Merge branch 'tipc-next'
[deliverable/linux.git] / net / ipv4 / ipmr.c
... / ...
CommitLineData
1/*
2 * IP multicast routing support for mrouted 3.6/3.8
3 *
4 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
5 * Linux Consultancy and Custom Driver Development
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 *
12 * Fixes:
13 * Michael Chastain : Incorrect size of copying.
14 * Alan Cox : Added the cache manager code
15 * Alan Cox : Fixed the clone/copy bug and device race.
16 * Mike McLagan : Routing by source
17 * Malcolm Beattie : Buffer handling fixes.
18 * Alexey Kuznetsov : Double buffer free and other fixes.
19 * SVR Anand : Fixed several multicast bugs and problems.
20 * Alexey Kuznetsov : Status, optimisations and more.
21 * Brad Parker : Better behaviour on mrouted upcall
22 * overflow.
23 * Carlos Picoto : PIMv1 Support
24 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
25 * Relax this requirement to work with older peers.
26 *
27 */
28
29#include <asm/uaccess.h>
30#include <linux/types.h>
31#include <linux/capability.h>
32#include <linux/errno.h>
33#include <linux/timer.h>
34#include <linux/mm.h>
35#include <linux/kernel.h>
36#include <linux/fcntl.h>
37#include <linux/stat.h>
38#include <linux/socket.h>
39#include <linux/in.h>
40#include <linux/inet.h>
41#include <linux/netdevice.h>
42#include <linux/inetdevice.h>
43#include <linux/igmp.h>
44#include <linux/proc_fs.h>
45#include <linux/seq_file.h>
46#include <linux/mroute.h>
47#include <linux/init.h>
48#include <linux/if_ether.h>
49#include <linux/slab.h>
50#include <net/net_namespace.h>
51#include <net/ip.h>
52#include <net/protocol.h>
53#include <linux/skbuff.h>
54#include <net/route.h>
55#include <net/sock.h>
56#include <net/icmp.h>
57#include <net/udp.h>
58#include <net/raw.h>
59#include <linux/notifier.h>
60#include <linux/if_arp.h>
61#include <linux/netfilter_ipv4.h>
62#include <linux/compat.h>
63#include <linux/export.h>
64#include <net/ip_tunnels.h>
65#include <net/checksum.h>
66#include <net/netlink.h>
67#include <net/fib_rules.h>
68#include <linux/netconf.h>
69
70#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
71#define CONFIG_IP_PIMSM 1
72#endif
73
74struct mr_table {
75 struct list_head list;
76 possible_net_t net;
77 u32 id;
78 struct sock __rcu *mroute_sk;
79 struct timer_list ipmr_expire_timer;
80 struct list_head mfc_unres_queue;
81 struct list_head mfc_cache_array[MFC_LINES];
82 struct vif_device vif_table[MAXVIFS];
83 int maxvif;
84 atomic_t cache_resolve_queue_len;
85 bool mroute_do_assert;
86 bool mroute_do_pim;
87#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
88 int mroute_reg_vif_num;
89#endif
90};
91
92struct ipmr_rule {
93 struct fib_rule common;
94};
95
96struct ipmr_result {
97 struct mr_table *mrt;
98};
99
100/* Big lock, protecting vif table, mrt cache and mroute socket state.
101 * Note that the changes are semaphored via rtnl_lock.
102 */
103
104static DEFINE_RWLOCK(mrt_lock);
105
106/*
107 * Multicast router control variables
108 */
109
110#define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL)
111
112/* Special spinlock for queue of unresolved entries */
113static DEFINE_SPINLOCK(mfc_unres_lock);
114
115/* We return to original Alan's scheme. Hash table of resolved
116 * entries is changed only in process context and protected
117 * with weak lock mrt_lock. Queue of unresolved entries is protected
118 * with strong spinlock mfc_unres_lock.
119 *
120 * In this case data path is free of exclusive locks at all.
121 */
122
123static struct kmem_cache *mrt_cachep __read_mostly;
124
125static struct mr_table *ipmr_new_table(struct net *net, u32 id);
126static void ipmr_free_table(struct mr_table *mrt);
127
128static void ip_mr_forward(struct net *net, struct mr_table *mrt,
129 struct sk_buff *skb, struct mfc_cache *cache,
130 int local);
131static int ipmr_cache_report(struct mr_table *mrt,
132 struct sk_buff *pkt, vifi_t vifi, int assert);
133static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
134 struct mfc_cache *c, struct rtmsg *rtm);
135static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
136 int cmd);
137static void mroute_clean_tables(struct mr_table *mrt);
138static void ipmr_expire_process(unsigned long arg);
139
140#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
141#define ipmr_for_each_table(mrt, net) \
142 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
143
144static struct mr_table *ipmr_get_table(struct net *net, u32 id)
145{
146 struct mr_table *mrt;
147
148 ipmr_for_each_table(mrt, net) {
149 if (mrt->id == id)
150 return mrt;
151 }
152 return NULL;
153}
154
155static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
156 struct mr_table **mrt)
157{
158 int err;
159 struct ipmr_result res;
160 struct fib_lookup_arg arg = {
161 .result = &res,
162 .flags = FIB_LOOKUP_NOREF,
163 };
164
165 err = fib_rules_lookup(net->ipv4.mr_rules_ops,
166 flowi4_to_flowi(flp4), 0, &arg);
167 if (err < 0)
168 return err;
169 *mrt = res.mrt;
170 return 0;
171}
172
173static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
174 int flags, struct fib_lookup_arg *arg)
175{
176 struct ipmr_result *res = arg->result;
177 struct mr_table *mrt;
178
179 switch (rule->action) {
180 case FR_ACT_TO_TBL:
181 break;
182 case FR_ACT_UNREACHABLE:
183 return -ENETUNREACH;
184 case FR_ACT_PROHIBIT:
185 return -EACCES;
186 case FR_ACT_BLACKHOLE:
187 default:
188 return -EINVAL;
189 }
190
191 mrt = ipmr_get_table(rule->fr_net, rule->table);
192 if (mrt == NULL)
193 return -EAGAIN;
194 res->mrt = mrt;
195 return 0;
196}
197
198static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
199{
200 return 1;
201}
202
203static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
204 FRA_GENERIC_POLICY,
205};
206
207static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
208 struct fib_rule_hdr *frh, struct nlattr **tb)
209{
210 return 0;
211}
212
213static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
214 struct nlattr **tb)
215{
216 return 1;
217}
218
219static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
220 struct fib_rule_hdr *frh)
221{
222 frh->dst_len = 0;
223 frh->src_len = 0;
224 frh->tos = 0;
225 return 0;
226}
227
228static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
229 .family = RTNL_FAMILY_IPMR,
230 .rule_size = sizeof(struct ipmr_rule),
231 .addr_size = sizeof(u32),
232 .action = ipmr_rule_action,
233 .match = ipmr_rule_match,
234 .configure = ipmr_rule_configure,
235 .compare = ipmr_rule_compare,
236 .default_pref = fib_default_rule_pref,
237 .fill = ipmr_rule_fill,
238 .nlgroup = RTNLGRP_IPV4_RULE,
239 .policy = ipmr_rule_policy,
240 .owner = THIS_MODULE,
241};
242
243static int __net_init ipmr_rules_init(struct net *net)
244{
245 struct fib_rules_ops *ops;
246 struct mr_table *mrt;
247 int err;
248
249 ops = fib_rules_register(&ipmr_rules_ops_template, net);
250 if (IS_ERR(ops))
251 return PTR_ERR(ops);
252
253 INIT_LIST_HEAD(&net->ipv4.mr_tables);
254
255 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
256 if (mrt == NULL) {
257 err = -ENOMEM;
258 goto err1;
259 }
260
261 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
262 if (err < 0)
263 goto err2;
264
265 net->ipv4.mr_rules_ops = ops;
266 return 0;
267
268err2:
269 kfree(mrt);
270err1:
271 fib_rules_unregister(ops);
272 return err;
273}
274
275static void __net_exit ipmr_rules_exit(struct net *net)
276{
277 struct mr_table *mrt, *next;
278
279 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
280 list_del(&mrt->list);
281 ipmr_free_table(mrt);
282 }
283 fib_rules_unregister(net->ipv4.mr_rules_ops);
284}
285#else
286#define ipmr_for_each_table(mrt, net) \
287 for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
288
289static struct mr_table *ipmr_get_table(struct net *net, u32 id)
290{
291 return net->ipv4.mrt;
292}
293
294static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
295 struct mr_table **mrt)
296{
297 *mrt = net->ipv4.mrt;
298 return 0;
299}
300
301static int __net_init ipmr_rules_init(struct net *net)
302{
303 net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
304 return net->ipv4.mrt ? 0 : -ENOMEM;
305}
306
307static void __net_exit ipmr_rules_exit(struct net *net)
308{
309 ipmr_free_table(net->ipv4.mrt);
310}
311#endif
312
313static struct mr_table *ipmr_new_table(struct net *net, u32 id)
314{
315 struct mr_table *mrt;
316 unsigned int i;
317
318 mrt = ipmr_get_table(net, id);
319 if (mrt != NULL)
320 return mrt;
321
322 mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
323 if (mrt == NULL)
324 return NULL;
325 write_pnet(&mrt->net, net);
326 mrt->id = id;
327
328 /* Forwarding cache */
329 for (i = 0; i < MFC_LINES; i++)
330 INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
331
332 INIT_LIST_HEAD(&mrt->mfc_unres_queue);
333
334 setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
335 (unsigned long)mrt);
336
337#ifdef CONFIG_IP_PIMSM
338 mrt->mroute_reg_vif_num = -1;
339#endif
340#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
341 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
342#endif
343 return mrt;
344}
345
346static void ipmr_free_table(struct mr_table *mrt)
347{
348 del_timer_sync(&mrt->ipmr_expire_timer);
349 mroute_clean_tables(mrt);
350 kfree(mrt);
351}
352
353/* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
354
355static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
356{
357 struct net *net = dev_net(dev);
358
359 dev_close(dev);
360
361 dev = __dev_get_by_name(net, "tunl0");
362 if (dev) {
363 const struct net_device_ops *ops = dev->netdev_ops;
364 struct ifreq ifr;
365 struct ip_tunnel_parm p;
366
367 memset(&p, 0, sizeof(p));
368 p.iph.daddr = v->vifc_rmt_addr.s_addr;
369 p.iph.saddr = v->vifc_lcl_addr.s_addr;
370 p.iph.version = 4;
371 p.iph.ihl = 5;
372 p.iph.protocol = IPPROTO_IPIP;
373 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
374 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
375
376 if (ops->ndo_do_ioctl) {
377 mm_segment_t oldfs = get_fs();
378
379 set_fs(KERNEL_DS);
380 ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
