[NETFILTER]: nf_log: add netfilter gcc printf format checking
[deliverable/linux.git] / net / ipv4 / arp.c
... / ...
CommitLineData
1/* linux/net/ipv4/arp.c
2 *
3 * Version: $Id: arp.c,v 1.99 2001/08/30 22:55:42 davem Exp $
4 *
5 * Copyright (C) 1994 by Florian La Roche
6 *
7 * This module implements the Address Resolution Protocol ARP (RFC 826),
8 * which is used to convert IP addresses (or in the future maybe other
9 * high-level addresses) into a low-level hardware address (like an Ethernet
10 * address).
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
16 *
17 * Fixes:
18 * Alan Cox : Removed the Ethernet assumptions in
19 * Florian's code
20 * Alan Cox : Fixed some small errors in the ARP
21 * logic
22 * Alan Cox : Allow >4K in /proc
23 * Alan Cox : Make ARP add its own protocol entry
24 * Ross Martin : Rewrote arp_rcv() and arp_get_info()
25 * Stephen Henson : Add AX25 support to arp_get_info()
26 * Alan Cox : Drop data when a device is downed.
27 * Alan Cox : Use init_timer().
28 * Alan Cox : Double lock fixes.
29 * Martin Seine : Move the arphdr structure
30 * to if_arp.h for compatibility.
31 * with BSD based programs.
32 * Andrew Tridgell : Added ARP netmask code and
33 * re-arranged proxy handling.
34 * Alan Cox : Changed to use notifiers.
35 * Niibe Yutaka : Reply for this device or proxies only.
36 * Alan Cox : Don't proxy across hardware types!
37 * Jonathan Naylor : Added support for NET/ROM.
38 * Mike Shaver : RFC1122 checks.
39 * Jonathan Naylor : Only lookup the hardware address for
40 * the correct hardware type.
41 * Germano Caronni : Assorted subtle races.
42 * Craig Schlenter : Don't modify permanent entry
43 * during arp_rcv.
44 * Russ Nelson : Tidied up a few bits.
45 * Alexey Kuznetsov: Major changes to caching and behaviour,
46 * eg intelligent arp probing and
47 * generation
48 * of host down events.
49 * Alan Cox : Missing unlock in device events.
50 * Eckes : ARP ioctl control errors.
51 * Alexey Kuznetsov: Arp free fix.
52 * Manuel Rodriguez: Gratuitous ARP.
53 * Jonathan Layes : Added arpd support through kerneld
54 * message queue (960314)
55 * Mike Shaver : /proc/sys/net/ipv4/arp_* support
56 * Mike McLagan : Routing by source
57 * Stuart Cheshire : Metricom and grat arp fixes
58 * *** FOR 2.1 clean this up ***
59 * Lawrence V. Stefani: (08/12/96) Added FDDI support.
60 * Alan Cox : Took the AP1000 nasty FDDI hack and
61 * folded into the mainstream FDDI code.
62 * Ack spit, Linus how did you allow that
63 * one in...
64 * Jes Sorensen : Make FDDI work again in 2.1.x and
65 * clean up the APFDDI & gen. FDDI bits.
66 * Alexey Kuznetsov: new arp state machine;
67 * now it is in net/core/neighbour.c.
68 * Krzysztof Halasa: Added Frame Relay ARP support.
69 * Arnaldo C. Melo : convert /proc/net/arp to seq_file
70 * Shmulik Hen: Split arp_send to arp_create and
71 * arp_xmit so intermediate drivers like
72 * bonding can change the skb before
73 * sending (e.g. insert 8021q tag).
74 * Harald Welte : convert to make use of jenkins hash
75 */
76
77#include <linux/module.h>
78#include <linux/types.h>
79#include <linux/string.h>
80#include <linux/kernel.h>
81#include <linux/capability.h>
82#include <linux/socket.h>
83#include <linux/sockios.h>
84#include <linux/errno.h>
85#include <linux/in.h>
86#include <linux/mm.h>
87#include <linux/inet.h>
88#include <linux/inetdevice.h>
89#include <linux/netdevice.h>
90#include <linux/etherdevice.h>
91#include <linux/fddidevice.h>
92#include <linux/if_arp.h>
93#include <linux/trdevice.h>
94#include <linux/skbuff.h>
95#include <linux/proc_fs.h>
96#include <linux/seq_file.h>
97#include <linux/stat.h>
98#include <linux/init.h>
99#include <linux/net.h>
100#include <linux/rcupdate.h>
101#include <linux/jhash.h>
102#ifdef CONFIG_SYSCTL
103#include <linux/sysctl.h>
104#endif
105
106#include <net/net_namespace.h>
107#include <net/ip.h>
108#include <net/icmp.h>
109#include <net/route.h>
110#include <net/protocol.h>
111#include <net/tcp.h>
112#include <net/sock.h>
113#include <net/arp.h>
114#include <net/ax25.h>
115#include <net/netrom.h>
116#if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
117#include <net/atmclip.h>
118struct neigh_table *clip_tbl_hook;
119#endif
120
121#include <asm/system.h>
122#include <asm/uaccess.h>
123
124#include <linux/netfilter_arp.h>
125
126/*
127 * Interface to generic neighbour cache.
