192 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3193 if (skb_queue_len(&sd->input_pkt_queue)) {
3194enqueue:
3195 __skb_queue_tail(&sd->input_pkt_queue, skb);
3196 input_queue_tail_incr_save(sd, qtail);
3197 rps_unlock(sd);
3198 local_irq_restore(flags);
3199 return NET_RX_SUCCESS;
3200 }
3201
3202 /* Schedule NAPI for backlog device
3203 * We can use non atomic operation since we own the queue lock
3204 */
3205 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3206 if (!rps_ipi_queued(sd))
3207 ____napi_schedule(sd, &sd->backlog);
3208 }
3209 goto enqueue;
3210 }
3211
3212 sd->dropped++;
3213 rps_unlock(sd);
3214
3215 local_irq_restore(flags);
3216
3217 atomic_long_inc(&skb->dev->rx_dropped);
3218 kfree_skb(skb);
3219 return NET_RX_DROP;
3220}
3221
3222/**
3223 * netif_rx - post buffer to the network code
3224 * @skb: buffer to post
3225 *
3226 * This function receives a packet from a device driver and queues it for
3227 * the upper (protocol) levels to process. It always succeeds. The buffer
3228 * may be dropped during processing for congestion control or by the
3229 * protocol layers.
3230 *
3231 * return values:
3232 * NET_RX_SUCCESS (no congestion)
3233 * NET_RX_DROP (packet was dropped)
3234 *
3235 */
3236
3237int netif_rx(struct sk_buff *skb)
3238{
3239 int ret;
3240
3241 /* if netpoll wants it, pretend we never saw it */
3242 if (netpoll_rx(skb))
3243 return NET_RX_DROP;
3244
3245 net_timestamp_check(netdev_tstamp_prequeue, skb);
3246
3247 trace_netif_rx(skb);
3248#ifdef CONFIG_RPS
3249 if (static_key_false(&rps_needed)) {
3250 struct rps_dev_flow voidflow, *rflow = &voidflow;
3251 int cpu;
3252
3253 preempt_disable();
3254 rcu_read_lock();
3255
3256 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3257 if (cpu < 0)
3258 cpu = smp_processor_id();
3259
3260 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3261
3262 rcu_read_unlock();
3263 preempt_enable();
3264 } else
3265#endif
3266 {
3267 unsigned int qtail;
3268 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3269 put_cpu();
3270 }
3271 return ret;
3272}
3273EXPORT_SYMBOL(netif_rx);
3274
3275int netif_rx_ni(struct sk_buff *skb)
3276{
3277 int err;
3278
3279 preempt_disable();
3280 err = netif_rx(skb);
3281 if (local_softirq_pending())
3282 do_softirq();
3283 preempt_enable();
3284
3285 return err;
3286}
3287EXPORT_SYMBOL(netif_rx_ni);
3288
3289static void net_tx_action(struct softirq_action *h)
3290{
3291 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3292
3293 if (sd->completion_queue) {
3294 struct sk_buff *clist;
3295
3296 local_irq_disable();
3297 clist = sd->completion_queue;
3298 sd->completion_queue = NULL;
3299 local_irq_enable();
3300
3301 while (clist) {
3302 struct sk_buff *skb = clist;
3303 clist = clist->next;
3304
3305 WARN_ON(atomic_read(&skb->users));
3306 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3307 trace_consume_skb(skb);
3308 else
3309 trace_kfree_skb(skb, net_tx_action);
3310 __kfree_skb(skb);
3311 }
3312 }
3313
3314 if (sd->output_queue) {
3315 struct Qdisc *head;
3316
3317 local_irq_disable();
3318 head = sd->output_queue;
3319 sd->output_queue = NULL;
3320 sd->output_queue_tailp = &sd->output_queue;
3321 local_irq_enable();
3322
3323 while (head) {
3324 struct Qdisc *q = head;
3325 spinlock_t *root_lock;
3326
3327 head = head->next_sched;
3328
3329 root_lock = qdisc_lock(q);
3330 if (spin_trylock(root_lock)) {
3331 smp_mb__before_clear_bit();
3332 clear_bit(__QDISC_STATE_SCHED,
3333 &q->state);
3334 qdisc_run(q);
3335 spin_unlock(root_lock);
3336 } else {
3337 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3338 &q->state)) {
3339 __netif_reschedule(q);
3340 } else {
3341 smp_mb__before_clear_bit();
3342 clear_bit(__QDISC_STATE_SCHED,
3343 &q->state);
3344 }
3345 }
3346 }
3347 }
3348}
3349
3350#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3351 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3352/* This hook is defined here for ATM LANE */
3353int (*br_fdb_test_addr_hook)(struct net_device *dev,
3354 unsigned char *addr) __read_mostly;
3355EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3356#endif
3357
3358#ifdef CONFIG_NET_CLS_ACT
3359/* TODO: Maybe we should just force sch_ingress to be compiled in
3360 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3361 * a compare and 2 stores extra right now if we dont have it on
3362 * but have CONFIG_NET_CLS_ACT
3363 * NOTE: This doesn't stop any functionality; if you dont have
3364 * the ingress scheduler, you just can't add policies on ingress.
3365 *
3366 */
3367static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3368{
3369 struct net_device *dev = skb->dev;
3370 u32 ttl = G_TC_RTTL(skb->tc_verd);
3371 int result = TC_ACT_OK;
3372 struct Qdisc *q;
3373
3374 if (unlikely(MAX_RED_LOOP < ttl++)) {
3375 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3376 skb->skb_iif, dev->ifindex);
3377 return TC_ACT_SHOT;
3378 }
3379
3380 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3381 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3382
3383 q = rxq->qdisc;
3384 if (q != &noop_qdisc) {
3385 spin_lock(qdisc_lock(q));
3386 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3387 result = qdisc_enqueue_root(skb, q);
3388 spin_unlock(qdisc_lock(q));
3389 }
3390
3391 return result;
3392}
3393
3394static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3395 struct packet_type **pt_prev,
3396 int *ret, struct net_device *orig_dev)
3397{
3398 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3399
3400 if (!rxq || rxq->qdisc == &noop_qdisc)
3401 goto out;
3402
3403 if (*pt_prev) {
3404 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3405 *pt_prev = NULL;
3406 }
3407
3408 switch (ing_filter(skb, rxq)) {
3409 case TC_ACT_SHOT:
3410 case TC_ACT_STOLEN:
3411 kfree_skb(skb);
3412 return NULL;
3413 }
3414
3415out:
3416 skb->tc_verd = 0;
3417 return skb;
3418}
3419#endif
3420
3421/**
3422 * netdev_rx_handler_register - register receive handler
3423 * @dev: device to register a handler for
3424 * @rx_handler: receive handler to register
3425 * @rx_handler_data: data pointer that is used by rx handler
3426 *
3427 * Register a receive hander for a device. This handler will then be
3428 * called from __netif_receive_skb. A negative errno code is returned
3429 * on a failure.
3430 *
3431 * The caller must hold the rtnl_mutex.
3432 *
3433 * For a general description of rx_handler, see enum rx_handler_result.
3434 */
3435int netdev_rx_handler_register(struct net_device *dev,
3436 rx_handler_func_t *rx_handler,
3437 void *rx_handler_data)
3438{
3439 ASSERT_RTNL();
3440
3441 if (dev->rx_handler)
3442 return -EBUSY;
3443
3444 /* Note: rx_handler_data must be set before rx_handler */
3445 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3446 rcu_assign_pointer(dev->rx_handler, rx_handler);
3447
3448 return 0;
3449}
3450EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3451
3452/**
3453 * netdev_rx_handler_unregister - unregister receive handler
3454 * @dev: device to unregister a handler from
3455 *
3456 * Unregister a receive handler from a device.
3457 *
3458 * The caller must hold the rtnl_mutex.
3459 */
3460void netdev_rx_handler_unregister(struct net_device *dev)
3461{
3462
3463 ASSERT_RTNL();
3464 RCU_INIT_POINTER(dev->rx_handler, NULL);
3465 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3466 * section has a guarantee to see a non NULL rx_handler_data
3467 * as well.
3468 */
3469 synchronize_net();
3470 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3471}
3472EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3473
3474/*
3475 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3476 * the special handling of PFMEMALLOC skbs.
3477 */
3478static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3479{
3480 switch (skb->protocol) {
3481 case __constant_htons(ETH_P_ARP):
3482 case __constant_htons(ETH_P_IP):
3483 case __constant_htons(ETH_P_IPV6):
3484 case __constant_htons(ETH_P_8021Q):
3485 case __constant_htons(ETH_P_8021AD):
3486 return true;
3487 default:
3488 return false;
3489 }
3490}
3491
3492static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3493{
3494 struct packet_type *ptype, *pt_prev;
3495 rx_handler_func_t *rx_handler;
3496 struct net_device *orig_dev;
3497 struct net_device *null_or_dev;
3498 bool deliver_exact = false;
3499 int ret = NET_RX_DROP;
3500 __be16 type;
3501
3502 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3503
3504 trace_netif_receive_skb(skb);
3505
3506 /* if we've gotten here through NAPI, check netpoll */
3507 if (netpoll_receive_skb(skb))
3508 goto out;
3509
3510 orig_dev = skb->dev;
3511
3512 skb_reset_network_header(skb);
3513 if (!skb_transport_header_was_set(skb))
3514 skb_reset_transport_header(skb);
3515 skb_reset_mac_len(skb);
3516
3517 pt_prev = NULL;
3518
3519 rcu_read_lock();
3520
3521another_round:
3522 skb->skb_iif = skb->dev->ifindex;
3523
3524 __this_cpu_inc(softnet_data.processed);
3525
3526 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3527 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3528 skb = vlan_untag(skb);
3529 if (unlikely(!skb))
3530 goto unlock;
3531 }
3532
3533#ifdef CONFIG_NET_CLS_ACT
3534 if (skb->tc_verd & TC_NCLS) {
3535 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3536 goto ncls;
3537 }
3538#endif
3539
3540 if (pfmemalloc)
3541 goto skip_taps;
3542
3543 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3544 if (!ptype->dev || ptype->dev == skb->dev) {
3545 if (pt_prev)
3546 ret = deliver_skb(skb, pt_prev, orig_dev);
3547 pt_prev = ptype;
3548 }
3549 }
3550
3551skip_taps:
3552#ifdef CONFIG_NET_CLS_ACT
3553 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3554 if (!skb)
3555 goto unlock;
3556ncls:
3557#endif
3558
3559 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3560 goto drop;
3561
3562 if (vlan_tx_tag_present(skb)) {
3563 if (pt_prev) {
3564 ret = deliver_skb(skb, pt_prev, orig_dev);
3565 pt_prev = NULL;
3566 }
3567 if (vlan_do_receive(&skb))
3568 goto another_round;
3569 else if (unlikely(!skb))
3570 goto unlock;
3571 }
3572
3573 rx_handler = rcu_dereference(skb->dev->rx_handler);
3574 if (rx_handler) {
3575 if (pt_prev) {
3576 ret = deliver_skb(skb, pt_prev, orig_dev);
3577 pt_prev = NULL;
3578 }
3579 switch (rx_handler(&skb)) {
3580 case RX_HANDLER_CONSUMED:
3581 ret = NET_RX_SUCCESS;
3582 goto unlock;
3583 case RX_HANDLER_ANOTHER:
3584 goto another_round;
3585 case RX_HANDLER_EXACT:
3586 deliver_exact = true;
3587 case RX_HANDLER_PASS:
3588 break;
3589 default:
3590 BUG();
3591 }
3592 }
3593
3594 if (unlikely(vlan_tx_tag_present(skb))) {
3595 if (vlan_tx_tag_get_id(skb))
3596 skb->pkt_type = PACKET_OTHERHOST;
3597 /* Note: we might in the future use prio bits
3598 * and set skb->priority like in vlan_do_receive()
3599 * For the time being, just ignore Priority Code Point
3600 */
3601 skb->vlan_tci = 0;
3602 }
3603
3604 /* deliver only exact match when indicated */
3605 null_or_dev = deliver_exact ? skb->dev : NULL;
3606
3607 type = skb->protocol;
3608 list_for_each_entry_rcu(ptype,
3609 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3610 if (ptype->type == type &&
3611 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3612 ptype->dev == orig_dev)) {
3613 if (pt_prev)
3614 ret = deliver_skb(skb, pt_prev, orig_dev);
3615 pt_prev = ptype;
3616 }
3617 }
3618
3619 if (pt_prev) {
3620 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3621 goto drop;
3622 else
3623 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3624 } else {
3625drop:
3626 atomic_long_inc(&skb->dev->rx_dropped);
3627 kfree_skb(skb);
3628 /* Jamal, now you will not able to escape explaining
3629 * me how you were going to use this. :-)
3630 */
3631 ret = NET_RX_DROP;
3632 }
3633
3634unlock:
3635 rcu_read_unlock();
3636out:
3637 return ret;
3638}
3639
3640static int __netif_receive_skb(struct sk_buff *skb)
3641{
3642 int ret;
3643
3644 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3645 unsigned long pflags = current->flags;
3646
3647 /*
3648 * PFMEMALLOC skbs are special, they should
3649 * - be delivered to SOCK_MEMALLOC sockets only
3650 * - stay away from userspace
3651 * - have bounded memory usage
3652 *
3653 * Use PF_MEMALLOC as this saves us from propagating the allocation
3654 * context down to all allocation sites.
3655 */
3656 current->flags |= PF_MEMALLOC;
3657 ret = __netif_receive_skb_core(skb, true);
3658 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3659 } else
3660 ret = __netif_receive_skb_core(skb, false);
3661
3662 return ret;
3663}
3664
3665/**
3666 * netif_receive_skb - process receive buffer from network
3667 * @skb: buffer to process
3668 *
3669 * netif_receive_skb() is the main receive data processing function.
3670 * It always succeeds. The buffer may be dropped during processing
3671 * for congestion control or by the protocol layers.
3672 *
3673 * This function may only be called from softirq context and interrupts
3674 * should be enabled.