381 set_fs(oldfs);
382 }
383 }
384}
385
386static
387struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
388{
389 struct net_device *dev;
390
391 dev = __dev_get_by_name(net, "tunl0");
392
393 if (dev) {
394 const struct net_device_ops *ops = dev->netdev_ops;
395 int err;
396 struct ifreq ifr;
397 struct ip_tunnel_parm p;
398 struct in_device *in_dev;
399
400 memset(&p, 0, sizeof(p));
401 p.iph.daddr = v->vifc_rmt_addr.s_addr;
402 p.iph.saddr = v->vifc_lcl_addr.s_addr;
403 p.iph.version = 4;
404 p.iph.ihl = 5;
405 p.iph.protocol = IPPROTO_IPIP;
406 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
407 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
408
409 if (ops->ndo_do_ioctl) {
410 mm_segment_t oldfs = get_fs();
411
412 set_fs(KERNEL_DS);
413 err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
414 set_fs(oldfs);
415 } else {
416 err = -EOPNOTSUPP;
417 }
418 dev = NULL;
419
420 if (err == 0 &&
421 (dev = __dev_get_by_name(net, p.name)) != NULL) {
422 dev->flags |= IFF_MULTICAST;
423
424 in_dev = __in_dev_get_rtnl(dev);
425 if (in_dev == NULL)
426 goto failure;
427
428 ipv4_devconf_setall(in_dev);
429 neigh_parms_data_state_setall(in_dev->arp_parms);
430 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
431
432 if (dev_open(dev))
433 goto failure;
434 dev_hold(dev);
435 }
436 }
437 return dev;
438
439failure:
440 /* allow the register to be completed before unregistering. */
441 rtnl_unlock();
442 rtnl_lock();
443
444 unregister_netdevice(dev);
445 return NULL;
446}
447
448#ifdef CONFIG_IP_PIMSM
449
450static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
451{
452 struct net *net = dev_net(dev);
453 struct mr_table *mrt;
454 struct flowi4 fl4 = {
455 .flowi4_oif = dev->ifindex,
456 .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX,
457 .flowi4_mark = skb->mark,
458 };
459 int err;
460
461 err = ipmr_fib_lookup(net, &fl4, &mrt);
462 if (err < 0) {
463 kfree_skb(skb);
464 return err;
465 }
466
467 read_lock(&mrt_lock);
468 dev->stats.tx_bytes += skb->len;
469 dev->stats.tx_packets++;
470 ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
471 read_unlock(&mrt_lock);
472 kfree_skb(skb);
473 return NETDEV_TX_OK;
474}
475
476static const struct net_device_ops reg_vif_netdev_ops = {
477 .ndo_start_xmit = reg_vif_xmit,
478};
479
480static void reg_vif_setup(struct net_device *dev)
481{
482 dev->type = ARPHRD_PIMREG;
483 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
484 dev->flags = IFF_NOARP;
485 dev->netdev_ops = &reg_vif_netdev_ops;
486 dev->destructor = free_netdev;
487 dev->features |= NETIF_F_NETNS_LOCAL;
488}
489
490static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
491{
492 struct net_device *dev;
493 struct in_device *in_dev;
494 char name[IFNAMSIZ];
495
496 if (mrt->id == RT_TABLE_DEFAULT)
497 sprintf(name, "pimreg");
498 else
499 sprintf(name, "pimreg%u", mrt->id);
500
501 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
502
503 if (dev == NULL)
504 return NULL;
505
506 dev_net_set(dev, net);
507
508 if (register_netdevice(dev)) {
509 free_netdev(dev);
510 return NULL;
511 }
512 dev->iflink = 0;
513
514 rcu_read_lock();
515 in_dev = __in_dev_get_rcu(dev);
516 if (!in_dev) {
517 rcu_read_unlock();
518 goto failure;
519 }
520
521 ipv4_devconf_setall(in_dev);
522 neigh_parms_data_state_setall(in_dev->arp_parms);
523 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
524 rcu_read_unlock();
525
526 if (dev_open(dev))
527 goto failure;
528
529 dev_hold(dev);
530
531 return dev;
532
533failure:
534 /* allow the register to be completed before unregistering. */
535 rtnl_unlock();
536 rtnl_lock();
537
538 unregister_netdevice(dev);
539 return NULL;
540}
541#endif
542
543/**
544 * vif_delete - Delete a VIF entry
545 * @notify: Set to 1, if the caller is a notifier_call
546 */
547
548static int vif_delete(struct mr_table *mrt, int vifi, int notify,
549 struct list_head *head)
550{
551 struct vif_device *v;
552 struct net_device *dev;
553 struct in_device *in_dev;
554
555 if (vifi < 0 || vifi >= mrt->maxvif)
556 return -EADDRNOTAVAIL;
557
558 v = &mrt->vif_table[vifi];
559
560 write_lock_bh(&mrt_lock);
561 dev = v->dev;
562 v->dev = NULL;
563
564 if (!dev) {
565 write_unlock_bh(&mrt_lock);
566 return -EADDRNOTAVAIL;
567 }
568
569#ifdef CONFIG_IP_PIMSM
570 if (vifi == mrt->mroute_reg_vif_num)
571 mrt->mroute_reg_vif_num = -1;
572#endif
573
574 if (vifi + 1 == mrt->maxvif) {
575 int tmp;
576
577 for (tmp = vifi - 1; tmp >= 0; tmp--) {
578 if (VIF_EXISTS(mrt, tmp))
579 break;
580 }
581 mrt->maxvif = tmp+1;
582 }
583
584 write_unlock_bh(&mrt_lock);
585
586 dev_set_allmulti(dev, -1);
587
588 in_dev = __in_dev_get_rtnl(dev);
589 if (in_dev) {
590 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
591 inet_netconf_notify_devconf(dev_net(dev),
592 NETCONFA_MC_FORWARDING,
593 dev->ifindex, &in_dev->cnf);
594 ip_rt_multicast_event(in_dev);
595 }
596
597 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
598 unregister_netdevice_queue(dev, head);
599
600 dev_put(dev);
601 return 0;
602}
603
604static void ipmr_cache_free_rcu(struct rcu_head *head)
605{
606 struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
607
608 kmem_cache_free(mrt_cachep, c);
609}
610
611static inline void ipmr_cache_free(struct mfc_cache *c)
612{
613 call_rcu(&c->rcu, ipmr_cache_free_rcu);
614}
615
616/* Destroy an unresolved cache entry, killing queued skbs
617 * and reporting error to netlink readers.
618 */
619
620static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
621{
622 struct net *net = read_pnet(&mrt->net);
623 struct sk_buff *skb;
624 struct nlmsgerr *e;
625
626 atomic_dec(&mrt->cache_resolve_queue_len);
627
628 while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
629 if (ip_hdr(skb)->version == 0) {
630 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
631 nlh->nlmsg_type = NLMSG_ERROR;
632 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
633 skb_trim(skb, nlh->nlmsg_len);
634 e = nlmsg_data(nlh);
635 e->error = -ETIMEDOUT;
636 memset(&e->msg, 0, sizeof(e->msg));
637
638 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
639 } else {
640 kfree_skb(skb);
641 }
642 }
643
644 ipmr_cache_free(c);
645}
646
647
648/* Timer process for the unresolved queue. */
649
650static void ipmr_expire_process(unsigned long arg)
651{
652 struct mr_table *mrt = (struct mr_table *)arg;
653 unsigned long now;
654 unsigned long expires;
655 struct mfc_cache *c, *next;
656
657 if (!spin_trylock(&mfc_unres_lock)) {
658 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
659 return;
660 }
661
662 if (list_empty(&mrt->mfc_unres_queue))
663 goto out;
664
665 now = jiffies;
666 expires = 10*HZ;
667
668 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
669 if (time_after(c->mfc_un.unres.expires, now)) {
670 unsigned long interval = c->mfc_un.unres.expires - now;
671 if (interval < expires)
672 expires = interval;
673 continue;
674 }
675
676 list_del(&c->list);
677 mroute_netlink_event(mrt, c, RTM_DELROUTE);
678 ipmr_destroy_unres(mrt, c);
679 }
680
681 if (!list_empty(&mrt->mfc_unres_queue))
682 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
683
684out:
685 spin_unlock(&mfc_unres_lock);
686}
687
688/* Fill oifs list. It is called under write locked mrt_lock. */
689
690static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
691 unsigned char *ttls)
692{
693 int vifi;
694
695 cache->mfc_un.res.minvif = MAXVIFS;
696 cache->mfc_un.res.maxvif = 0;
697 memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
698
699 for (vifi = 0; vifi < mrt->maxvif; vifi++) {
700 if (VIF_EXISTS(mrt, vifi) &&
701 ttls[vifi] && ttls[vifi] < 255) {
702 cache->mfc_un.res.ttls[vifi] = ttls[vifi];
703 if (cache->mfc_un.res.minvif > vifi)
704 cache->mfc_un.res.minvif = vifi;
705 if (cache->mfc_un.res.maxvif <= vifi)
706 cache->mfc_un.res.maxvif = vifi + 1;
707 }
708 }
709}
710
711static int vif_add(struct net *net, struct mr_table *mrt,
712 struct vifctl *vifc, int mrtsock)
713{
714 int vifi = vifc->vifc_vifi;
715 struct vif_device *v = &mrt->vif_table[vifi];
716 struct net_device *dev;
717 struct in_device *in_dev;
718 int err;
719
720 /* Is vif busy ? */
721 if (VIF_EXISTS(mrt, vifi))
722 return -EADDRINUSE;
723
724 switch (vifc->vifc_flags) {
725#ifdef CONFIG_IP_PIMSM
726 case VIFF_REGISTER:
727 /*
728 * Special Purpose VIF in PIM
729 * All the packets will be sent to the daemon
730 */
731 if (mrt->mroute_reg_vif_num >= 0)
732 return -EADDRINUSE;
733 dev = ipmr_reg_vif(net, mrt);
734 if (!dev)
735 return -ENOBUFS;
736 err = dev_set_allmulti(dev, 1);
737 if (err) {
738 unregister_netdevice(dev);
739 dev_put(dev);
740 return err;
741 }
742 break;
743#endif
744 case VIFF_TUNNEL:
745 dev = ipmr_new_tunnel(net, vifc);
746 if (!dev)
747 return -ENOBUFS;
748 err = dev_set_allmulti(dev, 1);
749 if (err) {
750 ipmr_del_tunnel(dev, vifc);
751 dev_put(dev);
752 return err;
753 }
754 break;
755
756 case VIFF_USE_IFINDEX:
757 case 0:
758 if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
759 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
760 if (dev && __in_dev_get_rtnl(dev) == NULL) {
761 dev_put(dev);
762 return -EADDRNOTAVAIL;
763 }
764 } else {
765 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
766 }
767 if (!dev)
768 return -EADDRNOTAVAIL;
769 err = dev_set_allmulti(dev, 1);
770 if (err) {
771 dev_put(dev);
772 return err;
773 }
774 break;
775 default:
776 return -EINVAL;
777 }
778
779 in_dev = __in_dev_get_rtnl(dev);
780 if (!in_dev) {
781 dev_put(dev);
782 return -EADDRNOTAVAIL;
783 }
784 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
785 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, dev->ifindex,
786 &in_dev->cnf);
787 ip_rt_multicast_event(in_dev);
788
789 /* Fill in the VIF structures */
790
791 v->rate_limit = vifc->vifc_rate_limit;
792 v->local = vifc->vifc_lcl_addr.s_addr;
793 v->remote = vifc->vifc_rmt_addr.s_addr;
794 v->flags = vifc->vifc_flags;
795 if (!mrtsock)
796 v->flags |= VIFF_STATIC;
797 v->threshold = vifc->vifc_threshold;
798 v->bytes_in = 0;
799 v->bytes_out = 0;
800 v->pkt_in = 0;