128 */
129static u32 arp_hash(const void *pkey, const struct net_device *dev);
130static int arp_constructor(struct neighbour *neigh);
131static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
132static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
133static void parp_redo(struct sk_buff *skb);
134
135static struct neigh_ops arp_generic_ops = {
136 .family = AF_INET,
137 .solicit = arp_solicit,
138 .error_report = arp_error_report,
139 .output = neigh_resolve_output,
140 .connected_output = neigh_connected_output,
141 .hh_output = dev_queue_xmit,
142 .queue_xmit = dev_queue_xmit,
143};
144
145static struct neigh_ops arp_hh_ops = {
146 .family = AF_INET,
147 .solicit = arp_solicit,
148 .error_report = arp_error_report,
149 .output = neigh_resolve_output,
150 .connected_output = neigh_resolve_output,
151 .hh_output = dev_queue_xmit,
152 .queue_xmit = dev_queue_xmit,
153};
154
155static struct neigh_ops arp_direct_ops = {
156 .family = AF_INET,
157 .output = dev_queue_xmit,
158 .connected_output = dev_queue_xmit,
159 .hh_output = dev_queue_xmit,
160 .queue_xmit = dev_queue_xmit,
161};
162
163struct neigh_ops arp_broken_ops = {
164 .family = AF_INET,
165 .solicit = arp_solicit,
166 .error_report = arp_error_report,
167 .output = neigh_compat_output,
168 .connected_output = neigh_compat_output,
169 .hh_output = dev_queue_xmit,
170 .queue_xmit = dev_queue_xmit,
171};
172
173struct neigh_table arp_tbl = {
174 .family = AF_INET,
175 .entry_size = sizeof(struct neighbour) + 4,
176 .key_len = 4,
177 .hash = arp_hash,
178 .constructor = arp_constructor,
179 .proxy_redo = parp_redo,
180 .id = "arp_cache",
181 .parms = {
182 .tbl = &arp_tbl,
183 .base_reachable_time = 30 * HZ,
184 .retrans_time = 1 * HZ,
185 .gc_staletime = 60 * HZ,
186 .reachable_time = 30 * HZ,
187 .delay_probe_time = 5 * HZ,
188 .queue_len = 3,
189 .ucast_probes = 3,
190 .mcast_probes = 3,
191 .anycast_delay = 1 * HZ,
192 .proxy_delay = (8 * HZ) / 10,
193 .proxy_qlen = 64,
194 .locktime = 1 * HZ,
195 },
196 .gc_interval = 30 * HZ,
197 .gc_thresh1 = 128,
198 .gc_thresh2 = 512,
199 .gc_thresh3 = 1024,
200};
201
202int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
203{
204 switch (dev->type) {
205 case ARPHRD_ETHER:
206 case ARPHRD_FDDI:
207 case ARPHRD_IEEE802:
208 ip_eth_mc_map(addr, haddr);
209 return 0;
210 case ARPHRD_IEEE802_TR:
211 ip_tr_mc_map(addr, haddr);
212 return 0;
213 case ARPHRD_INFINIBAND:
214 ip_ib_mc_map(addr, dev->broadcast, haddr);
215 return 0;
216 default:
217 if (dir) {
218 memcpy(haddr, dev->broadcast, dev->addr_len);
219 return 0;
220 }
221 }
222 return -EINVAL;
223}
224
225
226static u32 arp_hash(const void *pkey, const struct net_device *dev)
227{
228 return jhash_2words(*(u32 *)pkey, dev->ifindex, arp_tbl.hash_rnd);
229}
230
231static int arp_constructor(struct neighbour *neigh)
232{
233 __be32 addr = *(__be32*)neigh->primary_key;
234 struct net_device *dev = neigh->dev;
235 struct in_device *in_dev;
236 struct neigh_parms *parms;
237
238 rcu_read_lock();
239 in_dev = __in_dev_get_rcu(dev);
240 if (in_dev == NULL) {
241 rcu_read_unlock();
242 return -EINVAL;
243 }
244
245 neigh->type = inet_addr_type(&init_net, addr);
246
247 parms = in_dev->arp_parms;
248 __neigh_parms_put(neigh->parms);
249 neigh->parms = neigh_parms_clone(parms);
250 rcu_read_unlock();
251
252 if (!dev->header_ops) {
253 neigh->nud_state = NUD_NOARP;
254 neigh->ops = &arp_direct_ops;
255 neigh->output = neigh->ops->queue_xmit;
256 } else {
257 /* Good devices (checked by reading texts, but only Ethernet is
258 tested)
259
260 ARPHRD_ETHER: (ethernet, apfddi)
261 ARPHRD_FDDI: (fddi)
262 ARPHRD_IEEE802: (tr)
263 ARPHRD_METRICOM: (strip)
264 ARPHRD_ARCNET:
265 etc. etc. etc.
266
267 ARPHRD_IPDDP will also work, if author repairs it.
268 I did not it, because this driver does not work even
269 in old paradigm.
270 */
271
272#if 1
273 /* So... these "amateur" devices are hopeless.
274 The only thing, that I can say now:
275 It is very sad that we need to keep ugly obsolete
276 code to make them happy.
277
278 They should be moved to more reasonable state, now
279 they use rebuild_header INSTEAD OF hard_start_xmit!!!