3675 *
3676 * Return values (usually ignored):
3677 * NET_RX_SUCCESS: no congestion
3678 * NET_RX_DROP: packet was dropped
3679 */
3680int netif_receive_skb(struct sk_buff *skb)
3681{
3682 net_timestamp_check(netdev_tstamp_prequeue, skb);
3683
3684 if (skb_defer_rx_timestamp(skb))
3685 return NET_RX_SUCCESS;
3686
3687#ifdef CONFIG_RPS
3688 if (static_key_false(&rps_needed)) {
3689 struct rps_dev_flow voidflow, *rflow = &voidflow;
3690 int cpu, ret;
3691
3692 rcu_read_lock();
3693
3694 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3695
3696 if (cpu >= 0) {
3697 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3698 rcu_read_unlock();
3699 return ret;
3700 }
3701 rcu_read_unlock();
3702 }
3703#endif
3704 return __netif_receive_skb(skb);
3705}
3706EXPORT_SYMBOL(netif_receive_skb);
3707
3708/* Network device is going away, flush any packets still pending
3709 * Called with irqs disabled.
3710 */
3711static void flush_backlog(void *arg)
3712{
3713 struct net_device *dev = arg;
3714 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3715 struct sk_buff *skb, *tmp;
3716
3717 rps_lock(sd);
3718 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3719 if (skb->dev == dev) {
3720 __skb_unlink(skb, &sd->input_pkt_queue);
3721 kfree_skb(skb);
3722 input_queue_head_incr(sd);
3723 }
3724 }
3725 rps_unlock(sd);
3726
3727 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3728 if (skb->dev == dev) {
3729 __skb_unlink(skb, &sd->process_queue);
3730 kfree_skb(skb);
3731 input_queue_head_incr(sd);
3732 }
3733 }
3734}
3735
3736static int napi_gro_complete(struct sk_buff *skb)
3737{
3738 struct packet_offload *ptype;
3739 __be16 type = skb->protocol;
3740 struct list_head *head = &offload_base;
3741 int err = -ENOENT;
3742
3743 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3744
3745 if (NAPI_GRO_CB(skb)->count == 1) {
3746 skb_shinfo(skb)->gso_size = 0;
3747 goto out;
3748 }
3749
3750 rcu_read_lock();
3751 list_for_each_entry_rcu(ptype, head, list) {
3752 if (ptype->type != type || !ptype->callbacks.gro_complete)
3753 continue;
3754
3755 err = ptype->callbacks.gro_complete(skb, 0);
3756 break;
3757 }
3758 rcu_read_unlock();
3759
3760 if (err) {
3761 WARN_ON(&ptype->list == head);
3762 kfree_skb(skb);
3763 return NET_RX_SUCCESS;
3764 }
3765
3766out:
3767 return netif_receive_skb(skb);
3768}
3769
3770/* napi->gro_list contains packets ordered by age.
3771 * youngest packets at the head of it.
3772 * Complete skbs in reverse order to reduce latencies.
3773 */
3774void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3775{
3776 struct sk_buff *skb, *prev = NULL;
3777
3778 /* scan list and build reverse chain */
3779 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3780 skb->prev = prev;
3781 prev = skb;
3782 }
3783
3784 for (skb = prev; skb; skb = prev) {
3785 skb->next = NULL;
3786
3787 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3788 return;
3789
3790 prev = skb->prev;
3791 napi_gro_complete(skb);
3792 napi->gro_count--;
3793 }
3794
3795 napi->gro_list = NULL;
3796}
3797EXPORT_SYMBOL(napi_gro_flush);
3798
3799static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3800{
3801 struct sk_buff *p;
3802 unsigned int maclen = skb->dev->hard_header_len;
3803
3804 for (p = napi->gro_list; p; p = p->next) {
3805 unsigned long diffs;
3806
3807 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3808 diffs |= p->vlan_tci ^ skb->vlan_tci;
3809 if (maclen == ETH_HLEN)
3810 diffs |= compare_ether_header(skb_mac_header(p),
3811 skb_gro_mac_header(skb));
3812 else if (!diffs)
3813 diffs = memcmp(skb_mac_header(p),
3814 skb_gro_mac_header(skb),
3815 maclen);
3816 NAPI_GRO_CB(p)->same_flow = !diffs;
3817 NAPI_GRO_CB(p)->flush = 0;
3818 }
3819}
3820
3821static void skb_gro_reset_offset(struct sk_buff *skb)
3822{
3823 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3824 const skb_frag_t *frag0 = &pinfo->frags[0];
3825
3826 NAPI_GRO_CB(skb)->data_offset = 0;
3827 NAPI_GRO_CB(skb)->frag0 = NULL;
3828 NAPI_GRO_CB(skb)->frag0_len = 0;
3829
3830 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3831 pinfo->nr_frags &&
3832 !PageHighMem(skb_frag_page(frag0))) {
3833 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3834 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3835 }
3836}
3837
3838static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3839{
3840 struct sk_buff **pp = NULL;
3841 struct packet_offload *ptype;
3842 __be16 type = skb->protocol;
3843 struct list_head *head = &offload_base;
3844 int same_flow;
3845 enum gro_result ret;
3846
3847 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3848 goto normal;
3849
3850 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3851 goto normal;
3852
3853 skb_gro_reset_offset(skb);
3854 gro_list_prepare(napi, skb);
3855 NAPI_GRO_CB(skb)->csum = skb->csum; /* Needed for CHECKSUM_COMPLETE */
3856
3857 rcu_read_lock();
3858 list_for_each_entry_rcu(ptype, head, list) {
3859 if (ptype->type != type || !ptype->callbacks.gro_receive)
3860 continue;
3861
3862 skb_set_network_header(skb, skb_gro_offset(skb));
3863 skb_reset_mac_len(skb);
3864 NAPI_GRO_CB(skb)->same_flow = 0;
3865 NAPI_GRO_CB(skb)->flush = 0;
3866 NAPI_GRO_CB(skb)->free = 0;
3867
3868 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3869 break;
3870 }
3871 rcu_read_unlock();
3872
3873 if (&ptype->list == head)
3874 goto normal;
3875
3876 same_flow = NAPI_GRO_CB(skb)->same_flow;
3877 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3878
3879 if (pp) {
3880 struct sk_buff *nskb = *pp;
3881
3882 *pp = nskb->next;
3883 nskb->next = NULL;
3884 napi_gro_complete(nskb);
3885 napi->gro_count--;
3886 }
3887
3888 if (same_flow)
3889 goto ok;
3890
3891 if (NAPI_GRO_CB(skb)->flush)
3892 goto normal;
3893
3894 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
3895 struct sk_buff *nskb = napi->gro_list;
3896
3897 /* locate the end of the list to select the 'oldest' flow */
3898 while (nskb->next) {
3899 pp = &nskb->next;
3900 nskb = *pp;
3901 }
3902 *pp = NULL;
3903 nskb->next = NULL;
3904 napi_gro_complete(nskb);
3905 } else {
3906 napi->gro_count++;
3907 }
3908 NAPI_GRO_CB(skb)->count = 1;
3909 NAPI_GRO_CB(skb)->age = jiffies;
3910 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3911 skb->next = napi->gro_list;
3912 napi->gro_list = skb;
3913 ret = GRO_HELD;
3914
3915pull:
3916 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3917 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3918
3919 BUG_ON(skb->end - skb->tail < grow);
3920
3921 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3922
3923 skb->tail += grow;
3924 skb->data_len -= grow;
3925
3926 skb_shinfo(skb)->frags[0].page_offset += grow;
3927 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3928
3929 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3930 skb_frag_unref(skb, 0);
3931 memmove(skb_shinfo(skb)->frags,
3932 skb_shinfo(skb)->frags + 1,
3933 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3934 }
3935 }
3936
3937ok:
3938 return ret;
3939
3940normal:
3941 ret = GRO_NORMAL;
3942 goto pull;
3943}
3944
3945struct packet_offload *gro_find_receive_by_type(__be16 type)
3946{
3947 struct list_head *offload_head = &offload_base;
3948 struct packet_offload *ptype;
3949
3950 list_for_each_entry_rcu(ptype, offload_head, list) {
3951 if (ptype->type != type || !ptype->callbacks.gro_receive)
3952 continue;
3953 return ptype;
3954 }
3955 return NULL;
3956}
3957
3958struct packet_offload *gro_find_complete_by_type(__be16 type)
3959{
3960 struct list_head *offload_head = &offload_base;
3961 struct packet_offload *ptype;
3962
3963 list_for_each_entry_rcu(ptype, offload_head, list) {
3964 if (ptype->type != type || !ptype->callbacks.gro_complete)
3965 continue;
3966 return ptype;
3967 }
3968 return NULL;
3969}
3970
3971static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3972{
3973 switch (ret) {
3974 case GRO_NORMAL:
3975 if (netif_receive_skb(skb))
3976 ret = GRO_DROP;
3977 break;
3978
3979 case GRO_DROP:
3980 kfree_skb(skb);
3981 break;
3982
3983 case GRO_MERGED_FREE:
3984 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3985 kmem_cache_free(skbuff_head_cache, skb);
3986 else
3987 __kfree_skb(skb);
3988 break;
3989
3990 case GRO_HELD:
3991 case GRO_MERGED:
3992 break;
3993 }
3994
3995 return ret;
3996}
3997
3998gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3999{
4000 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4001}
4002EXPORT_SYMBOL(napi_gro_receive);
4003
4004static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4005{
4006 __skb_pull(skb, skb_headlen(skb));
4007 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4008 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4009 skb->vlan_tci = 0;
4010 skb->dev = napi->dev;
4011 skb->skb_iif = 0;
4012
4013 napi->skb = skb;
4014}
4015
4016struct sk_buff *napi_get_frags(struct napi_struct *napi)
4017{
4018 struct sk_buff *skb = napi->skb;
4019
4020 if (!skb) {
4021 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
4022 napi->skb = skb;
4023 }
4024 return skb;
4025}
4026EXPORT_SYMBOL(napi_get_frags);
4027
4028static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
4029 gro_result_t ret)
4030{
4031 switch (ret) {
4032 case GRO_NORMAL:
4033 if (netif_receive_skb(skb))
4034 ret = GRO_DROP;
4035 break;
4036
4037 case GRO_DROP:
4038 case GRO_MERGED_FREE:
4039 napi_reuse_skb(napi, skb);
4040 break;
4041
4042 case GRO_HELD:
4043 case GRO_MERGED:
4044 break;
4045 }
4046
4047 return ret;
4048}
4049
4050static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4051{
4052 struct sk_buff *skb = napi->skb;
4053
4054 napi->skb = NULL;
4055
4056 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) {
4057 napi_reuse_skb(napi, skb);
4058 return NULL;
4059 }
4060 skb->protocol = eth_type_trans(skb, skb->dev);
4061
4062 return skb;
4063}
4064
4065gro_result_t napi_gro_frags(struct napi_struct *napi)
4066{
4067 struct sk_buff *skb = napi_frags_skb(napi);
4068
4069 if (!skb)
4070 return GRO_DROP;
4071
4072 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4073}
4074EXPORT_SYMBOL(napi_gro_frags);
4075
4076/*
4077 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4078 * Note: called with local irq disabled, but exits with local irq enabled.
4079 */
4080static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4081{
4082#ifdef CONFIG_RPS
4083 struct softnet_data *remsd = sd->rps_ipi_list;
4084
4085 if (remsd) {
4086 sd->rps_ipi_list = NULL;
4087
4088 local_irq_enable();
4089
4090 /* Send pending IPI's to kick RPS processing on remote cpus. */
4091 while (remsd) {
4092 struct softnet_data *next = remsd->rps_ipi_next;
4093
4094 if (cpu_online(remsd->cpu))
4095 __smp_call_function_single(remsd->cpu,
4096 &remsd->csd, 0);
4097 remsd = next;
4098 }
4099 } else
4100#endif
4101 local_irq_enable();
4102}
4103
4104static int process_backlog(struct napi_struct *napi, int quota)
4105{
4106 int work = 0;
4107 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4108
4109#ifdef CONFIG_RPS
4110 /* Check if we have pending ipi, its better to send them now,
4111 * not waiting net_rx_action() end.
4112 */
4113 if (sd->rps_ipi_list) {
4114 local_irq_disable();
4115 net_rps_action_and_irq_enable(sd);
4116 }
4117#endif
4118 napi->weight = weight_p;
4119 local_irq_disable();
4120 while (work < quota) {
4121 struct sk_buff *skb;
4122 unsigned int qlen;
4123
4124 while ((skb = __skb_dequeue(&sd->process_queue))) {
4125 local_irq_enable();
4126 __netif_receive_skb(skb);
4127 local_irq_disable();
4128 input_queue_head_incr(sd);
4129 if (++work >= quota) {
4130 local_irq_enable();
4131 return work;
4132 }
4133 }
4134
4135 rps_lock(sd);
4136 qlen = skb_queue_len(&sd->input_pkt_queue);
4137 if (qlen)
4138 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4139 &sd->process_queue);
4140
4141 if (qlen < quota - work) {
4142 /*
4143 * Inline a custom version of __napi_complete().
4144 * only current cpu owns and manipulates this napi,
4145 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
4146 * we can use a plain write instead of clear_bit(),
4147 * and we dont need an smp_mb() memory barrier.