801 v->pkt_out = 0;
802 v->link = dev->ifindex;
803 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
804 v->link = dev->iflink;
805
806 /* And finish update writing critical data */
807 write_lock_bh(&mrt_lock);
808 v->dev = dev;
809#ifdef CONFIG_IP_PIMSM
810 if (v->flags & VIFF_REGISTER)
811 mrt->mroute_reg_vif_num = vifi;
812#endif
813 if (vifi+1 > mrt->maxvif)
814 mrt->maxvif = vifi+1;
815 write_unlock_bh(&mrt_lock);
816 return 0;
817}
818
819/* called with rcu_read_lock() */
820static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
821 __be32 origin,
822 __be32 mcastgrp)
823{
824 int line = MFC_HASH(mcastgrp, origin);
825 struct mfc_cache *c;
826
827 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
828 if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
829 return c;
830 }
831 return NULL;
832}
833
834/* Look for a (*,*,oif) entry */
835static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt,
836 int vifi)
837{
838 int line = MFC_HASH(htonl(INADDR_ANY), htonl(INADDR_ANY));
839 struct mfc_cache *c;
840
841 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
842 if (c->mfc_origin == htonl(INADDR_ANY) &&
843 c->mfc_mcastgrp == htonl(INADDR_ANY) &&
844 c->mfc_un.res.ttls[vifi] < 255)
845 return c;
846
847 return NULL;
848}
849
850/* Look for a (*,G) entry */
851static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
852 __be32 mcastgrp, int vifi)
853{
854 int line = MFC_HASH(mcastgrp, htonl(INADDR_ANY));
855 struct mfc_cache *c, *proxy;
856
857 if (mcastgrp == htonl(INADDR_ANY))
858 goto skip;
859
860 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
861 if (c->mfc_origin == htonl(INADDR_ANY) &&
862 c->mfc_mcastgrp == mcastgrp) {
863 if (c->mfc_un.res.ttls[vifi] < 255)
864 return c;
865
866 /* It's ok if the vifi is part of the static tree */
867 proxy = ipmr_cache_find_any_parent(mrt,
868 c->mfc_parent);
869 if (proxy && proxy->mfc_un.res.ttls[vifi] < 255)
870 return c;
871 }
872
873skip:
874 return ipmr_cache_find_any_parent(mrt, vifi);
875}
876
877/*
878 * Allocate a multicast cache entry
879 */
880static struct mfc_cache *ipmr_cache_alloc(void)
881{
882 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
883
884 if (c)
885 c->mfc_un.res.minvif = MAXVIFS;
886 return c;
887}
888
889static struct mfc_cache *ipmr_cache_alloc_unres(void)
890{
891 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
892
893 if (c) {
894 skb_queue_head_init(&c->mfc_un.unres.unresolved);
895 c->mfc_un.unres.expires = jiffies + 10*HZ;
896 }
897 return c;
898}
899
900/*
901 * A cache entry has gone into a resolved state from queued
902 */
903
904static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
905 struct mfc_cache *uc, struct mfc_cache *c)
906{
907 struct sk_buff *skb;
908 struct nlmsgerr *e;
909
910 /* Play the pending entries through our router */
911
912 while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
913 if (ip_hdr(skb)->version == 0) {
914 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
915
916 if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) {
917 nlh->nlmsg_len = skb_tail_pointer(skb) -
918 (u8 *)nlh;
919 } else {
920 nlh->nlmsg_type = NLMSG_ERROR;
921 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
922 skb_trim(skb, nlh->nlmsg_len);
923 e = nlmsg_data(nlh);
924 e->error = -EMSGSIZE;
925 memset(&e->msg, 0, sizeof(e->msg));
926 }
927
928 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
929 } else {
930 ip_mr_forward(net, mrt, skb, c, 0);
931 }
932 }
933}
934
935/*
936 * Bounce a cache query up to mrouted. We could use netlink for this but mrouted
937 * expects the following bizarre scheme.
938 *
939 * Called under mrt_lock.
940 */
941
942static int ipmr_cache_report(struct mr_table *mrt,
943 struct sk_buff *pkt, vifi_t vifi, int assert)
944{
945 struct sk_buff *skb;
946 const int ihl = ip_hdrlen(pkt);
947 struct igmphdr *igmp;
948 struct igmpmsg *msg;
949 struct sock *mroute_sk;
950 int ret;
951
952#ifdef CONFIG_IP_PIMSM
953 if (assert == IGMPMSG_WHOLEPKT)
954 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
955 else
956#endif
957 skb = alloc_skb(128, GFP_ATOMIC);
958
959 if (!skb)
960 return -ENOBUFS;
961
962#ifdef CONFIG_IP_PIMSM
963 if (assert == IGMPMSG_WHOLEPKT) {
964 /* Ugly, but we have no choice with this interface.
965 * Duplicate old header, fix ihl, length etc.
966 * And all this only to mangle msg->im_msgtype and
967 * to set msg->im_mbz to "mbz" :-)
968 */
969 skb_push(skb, sizeof(struct iphdr));
970 skb_reset_network_header(skb);
971 skb_reset_transport_header(skb);
972 msg = (struct igmpmsg *)skb_network_header(skb);
973 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
974 msg->im_msgtype = IGMPMSG_WHOLEPKT;
975 msg->im_mbz = 0;
976 msg->im_vif = mrt->mroute_reg_vif_num;
977 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
978 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
979 sizeof(struct iphdr));
980 } else
981#endif
982 {
983
984 /* Copy the IP header */
985
986 skb_set_network_header(skb, skb->len);
987 skb_put(skb, ihl);
988 skb_copy_to_linear_data(skb, pkt->data, ihl);
989 ip_hdr(skb)->protocol = 0; /* Flag to the kernel this is a route add */
990 msg = (struct igmpmsg *)skb_network_header(skb);
991 msg->im_vif = vifi;
992 skb_dst_set(skb, dst_clone(skb_dst(pkt)));
993
994 /* Add our header */
995
996 igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
997 igmp->type =
998 msg->im_msgtype = assert;
999 igmp->code = 0;
1000 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
1001 skb->transport_header = skb->network_header;
1002 }
1003
1004 rcu_read_lock();
1005 mroute_sk = rcu_dereference(mrt->mroute_sk);
1006 if (mroute_sk == NULL) {
1007 rcu_read_unlock();
1008 kfree_skb(skb);
1009 return -EINVAL;
1010 }
1011
1012 /* Deliver to mrouted */
1013
1014 ret = sock_queue_rcv_skb(mroute_sk, skb);
1015 rcu_read_unlock();
1016 if (ret < 0) {
1017 net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1018 kfree_skb(skb);
1019 }
1020
1021 return ret;
1022}
1023
1024/*
1025 * Queue a packet for resolution. It gets locked cache entry!
1026 */
1027
1028static int
1029ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb)
1030{
1031 bool found = false;
1032 int err;
1033 struct mfc_cache *c;
1034 const struct iphdr *iph = ip_hdr(skb);
1035
1036 spin_lock_bh(&mfc_unres_lock);
1037 list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
1038 if (c->mfc_mcastgrp == iph->daddr &&
1039 c->mfc_origin == iph->saddr) {
1040 found = true;
1041 break;
1042 }
1043 }
1044
1045 if (!found) {
1046 /* Create a new entry if allowable */
1047
1048 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
1049 (c = ipmr_cache_alloc_unres()) == NULL) {
1050 spin_unlock_bh(&mfc_unres_lock);
1051
1052 kfree_skb(skb);
1053 return -ENOBUFS;
1054 }
1055
1056 /* Fill in the new cache entry */
1057
1058 c->mfc_parent = -1;
1059 c->mfc_origin = iph->saddr;
1060 c->mfc_mcastgrp = iph->daddr;
1061
1062 /* Reflect first query at mrouted. */
1063
1064 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1065 if (err < 0) {
1066 /* If the report failed throw the cache entry
1067 out - Brad Parker
1068 */
1069 spin_unlock_bh(&mfc_unres_lock);
1070
1071 ipmr_cache_free(c);
1072 kfree_skb(skb);
1073 return err;
1074 }
1075
1076 atomic_inc(&mrt->cache_resolve_queue_len);
1077 list_add(&c->list, &mrt->mfc_unres_queue);
1078 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1079
1080 if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1081 mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1082 }
1083
1084 /* See if we can append the packet */
1085
1086 if (c->mfc_un.unres.unresolved.qlen > 3) {
1087 kfree_skb(skb);
1088 err = -ENOBUFS;
1089 } else {
1090 skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1091 err = 0;
1092 }
1093
1094 spin_unlock_bh(&mfc_unres_lock);
1095 return err;
1096}
1097
1098/*
1099 * MFC cache manipulation by user space mroute daemon
1100 */
1101
1102static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1103{
1104 int line;
1105 struct mfc_cache *c, *next;
1106
1107 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1108
1109 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1110 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1111 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1112 (parent == -1 || parent == c->mfc_parent)) {
1113 list_del_rcu(&c->list);
1114 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1115 ipmr_cache_free(c);
1116 return 0;
1117 }
1118 }
1119 return -ENOENT;
1120}
1121
1122static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1123 struct mfcctl *mfc, int mrtsock, int parent)
1124{
1125 bool found = false;
1126 int line;
1127 struct mfc_cache *uc, *c;
1128
1129 if (mfc->mfcc_parent >= MAXVIFS)
1130 return -ENFILE;
1131
1132 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1133
1134 list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1135 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1136 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1137 (parent == -1 || parent == c->mfc_parent)) {
1138 found = true;
1139 break;
1140 }
1141 }
1142
1143 if (found) {
1144 write_lock_bh(&mrt_lock);
1145 c->mfc_parent = mfc->mfcc_parent;
1146 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1147 if (!mrtsock)
1148 c->mfc_flags |= MFC_STATIC;
1149 write_unlock_bh(&mrt_lock);
1150 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1151 return 0;
1152 }
1153
1154 if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1155 !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1156 return -EINVAL;
1157
1158 c = ipmr_cache_alloc();
1159 if (c == NULL)
1160 return -ENOMEM;
1161
1162 c->mfc_origin = mfc->mfcc_origin.s_addr;
1163 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1164 c->mfc_parent = mfc->mfcc_parent;
1165 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1166 if (!mrtsock)
1167 c->mfc_flags |= MFC_STATIC;
1168
1169 list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
1170
1171 /*
1172 * Check to see if we resolved a queued list. If so we
1173 * need to send on the frames and tidy up.
