ASoC: tegra: Use common DAI DMA data struct
[deliverable/linux.git] / sound / soc / fsl / fsl_ssi.c
... / ...
CommitLineData
1/*
2 * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
3 *
4 * Author: Timur Tabi <timur@freescale.com>
5 *
6 * Copyright 2007-2010 Freescale Semiconductor, Inc.
7 *
8 * This file is licensed under the terms of the GNU General Public License
9 * version 2. This program is licensed "as is" without any warranty of any
10 * kind, whether express or implied.
11 */
12
13#include <linux/init.h>
14#include <linux/io.h>
15#include <linux/module.h>
16#include <linux/interrupt.h>
17#include <linux/clk.h>
18#include <linux/device.h>
19#include <linux/delay.h>
20#include <linux/slab.h>
21#include <linux/of_address.h>
22#include <linux/of_irq.h>
23#include <linux/of_platform.h>
24
25#include <sound/core.h>
26#include <sound/pcm.h>
27#include <sound/pcm_params.h>
28#include <sound/initval.h>
29#include <sound/soc.h>
30
31#include "fsl_ssi.h"
32#include "imx-pcm.h"
33
34#ifdef PPC
35#define read_ssi(addr) in_be32(addr)
36#define write_ssi(val, addr) out_be32(addr, val)
37#define write_ssi_mask(addr, clear, set) clrsetbits_be32(addr, clear, set)
38#elif defined ARM
39#define read_ssi(addr) readl(addr)
40#define write_ssi(val, addr) writel(val, addr)
41/*
42 * FIXME: Proper locking should be added at write_ssi_mask caller level
43 * to ensure this register read/modify/write sequence is race free.
44 */
45static inline void write_ssi_mask(u32 __iomem *addr, u32 clear, u32 set)
46{
47 u32 val = readl(addr);
48 val = (val & ~clear) | set;
49 writel(val, addr);
50}
51#endif
52
53/**
54 * FSLSSI_I2S_RATES: sample rates supported by the I2S
55 *
56 * This driver currently only supports the SSI running in I2S slave mode,
57 * which means the codec determines the sample rate. Therefore, we tell
58 * ALSA that we support all rates and let the codec driver decide what rates
59 * are really supported.
60 */
61#define FSLSSI_I2S_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
62 SNDRV_PCM_RATE_CONTINUOUS)
63
64/**
65 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
66 *
67 * This driver currently only supports the SSI running in I2S slave mode.
68 *
69 * The SSI has a limitation in that the samples must be in the same byte
70 * order as the host CPU. This is because when multiple bytes are written
71 * to the STX register, the bytes and bits must be written in the same
72 * order. The STX is a shift register, so all the bits need to be aligned
73 * (bit-endianness must match byte-endianness). Processors typically write
74 * the bits within a byte in the same order that the bytes of a word are
75 * written in. So if the host CPU is big-endian, then only big-endian
76 * samples will be written to STX properly.
77 */
78#ifdef __BIG_ENDIAN
79#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
80 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
81 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
82#else
83#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
84 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
85 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
86#endif
87
88/* SIER bitflag of interrupts to enable */
89#define SIER_FLAGS (CCSR_SSI_SIER_TFRC_EN | CCSR_SSI_SIER_TDMAE | \
90 CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TUE0_EN | \
91 CCSR_SSI_SIER_TUE1_EN | CCSR_SSI_SIER_RFRC_EN | \
92 CCSR_SSI_SIER_RDMAE | CCSR_SSI_SIER_RIE | \