4148 */
4149 list_del(&napi->poll_list);
4150 napi->state = 0;
4151
4152 quota = work + qlen;
4153 }
4154 rps_unlock(sd);
4155 }
4156 local_irq_enable();
4157
4158 return work;
4159}
4160
4161/**
4162 * __napi_schedule - schedule for receive
4163 * @n: entry to schedule
4164 *
4165 * The entry's receive function will be scheduled to run
4166 */
4167void __napi_schedule(struct napi_struct *n)
4168{
4169 unsigned long flags;
4170
4171 local_irq_save(flags);
4172 ____napi_schedule(&__get_cpu_var(softnet_data), n);
4173 local_irq_restore(flags);
4174}
4175EXPORT_SYMBOL(__napi_schedule);
4176
4177void __napi_complete(struct napi_struct *n)
4178{
4179 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4180 BUG_ON(n->gro_list);
4181
4182 list_del(&n->poll_list);
4183 smp_mb__before_clear_bit();
4184 clear_bit(NAPI_STATE_SCHED, &n->state);
4185}
4186EXPORT_SYMBOL(__napi_complete);
4187
4188void napi_complete(struct napi_struct *n)
4189{
4190 unsigned long flags;
4191
4192 /*
4193 * don't let napi dequeue from the cpu poll list
4194 * just in case its running on a different cpu
4195 */
4196 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4197 return;
4198
4199 napi_gro_flush(n, false);
4200 local_irq_save(flags);
4201 __napi_complete(n);
4202 local_irq_restore(flags);
4203}
4204EXPORT_SYMBOL(napi_complete);
4205
4206/* must be called under rcu_read_lock(), as we dont take a reference */
4207struct napi_struct *napi_by_id(unsigned int napi_id)
4208{
4209 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4210 struct napi_struct *napi;
4211
4212 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4213 if (napi->napi_id == napi_id)
4214 return napi;
4215
4216 return NULL;
4217}
4218EXPORT_SYMBOL_GPL(napi_by_id);
4219
4220void napi_hash_add(struct napi_struct *napi)
4221{
4222 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4223
4224 spin_lock(&napi_hash_lock);
4225
4226 /* 0 is not a valid id, we also skip an id that is taken
4227 * we expect both events to be extremely rare
4228 */
4229 napi->napi_id = 0;
4230 while (!napi->napi_id) {
4231 napi->napi_id = ++napi_gen_id;
4232 if (napi_by_id(napi->napi_id))
4233 napi->napi_id = 0;
4234 }
4235
4236 hlist_add_head_rcu(&napi->napi_hash_node,
4237 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4238
4239 spin_unlock(&napi_hash_lock);
4240 }
4241}
4242EXPORT_SYMBOL_GPL(napi_hash_add);
4243
4244/* Warning : caller is responsible to make sure rcu grace period
4245 * is respected before freeing memory containing @napi
4246 */
4247void napi_hash_del(struct napi_struct *napi)
4248{
4249 spin_lock(&napi_hash_lock);
4250
4251 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4252 hlist_del_rcu(&napi->napi_hash_node);
4253
4254 spin_unlock(&napi_hash_lock);
4255}
4256EXPORT_SYMBOL_GPL(napi_hash_del);
4257
4258void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4259 int (*poll)(struct napi_struct *, int), int weight)
4260{
4261 INIT_LIST_HEAD(&napi->poll_list);
4262 napi->gro_count = 0;
4263 napi->gro_list = NULL;
4264 napi->skb = NULL;
4265 napi->poll = poll;
4266 if (weight > NAPI_POLL_WEIGHT)
4267 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4268 weight, dev->name);
4269 napi->weight = weight;
4270 list_add(&napi->dev_list, &dev->napi_list);
4271 napi->dev = dev;
4272#ifdef CONFIG_NETPOLL
4273 spin_lock_init(&napi->poll_lock);
4274 napi->poll_owner = -1;
4275#endif
4276 set_bit(NAPI_STATE_SCHED, &napi->state);
4277}
4278EXPORT_SYMBOL(netif_napi_add);
4279
4280void netif_napi_del(struct napi_struct *napi)
4281{
4282 list_del_init(&napi->dev_list);
4283 napi_free_frags(napi);
4284
4285 kfree_skb_list(napi->gro_list);
4286 napi->gro_list = NULL;
4287 napi->gro_count = 0;
4288}
4289EXPORT_SYMBOL(netif_napi_del);
4290
4291static void net_rx_action(struct softirq_action *h)
4292{
4293 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4294 unsigned long time_limit = jiffies + 2;
4295 int budget = netdev_budget;
4296 void *have;
4297
4298 local_irq_disable();
4299
4300 while (!list_empty(&sd->poll_list)) {
4301 struct napi_struct *n;
4302 int work, weight;
4303
4304 /* If softirq window is exhuasted then punt.
4305 * Allow this to run for 2 jiffies since which will allow
4306 * an average latency of 1.5/HZ.
4307 */
4308 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4309 goto softnet_break;
4310
4311 local_irq_enable();
4312
4313 /* Even though interrupts have been re-enabled, this
4314 * access is safe because interrupts can only add new
4315 * entries to the tail of this list, and only ->poll()
4316 * calls can remove this head entry from the list.
4317 */
4318 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4319
4320 have = netpoll_poll_lock(n);
4321
4322 weight = n->weight;
4323
4324 /* This NAPI_STATE_SCHED test is for avoiding a race
4325 * with netpoll's poll_napi(). Only the entity which
4326 * obtains the lock and sees NAPI_STATE_SCHED set will
4327 * actually make the ->poll() call. Therefore we avoid
4328 * accidentally calling ->poll() when NAPI is not scheduled.
4329 */
4330 work = 0;
4331 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4332 work = n->poll(n, weight);
4333 trace_napi_poll(n);
4334 }
4335
4336 WARN_ON_ONCE(work > weight);
4337
4338 budget -= work;
4339
4340 local_irq_disable();
4341
4342 /* Drivers must not modify the NAPI state if they
4343 * consume the entire weight. In such cases this code
4344 * still "owns" the NAPI instance and therefore can
4345 * move the instance around on the list at-will.
4346 */
4347 if (unlikely(work == weight)) {
4348 if (unlikely(napi_disable_pending(n))) {
4349 local_irq_enable();
4350 napi_complete(n);
4351 local_irq_disable();
4352 } else {
4353 if (n->gro_list) {
4354 /* flush too old packets
4355 * If HZ < 1000, flush all packets.
4356 */
4357 local_irq_enable();
4358 napi_gro_flush(n, HZ >= 1000);
4359 local_irq_disable();
4360 }
4361 list_move_tail(&n->poll_list, &sd->poll_list);
4362 }
4363 }
4364
4365 netpoll_poll_unlock(have);
4366 }
4367out:
4368 net_rps_action_and_irq_enable(sd);
4369
4370#ifdef CONFIG_NET_DMA
4371 /*
4372 * There may not be any more sk_buffs coming right now, so push
4373 * any pending DMA copies to hardware
4374 */
4375 dma_issue_pending_all();
4376#endif
4377
4378 return;
4379
4380softnet_break:
4381 sd->time_squeeze++;
4382 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4383 goto out;
4384}
4385
4386struct netdev_adjacent {
4387 struct net_device *dev;
4388
4389 /* upper master flag, there can only be one master device per list */
4390 bool master;
4391
4392 /* counter for the number of times this device was added to us */
4393 u16 ref_nr;
4394
4395 /* private field for the users */
4396 void *private;
4397
4398 struct list_head list;
4399 struct rcu_head rcu;
4400};
4401
4402static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4403 struct net_device *adj_dev,
4404 struct list_head *adj_list)
4405{
4406 struct netdev_adjacent *adj;
4407
4408 list_for_each_entry(adj, adj_list, list) {
4409 if (adj->dev == adj_dev)
4410 return adj;
4411 }
4412 return NULL;
4413}
4414
4415/**
4416 * netdev_has_upper_dev - Check if device is linked to an upper device
4417 * @dev: device
4418 * @upper_dev: upper device to check
4419 *
4420 * Find out if a device is linked to specified upper device and return true
4421 * in case it is. Note that this checks only immediate upper device,
4422 * not through a complete stack of devices. The caller must hold the RTNL lock.
4423 */
4424bool netdev_has_upper_dev(struct net_device *dev,
4425 struct net_device *upper_dev)
4426{
4427 ASSERT_RTNL();
4428
4429 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4430}
4431EXPORT_SYMBOL(netdev_has_upper_dev);
4432
4433/**
4434 * netdev_has_any_upper_dev - Check if device is linked to some device
4435 * @dev: device
4436 *
4437 * Find out if a device is linked to an upper device and return true in case
4438 * it is. The caller must hold the RTNL lock.
4439 */
4440static bool netdev_has_any_upper_dev(struct net_device *dev)
4441{
4442 ASSERT_RTNL();
4443
4444 return !list_empty(&dev->all_adj_list.upper);
4445}
4446
4447/**
4448 * netdev_master_upper_dev_get - Get master upper device
4449 * @dev: device
4450 *
4451 * Find a master upper device and return pointer to it or NULL in case
4452 * it's not there. The caller must hold the RTNL lock.
4453 */
4454struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4455{
4456 struct netdev_adjacent *upper;
4457
4458 ASSERT_RTNL();
4459
4460 if (list_empty(&dev->adj_list.upper))
4461 return NULL;
4462
4463 upper = list_first_entry(&dev->adj_list.upper,
4464 struct netdev_adjacent, list);
4465 if (likely(upper->master))
4466 return upper->dev;
4467 return NULL;
4468}
4469EXPORT_SYMBOL(netdev_master_upper_dev_get);
4470
4471void *netdev_adjacent_get_private(struct list_head *adj_list)
4472{
4473 struct netdev_adjacent *adj;
4474
4475 adj = list_entry(adj_list, struct netdev_adjacent, list);
4476
4477 return adj->private;
4478}
4479EXPORT_SYMBOL(netdev_adjacent_get_private);
4480
4481/**
4482 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4483 * @dev: device
4484 * @iter: list_head ** of the current position
4485 *
4486 * Gets the next device from the dev's upper list, starting from iter
4487 * position. The caller must hold RCU read lock.
4488 */
4489struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4490 struct list_head **iter)
4491{
4492 struct netdev_adjacent *upper;
4493
4494 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4495
4496 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4497
4498 if (&upper->list == &dev->all_adj_list.upper)
4499 return NULL;
4500
4501 *iter = &upper->list;
4502
4503 return upper->dev;
4504}
4505EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4506
4507/**
4508 * netdev_lower_get_next_private - Get the next ->private from the
4509 * lower neighbour list
4510 * @dev: device
4511 * @iter: list_head ** of the current position
4512 *
4513 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4514 * list, starting from iter position. The caller must hold either hold the
4515 * RTNL lock or its own locking that guarantees that the neighbour lower
4516 * list will remain unchainged.
4517 */
4518void *netdev_lower_get_next_private(struct net_device *dev,
4519 struct list_head **iter)
4520{
4521 struct netdev_adjacent *lower;
4522
4523 lower = list_entry(*iter, struct netdev_adjacent, list);
4524
4525 if (&lower->list == &dev->adj_list.lower)
4526 return NULL;
4527
4528 if (iter)
4529 *iter = lower->list.next;
4530
4531 return lower->private;
4532}
4533EXPORT_SYMBOL(netdev_lower_get_next_private);
4534
4535/**
4536 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4537 * lower neighbour list, RCU
4538 * variant
4539 * @dev: device
4540 * @iter: list_head ** of the current position
4541 *
4542 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4543 * list, starting from iter position. The caller must hold RCU read lock.
4544 */
4545void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4546 struct list_head **iter)
4547{
4548 struct netdev_adjacent *lower;
4549
4550 WARN_ON_ONCE(!rcu_read_lock_held());
4551
4552 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4553
4554 if (&lower->list == &dev->adj_list.lower)
4555 return NULL;
4556
4557 if (iter)
4558 *iter = &lower->list;
4559
4560 return lower->private;
4561}
4562EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4563
4564/**
4565 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4566 * lower neighbour list, RCU
4567 * variant
4568 * @dev: device
4569 *
4570 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4571 * list. The caller must hold RCU read lock.
4572 */
4573void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4574{
4575 struct netdev_adjacent *lower;
4576
4577 lower = list_first_or_null_rcu(&dev->adj_list.lower,
4578 struct netdev_adjacent, list);
4579 if (lower)
4580 return lower->private;
4581 return NULL;
4582}
4583EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4584
4585/**
4586 * netdev_master_upper_dev_get_rcu - Get master upper device
4587 * @dev: device
4588 *
4589 * Find a master upper device and return pointer to it or NULL in case
4590 * it's not there. The caller must hold the RCU read lock.