1174 */
1175 found = false;
1176 spin_lock_bh(&mfc_unres_lock);
1177 list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1178 if (uc->mfc_origin == c->mfc_origin &&
1179 uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1180 list_del(&uc->list);
1181 atomic_dec(&mrt->cache_resolve_queue_len);
1182 found = true;
1183 break;
1184 }
1185 }
1186 if (list_empty(&mrt->mfc_unres_queue))
1187 del_timer(&mrt->ipmr_expire_timer);
1188 spin_unlock_bh(&mfc_unres_lock);
1189
1190 if (found) {
1191 ipmr_cache_resolve(net, mrt, uc, c);
1192 ipmr_cache_free(uc);
1193 }
1194 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1195 return 0;
1196}
1197
1198/*
1199 * Close the multicast socket, and clear the vif tables etc
1200 */
1201
1202static void mroute_clean_tables(struct mr_table *mrt)
1203{
1204 int i;
1205 LIST_HEAD(list);
1206 struct mfc_cache *c, *next;
1207
1208 /* Shut down all active vif entries */
1209
1210 for (i = 0; i < mrt->maxvif; i++) {
1211 if (!(mrt->vif_table[i].flags & VIFF_STATIC))
1212 vif_delete(mrt, i, 0, &list);
1213 }
1214 unregister_netdevice_many(&list);
1215
1216 /* Wipe the cache */
1217
1218 for (i = 0; i < MFC_LINES; i++) {
1219 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1220 if (c->mfc_flags & MFC_STATIC)
1221 continue;
1222 list_del_rcu(&c->list);
1223 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1224 ipmr_cache_free(c);
1225 }
1226 }
1227
1228 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1229 spin_lock_bh(&mfc_unres_lock);
1230 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1231 list_del(&c->list);
1232 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1233 ipmr_destroy_unres(mrt, c);
1234 }
1235 spin_unlock_bh(&mfc_unres_lock);
1236 }
1237}
1238
1239/* called from ip_ra_control(), before an RCU grace period,
1240 * we dont need to call synchronize_rcu() here
1241 */
1242static void mrtsock_destruct(struct sock *sk)
1243{
1244 struct net *net = sock_net(sk);
1245 struct mr_table *mrt;
1246
1247 rtnl_lock();
1248 ipmr_for_each_table(mrt, net) {
1249 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1250 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1251 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1252 NETCONFA_IFINDEX_ALL,
1253 net->ipv4.devconf_all);
1254 RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1255 mroute_clean_tables(mrt);
1256 }
1257 }
1258 rtnl_unlock();
1259}
1260
1261/*
1262 * Socket options and virtual interface manipulation. The whole
1263 * virtual interface system is a complete heap, but unfortunately
1264 * that's how BSD mrouted happens to think. Maybe one day with a proper
1265 * MOSPF/PIM router set up we can clean this up.
1266 */
1267
1268int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
1269{
1270 int ret, parent = 0;
1271 struct vifctl vif;
1272 struct mfcctl mfc;
1273 struct net *net = sock_net(sk);
1274 struct mr_table *mrt;
1275
1276 if (sk->sk_type != SOCK_RAW ||
1277 inet_sk(sk)->inet_num != IPPROTO_IGMP)
1278 return -EOPNOTSUPP;
1279
1280 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1281 if (mrt == NULL)
1282 return -ENOENT;
1283
1284 if (optname != MRT_INIT) {
1285 if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1286 !ns_capable(net->user_ns, CAP_NET_ADMIN))
1287 return -EACCES;
1288 }
1289
1290 switch (optname) {
1291 case MRT_INIT:
1292 if (optlen != sizeof(int))
1293 return -EINVAL;
1294
1295 rtnl_lock();
1296 if (rtnl_dereference(mrt->mroute_sk)) {
1297 rtnl_unlock();
1298 return -EADDRINUSE;
1299 }
1300
1301 ret = ip_ra_control(sk, 1, mrtsock_destruct);
1302 if (ret == 0) {
1303 rcu_assign_pointer(mrt->mroute_sk, sk);
1304 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1305 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1306 NETCONFA_IFINDEX_ALL,
1307 net->ipv4.devconf_all);
1308 }
1309 rtnl_unlock();
1310 return ret;
1311 case MRT_DONE:
1312 if (sk != rcu_access_pointer(mrt->mroute_sk))
1313 return -EACCES;
1314 return ip_ra_control(sk, 0, NULL);
1315 case MRT_ADD_VIF:
1316 case MRT_DEL_VIF:
1317 if (optlen != sizeof(vif))
1318 return -EINVAL;
1319 if (copy_from_user(&vif, optval, sizeof(vif)))
1320 return -EFAULT;
1321 if (vif.vifc_vifi >= MAXVIFS)
1322 return -ENFILE;
1323 rtnl_lock();
1324 if (optname == MRT_ADD_VIF) {
1325 ret = vif_add(net, mrt, &vif,
1326 sk == rtnl_dereference(mrt->mroute_sk));
1327 } else {
1328 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1329 }
1330 rtnl_unlock();
1331 return ret;
1332
1333 /*
1334 * Manipulate the forwarding caches. These live
1335 * in a sort of kernel/user symbiosis.
1336 */
1337 case MRT_ADD_MFC:
1338 case MRT_DEL_MFC:
1339 parent = -1;
1340 case MRT_ADD_MFC_PROXY:
1341 case MRT_DEL_MFC_PROXY:
1342 if (optlen != sizeof(mfc))
1343 return -EINVAL;
1344 if (copy_from_user(&mfc, optval, sizeof(mfc)))
1345 return -EFAULT;
1346 if (parent == 0)
1347 parent = mfc.mfcc_parent;
1348 rtnl_lock();
1349 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1350 ret = ipmr_mfc_delete(mrt, &mfc, parent);
1351 else
1352 ret = ipmr_mfc_add(net, mrt, &mfc,
1353 sk == rtnl_dereference(mrt->mroute_sk),
1354 parent);
1355 rtnl_unlock();
1356 return ret;
1357 /*
1358 * Control PIM assert.
1359 */
1360 case MRT_ASSERT:
1361 {
1362 int v;
1363 if (optlen != sizeof(v))
1364 return -EINVAL;
1365 if (get_user(v, (int __user *)optval))
1366 return -EFAULT;
1367 mrt->mroute_do_assert = v;
1368 return 0;
1369 }
1370#ifdef CONFIG_IP_PIMSM
1371 case MRT_PIM:
1372 {
1373 int v;
1374
1375 if (optlen != sizeof(v))
1376 return -EINVAL;
1377 if (get_user(v, (int __user *)optval))
1378 return -EFAULT;
1379 v = !!v;
1380
1381 rtnl_lock();
1382 ret = 0;
1383 if (v != mrt->mroute_do_pim) {
1384 mrt->mroute_do_pim = v;
1385 mrt->mroute_do_assert = v;
1386 }
1387 rtnl_unlock();
1388 return ret;
1389 }
1390#endif
1391#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
1392 case MRT_TABLE:
1393 {
1394 u32 v;
1395
1396 if (optlen != sizeof(u32))
1397 return -EINVAL;
1398 if (get_user(v, (u32 __user *)optval))
1399 return -EFAULT;
1400
1401 /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
1402 if (v != RT_TABLE_DEFAULT && v >= 1000000000)
1403 return -EINVAL;
1404
1405 rtnl_lock();
1406 ret = 0;
1407 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1408 ret = -EBUSY;
1409 } else {
1410 if (!ipmr_new_table(net, v))
1411 ret = -ENOMEM;
1412 else
1413 raw_sk(sk)->ipmr_table = v;
1414 }
1415 rtnl_unlock();
1416 return ret;
1417 }
1418#endif
1419 /*
1420 * Spurious command, or MRT_VERSION which you cannot
1421 * set.
1422 */
1423 default:
1424 return -ENOPROTOOPT;
1425 }
1426}
1427
1428/*
1429 * Getsock opt support for the multicast routing system.
1430 */
1431
1432int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1433{
1434 int olr;
1435 int val;
1436 struct net *net = sock_net(sk);
1437 struct mr_table *mrt;
1438
1439 if (sk->sk_type != SOCK_RAW ||
1440 inet_sk(sk)->inet_num != IPPROTO_IGMP)
1441 return -EOPNOTSUPP;
1442
1443 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1444 if (mrt == NULL)
1445 return -ENOENT;
1446
1447 if (optname != MRT_VERSION &&
1448#ifdef CONFIG_IP_PIMSM
1449 optname != MRT_PIM &&
1450#endif
1451 optname != MRT_ASSERT)
1452 return -ENOPROTOOPT;
1453
1454 if (get_user(olr, optlen))
1455 return -EFAULT;
1456
1457 olr = min_t(unsigned int, olr, sizeof(int));
1458 if (olr < 0)
1459 return -EINVAL;
1460
1461 if (put_user(olr, optlen))
1462 return -EFAULT;
1463 if (optname == MRT_VERSION)
1464 val = 0x0305;
1465#ifdef CONFIG_IP_PIMSM
1466 else if (optname == MRT_PIM)
1467 val = mrt->mroute_do_pim;
1468#endif
1469 else
1470 val = mrt->mroute_do_assert;
1471 if (copy_to_user(optval, &val, olr))
1472 return -EFAULT;
1473 return 0;
1474}
1475
1476/*
1477 * The IP multicast ioctl support routines.