93 CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_ROE1_EN)
94
95/**
96 * fsl_ssi_private: per-SSI private data
97 *
98 * @ssi: pointer to the SSI's registers
99 * @ssi_phys: physical address of the SSI registers
100 * @irq: IRQ of this SSI
101 * @first_stream: pointer to the stream that was opened first
102 * @second_stream: pointer to second stream
103 * @playback: the number of playback streams opened
104 * @capture: the number of capture streams opened
105 * @cpu_dai: the CPU DAI for this device
106 * @dev_attr: the sysfs device attribute structure
107 * @stats: SSI statistics
108 * @name: name for this device
109 */
110struct fsl_ssi_private {
111 struct ccsr_ssi __iomem *ssi;
112 dma_addr_t ssi_phys;
113 unsigned int irq;
114 struct snd_pcm_substream *first_stream;
115 struct snd_pcm_substream *second_stream;
116 unsigned int fifo_depth;
117 struct snd_soc_dai_driver cpu_dai_drv;
118 struct device_attribute dev_attr;
119 struct platform_device *pdev;
120
121 bool new_binding;
122 bool ssi_on_imx;
123 struct clk *clk;
124 struct platform_device *imx_pcm_pdev;
125 struct imx_pcm_dma_params dma_params_tx;
126 struct imx_pcm_dma_params dma_params_rx;
127
128 struct {
129 unsigned int rfrc;
130 unsigned int tfrc;
131 unsigned int cmdau;
132 unsigned int cmddu;
133 unsigned int rxt;
134 unsigned int rdr1;
135 unsigned int rdr0;
136 unsigned int tde1;
137 unsigned int tde0;
138 unsigned int roe1;
139 unsigned int roe0;
140 unsigned int tue1;
141 unsigned int tue0;
142 unsigned int tfs;
143 unsigned int rfs;
144 unsigned int tls;
145 unsigned int rls;
146 unsigned int rff1;
147 unsigned int rff0;
148 unsigned int tfe1;
149 unsigned int tfe0;
150 } stats;
151
152 char name[1];
153};
154
155/**
156 * fsl_ssi_isr: SSI interrupt handler
157 *
158 * Although it's possible to use the interrupt handler to send and receive
159 * data to/from the SSI, we use the DMA instead. Programming is more
160 * complicated, but the performance is much better.
161 *
162 * This interrupt handler is used only to gather statistics.
163 *
164 * @irq: IRQ of the SSI device
165 * @dev_id: pointer to the ssi_private structure for this SSI device
166 */
167static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
168{
169 struct fsl_ssi_private *ssi_private = dev_id;
170 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
171 irqreturn_t ret = IRQ_NONE;
172 __be32 sisr;
173 __be32 sisr2 = 0;
174
175 /* We got an interrupt, so read the status register to see what we
176 were interrupted for. We mask it with the Interrupt Enable register
177 so that we only check for events that we're interested in.
178 */
179 sisr = read_ssi(&ssi->sisr) & SIER_FLAGS;
180
181 if (sisr & CCSR_SSI_SISR_RFRC) {
182 ssi_private->stats.rfrc++;
183 sisr2 |= CCSR_SSI_SISR_RFRC;
184 ret = IRQ_HANDLED;
185 }
186
187 if (sisr & CCSR_SSI_SISR_TFRC) {
188 ssi_private->stats.tfrc++;
189 sisr2 |= CCSR_SSI_SISR_TFRC;
190 ret = IRQ_HANDLED;
191 }
192
193 if (sisr & CCSR_SSI_SISR_CMDAU) {
194 ssi_private->stats.cmdau++;
195 ret = IRQ_HANDLED;
196 }
197
198 if (sisr & CCSR_SSI_SISR_CMDDU) {
199 ssi_private->stats.cmddu++;
200 ret = IRQ_HANDLED;
201 }
202
203 if (sisr & CCSR_SSI_SISR_RXT) {
204 ssi_private->stats.rxt++;
205 ret = IRQ_HANDLED;
206 }
207
208 if (sisr & CCSR_SSI_SISR_RDR1) {
209 ssi_private->stats.rdr1++;
210 ret = IRQ_HANDLED;
211 }
212
213 if (sisr & CCSR_SSI_SISR_RDR0) {
214 ssi_private->stats.rdr0++;
215 ret = IRQ_HANDLED;
216 }
217
218 if (sisr & CCSR_SSI_SISR_TDE1) {