4591 */
4592struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4593{
4594 struct netdev_adjacent *upper;
4595
4596 upper = list_first_or_null_rcu(&dev->adj_list.upper,
4597 struct netdev_adjacent, list);
4598 if (upper && likely(upper->master))
4599 return upper->dev;
4600 return NULL;
4601}
4602EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4603
4604static int __netdev_adjacent_dev_insert(struct net_device *dev,
4605 struct net_device *adj_dev,
4606 struct list_head *dev_list,
4607 void *private, bool master)
4608{
4609 struct netdev_adjacent *adj;
4610 char linkname[IFNAMSIZ+7];
4611 int ret;
4612
4613 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4614
4615 if (adj) {
4616 adj->ref_nr++;
4617 return 0;
4618 }
4619
4620 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4621 if (!adj)
4622 return -ENOMEM;
4623
4624 adj->dev = adj_dev;
4625 adj->master = master;
4626 adj->ref_nr = 1;
4627 adj->private = private;
4628 dev_hold(adj_dev);
4629
4630 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4631 adj_dev->name, dev->name, adj_dev->name);
4632
4633 if (dev_list == &dev->adj_list.lower) {
4634 sprintf(linkname, "lower_%s", adj_dev->name);
4635 ret = sysfs_create_link(&(dev->dev.kobj),
4636 &(adj_dev->dev.kobj), linkname);
4637 if (ret)
4638 goto free_adj;
4639 } else if (dev_list == &dev->adj_list.upper) {
4640 sprintf(linkname, "upper_%s", adj_dev->name);
4641 ret = sysfs_create_link(&(dev->dev.kobj),
4642 &(adj_dev->dev.kobj), linkname);
4643 if (ret)
4644 goto free_adj;
4645 }
4646
4647 /* Ensure that master link is always the first item in list. */
4648 if (master) {
4649 ret = sysfs_create_link(&(dev->dev.kobj),
4650 &(adj_dev->dev.kobj), "master");
4651 if (ret)
4652 goto remove_symlinks;
4653
4654 list_add_rcu(&adj->list, dev_list);
4655 } else {
4656 list_add_tail_rcu(&adj->list, dev_list);
4657 }
4658
4659 return 0;
4660
4661remove_symlinks:
4662 if (dev_list == &dev->adj_list.lower) {
4663 sprintf(linkname, "lower_%s", adj_dev->name);
4664 sysfs_remove_link(&(dev->dev.kobj), linkname);
4665 } else if (dev_list == &dev->adj_list.upper) {
4666 sprintf(linkname, "upper_%s", adj_dev->name);
4667 sysfs_remove_link(&(dev->dev.kobj), linkname);
4668 }
4669
4670free_adj:
4671 kfree(adj);
4672 dev_put(adj_dev);
4673
4674 return ret;
4675}
4676
4677static void __netdev_adjacent_dev_remove(struct net_device *dev,
4678 struct net_device *adj_dev,
4679 struct list_head *dev_list)
4680{
4681 struct netdev_adjacent *adj;
4682 char linkname[IFNAMSIZ+7];
4683
4684 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4685
4686 if (!adj) {
4687 pr_err("tried to remove device %s from %s\n",
4688 dev->name, adj_dev->name);
4689 BUG();
4690 }
4691
4692 if (adj->ref_nr > 1) {
4693 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4694 adj->ref_nr-1);
4695 adj->ref_nr--;
4696 return;
4697 }
4698
4699 if (adj->master)
4700 sysfs_remove_link(&(dev->dev.kobj), "master");
4701
4702 if (dev_list == &dev->adj_list.lower) {
4703 sprintf(linkname, "lower_%s", adj_dev->name);
4704 sysfs_remove_link(&(dev->dev.kobj), linkname);
4705 } else if (dev_list == &dev->adj_list.upper) {
4706 sprintf(linkname, "upper_%s", adj_dev->name);
4707 sysfs_remove_link(&(dev->dev.kobj), linkname);
4708 }
4709
4710 list_del_rcu(&adj->list);
4711 pr_debug("dev_put for %s, because link removed from %s to %s\n",
4712 adj_dev->name, dev->name, adj_dev->name);
4713 dev_put(adj_dev);
4714 kfree_rcu(adj, rcu);
4715}
4716
4717static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4718 struct net_device *upper_dev,
4719 struct list_head *up_list,
4720 struct list_head *down_list,
4721 void *private, bool master)
4722{
4723 int ret;
4724
4725 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4726 master);
4727 if (ret)
4728 return ret;
4729
4730 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
4731 false);
4732 if (ret) {
4733 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4734 return ret;
4735 }
4736
4737 return 0;
4738}
4739
4740static int __netdev_adjacent_dev_link(struct net_device *dev,
4741 struct net_device *upper_dev)
4742{
4743 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
4744 &dev->all_adj_list.upper,
4745 &upper_dev->all_adj_list.lower,
4746 NULL, false);
4747}
4748
4749static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
4750 struct net_device *upper_dev,
4751 struct list_head *up_list,
4752 struct list_head *down_list)
4753{
4754 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4755 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
4756}
4757
4758static void __netdev_adjacent_dev_unlink(struct net_device *dev,
4759 struct net_device *upper_dev)
4760{
4761 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4762 &dev->all_adj_list.upper,
4763 &upper_dev->all_adj_list.lower);
4764}
4765
4766static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
4767 struct net_device *upper_dev,
4768 void *private, bool master)
4769{
4770 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
4771
4772 if (ret)
4773 return ret;
4774
4775 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
4776 &dev->adj_list.upper,
4777 &upper_dev->adj_list.lower,
4778 private, master);
4779 if (ret) {
4780 __netdev_adjacent_dev_unlink(dev, upper_dev);
4781 return ret;
4782 }
4783
4784 return 0;
4785}
4786
4787static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
4788 struct net_device *upper_dev)
4789{
4790 __netdev_adjacent_dev_unlink(dev, upper_dev);
4791 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4792 &dev->adj_list.upper,
4793 &upper_dev->adj_list.lower);
4794}
4795
4796static int __netdev_upper_dev_link(struct net_device *dev,
4797 struct net_device *upper_dev, bool master,
4798 void *private)
4799{
4800 struct netdev_adjacent *i, *j, *to_i, *to_j;
4801 int ret = 0;
4802
4803 ASSERT_RTNL();
4804
4805 if (dev == upper_dev)
4806 return -EBUSY;
4807
4808 /* To prevent loops, check if dev is not upper device to upper_dev. */
4809 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
4810 return -EBUSY;
4811
4812 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
4813 return -EEXIST;
4814
4815 if (master && netdev_master_upper_dev_get(dev))
4816 return -EBUSY;
4817
4818 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
4819 master);
4820 if (ret)
4821 return ret;
4822
4823 /* Now that we linked these devs, make all the upper_dev's
4824 * all_adj_list.upper visible to every dev's all_adj_list.lower an
4825 * versa, and don't forget the devices itself. All of these
4826 * links are non-neighbours.
4827 */
4828 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4829 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
4830 pr_debug("Interlinking %s with %s, non-neighbour\n",
4831 i->dev->name, j->dev->name);
4832 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
4833 if (ret)
4834 goto rollback_mesh;
4835 }
4836 }
4837
4838 /* add dev to every upper_dev's upper device */
4839 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
4840 pr_debug("linking %s's upper device %s with %s\n",
4841 upper_dev->name, i->dev->name, dev->name);
4842 ret = __netdev_adjacent_dev_link(dev, i->dev);
4843 if (ret)
4844 goto rollback_upper_mesh;
4845 }
4846
4847 /* add upper_dev to every dev's lower device */
4848 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4849 pr_debug("linking %s's lower device %s with %s\n", dev->name,
4850 i->dev->name, upper_dev->name);
4851 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
4852 if (ret)
4853 goto rollback_lower_mesh;
4854 }
4855
4856 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
4857 return 0;
4858
4859rollback_lower_mesh:
4860 to_i = i;
4861 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4862 if (i == to_i)
4863 break;
4864 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
4865 }
4866
4867 i = NULL;
4868
4869rollback_upper_mesh:
4870 to_i = i;
4871 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
4872 if (i == to_i)
4873 break;
4874 __netdev_adjacent_dev_unlink(dev, i->dev);
4875 }
4876
4877 i = j = NULL;
4878
4879rollback_mesh:
4880 to_i = i;
4881 to_j = j;
4882 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4883 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
4884 if (i == to_i && j == to_j)
4885 break;
4886 __netdev_adjacent_dev_unlink(i->dev, j->dev);
4887 }
4888 if (i == to_i)
4889 break;
4890 }
4891
4892 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
4893
4894 return ret;
4895}
4896
4897/**
4898 * netdev_upper_dev_link - Add a link to the upper device
4899 * @dev: device
4900 * @upper_dev: new upper device
4901 *
4902 * Adds a link to device which is upper to this one. The caller must hold
4903 * the RTNL lock. On a failure a negative errno code is returned.
4904 * On success the reference counts are adjusted and the function
4905 * returns zero.
4906 */
4907int netdev_upper_dev_link(struct net_device *dev,
4908 struct net_device *upper_dev)
4909{
4910 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
4911}
4912EXPORT_SYMBOL(netdev_upper_dev_link);
4913
4914/**
4915 * netdev_master_upper_dev_link - Add a master link to the upper device
4916 * @dev: device
4917 * @upper_dev: new upper device
4918 *
4919 * Adds a link to device which is upper to this one. In this case, only
4920 * one master upper device can be linked, although other non-master devices
4921 * might be linked as well. The caller must hold the RTNL lock.
4922 * On a failure a negative errno code is returned. On success the reference
4923 * counts are adjusted and the function returns zero.
4924 */
4925int netdev_master_upper_dev_link(struct net_device *dev,
4926 struct net_device *upper_dev)
4927{
4928 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
4929}
4930EXPORT_SYMBOL(netdev_master_upper_dev_link);
4931
4932int netdev_master_upper_dev_link_private(struct net_device *dev,
4933 struct net_device *upper_dev,
4934 void *private)
4935{
4936 return __netdev_upper_dev_link(dev, upper_dev, true, private);
4937}
4938EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
4939
4940/**
4941 * netdev_upper_dev_unlink - Removes a link to upper device
4942 * @dev: device
4943 * @upper_dev: new upper device
4944 *
4945 * Removes a link to device which is upper to this one. The caller must hold
4946 * the RTNL lock.
4947 */
4948void netdev_upper_dev_unlink(struct net_device *dev,
4949 struct net_device *upper_dev)
4950{
4951 struct netdev_adjacent *i, *j;
4952 ASSERT_RTNL();
4953
4954 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
4955
4956 /* Here is the tricky part. We must remove all dev's lower
4957 * devices from all upper_dev's upper devices and vice
4958 * versa, to maintain the graph relationship.
4959 */
4960 list_for_each_entry(i, &dev->all_adj_list.lower, list)
4961 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
4962 __netdev_adjacent_dev_unlink(i->dev, j->dev);
4963
4964 /* remove also the devices itself from lower/upper device
4965 * list
4966 */
4967 list_for_each_entry(i, &dev->all_adj_list.lower, list)
4968 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
4969
4970 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
4971 __netdev_adjacent_dev_unlink(dev, i->dev);
4972
4973 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
4974}
4975EXPORT_SYMBOL(netdev_upper_dev_unlink);
4976
4977void *netdev_lower_dev_get_private(struct net_device *dev,
4978 struct net_device *lower_dev)
4979{
4980 struct netdev_adjacent *lower;
4981
4982 if (!lower_dev)
4983 return NULL;
4984 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
4985 if (!lower)
4986 return NULL;
4987
4988 return lower->private;
4989}
4990EXPORT_SYMBOL(netdev_lower_dev_get_private);
4991
4992static void dev_change_rx_flags(struct net_device *dev, int flags)
4993{
4994 const struct net_device_ops *ops = dev->netdev_ops;
4995
4996 if (ops->ndo_change_rx_flags)
4997 ops->ndo_change_rx_flags(dev, flags);
4998}
4999
5000static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5001{
5002 unsigned int old_flags = dev->flags;
5003 kuid_t uid;
5004 kgid_t gid;
5005
5006 ASSERT_RTNL();
5007
5008 dev->flags |= IFF_PROMISC;
5009 dev->promiscuity += inc;
5010 if (dev->promiscuity == 0) {
5011 /*
5012 * Avoid overflow.
5013 * If inc causes overflow, untouch promisc and return error.
5014 */
5015 if (inc < 0)
5016 dev->flags &= ~IFF_PROMISC;
5017 else {
5018 dev->promiscuity -= inc;
5019 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5020 dev->name);
5021 return -EOVERFLOW;
5022 }
5023 }
5024 if (dev->flags != old_flags) {
5025 pr_info("device %s %s promiscuous mode\n",
5026 dev->name,
5027 dev->flags & IFF_PROMISC ? "entered" : "left");
5028 if (audit_enabled) {
5029 current_uid_gid(&uid, &gid);
5030 audit_log(current->audit_context, GFP_ATOMIC,
5031 AUDIT_ANOM_PROMISCUOUS,
5032 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5033 dev->name, (dev->flags & IFF_PROMISC),
5034 (old_flags & IFF_PROMISC),
5035 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5036 from_kuid(&init_user_ns, uid),
5037 from_kgid(&init_user_ns, gid),
5038 audit_get_sessionid(current));
5039 }
5040
5041 dev_change_rx_flags(dev, IFF_PROMISC);
5042 }
5043 if (notify)
5044 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5045 return 0;
5046}
5047
5048/**
5049 * dev_set_promiscuity - update promiscuity count on a device
5050 * @dev: device
5051 * @inc: modifier
5052 *
5053 * Add or remove promiscuity from a device. While the count in the device
5054 * remains above zero the interface remains promiscuous. Once it hits zero
5055 * the device reverts back to normal filtering operation. A negative inc
5056 * value is used to drop promiscuity on the device.
5057 * Return 0 if successful or a negative errno code on error.
5058 */
5059int dev_set_promiscuity(struct net_device *dev, int inc)
5060{
5061 unsigned int old_flags = dev->flags;
5062 int err;
5063
5064 err = __dev_set_promiscuity(dev, inc, true);
5065 if (err < 0)
5066 return err;
5067 if (dev->flags != old_flags)
5068 dev_set_rx_mode(dev);
5069 return err;
5070}
5071EXPORT_SYMBOL(dev_set_promiscuity);
5072
5073static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5074{
5075 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5076
5077 ASSERT_RTNL();
5078
5079 dev->flags |= IFF_ALLMULTI;
5080 dev->allmulti += inc;
5081 if (dev->allmulti == 0) {
5082 /*
5083 * Avoid overflow.
5084 * If inc causes overflow, untouch allmulti and return error.
5085 */
5086 if (inc < 0)
5087 dev->flags &= ~IFF_ALLMULTI;
5088 else {
5089 dev->allmulti -= inc;
5090 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5091 dev->name);
5092 return -EOVERFLOW;
5093 }
5094 }
5095 if (dev->flags ^ old_flags) {
5096 dev_change_rx_flags(dev, IFF_ALLMULTI);
5097 dev_set_rx_mode(dev);
5098 if (notify)
5099 __dev_notify_flags(dev, old_flags,
5100 dev->gflags ^ old_gflags);
5101 }
5102 return 0;
5103}
5104
5105/**
5106 * dev_set_allmulti - update allmulti count on a device
5107 * @dev: device
5108 * @inc: modifier
5109 *
5110 * Add or remove reception of all multicast frames to a device. While the
5111 * count in the device remains above zero the interface remains listening
5112 * to all interfaces. Once it hits zero the device reverts back to normal
5113 * filtering operation. A negative @inc value is used to drop the counter
5114 * when releasing a resource needing all multicasts.
5115 * Return 0 if successful or a negative errno code on error.
5116 */
5117
5118int dev_set_allmulti(struct net_device *dev, int inc)
5119{
5120 return __dev_set_allmulti(dev, inc, true);
5121}
5122EXPORT_SYMBOL(dev_set_allmulti);
5123
5124/*
5125 * Upload unicast and multicast address lists to device and
5126 * configure RX filtering. When the device doesn't support unicast
5127 * filtering it is put in promiscuous mode while unicast addresses
5128 * are present.