1478 */
1479
1480int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1481{
1482 struct sioc_sg_req sr;
1483 struct sioc_vif_req vr;
1484 struct vif_device *vif;
1485 struct mfc_cache *c;
1486 struct net *net = sock_net(sk);
1487 struct mr_table *mrt;
1488
1489 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1490 if (mrt == NULL)
1491 return -ENOENT;
1492
1493 switch (cmd) {
1494 case SIOCGETVIFCNT:
1495 if (copy_from_user(&vr, arg, sizeof(vr)))
1496 return -EFAULT;
1497 if (vr.vifi >= mrt->maxvif)
1498 return -EINVAL;
1499 read_lock(&mrt_lock);
1500 vif = &mrt->vif_table[vr.vifi];
1501 if (VIF_EXISTS(mrt, vr.vifi)) {
1502 vr.icount = vif->pkt_in;
1503 vr.ocount = vif->pkt_out;
1504 vr.ibytes = vif->bytes_in;
1505 vr.obytes = vif->bytes_out;
1506 read_unlock(&mrt_lock);
1507
1508 if (copy_to_user(arg, &vr, sizeof(vr)))
1509 return -EFAULT;
1510 return 0;
1511 }
1512 read_unlock(&mrt_lock);
1513 return -EADDRNOTAVAIL;
1514 case SIOCGETSGCNT:
1515 if (copy_from_user(&sr, arg, sizeof(sr)))
1516 return -EFAULT;
1517
1518 rcu_read_lock();
1519 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1520 if (c) {
1521 sr.pktcnt = c->mfc_un.res.pkt;
1522 sr.bytecnt = c->mfc_un.res.bytes;
1523 sr.wrong_if = c->mfc_un.res.wrong_if;
1524 rcu_read_unlock();
1525
1526 if (copy_to_user(arg, &sr, sizeof(sr)))
1527 return -EFAULT;
1528 return 0;
1529 }
1530 rcu_read_unlock();
1531 return -EADDRNOTAVAIL;
1532 default:
1533 return -ENOIOCTLCMD;
1534 }
1535}
1536
1537#ifdef CONFIG_COMPAT
1538struct compat_sioc_sg_req {
1539 struct in_addr src;
1540 struct in_addr grp;
1541 compat_ulong_t pktcnt;
1542 compat_ulong_t bytecnt;
1543 compat_ulong_t wrong_if;
1544};
1545
1546struct compat_sioc_vif_req {
1547 vifi_t vifi; /* Which iface */
1548 compat_ulong_t icount;
1549 compat_ulong_t ocount;
1550 compat_ulong_t ibytes;
1551 compat_ulong_t obytes;
1552};
1553
1554int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1555{
1556 struct compat_sioc_sg_req sr;
1557 struct compat_sioc_vif_req vr;
1558 struct vif_device *vif;
1559 struct mfc_cache *c;
1560 struct net *net = sock_net(sk);
1561 struct mr_table *mrt;
1562
1563 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1564 if (mrt == NULL)
1565 return -ENOENT;
1566
1567 switch (cmd) {
1568 case SIOCGETVIFCNT:
1569 if (copy_from_user(&vr, arg, sizeof(vr)))
1570 return -EFAULT;
1571 if (vr.vifi >= mrt->maxvif)
1572 return -EINVAL;
1573 read_lock(&mrt_lock);
1574 vif = &mrt->vif_table[vr.vifi];
1575 if (VIF_EXISTS(mrt, vr.vifi)) {
1576 vr.icount = vif->pkt_in;
1577 vr.ocount = vif->pkt_out;
1578 vr.ibytes = vif->bytes_in;
1579 vr.obytes = vif->bytes_out;
1580 read_unlock(&mrt_lock);
1581
1582 if (copy_to_user(arg, &vr, sizeof(vr)))
1583 return -EFAULT;
1584 return 0;
1585 }
1586 read_unlock(&mrt_lock);
1587 return -EADDRNOTAVAIL;
1588 case SIOCGETSGCNT:
1589 if (copy_from_user(&sr, arg, sizeof(sr)))
1590 return -EFAULT;
1591
1592 rcu_read_lock();
1593 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1594 if (c) {
1595 sr.pktcnt = c->mfc_un.res.pkt;
1596 sr.bytecnt = c->mfc_un.res.bytes;
1597 sr.wrong_if = c->mfc_un.res.wrong_if;
1598 rcu_read_unlock();
1599
1600 if (copy_to_user(arg, &sr, sizeof(sr)))
1601 return -EFAULT;
1602 return 0;
1603 }
1604 rcu_read_unlock();
1605 return -EADDRNOTAVAIL;
1606 default:
1607 return -ENOIOCTLCMD;
1608 }
1609}
1610#endif
1611
1612
1613static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1614{
1615 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1616 struct net *net = dev_net(dev);
1617 struct mr_table *mrt;
1618 struct vif_device *v;
1619 int ct;
1620
1621 if (event != NETDEV_UNREGISTER)
1622 return NOTIFY_DONE;
1623
1624 ipmr_for_each_table(mrt, net) {
1625 v = &mrt->vif_table[0];
1626 for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1627 if (v->dev == dev)
1628 vif_delete(mrt, ct, 1, NULL);
1629 }
1630 }
1631 return NOTIFY_DONE;
1632}
1633
1634
1635static struct notifier_block ip_mr_notifier = {
1636 .notifier_call = ipmr_device_event,
1637};
1638
1639/*
1640 * Encapsulate a packet by attaching a valid IPIP header to it.
1641 * This avoids tunnel drivers and other mess and gives us the speed so
1642 * important for multicast video.
1643 */
1644
1645static void ip_encap(struct sk_buff *skb, __be32 saddr, __be32 daddr)
1646{
1647 struct iphdr *iph;
1648 const struct iphdr *old_iph = ip_hdr(skb);
1649
1650 skb_push(skb, sizeof(struct iphdr));
1651 skb->transport_header = skb->network_header;
1652 skb_reset_network_header(skb);
1653 iph = ip_hdr(skb);
1654
1655 iph->version = 4;
1656 iph->tos = old_iph->tos;
1657 iph->ttl = old_iph->ttl;
1658 iph->frag_off = 0;
1659 iph->daddr = daddr;
1660 iph->saddr = saddr;
1661 iph->protocol = IPPROTO_IPIP;
1662 iph->ihl = 5;
1663 iph->tot_len = htons(skb->len);
1664 ip_select_ident(skb, NULL);
1665 ip_send_check(iph);
1666
1667 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1668 nf_reset(skb);
1669}
1670
1671static inline int ipmr_forward_finish(struct sk_buff *skb)
1672{
1673 struct ip_options *opt = &(IPCB(skb)->opt);
1674
1675 IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);
1676 IP_ADD_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTOCTETS, skb->len);
1677
1678 if (unlikely(opt->optlen))
1679 ip_forward_options(skb);
1680
1681 return dst_output(skb);
1682}
1683
1684/*
1685 * Processing handlers for ipmr_forward
1686 */
1687
1688static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1689 struct sk_buff *skb, struct mfc_cache *c, int vifi)
1690{
1691 const struct iphdr *iph = ip_hdr(skb);
1692 struct vif_device *vif = &mrt->vif_table[vifi];
1693 struct net_device *dev;
1694 struct rtable *rt;
1695 struct flowi4 fl4;
1696 int encap = 0;
1697
1698 if (vif->dev == NULL)
1699 goto out_free;
1700
1701#ifdef CONFIG_IP_PIMSM
1702 if (vif->flags & VIFF_REGISTER) {
1703 vif->pkt_out++;
1704 vif->bytes_out += skb->len;
1705 vif->dev->stats.tx_bytes += skb->len;
1706 vif->dev->stats.tx_packets++;
1707 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1708 goto out_free;
1709 }
1710#endif
1711
1712 if (vif->flags & VIFF_TUNNEL) {
1713 rt = ip_route_output_ports(net, &fl4, NULL,
1714 vif->remote, vif->local,
1715 0, 0,
1716 IPPROTO_IPIP,
1717 RT_TOS(iph->tos), vif->link);
1718 if (IS_ERR(rt))
1719 goto out_free;
1720 encap = sizeof(struct iphdr);
1721 } else {
1722 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1723 0, 0,
1724 IPPROTO_IPIP,
1725 RT_TOS(iph->tos), vif->link);
1726 if (IS_ERR(rt))
1727 goto out_free;
1728 }
1729
1730 dev = rt->dst.dev;
1731
1732 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1733 /* Do not fragment multicasts. Alas, IPv4 does not
1734 * allow to send ICMP, so that packets will disappear
1735 * to blackhole.
1736 */
1737
1738 IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
1739 ip_rt_put(rt);
1740 goto out_free;
1741 }
1742
1743 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1744
1745 if (skb_cow(skb, encap)) {
1746 ip_rt_put(rt);
1747 goto out_free;
1748 }
1749
1750 vif->pkt_out++;
1751 vif->bytes_out += skb->len;
1752
1753 skb_dst_drop(skb);
1754 skb_dst_set(skb, &rt->dst);
1755 ip_decrease_ttl(ip_hdr(skb));
1756
1757 /* FIXME: forward and output firewalls used to be called here.
1758 * What do we do with netfilter? -- RR
1759 */
1760 if (vif->flags & VIFF_TUNNEL) {
1761 ip_encap(skb, vif->local, vif->remote);
1762 /* FIXME: extra output firewall step used to be here. --RR */
1763 vif->dev->stats.tx_packets++;
1764 vif->dev->stats.tx_bytes += skb->len;
1765 }
1766
1767 IPCB(skb)->flags |= IPSKB_FORWARDED;
1768
1769 /*
1770 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1771 * not only before forwarding, but after forwarding on all output
1772 * interfaces. It is clear, if mrouter runs a multicasting
1773 * program, it should receive packets not depending to what interface
1774 * program is joined.
1775 * If we will not make it, the program will have to join on all
1776 * interfaces. On the other hand, multihoming host (or router, but
1777 * not mrouter) cannot join to more than one interface - it will
1778 * result in receiving multiple packets.