280 Besides that, they are sort of out of date
281 (a lot of redundant clones/copies, useless in 2.1),
282 I wonder why people believe that they work.
283 */
284 switch (dev->type) {
285 default:
286 break;
287 case ARPHRD_ROSE:
288#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
289 case ARPHRD_AX25:
290#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
291 case ARPHRD_NETROM:
292#endif
293 neigh->ops = &arp_broken_ops;
294 neigh->output = neigh->ops->output;
295 return 0;
296#endif
297 ;}
298#endif
299 if (neigh->type == RTN_MULTICAST) {
300 neigh->nud_state = NUD_NOARP;
301 arp_mc_map(addr, neigh->ha, dev, 1);
302 } else if (dev->flags&(IFF_NOARP|IFF_LOOPBACK)) {
303 neigh->nud_state = NUD_NOARP;
304 memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
305 } else if (neigh->type == RTN_BROADCAST || dev->flags&IFF_POINTOPOINT) {
306 neigh->nud_state = NUD_NOARP;
307 memcpy(neigh->ha, dev->broadcast, dev->addr_len);
308 }
309
310 if (dev->header_ops->cache)
311 neigh->ops = &arp_hh_ops;
312 else
313 neigh->ops = &arp_generic_ops;
314
315 if (neigh->nud_state&NUD_VALID)
316 neigh->output = neigh->ops->connected_output;
317 else
318 neigh->output = neigh->ops->output;
319 }
320 return 0;
321}
322
323static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
324{
325 dst_link_failure(skb);
326 kfree_skb(skb);
327}
328
329static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
330{
331 __be32 saddr = 0;
332 u8 *dst_ha = NULL;
333 struct net_device *dev = neigh->dev;
334 __be32 target = *(__be32*)neigh->primary_key;
335 int probes = atomic_read(&neigh->probes);
336 struct in_device *in_dev = in_dev_get(dev);
337
338 if (!in_dev)
339 return;
340
341 switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
342 default:
343 case 0: /* By default announce any local IP */
344 if (skb && inet_addr_type(&init_net, ip_hdr(skb)->saddr) == RTN_LOCAL)
345 saddr = ip_hdr(skb)->saddr;
346 break;
347 case 1: /* Restrict announcements of saddr in same subnet */
348 if (!skb)
349 break;
350 saddr = ip_hdr(skb)->saddr;
351 if (inet_addr_type(&init_net, saddr) == RTN_LOCAL) {
352 /* saddr should be known to target */
353 if (inet_addr_onlink(in_dev, target, saddr))
354 break;
355 }
356 saddr = 0;
357 break;
358 case 2: /* Avoid secondary IPs, get a primary/preferred one */
359 break;
360 }
361
362 if (in_dev)
363 in_dev_put(in_dev);
364 if (!saddr)
365 saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
366
367 if ((probes -= neigh->parms->ucast_probes) < 0) {
368 if (!(neigh->nud_state&NUD_VALID))
369 printk(KERN_DEBUG "trying to ucast probe in NUD_INVALID\n");
370 dst_ha = neigh->ha;
371 read_lock_bh(&neigh->lock);
372 } else if ((probes -= neigh->parms->app_probes) < 0) {
373#ifdef CONFIG_ARPD
374 neigh_app_ns(neigh);
375#endif
376 return;
377 }
378
379 arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
380 dst_ha, dev->dev_addr, NULL);
381 if (dst_ha)
382 read_unlock_bh(&neigh->lock);
383}
384
385static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
386{
387 int scope;
388
389 switch (IN_DEV_ARP_IGNORE(in_dev)) {
390 case 0: /* Reply, the tip is already validated */
391 return 0;
392 case 1: /* Reply only if tip is configured on the incoming interface */
393 sip = 0;
394 scope = RT_SCOPE_HOST;
395 break;
396 case 2: /*
397 * Reply only if tip is configured on the incoming interface
398 * and is in same subnet as sip
399 */
400 scope = RT_SCOPE_HOST;
401 break;
402 case 3: /* Do not reply for scope host addresses */
403 sip = 0;
404 scope = RT_SCOPE_LINK;
405 break;
406 case 4: /* Reserved */
407 case 5:
408 case 6:
409 case 7:
410 return 0;
411 case 8: /* Do not reply */
412 return 1;
413 default:
414 return 0;
415 }
416 return !inet_confirm_addr(in_dev, sip, tip, scope);
417}
418
419static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
420{
421 struct flowi fl = { .nl_u = { .ip4_u = { .daddr = sip,
422 .saddr = tip } } };
423 struct rtable *rt;
424 int flag = 0;
425 /*unsigned long now; */
426
427 if (ip_route_output_key(&init_net, &rt, &fl) < 0)
428 return 1;
429 if (rt->u.dst.dev != dev) {
430 NET_INC_STATS_BH(LINUX_MIB_ARPFILTER);
431 flag = 1;
432 }
433 ip_rt_put(rt);
434 return flag;
435}
436
437/* OBSOLETE FUNCTIONS */
438
439/*
440 * Find an arp mapping in the cache. If not found, post a request.
441 *
442 * It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
443 * even if it exists. It is supposed that skb->dev was mangled
444 * by a virtual device (eql, shaper). Nobody but broken devices
445 * is allowed to use this function, it is scheduled to be removed. --ANK
446 */
447
448static int arp_set_predefined(int addr_hint, unsigned char * haddr, __be32 paddr, struct net_device * dev)
449{
450 switch (addr_hint) {
451 case RTN_LOCAL:
452 printk(KERN_DEBUG "ARP: arp called for own IP address\n");
453 memcpy(haddr, dev->dev_addr, dev->addr_len);
454 return 1;
455 case RTN_MULTICAST:
456 arp_mc_map(paddr, haddr, dev, 1);
457 return 1;
458 case RTN_BROADCAST:
459 memcpy(haddr, dev->broadcast, dev->addr_len);
460 return 1;
461 }
462 return 0;
463}
464
465
466int arp_find(unsigned char *haddr, struct sk_buff *skb)
467{
468 struct net_device *dev = skb->dev;
469 __be32 paddr;