5129 */
5130void __dev_set_rx_mode(struct net_device *dev)
5131{
5132 const struct net_device_ops *ops = dev->netdev_ops;
5133
5134 /* dev_open will call this function so the list will stay sane. */
5135 if (!(dev->flags&IFF_UP))
5136 return;
5137
5138 if (!netif_device_present(dev))
5139 return;
5140
5141 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5142 /* Unicast addresses changes may only happen under the rtnl,
5143 * therefore calling __dev_set_promiscuity here is safe.
5144 */
5145 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5146 __dev_set_promiscuity(dev, 1, false);
5147 dev->uc_promisc = true;
5148 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5149 __dev_set_promiscuity(dev, -1, false);
5150 dev->uc_promisc = false;
5151 }
5152 }
5153
5154 if (ops->ndo_set_rx_mode)
5155 ops->ndo_set_rx_mode(dev);
5156}
5157
5158void dev_set_rx_mode(struct net_device *dev)
5159{
5160 netif_addr_lock_bh(dev);
5161 __dev_set_rx_mode(dev);
5162 netif_addr_unlock_bh(dev);
5163}
5164
5165/**
5166 * dev_get_flags - get flags reported to userspace
5167 * @dev: device
5168 *
5169 * Get the combination of flag bits exported through APIs to userspace.
5170 */
5171unsigned int dev_get_flags(const struct net_device *dev)
5172{
5173 unsigned int flags;
5174
5175 flags = (dev->flags & ~(IFF_PROMISC |
5176 IFF_ALLMULTI |
5177 IFF_RUNNING |
5178 IFF_LOWER_UP |
5179 IFF_DORMANT)) |
5180 (dev->gflags & (IFF_PROMISC |
5181 IFF_ALLMULTI));
5182
5183 if (netif_running(dev)) {
5184 if (netif_oper_up(dev))
5185 flags |= IFF_RUNNING;
5186 if (netif_carrier_ok(dev))
5187 flags |= IFF_LOWER_UP;
5188 if (netif_dormant(dev))
5189 flags |= IFF_DORMANT;
5190 }
5191
5192 return flags;
5193}
5194EXPORT_SYMBOL(dev_get_flags);
5195
5196int __dev_change_flags(struct net_device *dev, unsigned int flags)
5197{
5198 unsigned int old_flags = dev->flags;
5199 int ret;
5200
5201 ASSERT_RTNL();
5202
5203 /*
5204 * Set the flags on our device.
5205 */
5206
5207 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5208 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5209 IFF_AUTOMEDIA)) |
5210 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5211 IFF_ALLMULTI));
5212
5213 /*
5214 * Load in the correct multicast list now the flags have changed.
5215 */
5216
5217 if ((old_flags ^ flags) & IFF_MULTICAST)
5218 dev_change_rx_flags(dev, IFF_MULTICAST);
5219
5220 dev_set_rx_mode(dev);
5221
5222 /*
5223 * Have we downed the interface. We handle IFF_UP ourselves
5224 * according to user attempts to set it, rather than blindly
5225 * setting it.
5226 */
5227
5228 ret = 0;
5229 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
5230 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5231
5232 if (!ret)
5233 dev_set_rx_mode(dev);
5234 }
5235
5236 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5237 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5238 unsigned int old_flags = dev->flags;
5239
5240 dev->gflags ^= IFF_PROMISC;
5241
5242 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5243 if (dev->flags != old_flags)
5244 dev_set_rx_mode(dev);
5245 }
5246
5247 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5248 is important. Some (broken) drivers set IFF_PROMISC, when
5249 IFF_ALLMULTI is requested not asking us and not reporting.
5250 */
5251 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5252 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5253
5254 dev->gflags ^= IFF_ALLMULTI;
5255 __dev_set_allmulti(dev, inc, false);
5256 }
5257
5258 return ret;
5259}
5260
5261void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5262 unsigned int gchanges)
5263{
5264 unsigned int changes = dev->flags ^ old_flags;
5265
5266 if (gchanges)
5267 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5268
5269 if (changes & IFF_UP) {
5270 if (dev->flags & IFF_UP)
5271 call_netdevice_notifiers(NETDEV_UP, dev);
5272 else
5273 call_netdevice_notifiers(NETDEV_DOWN, dev);
5274 }
5275
5276 if (dev->flags & IFF_UP &&
5277 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5278 struct netdev_notifier_change_info change_info;
5279
5280 change_info.flags_changed = changes;
5281 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5282 &change_info.info);
5283 }
5284}
5285
5286/**
5287 * dev_change_flags - change device settings
5288 * @dev: device
5289 * @flags: device state flags
5290 *
5291 * Change settings on device based state flags. The flags are
5292 * in the userspace exported format.
5293 */
5294int dev_change_flags(struct net_device *dev, unsigned int flags)
5295{
5296 int ret;
5297 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5298
5299 ret = __dev_change_flags(dev, flags);
5300 if (ret < 0)
5301 return ret;
5302
5303 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5304 __dev_notify_flags(dev, old_flags, changes);
5305 return ret;
5306}
5307EXPORT_SYMBOL(dev_change_flags);
5308
5309static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5310{
5311 const struct net_device_ops *ops = dev->netdev_ops;
5312
5313 if (ops->ndo_change_mtu)
5314 return ops->ndo_change_mtu(dev, new_mtu);
5315
5316 dev->mtu = new_mtu;
5317 return 0;
5318}
5319
5320/**
5321 * dev_set_mtu - Change maximum transfer unit
5322 * @dev: device
5323 * @new_mtu: new transfer unit
5324 *
5325 * Change the maximum transfer size of the network device.
5326 */
5327int dev_set_mtu(struct net_device *dev, int new_mtu)
5328{
5329 int err, orig_mtu;
5330
5331 if (new_mtu == dev->mtu)
5332 return 0;
5333
5334 /* MTU must be positive. */
5335 if (new_mtu < 0)
5336 return -EINVAL;
5337
5338 if (!netif_device_present(dev))
5339 return -ENODEV;
5340
5341 orig_mtu = dev->mtu;
5342 err = __dev_set_mtu(dev, new_mtu);
5343
5344 if (!err) {
5345 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5346 err = notifier_to_errno(err);
5347 if (err) {
5348 /* setting mtu back and notifying everyone again,
5349 * so that they have a chance to revert changes.
5350 */
5351 __dev_set_mtu(dev, orig_mtu);
5352 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5353 }
5354 }
5355 return err;
5356}
5357EXPORT_SYMBOL(dev_set_mtu);
5358
5359/**
5360 * dev_set_group - Change group this device belongs to
5361 * @dev: device
5362 * @new_group: group this device should belong to
5363 */
5364void dev_set_group(struct net_device *dev, int new_group)
5365{
5366 dev->group = new_group;
5367}
5368EXPORT_SYMBOL(dev_set_group);
5369
5370/**
5371 * dev_set_mac_address - Change Media Access Control Address
5372 * @dev: device
5373 * @sa: new address
5374 *
5375 * Change the hardware (MAC) address of the device
5376 */
5377int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5378{
5379 const struct net_device_ops *ops = dev->netdev_ops;
5380 int err;
5381
5382 if (!ops->ndo_set_mac_address)
5383 return -EOPNOTSUPP;
5384 if (sa->sa_family != dev->type)
5385 return -EINVAL;
5386 if (!netif_device_present(dev))
5387 return -ENODEV;
5388 err = ops->ndo_set_mac_address(dev, sa);
5389 if (err)
5390 return err;
5391 dev->addr_assign_type = NET_ADDR_SET;
5392 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5393 add_device_randomness(dev->dev_addr, dev->addr_len);
5394 return 0;
5395}
5396EXPORT_SYMBOL(dev_set_mac_address);
5397
5398/**
5399 * dev_change_carrier - Change device carrier
5400 * @dev: device
5401 * @new_carrier: new value
5402 *
5403 * Change device carrier
5404 */
5405int dev_change_carrier(struct net_device *dev, bool new_carrier)
5406{
5407 const struct net_device_ops *ops = dev->netdev_ops;
5408
5409 if (!ops->ndo_change_carrier)
5410 return -EOPNOTSUPP;
5411 if (!netif_device_present(dev))
5412 return -ENODEV;
5413 return ops->ndo_change_carrier(dev, new_carrier);
5414}
5415EXPORT_SYMBOL(dev_change_carrier);
5416
5417/**
5418 * dev_get_phys_port_id - Get device physical port ID
5419 * @dev: device
5420 * @ppid: port ID
5421 *
5422 * Get device physical port ID
5423 */
5424int dev_get_phys_port_id(struct net_device *dev,
5425 struct netdev_phys_port_id *ppid)
5426{
5427 const struct net_device_ops *ops = dev->netdev_ops;
5428
5429 if (!ops->ndo_get_phys_port_id)
5430 return -EOPNOTSUPP;
5431 return ops->ndo_get_phys_port_id(dev, ppid);
5432}
5433EXPORT_SYMBOL(dev_get_phys_port_id);
5434
5435/**
5436 * dev_new_index - allocate an ifindex
5437 * @net: the applicable net namespace
5438 *
5439 * Returns a suitable unique value for a new device interface
5440 * number. The caller must hold the rtnl semaphore or the
5441 * dev_base_lock to be sure it remains unique.
5442 */
5443static int dev_new_index(struct net *net)
5444{
5445 int ifindex = net->ifindex;
5446 for (;;) {
5447 if (++ifindex <= 0)
5448 ifindex = 1;
5449 if (!__dev_get_by_index(net, ifindex))
5450 return net->ifindex = ifindex;
5451 }
5452}
5453
5454/* Delayed registration/unregisteration */
5455static LIST_HEAD(net_todo_list);
5456static DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5457
5458static void net_set_todo(struct net_device *dev)
5459{
5460 list_add_tail(&dev->todo_list, &net_todo_list);
5461 dev_net(dev)->dev_unreg_count++;
5462}
5463
5464static void rollback_registered_many(struct list_head *head)
5465{
5466 struct net_device *dev, *tmp;
5467 LIST_HEAD(close_head);
5468
5469 BUG_ON(dev_boot_phase);
5470 ASSERT_RTNL();
5471
5472 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5473 /* Some devices call without registering
5474 * for initialization unwind. Remove those
5475 * devices and proceed with the remaining.
5476 */
5477 if (dev->reg_state == NETREG_UNINITIALIZED) {
5478 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5479 dev->name, dev);
5480
5481 WARN_ON(1);
5482 list_del(&dev->unreg_list);
5483 continue;
5484 }
5485 dev->dismantle = true;
5486 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5487 }
5488
5489 /* If device is running, close it first. */
5490 list_for_each_entry(dev, head, unreg_list)
5491 list_add_tail(&dev->close_list, &close_head);
5492 dev_close_many(&close_head);
5493
5494 list_for_each_entry(dev, head, unreg_list) {
5495 /* And unlink it from device chain. */
5496 unlist_netdevice(dev);
5497
5498 dev->reg_state = NETREG_UNREGISTERING;
5499 }
5500
5501 synchronize_net();
5502
5503 list_for_each_entry(dev, head, unreg_list) {
5504 /* Shutdown queueing discipline. */
5505 dev_shutdown(dev);
5506
5507
5508 /* Notify protocols, that we are about to destroy
5509 this device. They should clean all the things.
5510 */
5511 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5512
5513 if (!dev->rtnl_link_ops ||
5514 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5515 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5516
5517 /*
5518 * Flush the unicast and multicast chains
5519 */
5520 dev_uc_flush(dev);
5521 dev_mc_flush(dev);
5522
5523 if (dev->netdev_ops->ndo_uninit)
5524 dev->netdev_ops->ndo_uninit(dev);
5525
5526 /* Notifier chain MUST detach us all upper devices. */
5527 WARN_ON(netdev_has_any_upper_dev(dev));
5528
5529 /* Remove entries from kobject tree */
5530 netdev_unregister_kobject(dev);
5531#ifdef CONFIG_XPS
5532 /* Remove XPS queueing entries */
5533 netif_reset_xps_queues_gt(dev, 0);
5534#endif
5535 }
5536
5537 synchronize_net();
5538
5539 list_for_each_entry(dev, head, unreg_list)
5540 dev_put(dev);
5541}
5542
5543static void rollback_registered(struct net_device *dev)
5544{
5545 LIST_HEAD(single);
5546
5547 list_add(&dev->unreg_list, &single);
5548 rollback_registered_many(&single);
5549 list_del(&single);
5550}
5551
5552static netdev_features_t netdev_fix_features(struct net_device *dev,
5553 netdev_features_t features)
5554{
5555 /* Fix illegal checksum combinations */
5556 if ((features & NETIF_F_HW_CSUM) &&
5557 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5558 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5559 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5560 }
5561
5562 /* TSO requires that SG is present as well. */
5563 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5564 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5565 features &= ~NETIF_F_ALL_TSO;
5566 }
5567
5568 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5569 !(features & NETIF_F_IP_CSUM)) {
5570 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5571 features &= ~NETIF_F_TSO;
5572 features &= ~NETIF_F_TSO_ECN;
5573 }
5574
5575 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5576 !(features & NETIF_F_IPV6_CSUM)) {
5577 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5578 features &= ~NETIF_F_TSO6;
5579 }
5580
5581 /* TSO ECN requires that TSO is present as well. */
5582 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5583 features &= ~NETIF_F_TSO_ECN;
5584
5585 /* Software GSO depends on SG. */
5586 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5587 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5588 features &= ~NETIF_F_GSO;
5589 }
5590
5591 /* UFO needs SG and checksumming */
5592 if (features & NETIF_F_UFO) {
5593 /* maybe split UFO into V4 and V6? */
5594 if (!((features & NETIF_F_GEN_CSUM) ||
5595 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5596 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5597 netdev_dbg(dev,
5598 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5599 features &= ~NETIF_F_UFO;
5600 }
5601
5602 if (!(features & NETIF_F_SG)) {
5603 netdev_dbg(dev,
5604 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5605 features &= ~NETIF_F_UFO;
5606 }
5607 }
5608
5609 return features;
5610}
5611
5612int __netdev_update_features(struct net_device *dev)
5613{
5614 netdev_features_t features;
5615 int err = 0;
5616
5617 ASSERT_RTNL();
5618
5619 features = netdev_get_wanted_features(dev);
5620
5621 if (dev->netdev_ops->ndo_fix_features)
5622 features = dev->netdev_ops->ndo_fix_features(dev, features);
5623
5624 /* driver might be less strict about feature dependencies */
5625 features = netdev_fix_features(dev, features);
5626
5627 if (dev->features == features)
5628 return 0;
5629
5630 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5631 &dev->features, &features);
5632
5633 if (dev->netdev_ops->ndo_set_features)
5634 err = dev->netdev_ops->ndo_set_features(dev, features);
5635
5636 if (unlikely(err < 0)) {
5637 netdev_err(dev,
5638 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5639 err, &features, &dev->features);
5640 return -1;
5641 }
5642
5643 if (!err)
5644 dev->features = features;
5645
5646 return 1;
5647}
5648
5649/**
5650 * netdev_update_features - recalculate device features
5651 * @dev: the device to check
5652 *
5653 * Recalculate dev->features set and send notifications if it
5654 * has changed. Should be called after driver or hardware dependent
5655 * conditions might have changed that influence the features.