1779 */
1780 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev, dev,
1781 ipmr_forward_finish);
1782 return;
1783
1784out_free:
1785 kfree_skb(skb);
1786}
1787
1788static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1789{
1790 int ct;
1791
1792 for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1793 if (mrt->vif_table[ct].dev == dev)
1794 break;
1795 }
1796 return ct;
1797}
1798
1799/* "local" means that we should preserve one skb (for local delivery) */
1800
1801static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1802 struct sk_buff *skb, struct mfc_cache *cache,
1803 int local)
1804{
1805 int psend = -1;
1806 int vif, ct;
1807 int true_vifi = ipmr_find_vif(mrt, skb->dev);
1808
1809 vif = cache->mfc_parent;
1810 cache->mfc_un.res.pkt++;
1811 cache->mfc_un.res.bytes += skb->len;
1812
1813 if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1814 struct mfc_cache *cache_proxy;
1815
1816 /* For an (*,G) entry, we only check that the incomming
1817 * interface is part of the static tree.
1818 */
1819 cache_proxy = ipmr_cache_find_any_parent(mrt, vif);
1820 if (cache_proxy &&
1821 cache_proxy->mfc_un.res.ttls[true_vifi] < 255)
1822 goto forward;
1823 }
1824
1825 /*
1826 * Wrong interface: drop packet and (maybe) send PIM assert.
1827 */
1828 if (mrt->vif_table[vif].dev != skb->dev) {
1829 if (rt_is_output_route(skb_rtable(skb))) {
1830 /* It is our own packet, looped back.
1831 * Very complicated situation...
1832 *
1833 * The best workaround until routing daemons will be
1834 * fixed is not to redistribute packet, if it was
1835 * send through wrong interface. It means, that
1836 * multicast applications WILL NOT work for
1837 * (S,G), which have default multicast route pointing
1838 * to wrong oif. In any case, it is not a good
1839 * idea to use multicasting applications on router.
1840 */
1841 goto dont_forward;
1842 }
1843
1844 cache->mfc_un.res.wrong_if++;
1845
1846 if (true_vifi >= 0 && mrt->mroute_do_assert &&
1847 /* pimsm uses asserts, when switching from RPT to SPT,
1848 * so that we cannot check that packet arrived on an oif.
1849 * It is bad, but otherwise we would need to move pretty
1850 * large chunk of pimd to kernel. Ough... --ANK
1851 */
1852 (mrt->mroute_do_pim ||
1853 cache->mfc_un.res.ttls[true_vifi] < 255) &&
1854 time_after(jiffies,
1855 cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1856 cache->mfc_un.res.last_assert = jiffies;
1857 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1858 }
1859 goto dont_forward;
1860 }
1861
1862forward:
1863 mrt->vif_table[vif].pkt_in++;
1864 mrt->vif_table[vif].bytes_in += skb->len;
1865
1866 /*
1867 * Forward the frame
1868 */
1869 if (cache->mfc_origin == htonl(INADDR_ANY) &&
1870 cache->mfc_mcastgrp == htonl(INADDR_ANY)) {
1871 if (true_vifi >= 0 &&
1872 true_vifi != cache->mfc_parent &&
1873 ip_hdr(skb)->ttl >
1874 cache->mfc_un.res.ttls[cache->mfc_parent]) {
1875 /* It's an (*,*) entry and the packet is not coming from
1876 * the upstream: forward the packet to the upstream
1877 * only.
1878 */
1879 psend = cache->mfc_parent;
1880 goto last_forward;
1881 }
1882 goto dont_forward;
1883 }
1884 for (ct = cache->mfc_un.res.maxvif - 1;
1885 ct >= cache->mfc_un.res.minvif; ct--) {
1886 /* For (*,G) entry, don't forward to the incoming interface */
1887 if ((cache->mfc_origin != htonl(INADDR_ANY) ||
1888 ct != true_vifi) &&
1889 ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1890 if (psend != -1) {
1891 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1892
1893 if (skb2)
1894 ipmr_queue_xmit(net, mrt, skb2, cache,
1895 psend);
1896 }
1897 psend = ct;
1898 }
1899 }
1900last_forward:
1901 if (psend != -1) {
1902 if (local) {
1903 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1904
1905 if (skb2)
1906 ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1907 } else {
1908 ipmr_queue_xmit(net, mrt, skb, cache, psend);
1909 return;
1910 }
1911 }
1912
1913dont_forward:
1914 if (!local)
1915 kfree_skb(skb);
1916}
1917
1918static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1919{
1920 struct rtable *rt = skb_rtable(skb);
1921 struct iphdr *iph = ip_hdr(skb);
1922 struct flowi4 fl4 = {
1923 .daddr = iph->daddr,
1924 .saddr = iph->saddr,
1925 .flowi4_tos = RT_TOS(iph->tos),
1926 .flowi4_oif = (rt_is_output_route(rt) ?
1927 skb->dev->ifindex : 0),
1928 .flowi4_iif = (rt_is_output_route(rt) ?
1929 LOOPBACK_IFINDEX :
1930 skb->dev->ifindex),
1931 .flowi4_mark = skb->mark,
1932 };
1933 struct mr_table *mrt;
1934 int err;
1935
1936 err = ipmr_fib_lookup(net, &fl4, &mrt);
1937 if (err)
1938 return ERR_PTR(err);
1939 return mrt;
1940}
1941
1942/*
1943 * Multicast packets for forwarding arrive here
1944 * Called with rcu_read_lock();
1945 */
1946
1947int ip_mr_input(struct sk_buff *skb)
1948{
1949 struct mfc_cache *cache;
1950 struct net *net = dev_net(skb->dev);
1951 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1952 struct mr_table *mrt;
1953
1954 /* Packet is looped back after forward, it should not be
1955 * forwarded second time, but still can be delivered locally.
1956 */
1957 if (IPCB(skb)->flags & IPSKB_FORWARDED)
1958 goto dont_forward;
1959
1960 mrt = ipmr_rt_fib_lookup(net, skb);
1961 if (IS_ERR(mrt)) {
1962 kfree_skb(skb);
1963 return PTR_ERR(mrt);
1964 }
1965 if (!local) {
1966 if (IPCB(skb)->opt.router_alert) {
1967 if (ip_call_ra_chain(skb))
1968 return 0;
1969 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1970 /* IGMPv1 (and broken IGMPv2 implementations sort of
1971 * Cisco IOS <= 11.2(8)) do not put router alert
1972 * option to IGMP packets destined to routable
1973 * groups. It is very bad, because it means
1974 * that we can forward NO IGMP messages.
1975 */
1976 struct sock *mroute_sk;
1977
1978 mroute_sk = rcu_dereference(mrt->mroute_sk);
1979 if (mroute_sk) {
1980 nf_reset(skb);
1981 raw_rcv(mroute_sk, skb);
1982 return 0;
1983 }
1984 }
1985 }
1986
1987 /* already under rcu_read_lock() */
1988 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
1989 if (cache == NULL) {
1990 int vif = ipmr_find_vif(mrt, skb->dev);
1991
1992 if (vif >= 0)
1993 cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
1994 vif);
1995 }
1996
1997 /*
1998 * No usable cache entry
1999 */
2000 if (cache == NULL) {
2001 int vif;
2002
2003 if (local) {
2004 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2005 ip_local_deliver(skb);
2006 if (skb2 == NULL)
2007 return -ENOBUFS;
2008 skb = skb2;
2009 }
2010
2011 read_lock(&mrt_lock);
2012 vif = ipmr_find_vif(mrt, skb->dev);
2013 if (vif >= 0) {
2014 int err2 = ipmr_cache_unresolved(mrt, vif, skb);
2015 read_unlock(&mrt_lock);
2016
2017 return err2;
2018 }
2019 read_unlock(&mrt_lock);
2020 kfree_skb(skb);
2021 return -ENODEV;
2022 }
2023
2024 read_lock(&mrt_lock);
2025 ip_mr_forward(net, mrt, skb, cache, local);
2026 read_unlock(&mrt_lock);
2027
2028 if (local)
2029 return ip_local_deliver(skb);
2030
2031 return 0;
2032
2033dont_forward:
2034 if (local)
2035 return ip_local_deliver(skb);
2036 kfree_skb(skb);
2037 return 0;
2038}
2039
2040#ifdef CONFIG_IP_PIMSM
2041/* called with rcu_read_lock() */
2042static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
2043 unsigned int pimlen)
2044{
2045 struct net_device *reg_dev = NULL;
2046 struct iphdr *encap;
2047
2048 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
2049 /*
2050 * Check that:
2051 * a. packet is really sent to a multicast group
2052 * b. packet is not a NULL-REGISTER
2053 * c. packet is not truncated
2054 */
2055 if (!ipv4_is_multicast(encap->daddr) ||
2056 encap->tot_len == 0 ||
2057 ntohs(encap->tot_len) + pimlen > skb->len)
2058 return 1;
2059
2060 read_lock(&mrt_lock);
2061 if (mrt->mroute_reg_vif_num >= 0)
2062 reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
2063 read_unlock(&mrt_lock);
2064
2065 if (reg_dev == NULL)
2066 return 1;
2067
2068 skb->mac_header = skb->network_header;
2069 skb_pull(skb, (u8 *)encap - skb->data);
2070 skb_reset_network_header(skb);
2071 skb->protocol = htons(ETH_P_IP);
2072 skb->ip_summed = CHECKSUM_NONE;
2073
2074 skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
2075
2076 netif_rx(skb);
2077
2078 return NET_RX_SUCCESS;
2079}
2080#endif
2081
2082#ifdef CONFIG_IP_PIMSM_V1
2083/*
2084 * Handle IGMP messages of PIMv1
2085 */
2086
2087int pim_rcv_v1(struct sk_buff *skb)
2088{
2089 struct igmphdr *pim;
2090 struct net *net = dev_net(skb->dev);
2091 struct mr_table *mrt;
2092
2093 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2094 goto drop;
2095
2096 pim = igmp_hdr(skb);
2097
2098 mrt = ipmr_rt_fib_lookup(net, skb);
2099 if (IS_ERR(mrt))
2100 goto drop;
2101 if (!mrt->mroute_do_pim ||
2102 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2103 goto drop;
2104
2105 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2106drop:
2107 kfree_skb(skb);