470 struct neighbour *n;
471
472 if (!skb->dst) {
473 printk(KERN_DEBUG "arp_find is called with dst==NULL\n");
474 kfree_skb(skb);
475 return 1;
476 }
477
478 paddr = ((struct rtable*)skb->dst)->rt_gateway;
479
480 if (arp_set_predefined(inet_addr_type(&init_net, paddr), haddr, paddr, dev))
481 return 0;
482
483 n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
484
485 if (n) {
486 n->used = jiffies;
487 if (n->nud_state&NUD_VALID || neigh_event_send(n, skb) == 0) {
488 read_lock_bh(&n->lock);
489 memcpy(haddr, n->ha, dev->addr_len);
490 read_unlock_bh(&n->lock);
491 neigh_release(n);
492 return 0;
493 }
494 neigh_release(n);
495 } else
496 kfree_skb(skb);
497 return 1;
498}
499
500/* END OF OBSOLETE FUNCTIONS */
501
502int arp_bind_neighbour(struct dst_entry *dst)
503{
504 struct net_device *dev = dst->dev;
505 struct neighbour *n = dst->neighbour;
506
507 if (dev == NULL)
508 return -EINVAL;
509 if (n == NULL) {
510 __be32 nexthop = ((struct rtable*)dst)->rt_gateway;
511 if (dev->flags&(IFF_LOOPBACK|IFF_POINTOPOINT))
512 nexthop = 0;
513 n = __neigh_lookup_errno(
514#if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
515 dev->type == ARPHRD_ATM ? clip_tbl_hook :
516#endif
517 &arp_tbl, &nexthop, dev);
518 if (IS_ERR(n))
519 return PTR_ERR(n);
520 dst->neighbour = n;
521 }
522 return 0;
523}
524
525/*
526 * Check if we can use proxy ARP for this path
527 */
528
529static inline int arp_fwd_proxy(struct in_device *in_dev, struct rtable *rt)
530{
531 struct in_device *out_dev;
532 int imi, omi = -1;
533
534 if (!IN_DEV_PROXY_ARP(in_dev))
535 return 0;
536
537 if ((imi = IN_DEV_MEDIUM_ID(in_dev)) == 0)
538 return 1;
539 if (imi == -1)
540 return 0;
541
542 /* place to check for proxy_arp for routes */
543
544 if ((out_dev = in_dev_get(rt->u.dst.dev)) != NULL) {
545 omi = IN_DEV_MEDIUM_ID(out_dev);
546 in_dev_put(out_dev);
547 }
548 return (omi != imi && omi != -1);
549}
550
551/*
552 * Interface to link layer: send routine and receive handler.
553 */
554
555/*
556 * Create an arp packet. If (dest_hw == NULL), we create a broadcast
557 * message.
558 */
559struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
560 struct net_device *dev, __be32 src_ip,
561 unsigned char *dest_hw, unsigned char *src_hw,
562 unsigned char *target_hw)
563{
564 struct sk_buff *skb;
565 struct arphdr *arp;
566 unsigned char *arp_ptr;
567
568 /*
569 * Allocate a buffer
570 */
571
572 skb = alloc_skb(sizeof(struct arphdr)+ 2*(dev->addr_len+4)
573 + LL_RESERVED_SPACE(dev), GFP_ATOMIC);
574 if (skb == NULL)
575 return NULL;
576
577 skb_reserve(skb, LL_RESERVED_SPACE(dev));
578 skb_reset_network_header(skb);
579 arp = (struct arphdr *) skb_put(skb,sizeof(struct arphdr) + 2*(dev->addr_len+4));
580 skb->dev = dev;
581 skb->protocol = htons(ETH_P_ARP);
582 if (src_hw == NULL)
583 src_hw = dev->dev_addr;
584 if (dest_hw == NULL)
585 dest_hw = dev->broadcast;
586
587 /*
588 * Fill the device header for the ARP frame
589 */
590 if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
591 goto out;
592
593 /*
594 * Fill out the arp protocol part.
595 *
596 * The arp hardware type should match the device type, except for FDDI,
597 * which (according to RFC 1390) should always equal 1 (Ethernet).
598 */
599 /*
600 * Exceptions everywhere. AX.25 uses the AX.25 PID value not the
601 * DIX code for the protocol. Make these device structure fields.
602 */
603 switch (dev->type) {
604 default:
605 arp->ar_hrd = htons(dev->type);
606 arp->ar_pro = htons(ETH_P_IP);
607 break;
608
609#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
610 case ARPHRD_AX25:
611 arp->ar_hrd = htons(ARPHRD_AX25);
612 arp->ar_pro = htons(AX25_P_IP);
613 break;
614
615#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
616 case ARPHRD_NETROM:
617 arp->ar_hrd = htons(ARPHRD_NETROM);
618 arp->ar_pro = htons(AX25_P_IP);
619 break;
620#endif
621#endif
622
623#ifdef CONFIG_FDDI
624 case ARPHRD_FDDI:
625 arp->ar_hrd = htons(ARPHRD_ETHER);
626 arp->ar_pro = htons(ETH_P_IP);
627 break;
628#endif
629#ifdef CONFIG_TR
630 case ARPHRD_IEEE802_TR:
631 arp->ar_hrd = htons(ARPHRD_IEEE802);
632 arp->ar_pro = htons(ETH_P_IP);
633 break;
634#endif
635 }
636
637 arp->ar_hln = dev->addr_len;
638 arp->ar_pln = 4;
639 arp->ar_op = htons(type);
640
641 arp_ptr=(unsigned char *)(arp+1);
642
643 memcpy(arp_ptr, src_hw, dev->addr_len);
644 arp_ptr+=dev->addr_len;
645 memcpy(arp_ptr, &src_ip,4);
646 arp_ptr+=4;
647 if (target_hw != NULL)
648 memcpy(arp_ptr, target_hw, dev->addr_len);
649 else
650 memset(arp_ptr, 0, dev->addr_len);
651 arp_ptr+=dev->addr_len;
652 memcpy(arp_ptr, &dest_ip, 4);
653
654 return skb;
655
656out:
657 kfree_skb(skb);
658 return NULL;
659}
660
661/*
662 * Send an arp packet.
663 */
664void arp_xmit(struct sk_buff *skb)
665{
666 /* Send it off, maybe filter it using firewalling first. */
667 NF_HOOK(NF_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
668}
669
670/*
671 * Create and send an arp packet.
672 */
673void arp_send(int type, int ptype, __be32 dest_ip,
674 struct net_device *dev, __be32 src_ip,
675 unsigned char *dest_hw, unsigned char *src_hw,
676 unsigned char *target_hw)
677{
678 struct sk_buff *skb;
679
680 /*
681 * No arp on this interface.