219 ssi_private->stats.tde1++;
220 ret = IRQ_HANDLED;
221 }
222
223 if (sisr & CCSR_SSI_SISR_TDE0) {
224 ssi_private->stats.tde0++;
225 ret = IRQ_HANDLED;
226 }
227
228 if (sisr & CCSR_SSI_SISR_ROE1) {
229 ssi_private->stats.roe1++;
230 sisr2 |= CCSR_SSI_SISR_ROE1;
231 ret = IRQ_HANDLED;
232 }
233
234 if (sisr & CCSR_SSI_SISR_ROE0) {
235 ssi_private->stats.roe0++;
236 sisr2 |= CCSR_SSI_SISR_ROE0;
237 ret = IRQ_HANDLED;
238 }
239
240 if (sisr & CCSR_SSI_SISR_TUE1) {
241 ssi_private->stats.tue1++;
242 sisr2 |= CCSR_SSI_SISR_TUE1;
243 ret = IRQ_HANDLED;
244 }
245
246 if (sisr & CCSR_SSI_SISR_TUE0) {
247 ssi_private->stats.tue0++;
248 sisr2 |= CCSR_SSI_SISR_TUE0;
249 ret = IRQ_HANDLED;
250 }
251
252 if (sisr & CCSR_SSI_SISR_TFS) {
253 ssi_private->stats.tfs++;
254 ret = IRQ_HANDLED;
255 }
256
257 if (sisr & CCSR_SSI_SISR_RFS) {
258 ssi_private->stats.rfs++;
259 ret = IRQ_HANDLED;
260 }
261
262 if (sisr & CCSR_SSI_SISR_TLS) {
263 ssi_private->stats.tls++;
264 ret = IRQ_HANDLED;
265 }
266
267 if (sisr & CCSR_SSI_SISR_RLS) {
268 ssi_private->stats.rls++;
269 ret = IRQ_HANDLED;
270 }
271
272 if (sisr & CCSR_SSI_SISR_RFF1) {
273 ssi_private->stats.rff1++;
274 ret = IRQ_HANDLED;
275 }
276
277 if (sisr & CCSR_SSI_SISR_RFF0) {
278 ssi_private->stats.rff0++;
279 ret = IRQ_HANDLED;
280 }
281
282 if (sisr & CCSR_SSI_SISR_TFE1) {
283 ssi_private->stats.tfe1++;
284 ret = IRQ_HANDLED;
285 }
286
287 if (sisr & CCSR_SSI_SISR_TFE0) {
288 ssi_private->stats.tfe0++;
289 ret = IRQ_HANDLED;
290 }
291
292 /* Clear the bits that we set */
293 if (sisr2)
294 write_ssi(sisr2, &ssi->sisr);
295
296 return ret;
297}
298
299/**
300 * fsl_ssi_startup: create a new substream
301 *
302 * This is the first function called when a stream is opened.
303 *
304 * If this is the first stream open, then grab the IRQ and program most of
305 * the SSI registers.
306 */
307static int fsl_ssi_startup(struct snd_pcm_substream *substream,
308 struct snd_soc_dai *dai)
309{
310 struct snd_soc_pcm_runtime *rtd = substream->private_data;
311 struct fsl_ssi_private *ssi_private =
312 snd_soc_dai_get_drvdata(rtd->cpu_dai);
313 int synchronous = ssi_private->cpu_dai_drv.symmetric_rates;
314
315 /*
316 * If this is the first stream opened, then request the IRQ
317 * and initialize the SSI registers.
318 */
319 if (!ssi_private->first_stream) {
320 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
321
322 ssi_private->first_stream = substream;
323
324 /*
325 * Section 16.5 of the MPC8610 reference manual says that the
326 * SSI needs to be disabled before updating the registers we set
327 * here.
328 */
329 write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, 0);
330
331 /*
332 * Program the SSI into I2S Slave Non-Network Synchronous mode.
333 * Also enable the transmit and receive FIFO.
334 *
335 * FIXME: Little-endian samples require a different shift dir
336 */
337 write_ssi_mask(&ssi->scr,
338 CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_SYN,
339 CCSR_SSI_SCR_TFR_CLK_DIS | CCSR_SSI_SCR_I2S_MODE_SLAVE
340 | (synchronous ? CCSR_SSI_SCR_SYN : 0));
341
342 write_ssi(CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFEN0 |
343 CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TEFS |
344 CCSR_SSI_STCR_TSCKP, &ssi->stcr);
345
346 write_ssi(CCSR_SSI_SRCR_RXBIT0 | CCSR_SSI_SRCR_RFEN0 |
347 CCSR_SSI_SRCR_RFSI | CCSR_SSI_SRCR_REFS |
348 CCSR_SSI_SRCR_RSCKP, &ssi->srcr);
349
350 /*
351 * The DC and PM bits are only used if the SSI is the clock
352 * master.