2108 }
2109 return 0;
2110}
2111#endif
2112
2113#ifdef CONFIG_IP_PIMSM_V2
2114static int pim_rcv(struct sk_buff *skb)
2115{
2116 struct pimreghdr *pim;
2117 struct net *net = dev_net(skb->dev);
2118 struct mr_table *mrt;
2119
2120 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2121 goto drop;
2122
2123 pim = (struct pimreghdr *)skb_transport_header(skb);
2124 if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
2125 (pim->flags & PIM_NULL_REGISTER) ||
2126 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2127 csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2128 goto drop;
2129
2130 mrt = ipmr_rt_fib_lookup(net, skb);
2131 if (IS_ERR(mrt))
2132 goto drop;
2133 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2134drop:
2135 kfree_skb(skb);
2136 }
2137 return 0;
2138}
2139#endif
2140
2141static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2142 struct mfc_cache *c, struct rtmsg *rtm)
2143{
2144 int ct;
2145 struct rtnexthop *nhp;
2146 struct nlattr *mp_attr;
2147 struct rta_mfc_stats mfcs;
2148
2149 /* If cache is unresolved, don't try to parse IIF and OIF */
2150 if (c->mfc_parent >= MAXVIFS)
2151 return -ENOENT;
2152
2153 if (VIF_EXISTS(mrt, c->mfc_parent) &&
2154 nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0)
2155 return -EMSGSIZE;
2156
2157 if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH)))
2158 return -EMSGSIZE;
2159
2160 for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2161 if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2162 if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) {
2163 nla_nest_cancel(skb, mp_attr);
2164 return -EMSGSIZE;
2165 }
2166
2167 nhp->rtnh_flags = 0;
2168 nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2169 nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2170 nhp->rtnh_len = sizeof(*nhp);
2171 }
2172 }
2173
2174 nla_nest_end(skb, mp_attr);
2175
2176 mfcs.mfcs_packets = c->mfc_un.res.pkt;
2177 mfcs.mfcs_bytes = c->mfc_un.res.bytes;
2178 mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if;
2179 if (nla_put(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs) < 0)
2180 return -EMSGSIZE;
2181
2182 rtm->rtm_type = RTN_MULTICAST;
2183 return 1;
2184}
2185
2186int ipmr_get_route(struct net *net, struct sk_buff *skb,
2187 __be32 saddr, __be32 daddr,
2188 struct rtmsg *rtm, int nowait)
2189{
2190 struct mfc_cache *cache;
2191 struct mr_table *mrt;
2192 int err;
2193
2194 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2195 if (mrt == NULL)
2196 return -ENOENT;
2197
2198 rcu_read_lock();
2199 cache = ipmr_cache_find(mrt, saddr, daddr);
2200 if (cache == NULL && skb->dev) {
2201 int vif = ipmr_find_vif(mrt, skb->dev);
2202
2203 if (vif >= 0)
2204 cache = ipmr_cache_find_any(mrt, daddr, vif);
2205 }
2206 if (cache == NULL) {
2207 struct sk_buff *skb2;
2208 struct iphdr *iph;
2209 struct net_device *dev;
2210 int vif = -1;
2211
2212 if (nowait) {
2213 rcu_read_unlock();
2214 return -EAGAIN;
2215 }
2216
2217 dev = skb->dev;
2218 read_lock(&mrt_lock);
2219 if (dev)
2220 vif = ipmr_find_vif(mrt, dev);
2221 if (vif < 0) {
2222 read_unlock(&mrt_lock);
2223 rcu_read_unlock();
2224 return -ENODEV;
2225 }
2226 skb2 = skb_clone(skb, GFP_ATOMIC);
2227 if (!skb2) {
2228 read_unlock(&mrt_lock);
2229 rcu_read_unlock();
2230 return -ENOMEM;
2231 }
2232
2233 skb_push(skb2, sizeof(struct iphdr));
2234 skb_reset_network_header(skb2);
2235 iph = ip_hdr(skb2);
2236 iph->ihl = sizeof(struct iphdr) >> 2;
2237 iph->saddr = saddr;
2238 iph->daddr = daddr;
2239 iph->version = 0;
2240 err = ipmr_cache_unresolved(mrt, vif, skb2);
2241 read_unlock(&mrt_lock);
2242 rcu_read_unlock();
2243 return err;
2244 }
2245
2246 read_lock(&mrt_lock);
2247 if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY))
2248 cache->mfc_flags |= MFC_NOTIFY;
2249 err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2250 read_unlock(&mrt_lock);
2251 rcu_read_unlock();
2252 return err;
2253}
2254
2255static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2256 u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2257 int flags)
2258{
2259 struct nlmsghdr *nlh;
2260 struct rtmsg *rtm;
2261 int err;
2262
2263 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2264 if (nlh == NULL)
2265 return -EMSGSIZE;
2266
2267 rtm = nlmsg_data(nlh);
2268 rtm->rtm_family = RTNL_FAMILY_IPMR;
2269 rtm->rtm_dst_len = 32;
2270 rtm->rtm_src_len = 32;
2271 rtm->rtm_tos = 0;
2272 rtm->rtm_table = mrt->id;
2273 if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2274 goto nla_put_failure;
2275 rtm->rtm_type = RTN_MULTICAST;
2276 rtm->rtm_scope = RT_SCOPE_UNIVERSE;
2277 if (c->mfc_flags & MFC_STATIC)
2278 rtm->rtm_protocol = RTPROT_STATIC;
2279 else
2280 rtm->rtm_protocol = RTPROT_MROUTED;
2281 rtm->rtm_flags = 0;
2282
2283 if (nla_put_be32(skb, RTA_SRC, c->mfc_origin) ||
2284 nla_put_be32(skb, RTA_DST, c->mfc_mcastgrp))
2285 goto nla_put_failure;
2286 err = __ipmr_fill_mroute(mrt, skb, c, rtm);
2287 /* do not break the dump if cache is unresolved */
2288 if (err < 0 && err != -ENOENT)
2289 goto nla_put_failure;
2290
2291 nlmsg_end(skb, nlh);
2292 return 0;
2293
2294nla_put_failure:
2295 nlmsg_cancel(skb, nlh);
2296 return -EMSGSIZE;
2297}
2298
2299static size_t mroute_msgsize(bool unresolved, int maxvif)
2300{
2301 size_t len =
2302 NLMSG_ALIGN(sizeof(struct rtmsg))
2303 + nla_total_size(4) /* RTA_TABLE */
2304 + nla_total_size(4) /* RTA_SRC */
2305 + nla_total_size(4) /* RTA_DST */
2306 ;
2307
2308 if (!unresolved)
2309 len = len
2310 + nla_total_size(4) /* RTA_IIF */
2311 + nla_total_size(0) /* RTA_MULTIPATH */
2312 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2313 /* RTA_MFC_STATS */
2314 + nla_total_size(sizeof(struct rta_mfc_stats))
2315 ;
2316
2317 return len;
2318}
2319
2320static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2321 int cmd)
2322{
2323 struct net *net = read_pnet(&mrt->net);
2324 struct sk_buff *skb;
2325 int err = -ENOBUFS;
2326
2327 skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif),
2328 GFP_ATOMIC);
2329 if (skb == NULL)
2330 goto errout;
2331
2332 err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2333 if (err < 0)
2334 goto errout;
2335
2336 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2337 return;
2338
2339errout:
2340 kfree_skb(skb);
2341 if (err < 0)
2342 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2343}
2344
2345static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2346{
2347 struct net *net = sock_net(skb->sk);
2348 struct mr_table *mrt;
2349 struct mfc_cache *mfc;
2350 unsigned int t = 0, s_t;
2351 unsigned int h = 0, s_h;
2352 unsigned int e = 0, s_e;
2353
2354 s_t = cb->args[0];
2355 s_h = cb->args[1];
2356 s_e = cb->args[2];
2357
2358 rcu_read_lock();
2359 ipmr_for_each_table(mrt, net) {
2360 if (t < s_t)
2361 goto next_table;
2362 if (t > s_t)
2363 s_h = 0;
2364 for (h = s_h; h < MFC_LINES; h++) {
2365 list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
2366 if (e < s_e)
2367 goto next_entry;
2368 if (ipmr_fill_mroute(mrt, skb,
2369 NETLINK_CB(cb->skb).portid,
2370 cb->nlh->nlmsg_seq,
2371 mfc, RTM_NEWROUTE,
2372 NLM_F_MULTI) < 0)
2373 goto done;
2374next_entry:
2375 e++;
2376 }
2377 e = s_e = 0;
2378 }
2379 spin_lock_bh(&mfc_unres_lock);
2380 list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) {
2381 if (e < s_e)
2382 goto next_entry2;
2383 if (ipmr_fill_mroute(mrt, skb,
2384 NETLINK_CB(cb->skb).portid,
2385 cb->nlh->nlmsg_seq,
2386 mfc, RTM_NEWROUTE,
2387 NLM_F_MULTI) < 0) {
2388 spin_unlock_bh(&mfc_unres_lock);
2389 goto done;
2390 }
2391next_entry2:
2392 e++;
2393 }
2394 spin_unlock_bh(&mfc_unres_lock);
2395 e = s_e = 0;
2396 s_h = 0;
2397next_table:
2398 t++;
2399 }
2400done:
2401 rcu_read_unlock();
2402
2403 cb->args[2] = e;
2404 cb->args[1] = h;
2405 cb->args[0] = t;
2406
2407 return skb->len;
2408}
2409
2410#ifdef CONFIG_PROC_FS
2411/*
2412 * The /proc interfaces to multicast routing :
2413 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2414 */
2415struct ipmr_vif_iter {
2416 struct seq_net_private p;
2417 struct mr_table *mrt;
2418 int ct;
2419};
2420
2421static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2422 struct ipmr_vif_iter *iter,
2423 loff_t pos)
2424{
2425 struct mr_table *mrt = iter->mrt;
2426
2427 for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2428 if (!VIF_EXISTS(mrt, iter->ct))
2429 continue;
2430 if (pos-- == 0)
2431 return &mrt->vif_table[iter->ct];
2432 }
2433 return NULL;
2434}
2435
2436static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2437 __acquires(mrt_lock)
2438{
2439 struct ipmr_vif_iter *iter = seq->private;
2440 struct net *net = seq_file_net(seq);
2441 struct mr_table *mrt;
2442
2443 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2444 if (mrt == NULL)
2445 return ERR_PTR(-ENOENT);
2446
2447 iter->mrt = mrt;