682 */
683
684 if (dev->flags&IFF_NOARP)
685 return;
686
687 skb = arp_create(type, ptype, dest_ip, dev, src_ip,
688 dest_hw, src_hw, target_hw);
689 if (skb == NULL) {
690 return;
691 }
692
693 arp_xmit(skb);
694}
695
696/*
697 * Process an arp request.
698 */
699
700static int arp_process(struct sk_buff *skb)
701{
702 struct net_device *dev = skb->dev;
703 struct in_device *in_dev = in_dev_get(dev);
704 struct arphdr *arp;
705 unsigned char *arp_ptr;
706 struct rtable *rt;
707 unsigned char *sha;
708 __be32 sip, tip;
709 u16 dev_type = dev->type;
710 int addr_type;
711 struct neighbour *n;
712
713 /* arp_rcv below verifies the ARP header and verifies the device
714 * is ARP'able.
715 */
716
717 if (in_dev == NULL)
718 goto out;
719
720 arp = arp_hdr(skb);
721
722 switch (dev_type) {
723 default:
724 if (arp->ar_pro != htons(ETH_P_IP) ||
725 htons(dev_type) != arp->ar_hrd)
726 goto out;
727 break;
728 case ARPHRD_ETHER:
729 case ARPHRD_IEEE802_TR:
730 case ARPHRD_FDDI:
731 case ARPHRD_IEEE802:
732 /*
733 * ETHERNET, Token Ring and Fibre Channel (which are IEEE 802
734 * devices, according to RFC 2625) devices will accept ARP
735 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
736 * This is the case also of FDDI, where the RFC 1390 says that
737 * FDDI devices should accept ARP hardware of (1) Ethernet,
738 * however, to be more robust, we'll accept both 1 (Ethernet)
739 * or 6 (IEEE 802.2)
740 */
741 if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
742 arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
743 arp->ar_pro != htons(ETH_P_IP))
744 goto out;
745 break;
746 case ARPHRD_AX25:
747 if (arp->ar_pro != htons(AX25_P_IP) ||
748 arp->ar_hrd != htons(ARPHRD_AX25))
749 goto out;
750 break;
751 case ARPHRD_NETROM:
752 if (arp->ar_pro != htons(AX25_P_IP) ||
753 arp->ar_hrd != htons(ARPHRD_NETROM))
754 goto out;
755 break;
756 }
757
758 /* Understand only these message types */
759
760 if (arp->ar_op != htons(ARPOP_REPLY) &&
761 arp->ar_op != htons(ARPOP_REQUEST))
762 goto out;
763
764/*
765 * Extract fields
766 */
767 arp_ptr= (unsigned char *)(arp+1);
768 sha = arp_ptr;
769 arp_ptr += dev->addr_len;
770 memcpy(&sip, arp_ptr, 4);
771 arp_ptr += 4;
772 arp_ptr += dev->addr_len;
773 memcpy(&tip, arp_ptr, 4);
774/*
775 * Check for bad requests for 127.x.x.x and requests for multicast
776 * addresses. If this is one such, delete it.
777 */
778 if (ipv4_is_loopback(tip) || ipv4_is_multicast(tip))
779 goto out;
780
781/*
782 * Special case: We must set Frame Relay source Q.922 address
783 */
784 if (dev_type == ARPHRD_DLCI)
785 sha = dev->broadcast;
786
787/*
788 * Process entry. The idea here is we want to send a reply if it is a
789 * request for us or if it is a request for someone else that we hold
790 * a proxy for. We want to add an entry to our cache if it is a reply
791 * to us or if it is a request for our address.
792 * (The assumption for this last is that if someone is requesting our
793 * address, they are probably intending to talk to us, so it saves time
794 * if we cache their address. Their address is also probably not in
795 * our cache, since ours is not in their cache.)
796 *
797 * Putting this another way, we only care about replies if they are to
798 * us, in which case we add them to the cache. For requests, we care
799 * about those for us and those for our proxies. We reply to both,
800 * and in the case of requests for us we add the requester to the arp
801 * cache.
802 */
803
804 /* Special case: IPv4 duplicate address detection packet (RFC2131) */
805 if (sip == 0) {
806 if (arp->ar_op == htons(ARPOP_REQUEST) &&
807 inet_addr_type(&init_net, tip) == RTN_LOCAL &&
808 !arp_ignore(in_dev, sip, tip))
809 arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
810 dev->dev_addr, sha);
811 goto out;
812 }
813
814 if (arp->ar_op == htons(ARPOP_REQUEST) &&
815 ip_route_input(skb, tip, sip, 0, dev) == 0) {
816
817 rt = (struct rtable*)skb->dst;
818 addr_type = rt->rt_type;
819
820 if (addr_type == RTN_LOCAL) {
821 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
822 if (n) {
823 int dont_send = 0;
824
825 if (!dont_send)
826 dont_send |= arp_ignore(in_dev,sip,tip);
827 if (!dont_send && IN_DEV_ARPFILTER(in_dev))
828 dont_send |= arp_filter(sip,tip,dev);
829 if (!dont_send)
830 arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
831
832 neigh_release(n);
833 }
834 goto out;
835 } else if (IN_DEV_FORWARD(in_dev)) {
836 if (addr_type == RTN_UNICAST && rt->u.dst.dev != dev &&
837 (arp_fwd_proxy(in_dev, rt) || pneigh_lookup(&arp_tbl, &init_net, &tip, dev, 0))) {
838 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
839 if (n)
840 neigh_release(n);
841
842 if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
843 skb->pkt_type == PACKET_HOST ||
844 in_dev->arp_parms->proxy_delay == 0) {
845 arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
846 } else {
847 pneigh_enqueue(&arp_tbl, in_dev->arp_parms, skb);
848 in_dev_put(in_dev);
849 return 0;
850 }
851 goto out;
852 }
853 }
854 }
855
856 /* Update our ARP tables */
857
858 n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
859
860 if (IPV4_DEVCONF_ALL(dev->nd_net, ARP_ACCEPT)) {
861 /* Unsolicited ARP is not accepted by default.