5656 */
5657void netdev_update_features(struct net_device *dev)
5658{
5659 if (__netdev_update_features(dev))
5660 netdev_features_change(dev);
5661}
5662EXPORT_SYMBOL(netdev_update_features);
5663
5664/**
5665 * netdev_change_features - recalculate device features
5666 * @dev: the device to check
5667 *
5668 * Recalculate dev->features set and send notifications even
5669 * if they have not changed. Should be called instead of
5670 * netdev_update_features() if also dev->vlan_features might
5671 * have changed to allow the changes to be propagated to stacked
5672 * VLAN devices.
5673 */
5674void netdev_change_features(struct net_device *dev)
5675{
5676 __netdev_update_features(dev);
5677 netdev_features_change(dev);
5678}
5679EXPORT_SYMBOL(netdev_change_features);
5680
5681/**
5682 * netif_stacked_transfer_operstate - transfer operstate
5683 * @rootdev: the root or lower level device to transfer state from
5684 * @dev: the device to transfer operstate to
5685 *
5686 * Transfer operational state from root to device. This is normally
5687 * called when a stacking relationship exists between the root
5688 * device and the device(a leaf device).
5689 */
5690void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5691 struct net_device *dev)
5692{
5693 if (rootdev->operstate == IF_OPER_DORMANT)
5694 netif_dormant_on(dev);
5695 else
5696 netif_dormant_off(dev);
5697
5698 if (netif_carrier_ok(rootdev)) {
5699 if (!netif_carrier_ok(dev))
5700 netif_carrier_on(dev);
5701 } else {
5702 if (netif_carrier_ok(dev))
5703 netif_carrier_off(dev);
5704 }
5705}
5706EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5707
5708#ifdef CONFIG_RPS
5709static int netif_alloc_rx_queues(struct net_device *dev)
5710{
5711 unsigned int i, count = dev->num_rx_queues;
5712 struct netdev_rx_queue *rx;
5713
5714 BUG_ON(count < 1);
5715
5716 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5717 if (!rx)
5718 return -ENOMEM;
5719
5720 dev->_rx = rx;
5721
5722 for (i = 0; i < count; i++)
5723 rx[i].dev = dev;
5724 return 0;
5725}
5726#endif
5727
5728static void netdev_init_one_queue(struct net_device *dev,
5729 struct netdev_queue *queue, void *_unused)
5730{
5731 /* Initialize queue lock */
5732 spin_lock_init(&queue->_xmit_lock);
5733 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5734 queue->xmit_lock_owner = -1;
5735 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5736 queue->dev = dev;
5737#ifdef CONFIG_BQL
5738 dql_init(&queue->dql, HZ);
5739#endif
5740}
5741
5742static void netif_free_tx_queues(struct net_device *dev)
5743{
5744 if (is_vmalloc_addr(dev->_tx))
5745 vfree(dev->_tx);
5746 else
5747 kfree(dev->_tx);
5748}
5749
5750static int netif_alloc_netdev_queues(struct net_device *dev)
5751{
5752 unsigned int count = dev->num_tx_queues;
5753 struct netdev_queue *tx;
5754 size_t sz = count * sizeof(*tx);
5755
5756 BUG_ON(count < 1 || count > 0xffff);
5757
5758 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
5759 if (!tx) {
5760 tx = vzalloc(sz);
5761 if (!tx)
5762 return -ENOMEM;
5763 }
5764 dev->_tx = tx;
5765
5766 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5767 spin_lock_init(&dev->tx_global_lock);
5768
5769 return 0;
5770}
5771
5772/**
5773 * register_netdevice - register a network device
5774 * @dev: device to register
5775 *
5776 * Take a completed network device structure and add it to the kernel
5777 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5778 * chain. 0 is returned on success. A negative errno code is returned
5779 * on a failure to set up the device, or if the name is a duplicate.
5780 *
5781 * Callers must hold the rtnl semaphore. You may want
5782 * register_netdev() instead of this.
5783 *
5784 * BUGS:
5785 * The locking appears insufficient to guarantee two parallel registers
5786 * will not get the same name.
5787 */
5788
5789int register_netdevice(struct net_device *dev)
5790{
5791 int ret;
5792 struct net *net = dev_net(dev);
5793
5794 BUG_ON(dev_boot_phase);
5795 ASSERT_RTNL();
5796
5797 might_sleep();
5798
5799 /* When net_device's are persistent, this will be fatal. */
5800 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5801 BUG_ON(!net);
5802
5803 spin_lock_init(&dev->addr_list_lock);
5804 netdev_set_addr_lockdep_class(dev);
5805
5806 dev->iflink = -1;
5807
5808 ret = dev_get_valid_name(net, dev, dev->name);
5809 if (ret < 0)
5810 goto out;
5811
5812 /* Init, if this function is available */
5813 if (dev->netdev_ops->ndo_init) {
5814 ret = dev->netdev_ops->ndo_init(dev);
5815 if (ret) {
5816 if (ret > 0)
5817 ret = -EIO;
5818 goto out;
5819 }
5820 }
5821
5822 if (((dev->hw_features | dev->features) &
5823 NETIF_F_HW_VLAN_CTAG_FILTER) &&
5824 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
5825 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
5826 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
5827 ret = -EINVAL;
5828 goto err_uninit;
5829 }
5830
5831 ret = -EBUSY;
5832 if (!dev->ifindex)
5833 dev->ifindex = dev_new_index(net);
5834 else if (__dev_get_by_index(net, dev->ifindex))
5835 goto err_uninit;
5836
5837 if (dev->iflink == -1)
5838 dev->iflink = dev->ifindex;
5839
5840 /* Transfer changeable features to wanted_features and enable
5841 * software offloads (GSO and GRO).
5842 */
5843 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5844 dev->features |= NETIF_F_SOFT_FEATURES;
5845 dev->wanted_features = dev->features & dev->hw_features;
5846
5847 if (!(dev->flags & IFF_LOOPBACK)) {
5848 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5849 }
5850
5851 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5852 */
5853 dev->vlan_features |= NETIF_F_HIGHDMA;
5854
5855 /* Make NETIF_F_SG inheritable to tunnel devices.
5856 */
5857 dev->hw_enc_features |= NETIF_F_SG;
5858
5859 /* Make NETIF_F_SG inheritable to MPLS.
5860 */
5861 dev->mpls_features |= NETIF_F_SG;
5862
5863 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5864 ret = notifier_to_errno(ret);
5865 if (ret)
5866 goto err_uninit;
5867
5868 ret = netdev_register_kobject(dev);
5869 if (ret)
5870 goto err_uninit;
5871 dev->reg_state = NETREG_REGISTERED;
5872
5873 __netdev_update_features(dev);
5874
5875 /*
5876 * Default initial state at registry is that the
5877 * device is present.
5878 */
5879
5880 set_bit(__LINK_STATE_PRESENT, &dev->state);
5881
5882 linkwatch_init_dev(dev);
5883
5884 dev_init_scheduler(dev);
5885 dev_hold(dev);
5886 list_netdevice(dev);
5887 add_device_randomness(dev->dev_addr, dev->addr_len);
5888
5889 /* If the device has permanent device address, driver should
5890 * set dev_addr and also addr_assign_type should be set to
5891 * NET_ADDR_PERM (default value).
5892 */
5893 if (dev->addr_assign_type == NET_ADDR_PERM)
5894 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5895
5896 /* Notify protocols, that a new device appeared. */
5897 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5898 ret = notifier_to_errno(ret);
5899 if (ret) {
5900 rollback_registered(dev);
5901 dev->reg_state = NETREG_UNREGISTERED;
5902 }
5903 /*
5904 * Prevent userspace races by waiting until the network
5905 * device is fully setup before sending notifications.
5906 */
5907 if (!dev->rtnl_link_ops ||
5908 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5909 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
5910
5911out:
5912 return ret;
5913
5914err_uninit:
5915 if (dev->netdev_ops->ndo_uninit)
5916 dev->netdev_ops->ndo_uninit(dev);
5917 goto out;
5918}
5919EXPORT_SYMBOL(register_netdevice);
5920
5921/**
5922 * init_dummy_netdev - init a dummy network device for NAPI
5923 * @dev: device to init
5924 *
5925 * This takes a network device structure and initialize the minimum
5926 * amount of fields so it can be used to schedule NAPI polls without
5927 * registering a full blown interface. This is to be used by drivers
5928 * that need to tie several hardware interfaces to a single NAPI
5929 * poll scheduler due to HW limitations.
5930 */
5931int init_dummy_netdev(struct net_device *dev)
5932{
5933 /* Clear everything. Note we don't initialize spinlocks
5934 * are they aren't supposed to be taken by any of the
5935 * NAPI code and this dummy netdev is supposed to be
5936 * only ever used for NAPI polls
5937 */
5938 memset(dev, 0, sizeof(struct net_device));
5939
5940 /* make sure we BUG if trying to hit standard
5941 * register/unregister code path
5942 */
5943 dev->reg_state = NETREG_DUMMY;
5944
5945 /* NAPI wants this */
5946 INIT_LIST_HEAD(&dev->napi_list);
5947
5948 /* a dummy interface is started by default */
5949 set_bit(__LINK_STATE_PRESENT, &dev->state);
5950 set_bit(__LINK_STATE_START, &dev->state);
5951
5952 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5953 * because users of this 'device' dont need to change
5954 * its refcount.
5955 */
5956
5957 return 0;
5958}
5959EXPORT_SYMBOL_GPL(init_dummy_netdev);
5960
5961
5962/**
5963 * register_netdev - register a network device
5964 * @dev: device to register
5965 *
5966 * Take a completed network device structure and add it to the kernel
5967 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5968 * chain. 0 is returned on success. A negative errno code is returned
5969 * on a failure to set up the device, or if the name is a duplicate.
5970 *
5971 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5972 * and expands the device name if you passed a format string to
5973 * alloc_netdev.
5974 */
5975int register_netdev(struct net_device *dev)
5976{
5977 int err;
5978
5979 rtnl_lock();
5980 err = register_netdevice(dev);
5981 rtnl_unlock();
5982 return err;
5983}
5984EXPORT_SYMBOL(register_netdev);
5985
5986int netdev_refcnt_read(const struct net_device *dev)
5987{
5988 int i, refcnt = 0;
5989
5990 for_each_possible_cpu(i)
5991 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5992 return refcnt;
5993}
5994EXPORT_SYMBOL(netdev_refcnt_read);
5995
5996/**
5997 * netdev_wait_allrefs - wait until all references are gone.
5998 * @dev: target net_device
5999 *
6000 * This is called when unregistering network devices.
6001 *
6002 * Any protocol or device that holds a reference should register
6003 * for netdevice notification, and cleanup and put back the
6004 * reference if they receive an UNREGISTER event.
6005 * We can get stuck here if buggy protocols don't correctly
6006 * call dev_put.
6007 */
6008static void netdev_wait_allrefs(struct net_device *dev)
6009{
6010 unsigned long rebroadcast_time, warning_time;
6011 int refcnt;
6012
6013 linkwatch_forget_dev(dev);
6014
6015 rebroadcast_time = warning_time = jiffies;
6016 refcnt = netdev_refcnt_read(dev);
6017
6018 while (refcnt != 0) {
6019 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6020 rtnl_lock();
6021
6022 /* Rebroadcast unregister notification */
6023 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6024
6025 __rtnl_unlock();
6026 rcu_barrier();
6027 rtnl_lock();
6028
6029 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6030 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6031 &dev->state)) {
6032 /* We must not have linkwatch events
6033 * pending on unregister. If this
6034 * happens, we simply run the queue
6035 * unscheduled, resulting in a noop
6036 * for this device.
6037 */
6038 linkwatch_run_queue();
6039 }
6040
6041 __rtnl_unlock();
6042
6043 rebroadcast_time = jiffies;
6044 }
6045
6046 msleep(250);
6047
6048 refcnt = netdev_refcnt_read(dev);
6049
6050 if (time_after(jiffies, warning_time + 10 * HZ)) {
6051 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6052 dev->name, refcnt);
6053 warning_time = jiffies;
6054 }
6055 }
6056}
6057
6058/* The sequence is:
6059 *
6060 * rtnl_lock();
6061 * ...
6062 * register_netdevice(x1);
6063 * register_netdevice(x2);
6064 * ...
6065 * unregister_netdevice(y1);
6066 * unregister_netdevice(y2);
6067 * ...
6068 * rtnl_unlock();
6069 * free_netdev(y1);
6070 * free_netdev(y2);
6071 *
6072 * We are invoked by rtnl_unlock().
6073 * This allows us to deal with problems:
6074 * 1) We can delete sysfs objects which invoke hotplug
6075 * without deadlocking with linkwatch via keventd.
6076 * 2) Since we run with the RTNL semaphore not held, we can sleep
6077 * safely in order to wait for the netdev refcnt to drop to zero.