2448
2449 read_lock(&mrt_lock);
2450 return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2451 : SEQ_START_TOKEN;
2452}
2453
2454static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2455{
2456 struct ipmr_vif_iter *iter = seq->private;
2457 struct net *net = seq_file_net(seq);
2458 struct mr_table *mrt = iter->mrt;
2459
2460 ++*pos;
2461 if (v == SEQ_START_TOKEN)
2462 return ipmr_vif_seq_idx(net, iter, 0);
2463
2464 while (++iter->ct < mrt->maxvif) {
2465 if (!VIF_EXISTS(mrt, iter->ct))
2466 continue;
2467 return &mrt->vif_table[iter->ct];
2468 }
2469 return NULL;
2470}
2471
2472static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2473 __releases(mrt_lock)
2474{
2475 read_unlock(&mrt_lock);
2476}
2477
2478static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2479{
2480 struct ipmr_vif_iter *iter = seq->private;
2481 struct mr_table *mrt = iter->mrt;
2482
2483 if (v == SEQ_START_TOKEN) {
2484 seq_puts(seq,
2485 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
2486 } else {
2487 const struct vif_device *vif = v;
2488 const char *name = vif->dev ? vif->dev->name : "none";
2489
2490 seq_printf(seq,
2491 "%2Zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
2492 vif - mrt->vif_table,
2493 name, vif->bytes_in, vif->pkt_in,
2494 vif->bytes_out, vif->pkt_out,
2495 vif->flags, vif->local, vif->remote);
2496 }
2497 return 0;
2498}
2499
2500static const struct seq_operations ipmr_vif_seq_ops = {
2501 .start = ipmr_vif_seq_start,
2502 .next = ipmr_vif_seq_next,
2503 .stop = ipmr_vif_seq_stop,
2504 .show = ipmr_vif_seq_show,
2505};
2506
2507static int ipmr_vif_open(struct inode *inode, struct file *file)
2508{
2509 return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2510 sizeof(struct ipmr_vif_iter));
2511}
2512
2513static const struct file_operations ipmr_vif_fops = {
2514 .owner = THIS_MODULE,
2515 .open = ipmr_vif_open,
2516 .read = seq_read,
2517 .llseek = seq_lseek,
2518 .release = seq_release_net,
2519};
2520
2521struct ipmr_mfc_iter {
2522 struct seq_net_private p;
2523 struct mr_table *mrt;
2524 struct list_head *cache;
2525 int ct;
2526};
2527
2528
2529static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2530 struct ipmr_mfc_iter *it, loff_t pos)
2531{
2532 struct mr_table *mrt = it->mrt;
2533 struct mfc_cache *mfc;
2534
2535 rcu_read_lock();
2536 for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2537 it->cache = &mrt->mfc_cache_array[it->ct];
2538 list_for_each_entry_rcu(mfc, it->cache, list)
2539 if (pos-- == 0)
2540 return mfc;
2541 }
2542 rcu_read_unlock();
2543
2544 spin_lock_bh(&mfc_unres_lock);
2545 it->cache = &mrt->mfc_unres_queue;
2546 list_for_each_entry(mfc, it->cache, list)
2547 if (pos-- == 0)
2548 return mfc;
2549 spin_unlock_bh(&mfc_unres_lock);
2550
2551 it->cache = NULL;
2552 return NULL;
2553}
2554
2555
2556static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2557{
2558 struct ipmr_mfc_iter *it = seq->private;
2559 struct net *net = seq_file_net(seq);
2560 struct mr_table *mrt;
2561
2562 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2563 if (mrt == NULL)
2564 return ERR_PTR(-ENOENT);
2565
2566 it->mrt = mrt;
2567 it->cache = NULL;
2568 it->ct = 0;
2569 return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2570 : SEQ_START_TOKEN;
2571}
2572
2573static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2574{
2575 struct mfc_cache *mfc = v;
2576 struct ipmr_mfc_iter *it = seq->private;
2577 struct net *net = seq_file_net(seq);
2578 struct mr_table *mrt = it->mrt;
2579
2580 ++*pos;
2581
2582 if (v == SEQ_START_TOKEN)
2583 return ipmr_mfc_seq_idx(net, seq->private, 0);
2584
2585 if (mfc->list.next != it->cache)
2586 return list_entry(mfc->list.next, struct mfc_cache, list);
2587
2588 if (it->cache == &mrt->mfc_unres_queue)
2589 goto end_of_list;
2590
2591 BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2592
2593 while (++it->ct < MFC_LINES) {
2594 it->cache = &mrt->mfc_cache_array[it->ct];
2595 if (list_empty(it->cache))
2596 continue;
2597 return list_first_entry(it->cache, struct mfc_cache, list);
2598 }
2599
2600 /* exhausted cache_array, show unresolved */
2601 rcu_read_unlock();
2602 it->cache = &mrt->mfc_unres_queue;
2603 it->ct = 0;
2604
2605 spin_lock_bh(&mfc_unres_lock);
2606 if (!list_empty(it->cache))
2607 return list_first_entry(it->cache, struct mfc_cache, list);
2608
2609end_of_list:
2610 spin_unlock_bh(&mfc_unres_lock);
2611 it->cache = NULL;
2612
2613 return NULL;
2614}
2615
2616static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2617{
2618 struct ipmr_mfc_iter *it = seq->private;
2619 struct mr_table *mrt = it->mrt;
2620
2621 if (it->cache == &mrt->mfc_unres_queue)
2622 spin_unlock_bh(&mfc_unres_lock);
2623 else if (it->cache == &mrt->mfc_cache_array[it->ct])
2624 rcu_read_unlock();
2625}
2626
2627static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2628{
2629 int n;
2630
2631 if (v == SEQ_START_TOKEN) {
2632 seq_puts(seq,
2633 "Group Origin Iif Pkts Bytes Wrong Oifs\n");
2634 } else {
2635 const struct mfc_cache *mfc = v;
2636 const struct ipmr_mfc_iter *it = seq->private;
2637 const struct mr_table *mrt = it->mrt;
2638
2639 seq_printf(seq, "%08X %08X %-3hd",
2640 (__force u32) mfc->mfc_mcastgrp,
2641 (__force u32) mfc->mfc_origin,
2642 mfc->mfc_parent);
2643
2644 if (it->cache != &mrt->mfc_unres_queue) {
2645 seq_printf(seq, " %8lu %8lu %8lu",
2646 mfc->mfc_un.res.pkt,
2647 mfc->mfc_un.res.bytes,
2648 mfc->mfc_un.res.wrong_if);
2649 for (n = mfc->mfc_un.res.minvif;
2650 n < mfc->mfc_un.res.maxvif; n++) {
2651 if (VIF_EXISTS(mrt, n) &&
2652 mfc->mfc_un.res.ttls[n] < 255)
2653 seq_printf(seq,
2654 " %2d:%-3d",
2655 n, mfc->mfc_un.res.ttls[n]);
2656 }
2657 } else {
2658 /* unresolved mfc_caches don't contain
2659 * pkt, bytes and wrong_if values
2660 */
2661 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2662 }
2663 seq_putc(seq, '\n');
2664 }
2665 return 0;
2666}
2667
2668static const struct seq_operations ipmr_mfc_seq_ops = {
2669 .start = ipmr_mfc_seq_start,
2670 .next = ipmr_mfc_seq_next,
2671 .stop = ipmr_mfc_seq_stop,
2672 .show = ipmr_mfc_seq_show,
2673};
2674
2675static int ipmr_mfc_open(struct inode *inode, struct file *file)
2676{
2677 return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2678 sizeof(struct ipmr_mfc_iter));
2679}
2680
2681static const struct file_operations ipmr_mfc_fops = {
2682 .owner = THIS_MODULE,
2683 .open = ipmr_mfc_open,
2684 .read = seq_read,
2685 .llseek = seq_lseek,
2686 .release = seq_release_net,
2687};
2688#endif
2689
2690#ifdef CONFIG_IP_PIMSM_V2
2691static const struct net_protocol pim_protocol = {
2692 .handler = pim_rcv,
2693 .netns_ok = 1,
2694};
2695#endif
2696
2697
2698/*
2699 * Setup for IP multicast routing
2700 */
2701static int __net_init ipmr_net_init(struct net *net)
2702{
2703 int err;
2704
2705 err = ipmr_rules_init(net);
2706 if (err < 0)
2707 goto fail;
2708
2709#ifdef CONFIG_PROC_FS
2710 err = -ENOMEM;
2711 if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops))
2712 goto proc_vif_fail;
2713 if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops))
2714 goto proc_cache_fail;
2715#endif
2716 return 0;
2717
2718#ifdef CONFIG_PROC_FS
2719proc_cache_fail:
2720 remove_proc_entry("ip_mr_vif", net->proc_net);
2721proc_vif_fail:
2722 ipmr_rules_exit(net);
2723#endif
2724fail:
2725 return err;
2726}
2727
2728static void __net_exit ipmr_net_exit(struct net *net)
2729{
2730#ifdef CONFIG_PROC_FS
2731 remove_proc_entry("ip_mr_cache", net->proc_net);
2732 remove_proc_entry("ip_mr_vif", net->proc_net);
2733#endif
2734 ipmr_rules_exit(net);
2735}
2736
2737static struct pernet_operations ipmr_net_ops = {
2738 .init = ipmr_net_init,
2739 .exit = ipmr_net_exit,
2740};
2741
2742int __init ip_mr_init(void)
2743{
2744 int err;
2745
2746 mrt_cachep = kmem_cache_create("ip_mrt_cache",
2747 sizeof(struct mfc_cache),
2748 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2749 NULL);
2750 if (!mrt_cachep)
2751 return -ENOMEM;
2752
2753 err = register_pernet_subsys(&ipmr_net_ops);
2754 if (err)
2755 goto reg_pernet_fail;
2756
2757 err = register_netdevice_notifier(&ip_mr_notifier);
2758 if (err)
2759 goto reg_notif_fail;
2760#ifdef CONFIG_IP_PIMSM_V2
2761 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2762 pr_err("%s: can't add PIM protocol\n", __func__);
2763 err = -EAGAIN;
2764 goto add_proto_fail;
2765 }
2766#endif
2767 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
2768 NULL, ipmr_rtm_dumproute, NULL);
2769 return 0;
2770
2771#ifdef CONFIG_IP_PIMSM_V2
2772add_proto_fail:
2773 unregister_netdevice_notifier(&ip_mr_notifier);
2774#endif
2775reg_notif_fail:
2776 unregister_pernet_subsys(&ipmr_net_ops);
2777reg_pernet_fail:
2778 kmem_cache_destroy(mrt_cachep);
2779 return err;
2780}
This page took 0.035317 seconds and 5 git commands to generate.