862 It is possible, that this option should be enabled for some
863 devices (strip is candidate)
864 */
865 if (n == NULL &&
866 arp->ar_op == htons(ARPOP_REPLY) &&
867 inet_addr_type(&init_net, sip) == RTN_UNICAST)
868 n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
869 }
870
871 if (n) {
872 int state = NUD_REACHABLE;
873 int override;
874
875 /* If several different ARP replies follows back-to-back,
876 use the FIRST one. It is possible, if several proxy
877 agents are active. Taking the first reply prevents
878 arp trashing and chooses the fastest router.
879 */
880 override = time_after(jiffies, n->updated + n->parms->locktime);
881
882 /* Broadcast replies and request packets
883 do not assert neighbour reachability.
884 */
885 if (arp->ar_op != htons(ARPOP_REPLY) ||
886 skb->pkt_type != PACKET_HOST)
887 state = NUD_STALE;
888 neigh_update(n, sha, state, override ? NEIGH_UPDATE_F_OVERRIDE : 0);
889 neigh_release(n);
890 }
891
892out:
893 if (in_dev)
894 in_dev_put(in_dev);
895 kfree_skb(skb);
896 return 0;
897}
898
899static void parp_redo(struct sk_buff *skb)
900{
901 arp_process(skb);
902}
903
904
905/*
906 * Receive an arp request from the device layer.
907 */
908
909static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
910 struct packet_type *pt, struct net_device *orig_dev)
911{
912 struct arphdr *arp;
913
914 if (dev->nd_net != &init_net)
915 goto freeskb;
916
917 /* ARP header, plus 2 device addresses, plus 2 IP addresses. */
918 if (!pskb_may_pull(skb, (sizeof(struct arphdr) +
919 (2 * dev->addr_len) +
920 (2 * sizeof(u32)))))
921 goto freeskb;
922
923 arp = arp_hdr(skb);
924 if (arp->ar_hln != dev->addr_len ||
925 dev->flags & IFF_NOARP ||
926 skb->pkt_type == PACKET_OTHERHOST ||
927 skb->pkt_type == PACKET_LOOPBACK ||
928 arp->ar_pln != 4)
929 goto freeskb;
930
931 if ((skb = skb_share_check(skb, GFP_ATOMIC)) == NULL)
932 goto out_of_mem;
933
934 memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
935
936 return NF_HOOK(NF_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
937
938freeskb:
939 kfree_skb(skb);
940out_of_mem:
941 return 0;
942}
943
944/*
945 * User level interface (ioctl)
946 */
947
948/*
949 * Set (create) an ARP cache entry.
950 */
951
952static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
953{
954 if (dev == NULL) {
955 IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
956 return 0;
957 }
958 if (__in_dev_get_rtnl(dev)) {
959 IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
960 return 0;
961 }
962 return -ENXIO;
963}
964
965static int arp_req_set_public(struct net *net, struct arpreq *r,
966 struct net_device *dev)
967{
968 __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
969 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
970
971 if (mask && mask != htonl(0xFFFFFFFF))
972 return -EINVAL;
973 if (!dev && (r->arp_flags & ATF_COM)) {
974 dev = dev_getbyhwaddr(net, r->arp_ha.sa_family,
975 r->arp_ha.sa_data);
976 if (!dev)
977 return -ENODEV;
978 }
979 if (mask) {
980 if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
981 return -ENOBUFS;
982 return 0;
983 }
984
985 return arp_req_set_proxy(net, dev, 1);
986}
987
988static int arp_req_set(struct net *net, struct arpreq *r,
989 struct net_device * dev)
990{
991 __be32 ip;
992 struct neighbour *neigh;
993 int err;
994
995 if (r->arp_flags & ATF_PUBL)
996 return arp_req_set_public(net, r, dev);
997
998 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
999 if (r->arp_flags & ATF_PERM)
1000 r->arp_flags |= ATF_COM;
1001 if (dev == NULL) {
1002 struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip,
1003 .tos = RTO_ONLINK } } };
1004 struct rtable * rt;
1005 if ((err = ip_route_output_key(net, &rt, &fl)) != 0)
1006 return err;
1007 dev = rt->u.dst.dev;
1008 ip_rt_put(rt);
1009 if (!dev)
1010 return -EINVAL;
1011 }
1012 switch (dev->type) {
1013#ifdef CONFIG_FDDI
1014 case ARPHRD_FDDI:
1015 /*
1016 * According to RFC 1390, FDDI devices should accept ARP
1017 * hardware types of 1 (Ethernet). However, to be more
1018 * robust, we'll accept hardware types of either 1 (Ethernet)
1019 * or 6 (IEEE 802.2).
1020 */
1021 if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1022 r->arp_ha.sa_family != ARPHRD_ETHER &&
1023 r->arp_ha.sa_family != ARPHRD_IEEE802)
1024 return -EINVAL;
1025 break;
1026#endif
1027 default:
1028 if (r->arp_ha.sa_family != dev->type)
1029 return -EINVAL;
1030 break;
1031 }
1032
1033 neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1034 err = PTR_ERR(neigh);
1035 if (!IS_ERR(neigh)) {
1036 unsigned state = NUD_STALE;
1037 if (r->arp_flags & ATF_PERM)
1038 state = NUD_PERMANENT;
1039 err = neigh_update(neigh, (r->arp_flags&ATF_COM) ?