6078 *
6079 * We must not return until all unregister events added during
6080 * the interval the lock was held have been completed.
6081 */
6082void netdev_run_todo(void)
6083{
6084 struct list_head list;
6085
6086 /* Snapshot list, allow later requests */
6087 list_replace_init(&net_todo_list, &list);
6088
6089 __rtnl_unlock();
6090
6091
6092 /* Wait for rcu callbacks to finish before next phase */
6093 if (!list_empty(&list))
6094 rcu_barrier();
6095
6096 while (!list_empty(&list)) {
6097 struct net_device *dev
6098 = list_first_entry(&list, struct net_device, todo_list);
6099 list_del(&dev->todo_list);
6100
6101 rtnl_lock();
6102 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6103 __rtnl_unlock();
6104
6105 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6106 pr_err("network todo '%s' but state %d\n",
6107 dev->name, dev->reg_state);
6108 dump_stack();
6109 continue;
6110 }
6111
6112 dev->reg_state = NETREG_UNREGISTERED;
6113
6114 on_each_cpu(flush_backlog, dev, 1);
6115
6116 netdev_wait_allrefs(dev);
6117
6118 /* paranoia */
6119 BUG_ON(netdev_refcnt_read(dev));
6120 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6121 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6122 WARN_ON(dev->dn_ptr);
6123
6124 if (dev->destructor)
6125 dev->destructor(dev);
6126
6127 /* Report a network device has been unregistered */
6128 rtnl_lock();
6129 dev_net(dev)->dev_unreg_count--;
6130 __rtnl_unlock();
6131 wake_up(&netdev_unregistering_wq);
6132
6133 /* Free network device */
6134 kobject_put(&dev->dev.kobj);
6135 }
6136}
6137
6138/* Convert net_device_stats to rtnl_link_stats64. They have the same
6139 * fields in the same order, with only the type differing.
6140 */
6141void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6142 const struct net_device_stats *netdev_stats)
6143{
6144#if BITS_PER_LONG == 64
6145 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6146 memcpy(stats64, netdev_stats, sizeof(*stats64));
6147#else
6148 size_t i, n = sizeof(*stats64) / sizeof(u64);
6149 const unsigned long *src = (const unsigned long *)netdev_stats;
6150 u64 *dst = (u64 *)stats64;
6151
6152 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6153 sizeof(*stats64) / sizeof(u64));
6154 for (i = 0; i < n; i++)
6155 dst[i] = src[i];
6156#endif
6157}
6158EXPORT_SYMBOL(netdev_stats_to_stats64);
6159
6160/**
6161 * dev_get_stats - get network device statistics
6162 * @dev: device to get statistics from
6163 * @storage: place to store stats
6164 *
6165 * Get network statistics from device. Return @storage.
6166 * The device driver may provide its own method by setting
6167 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6168 * otherwise the internal statistics structure is used.
6169 */
6170struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6171 struct rtnl_link_stats64 *storage)
6172{
6173 const struct net_device_ops *ops = dev->netdev_ops;
6174
6175 if (ops->ndo_get_stats64) {
6176 memset(storage, 0, sizeof(*storage));
6177 ops->ndo_get_stats64(dev, storage);
6178 } else if (ops->ndo_get_stats) {
6179 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6180 } else {
6181 netdev_stats_to_stats64(storage, &dev->stats);
6182 }
6183 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6184 return storage;
6185}
6186EXPORT_SYMBOL(dev_get_stats);
6187
6188struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6189{
6190 struct netdev_queue *queue = dev_ingress_queue(dev);
6191
6192#ifdef CONFIG_NET_CLS_ACT
6193 if (queue)
6194 return queue;
6195 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6196 if (!queue)
6197 return NULL;
6198 netdev_init_one_queue(dev, queue, NULL);
6199 queue->qdisc = &noop_qdisc;
6200 queue->qdisc_sleeping = &noop_qdisc;
6201 rcu_assign_pointer(dev->ingress_queue, queue);
6202#endif
6203 return queue;
6204}
6205
6206static const struct ethtool_ops default_ethtool_ops;
6207
6208void netdev_set_default_ethtool_ops(struct net_device *dev,
6209 const struct ethtool_ops *ops)
6210{
6211 if (dev->ethtool_ops == &default_ethtool_ops)
6212 dev->ethtool_ops = ops;
6213}
6214EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6215
6216void netdev_freemem(struct net_device *dev)
6217{
6218 char *addr = (char *)dev - dev->padded;
6219
6220 if (is_vmalloc_addr(addr))
6221 vfree(addr);
6222 else
6223 kfree(addr);
6224}
6225
6226/**
6227 * alloc_netdev_mqs - allocate network device
6228 * @sizeof_priv: size of private data to allocate space for
6229 * @name: device name format string
6230 * @setup: callback to initialize device
6231 * @txqs: the number of TX subqueues to allocate
6232 * @rxqs: the number of RX subqueues to allocate
6233 *
6234 * Allocates a struct net_device with private data area for driver use
6235 * and performs basic initialization. Also allocates subquue structs
6236 * for each queue on the device.
6237 */
6238struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6239 void (*setup)(struct net_device *),
6240 unsigned int txqs, unsigned int rxqs)
6241{
6242 struct net_device *dev;
6243 size_t alloc_size;
6244 struct net_device *p;
6245
6246 BUG_ON(strlen(name) >= sizeof(dev->name));
6247
6248 if (txqs < 1) {
6249 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6250 return NULL;
6251 }
6252
6253#ifdef CONFIG_RPS
6254 if (rxqs < 1) {
6255 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6256 return NULL;
6257 }
6258#endif
6259
6260 alloc_size = sizeof(struct net_device);
6261 if (sizeof_priv) {
6262 /* ensure 32-byte alignment of private area */
6263 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6264 alloc_size += sizeof_priv;
6265 }
6266 /* ensure 32-byte alignment of whole construct */
6267 alloc_size += NETDEV_ALIGN - 1;
6268
6269 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6270 if (!p)
6271 p = vzalloc(alloc_size);
6272 if (!p)
6273 return NULL;
6274
6275 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6276 dev->padded = (char *)dev - (char *)p;
6277
6278 dev->pcpu_refcnt = alloc_percpu(int);
6279 if (!dev->pcpu_refcnt)
6280 goto free_dev;
6281
6282 if (dev_addr_init(dev))
6283 goto free_pcpu;
6284
6285 dev_mc_init(dev);
6286 dev_uc_init(dev);
6287
6288 dev_net_set(dev, &init_net);
6289
6290 dev->gso_max_size = GSO_MAX_SIZE;
6291 dev->gso_max_segs = GSO_MAX_SEGS;
6292
6293 INIT_LIST_HEAD(&dev->napi_list);
6294 INIT_LIST_HEAD(&dev->unreg_list);
6295 INIT_LIST_HEAD(&dev->close_list);
6296 INIT_LIST_HEAD(&dev->link_watch_list);
6297 INIT_LIST_HEAD(&dev->adj_list.upper);
6298 INIT_LIST_HEAD(&dev->adj_list.lower);
6299 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6300 INIT_LIST_HEAD(&dev->all_adj_list.lower);
6301 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6302 setup(dev);
6303
6304 dev->num_tx_queues = txqs;
6305 dev->real_num_tx_queues = txqs;
6306 if (netif_alloc_netdev_queues(dev))
6307 goto free_all;
6308
6309#ifdef CONFIG_RPS
6310 dev->num_rx_queues = rxqs;
6311 dev->real_num_rx_queues = rxqs;
6312 if (netif_alloc_rx_queues(dev))
6313 goto free_all;
6314#endif
6315
6316 strcpy(dev->name, name);
6317 dev->group = INIT_NETDEV_GROUP;
6318 if (!dev->ethtool_ops)
6319 dev->ethtool_ops = &default_ethtool_ops;
6320 return dev;
6321
6322free_all:
6323 free_netdev(dev);
6324 return NULL;
6325
6326free_pcpu:
6327 free_percpu(dev->pcpu_refcnt);
6328 netif_free_tx_queues(dev);
6329#ifdef CONFIG_RPS
6330 kfree(dev->_rx);
6331#endif
6332
6333free_dev:
6334 netdev_freemem(dev);
6335 return NULL;
6336}
6337EXPORT_SYMBOL(alloc_netdev_mqs);
6338
6339/**
6340 * free_netdev - free network device
6341 * @dev: device
6342 *
6343 * This function does the last stage of destroying an allocated device
6344 * interface. The reference to the device object is released.
6345 * If this is the last reference then it will be freed.
6346 */
6347void free_netdev(struct net_device *dev)
6348{
6349 struct napi_struct *p, *n;
6350
6351 release_net(dev_net(dev));
6352
6353 netif_free_tx_queues(dev);
6354#ifdef CONFIG_RPS
6355 kfree(dev->_rx);
6356#endif
6357
6358 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6359
6360 /* Flush device addresses */
6361 dev_addr_flush(dev);
6362
6363 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6364 netif_napi_del(p);
6365
6366 free_percpu(dev->pcpu_refcnt);
6367 dev->pcpu_refcnt = NULL;
6368
6369 /* Compatibility with error handling in drivers */
6370 if (dev->reg_state == NETREG_UNINITIALIZED) {
6371 netdev_freemem(dev);
6372 return;
6373 }
6374
6375 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6376 dev->reg_state = NETREG_RELEASED;
6377
6378 /* will free via device release */
6379 put_device(&dev->dev);
6380}
6381EXPORT_SYMBOL(free_netdev);
6382
6383/**
6384 * synchronize_net - Synchronize with packet receive processing
6385 *
6386 * Wait for packets currently being received to be done.
6387 * Does not block later packets from starting.
6388 */
6389void synchronize_net(void)
6390{
6391 might_sleep();
6392 if (rtnl_is_locked())
6393 synchronize_rcu_expedited();
6394 else
6395 synchronize_rcu();
6396}
6397EXPORT_SYMBOL(synchronize_net);
6398
6399/**
6400 * unregister_netdevice_queue - remove device from the kernel
6401 * @dev: device
6402 * @head: list
6403 *
6404 * This function shuts down a device interface and removes it
6405 * from the kernel tables.
6406 * If head not NULL, device is queued to be unregistered later.
6407 *
6408 * Callers must hold the rtnl semaphore. You may want
6409 * unregister_netdev() instead of this.
6410 */
6411
6412void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6413{
6414 ASSERT_RTNL();
6415
6416 if (head) {
6417 list_move_tail(&dev->unreg_list, head);
6418 } else {
6419 rollback_registered(dev);
6420 /* Finish processing unregister after unlock */
6421 net_set_todo(dev);
6422 }
6423}
6424EXPORT_SYMBOL(unregister_netdevice_queue);
6425
6426/**
6427 * unregister_netdevice_many - unregister many devices
6428 * @head: list of devices
6429 */
6430void unregister_netdevice_many(struct list_head *head)
6431{
6432 struct net_device *dev;
6433
6434 if (!list_empty(head)) {
6435 rollback_registered_many(head);
6436 list_for_each_entry(dev, head, unreg_list)
6437 net_set_todo(dev);
6438 }
6439}
6440EXPORT_SYMBOL(unregister_netdevice_many);
6441
6442/**
6443 * unregister_netdev - remove device from the kernel
6444 * @dev: device
6445 *
6446 * This function shuts down a device interface and removes it
6447 * from the kernel tables.
6448 *
6449 * This is just a wrapper for unregister_netdevice that takes
6450 * the rtnl semaphore. In general you want to use this and not
6451 * unregister_netdevice.
6452 */
6453void unregister_netdev(struct net_device *dev)
6454{
6455 rtnl_lock();
6456 unregister_netdevice(dev);
6457 rtnl_unlock();
6458}
6459EXPORT_SYMBOL(unregister_netdev);
6460
6461/**
6462 * dev_change_net_namespace - move device to different nethost namespace
6463 * @dev: device
6464 * @net: network namespace
6465 * @pat: If not NULL name pattern to try if the current device name
6466 * is already taken in the destination network namespace.
6467 *
6468 * This function shuts down a device interface and moves it
6469 * to a new network namespace. On success 0 is returned, on
6470 * a failure a netagive errno code is returned.
6471 *
6472 * Callers must hold the rtnl semaphore.
6473 */
6474
6475int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6476{
6477 int err;
6478
6479 ASSERT_RTNL();
6480
6481 /* Don't allow namespace local devices to be moved. */
6482 err = -EINVAL;
6483 if (dev->features & NETIF_F_NETNS_LOCAL)
6484 goto out;
6485
6486 /* Ensure the device has been registrered */
6487 if (dev->reg_state != NETREG_REGISTERED)
6488 goto out;
6489
6490 /* Get out if there is nothing todo */
6491 err = 0;
6492 if (net_eq(dev_net(dev), net))
6493 goto out;
6494
6495 /* Pick the destination device name, and ensure
6496 * we can use it in the destination network namespace.
6497 */
6498 err = -EEXIST;
6499 if (__dev_get_by_name(net, dev->name)) {
6500 /* We get here if we can't use the current device name */
6501 if (!pat)
6502 goto out;
6503 if (dev_get_valid_name(net, dev, pat) < 0)
6504 goto out;
6505 }
6506
6507 /*
6508 * And now a mini version of register_netdevice unregister_netdevice.
6509 */
6510
6511 /* If device is running close it first. */
6512 dev_close(dev);
6513
6514 /* And unlink it from device chain */
6515 err = -ENODEV;
6516 unlist_netdevice(dev);
6517
6518 synchronize_net();
6519
6520 /* Shutdown queueing discipline. */
6521 dev_shutdown(dev);
6522
6523 /* Notify protocols, that we are about to destroy
6524 this device. They should clean all the things.
6525
6526 Note that dev->reg_state stays at NETREG_REGISTERED.
6527 This is wanted because this way 8021q and macvlan know
6528 the device is just moving and can keep their slaves up.
6529 */
6530 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6531 rcu_barrier();
6532 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6533 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6534
6535 /*
6536 * Flush the unicast and multicast chains
6537 */
6538 dev_uc_flush(dev);
6539 dev_mc_flush(dev);
6540
6541 /* Send a netdev-removed uevent to the old namespace */
6542 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6543
6544 /* Actually switch the network namespace */
6545 dev_net_set(dev, net);
6546
6547 /* If there is an ifindex conflict assign a new one */
6548 if (__dev_get_by_index(net, dev->ifindex)) {
6549 int iflink = (dev->iflink == dev->ifindex);
6550 dev->ifindex = dev_new_index(net);
6551 if (iflink)
6552 dev->iflink = dev->ifindex;
6553 }
6554
6555 /* Send a netdev-add uevent to the new namespace */
6556 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6557
6558 /* Fixup kobjects */
6559 err = device_rename(&dev->dev, dev->name);
6560 WARN_ON(err);
6561
6562 /* Add the device back in the hashes */
6563 list_netdevice(dev);
6564
6565 /* Notify protocols, that a new device appeared. */
6566 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6567
6568 /*
6569 * Prevent userspace races by waiting until the network
6570 * device is fully setup before sending notifications.
6571 */
6572 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6573
6574 synchronize_net();
6575 err = 0;
6576out:
6577 return err;
6578}
6579EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6580
6581static int dev_cpu_callback(struct notifier_block *nfb,
6582 unsigned long action,
6583 void *ocpu)
6584{
6585 struct sk_buff **list_skb;
6586 struct sk_buff *skb;
6587 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6588 struct softnet_data *sd, *oldsd;
6589
6590 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6591 return NOTIFY_OK;
6592
6593 local_irq_disable();
6594 cpu = smp_processor_id();
6595 sd = &per_cpu(softnet_data, cpu);
6596 oldsd = &per_cpu(softnet_data, oldcpu);
6597
6598 /* Find end of our completion_queue. */
6599 list_skb = &sd->completion_queue;
6600 while (*list_skb)
6601 list_skb = &(*list_skb)->next;
6602 /* Append completion queue from offline CPU. */
6603 *list_skb = oldsd->completion_queue;
6604 oldsd->completion_queue = NULL;
6605
6606 /* Append output queue from offline CPU. */
6607 if (oldsd->output_queue) {
6608 *sd->output_queue_tailp = oldsd->output_queue;
6609 sd->output_queue_tailp = oldsd->output_queue_tailp;
6610 oldsd->output_queue = NULL;
6611 oldsd->output_queue_tailp = &oldsd->output_queue;
6612 }
6613 /* Append NAPI poll list from offline CPU. */
6614 if (!list_empty(&oldsd->poll_list)) {
6615 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6616 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6617 }
6618
6619 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6620 local_irq_enable();
6621
6622 /* Process offline CPU's input_pkt_queue */
6623 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6624 netif_rx(skb);
6625 input_queue_head_incr(oldsd);
6626 }
6627 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6628 netif_rx(skb);
6629 input_queue_head_incr(oldsd);
6630 }
6631
6632 return NOTIFY_OK;
6633}
6634
6635
6636/**
6637 * netdev_increment_features - increment feature set by one
6638 * @all: current feature set
6639 * @one: new feature set
6640 * @mask: mask feature set
6641 *
6642 * Computes a new feature set after adding a device with feature set
6643 * @one to the master device with current feature set @all. Will not
6644 * enable anything that is off in @mask. Returns the new feature set.
6645 */
6646netdev_features_t netdev_increment_features(netdev_features_t all,
6647 netdev_features_t one, netdev_features_t mask)
6648{
6649 if (mask & NETIF_F_GEN_CSUM)
6650 mask |= NETIF_F_ALL_CSUM;
6651 mask |= NETIF_F_VLAN_CHALLENGED;
6652
6653 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6654 all &= one | ~NETIF_F_ALL_FOR_ALL;
6655
6656 /* If one device supports hw checksumming, set for all. */
6657 if (all & NETIF_F_GEN_CSUM)
6658 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6659
6660 return all;
6661}
6662EXPORT_SYMBOL(netdev_increment_features);
6663
6664static struct hlist_head * __net_init netdev_create_hash(void)
6665{
6666 int i;
6667 struct hlist_head *hash;
6668
6669 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6670 if (hash != NULL)
6671 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6672 INIT_HLIST_HEAD(&hash[i]);
6673
6674 return hash;
6675}
6676
6677/* Initialize per network namespace state */
6678static int __net_init netdev_init(struct net *net)
6679{
6680 if (net != &init_net)
6681 INIT_LIST_HEAD(&net->dev_base_head);
6682
6683 net->dev_name_head = netdev_create_hash();
6684 if (net->dev_name_head == NULL)
6685 goto err_name;
6686
6687 net->dev_index_head = netdev_create_hash();
6688 if (net->dev_index_head == NULL)
6689 goto err_idx;
6690
6691 return 0;
6692
6693err_idx:
6694 kfree(net->dev_name_head);
6695err_name:
6696 return -ENOMEM;
6697}
6698
6699/**
6700 * netdev_drivername - network driver for the device
6701 * @dev: network device
6702 *
6703 * Determine network driver for device.
6704 */
6705const char *netdev_drivername(const struct net_device *dev)
6706{
6707 const struct device_driver *driver;
6708 const struct device *parent;
6709 const char *empty = "";
6710
6711 parent = dev->dev.parent;
6712 if (!parent)
6713 return empty;
6714
6715 driver = parent->driver;
6716 if (driver && driver->name)
6717 return driver->name;
6718 return empty;
6719}
6720
6721static int __netdev_printk(const char *level, const struct net_device *dev,
6722 struct va_format *vaf)
6723{
6724 int r;
6725
6726 if (dev && dev->dev.parent) {
6727 r = dev_printk_emit(level[1] - '0',
6728 dev->dev.parent,
6729 "%s %s %s: %pV",
6730 dev_driver_string(dev->dev.parent),
6731 dev_name(dev->dev.parent),
6732 netdev_name(dev), vaf);
6733 } else if (dev) {
6734 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6735 } else {
6736 r = printk("%s(NULL net_device): %pV", level, vaf);
6737 }
6738
6739 return r;
6740}
6741
6742int netdev_printk(const char *level, const struct net_device *dev,
6743 const char *format, ...)
6744{
6745 struct va_format vaf;
6746 va_list args;
6747 int r;
6748
6749 va_start(args, format);
6750
6751 vaf.fmt = format;
6752 vaf.va = &args;
6753
6754 r = __netdev_printk(level, dev, &vaf);
6755
6756 va_end(args);
6757
6758 return r;
6759}
6760EXPORT_SYMBOL(netdev_printk);
6761
6762#define define_netdev_printk_level(func, level) \
6763int func(const struct net_device *dev, const char *fmt, ...) \
6764{ \
6765 int r; \
6766 struct va_format vaf; \
6767 va_list args; \
6768 \
6769 va_start(args, fmt); \
6770 \
6771 vaf.fmt = fmt; \
6772 vaf.va = &args; \
6773 \
6774 r = __netdev_printk(level, dev, &vaf); \
6775 \
6776 va_end(args); \
6777 \
6778 return r; \
6779} \
6780EXPORT_SYMBOL(func);
6781
6782define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6783define_netdev_printk_level(netdev_alert, KERN_ALERT);
6784define_netdev_printk_level(netdev_crit, KERN_CRIT);
6785define_netdev_printk_level(netdev_err, KERN_ERR);
6786define_netdev_printk_level(netdev_warn, KERN_WARNING);
6787define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6788define_netdev_printk_level(netdev_info, KERN_INFO);
6789
6790static void __net_exit netdev_exit(struct net *net)
6791{
6792 kfree(net->dev_name_head);
6793 kfree(net->dev_index_head);
6794}
6795
6796static struct pernet_operations __net_initdata netdev_net_ops = {
6797 .init = netdev_init,
6798 .exit = netdev_exit,
6799};
6800
6801static void __net_exit default_device_exit(struct net *net)
6802{
6803 struct net_device *dev, *aux;
6804 /*
6805 * Push all migratable network devices back to the
6806 * initial network namespace
6807 */
6808 rtnl_lock();
6809 for_each_netdev_safe(net, dev, aux) {
6810 int err;
6811 char fb_name[IFNAMSIZ];
6812
6813 /* Ignore unmoveable devices (i.e. loopback) */
6814 if (dev->features & NETIF_F_NETNS_LOCAL)
6815 continue;
6816
6817 /* Leave virtual devices for the generic cleanup */
6818 if (dev->rtnl_link_ops)
6819 continue;
6820
6821 /* Push remaining network devices to init_net */
6822 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6823 err = dev_change_net_namespace(dev, &init_net, fb_name);
6824 if (err) {
6825 pr_emerg("%s: failed to move %s to init_net: %d\n",
6826 __func__, dev->name, err);
6827 BUG();
6828 }
6829 }
6830 rtnl_unlock();
6831}
6832
6833static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
6834{
6835 /* Return with the rtnl_lock held when there are no network
6836 * devices unregistering in any network namespace in net_list.
6837 */
6838 struct net *net;
6839 bool unregistering;
6840 DEFINE_WAIT(wait);
6841
6842 for (;;) {
6843 prepare_to_wait(&netdev_unregistering_wq, &wait,
6844 TASK_UNINTERRUPTIBLE);
6845 unregistering = false;
6846 rtnl_lock();
6847 list_for_each_entry(net, net_list, exit_list) {
6848 if (net->dev_unreg_count > 0) {
6849 unregistering = true;
6850 break;
6851 }
6852 }
6853 if (!unregistering)
6854 break;
6855 __rtnl_unlock();
6856 schedule();
6857 }
6858 finish_wait(&netdev_unregistering_wq, &wait);
6859}
6860
6861static void __net_exit default_device_exit_batch(struct list_head *net_list)
6862{
6863 /* At exit all network devices most be removed from a network
6864 * namespace. Do this in the reverse order of registration.
6865 * Do this across as many network namespaces as possible to
6866 * improve batching efficiency.
6867 */
6868 struct net_device *dev;
6869 struct net *net;
6870 LIST_HEAD(dev_kill_list);
6871
6872 /* To prevent network device cleanup code from dereferencing
6873 * loopback devices or network devices that have been freed
6874 * wait here for all pending unregistrations to complete,
6875 * before unregistring the loopback device and allowing the
6876 * network namespace be freed.
6877 *
6878 * The netdev todo list containing all network devices
6879 * unregistrations that happen in default_device_exit_batch
6880 * will run in the rtnl_unlock() at the end of
6881 * default_device_exit_batch.
6882 */
6883 rtnl_lock_unregistering(net_list);
6884 list_for_each_entry(net, net_list, exit_list) {
6885 for_each_netdev_reverse(net, dev) {
6886 if (dev->rtnl_link_ops)
6887 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6888 else
6889 unregister_netdevice_queue(dev, &dev_kill_list);
6890 }
6891 }
6892 unregister_netdevice_many(&dev_kill_list);
6893 list_del(&dev_kill_list);
6894 rtnl_unlock();
6895}
6896
6897static struct pernet_operations __net_initdata default_device_ops = {
6898 .exit = default_device_exit,
6899 .exit_batch = default_device_exit_batch,
6900};
6901
6902/*
6903 * Initialize the DEV module. At boot time this walks the device list and
6904 * unhooks any devices that fail to initialise (normally hardware not
6905 * present) and leaves us with a valid list of present and active devices.
6906 *
6907 */
6908
6909/*
6910 * This is called single threaded during boot, so no need
6911 * to take the rtnl semaphore.
6912 */
6913static int __init net_dev_init(void)
6914{
6915 int i, rc = -ENOMEM;
6916
6917 BUG_ON(!dev_boot_phase);
6918
6919 if (dev_proc_init())
6920 goto out;
6921
6922 if (netdev_kobject_init())
6923 goto out;
6924
6925 INIT_LIST_HEAD(&ptype_all);
6926 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6927 INIT_LIST_HEAD(&ptype_base[i]);
6928
6929 INIT_LIST_HEAD(&offload_base);
6930
6931 if (register_pernet_subsys(&netdev_net_ops))
6932 goto out;
6933
6934 /*
6935 * Initialise the packet receive queues.
6936 */
6937
6938 for_each_possible_cpu(i) {
6939 struct softnet_data *sd = &per_cpu(softnet_data, i);
6940
6941 memset(sd, 0, sizeof(*sd));
6942 skb_queue_head_init(&sd->input_pkt_queue);
6943 skb_queue_head_init(&sd->process_queue);
6944 sd->completion_queue = NULL;
6945 INIT_LIST_HEAD(&sd->poll_list);
6946 sd->output_queue = NULL;
6947 sd->output_queue_tailp = &sd->output_queue;
6948#ifdef CONFIG_RPS
6949 sd->csd.func = rps_trigger_softirq;
6950 sd->csd.info = sd;
6951 sd->csd.flags = 0;
6952 sd->cpu = i;
6953#endif
6954
6955 sd->backlog.poll = process_backlog;
6956 sd->backlog.weight = weight_p;
6957 sd->backlog.gro_list = NULL;
6958 sd->backlog.gro_count = 0;
6959
6960#ifdef CONFIG_NET_FLOW_LIMIT
6961 sd->flow_limit = NULL;
6962#endif
6963 }
6964
6965 dev_boot_phase = 0;
6966
6967 /* The loopback device is special if any other network devices
6968 * is present in a network namespace the loopback device must
6969 * be present. Since we now dynamically allocate and free the
6970 * loopback device ensure this invariant is maintained by
6971 * keeping the loopback device as the first device on the
6972 * list of network devices. Ensuring the loopback devices
6973 * is the first device that appears and the last network device
6974 * that disappears.
6975 */
6976 if (register_pernet_device(&loopback_net_ops))
6977 goto out;
6978
6979 if (register_pernet_device(&default_device_ops))
6980 goto out;
6981
6982 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6983 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6984
6985 hotcpu_notifier(dev_cpu_callback, 0);
6986 dst_init();
6987 rc = 0;
6988out:
6989 return rc;
6990}
6991
6992subsys_initcall(net_dev_init);
This page took 0.115849 seconds and 5 git commands to generate.