1040 r->arp_ha.sa_data : NULL, state,
1041 NEIGH_UPDATE_F_OVERRIDE|
1042 NEIGH_UPDATE_F_ADMIN);
1043 neigh_release(neigh);
1044 }
1045 return err;
1046}
1047
1048static unsigned arp_state_to_flags(struct neighbour *neigh)
1049{
1050 unsigned flags = 0;
1051 if (neigh->nud_state&NUD_PERMANENT)
1052 flags = ATF_PERM|ATF_COM;
1053 else if (neigh->nud_state&NUD_VALID)
1054 flags = ATF_COM;
1055 return flags;
1056}
1057
1058/*
1059 * Get an ARP cache entry.
1060 */
1061
1062static int arp_req_get(struct arpreq *r, struct net_device *dev)
1063{
1064 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1065 struct neighbour *neigh;
1066 int err = -ENXIO;
1067
1068 neigh = neigh_lookup(&arp_tbl, &ip, dev);
1069 if (neigh) {
1070 read_lock_bh(&neigh->lock);
1071 memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1072 r->arp_flags = arp_state_to_flags(neigh);
1073 read_unlock_bh(&neigh->lock);
1074 r->arp_ha.sa_family = dev->type;
1075 strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1076 neigh_release(neigh);
1077 err = 0;
1078 }
1079 return err;
1080}
1081
1082static int arp_req_delete_public(struct net *net, struct arpreq *r,
1083 struct net_device *dev)
1084{
1085 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1086 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1087
1088 if (mask == htonl(0xFFFFFFFF))
1089 return pneigh_delete(&arp_tbl, net, &ip, dev);
1090
1091 if (mask)
1092 return -EINVAL;
1093
1094 return arp_req_set_proxy(net, dev, 0);
1095}
1096
1097static int arp_req_delete(struct net *net, struct arpreq *r,
1098 struct net_device * dev)
1099{
1100 int err;
1101 __be32 ip;
1102 struct neighbour *neigh;
1103
1104 if (r->arp_flags & ATF_PUBL)
1105 return arp_req_delete_public(net, r, dev);
1106
1107 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1108 if (dev == NULL) {
1109 struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip,
1110 .tos = RTO_ONLINK } } };
1111 struct rtable * rt;
1112 if ((err = ip_route_output_key(net, &rt, &fl)) != 0)
1113 return err;
1114 dev = rt->u.dst.dev;
1115 ip_rt_put(rt);
1116 if (!dev)
1117 return -EINVAL;
1118 }
1119 err = -ENXIO;
1120 neigh = neigh_lookup(&arp_tbl, &ip, dev);
1121 if (neigh) {
1122 if (neigh->nud_state&~NUD_NOARP)
1123 err = neigh_update(neigh, NULL, NUD_FAILED,
1124 NEIGH_UPDATE_F_OVERRIDE|
1125 NEIGH_UPDATE_F_ADMIN);
1126 neigh_release(neigh);
1127 }
1128 return err;
1129}
1130
1131/*
1132 * Handle an ARP layer I/O control request.
1133 */
1134
1135int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1136{
1137 int err;
1138 struct arpreq r;
1139 struct net_device *dev = NULL;
1140
1141 switch (cmd) {
1142 case SIOCDARP:
1143 case SIOCSARP:
1144 if (!capable(CAP_NET_ADMIN))
1145 return -EPERM;
1146 case SIOCGARP:
1147 err = copy_from_user(&r, arg, sizeof(struct arpreq));
1148 if (err)
1149 return -EFAULT;
1150 break;
1151 default:
1152 return -EINVAL;
1153 }
1154
1155 if (r.arp_pa.sa_family != AF_INET)
1156 return -EPFNOSUPPORT;
1157
1158 if (!(r.arp_flags & ATF_PUBL) &&
1159 (r.arp_flags & (ATF_NETMASK|ATF_DONTPUB)))
1160 return -EINVAL;
1161 if (!(r.arp_flags & ATF_NETMASK))
1162 ((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1163 htonl(0xFFFFFFFFUL);
1164 rtnl_lock();
1165 if (r.arp_dev[0]) {
1166 err = -ENODEV;
1167 if ((dev = __dev_get_by_name(net, r.arp_dev)) == NULL)
1168 goto out;
1169
1170 /* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1171 if (!r.arp_ha.sa_family)
1172 r.arp_ha.sa_family = dev->type;
1173 err = -EINVAL;
1174 if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1175 goto out;
1176 } else if (cmd == SIOCGARP) {
1177 err = -ENODEV;
1178 goto out;
1179 }
1180
1181 switch (cmd) {
1182 case SIOCDARP:
1183 err = arp_req_delete(net, &r, dev);
1184 break;
1185 case SIOCSARP:
1186 err = arp_req_set(net, &r, dev);
1187 break;
1188 case SIOCGARP:
1189 err = arp_req_get(&r, dev);
1190 if (!err && copy_to_user(arg, &r, sizeof(r)))
1191 err = -EFAULT;
1192 break;
1193 }
1194out:
1195 rtnl_unlock();
1196 return err;
1197}
1198
1199static int arp_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
1200{
1201 struct net_device *dev = ptr;
1202
1203 if (dev->nd_net != &init_net)
1204 return NOTIFY_DONE;
1205
1206 switch (event) {
1207 case NETDEV_CHANGEADDR:
1208 neigh_changeaddr(&arp_tbl, dev);
1209 rt_cache_flush(0);
1210 break;
1211 default:
1212 break;
1213 }
1214
1215 return NOTIFY_DONE;
1216}
1217
1218static struct notifier_block arp_netdev_notifier = {
1219 .notifier_call = arp_netdev_event,
1220};
1221
1222/* Note, that it is not on notifier chain.
1223 It is necessary, that this routine was called after route cache will be
1224 flushed.
1225 */
1226void arp_ifdown(struct net_device *dev)
1227{
1228 neigh_ifdown(&arp_tbl, dev);
1229}
1230
1231
1232/*
1233 * Called once on startup.
1234 */
1235
1236static struct packet_type arp_packet_type = {
1237 .type = __constant_htons(ETH_P_ARP),
1238 .func = arp_rcv,
1239};
1240
1241static int arp_proc_init(void);
1242
1243void __init arp_init(void)
1244{
1245 neigh_table_init(&arp_tbl);
1246
1247 dev_add_pack(&arp_packet_type);
1248 arp_proc_init();
1249#ifdef CONFIG_SYSCTL
1250 neigh_sysctl_register(NULL, &arp_tbl.parms, NET_IPV4,
1251 NET_IPV4_NEIGH, "ipv4", NULL, NULL);
1252#endif
1253 register_netdevice_notifier(&arp_netdev_notifier);
1254}
1255
1256#ifdef CONFIG_PROC_FS
1257#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1258
1259/* ------------------------------------------------------------------------ */
1260/*
1261 * ax25 -> ASCII conversion
1262 */
1263static char *ax2asc2(ax25_address *a, char *buf)
1264{
1265 char c, *s;
1266 int n;
1267
1268 for (n = 0, s = buf; n < 6; n++) {
1269 c = (a->ax25_call[n] >> 1) & 0x7F;
1270
1271 if (c != ' ') *s++ = c;
1272 }
1273
1274 *s++ = '-';
1275
1276 if ((n = ((a->ax25_call[6] >> 1) & 0x0F)) > 9) {
1277 *s++ = '1';
1278 n -= 10;
1279 }
1280
1281 *s++ = n + '0';
1282 *s++ = '\0';
1283
1284 if (*buf == '\0' || *buf == '-')
1285 return "*";
1286
1287 return buf;
1288
1289}
1290#endif /* CONFIG_AX25 */
1291
1292#define HBUFFERLEN 30
1293
1294static void arp_format_neigh_entry(struct seq_file *seq,
1295 struct neighbour *n)
1296{
1297 char hbuffer[HBUFFERLEN];
1298 const char hexbuf[] = "0123456789ABCDEF";
1299 int k, j;
1300 char tbuf[16];
1301 struct net_device *dev = n->dev;
1302 int hatype = dev->type;
1303
1304 read_lock(&n->lock);
1305 /* Convert hardware address to XX:XX:XX:XX ... form. */
1306#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1307 if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1308 ax2asc2((ax25_address *)n->ha, hbuffer);
1309 else {
1310#endif
1311 for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1312 hbuffer[k++] = hexbuf[(n->ha[j] >> 4) & 15];
1313 hbuffer[k++] = hexbuf[n->ha[j] & 15];
1314 hbuffer[k++] = ':';
1315 }
1316 hbuffer[--k] = 0;
1317#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1318 }
1319#endif
1320 sprintf(tbuf, "%u.%u.%u.%u", NIPQUAD(*(u32*)n->primary_key));
1321 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1322 tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1323 read_unlock(&n->lock);
1324}
1325
1326static void arp_format_pneigh_entry(struct seq_file *seq,
1327 struct pneigh_entry *n)
1328{
1329 struct net_device *dev = n->dev;
1330 int hatype = dev ? dev->type : 0;
1331 char tbuf[16];
1332
1333 sprintf(tbuf, "%u.%u.%u.%u", NIPQUAD(*(u32*)n->key));
1334 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1335 tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1336 dev ? dev->name : "*");
1337}
1338
1339static int arp_seq_show(struct seq_file *seq, void *v)
1340{
1341 if (v == SEQ_START_TOKEN) {
1342 seq_puts(seq, "IP address HW type Flags "
1343 "HW address Mask Device\n");
1344 } else {
1345 struct neigh_seq_state *state = seq->private;
1346
1347 if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1348 arp_format_pneigh_entry(seq, v);
1349 else
1350 arp_format_neigh_entry(seq, v);
1351 }
1352
1353 return 0;
1354}
1355
1356static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1357{
1358 /* Don't want to confuse "arp -a" w/ magic entries,
1359 * so we tell the generic iterator to skip NUD_NOARP.
1360 */
1361 return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1362}
1363
1364/* ------------------------------------------------------------------------ */
1365
1366static const struct seq_operations arp_seq_ops = {
1367 .start = arp_seq_start,
1368 .next = neigh_seq_next,
1369 .stop = neigh_seq_stop,
1370 .show = arp_seq_show,
1371};
1372
1373static int arp_seq_open(struct inode *inode, struct file *file)
1374{
1375 return seq_open_net(inode, file, &arp_seq_ops,
1376 sizeof(struct neigh_seq_state));
1377}
1378
1379static const struct file_operations arp_seq_fops = {
1380 .owner = THIS_MODULE,
1381 .open = arp_seq_open,
1382 .read = seq_read,
1383 .llseek = seq_lseek,
1384 .release = seq_release_net,
1385};
1386
1387static int __init arp_proc_init(void)
1388{
1389 if (!proc_net_fops_create(&init_net, "arp", S_IRUGO, &arp_seq_fops))
1390 return -ENOMEM;
1391 return 0;
1392}
1393
1394#else /* CONFIG_PROC_FS */
1395
1396static int __init arp_proc_init(void)
1397{
1398 return 0;
1399}
1400
1401#endif /* CONFIG_PROC_FS */
1402
1403EXPORT_SYMBOL(arp_broken_ops);
1404EXPORT_SYMBOL(arp_find);
1405EXPORT_SYMBOL(arp_create);
1406EXPORT_SYMBOL(arp_xmit);
1407EXPORT_SYMBOL(arp_send);
1408EXPORT_SYMBOL(arp_tbl);
1409
1410#if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
1411EXPORT_SYMBOL(clip_tbl_hook);
1412#endif
This page took 0.048406 seconds and 5 git commands to generate.