353 */
354
355 /* Enable the interrupts and DMA requests */
356 write_ssi(SIER_FLAGS, &ssi->sier);
357
358 /*
359 * Set the watermark for transmit FIFI 0 and receive FIFO 0. We
360 * don't use FIFO 1. We program the transmit water to signal a
361 * DMA transfer if there are only two (or fewer) elements left
362 * in the FIFO. Two elements equals one frame (left channel,
363 * right channel). This value, however, depends on the depth of
364 * the transmit buffer.
365 *
366 * We program the receive FIFO to notify us if at least two
367 * elements (one frame) have been written to the FIFO. We could
368 * make this value larger (and maybe we should), but this way
369 * data will be written to memory as soon as it's available.
370 */
371 write_ssi(CCSR_SSI_SFCSR_TFWM0(ssi_private->fifo_depth - 2) |
372 CCSR_SSI_SFCSR_RFWM0(ssi_private->fifo_depth - 2),
373 &ssi->sfcsr);
374
375 /*
376 * We keep the SSI disabled because if we enable it, then the
377 * DMA controller will start. It's not supposed to start until
378 * the SCR.TE (or SCR.RE) bit is set, but it does anyway. The
379 * DMA controller will transfer one "BWC" of data (i.e. the
380 * amount of data that the MR.BWC bits are set to). The reason
381 * this is bad is because at this point, the PCM driver has not
382 * finished initializing the DMA controller.
383 */
384 } else {
385 if (synchronous) {
386 struct snd_pcm_runtime *first_runtime =
387 ssi_private->first_stream->runtime;
388 /*
389 * This is the second stream open, and we're in
390 * synchronous mode, so we need to impose sample
391 * sample size constraints. This is because STCCR is
392 * used for playback and capture in synchronous mode,
393 * so there's no way to specify different word
394 * lengths.
395 *
396 * Note that this can cause a race condition if the
397 * second stream is opened before the first stream is
398 * fully initialized. We provide some protection by
399 * checking to make sure the first stream is
400 * initialized, but it's not perfect. ALSA sometimes
401 * re-initializes the driver with a different sample
402 * rate or size. If the second stream is opened
403 * before the first stream has received its final
404 * parameters, then the second stream may be
405 * constrained to the wrong sample rate or size.
406 */
407 if (!first_runtime->sample_bits) {
408 dev_err(substream->pcm->card->dev,
409 "set sample size in %s stream first\n",
410 substream->stream ==
411 SNDRV_PCM_STREAM_PLAYBACK
412 ? "capture" : "playback");
413 return -EAGAIN;
414 }
415
416 snd_pcm_hw_constraint_minmax(substream->runtime,
417 SNDRV_PCM_HW_PARAM_SAMPLE_BITS,
418 first_runtime->sample_bits,
419 first_runtime->sample_bits);
420 }
421
422 ssi_private->second_stream = substream;
423 }
424
425 if (ssi_private->ssi_on_imx)
426 snd_soc_dai_set_dma_data(dai, substream,
427 (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
428 &ssi_private->dma_params_tx :
429 &ssi_private->dma_params_rx);
430
431 return 0;
432}
433
434/**
435 * fsl_ssi_hw_params - program the sample size
436 *
437 * Most of the SSI registers have been programmed in the startup function,
438 * but the word length must be programmed here. Unfortunately, programming
439 * the SxCCR.WL bits requires the SSI to be temporarily disabled. This can
440 * cause a problem with supporting simultaneous playback and capture. If
441 * the SSI is already playing a stream, then that stream may be temporarily
442 * stopped when you start capture.
443 *
444 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
445 * clock master.
446 */
447static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
448 struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
449{
450 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
451 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
452 unsigned int sample_size =
453 snd_pcm_format_width(params_format(hw_params));
454 u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
455 int enabled = read_ssi(&ssi->scr) & CCSR_SSI_SCR_SSIEN;
456
457 /*
458 * If we're in synchronous mode, and the SSI is already enabled,
459 * then STCCR is already set properly.
460 */
461 if (enabled && ssi_private->cpu_dai_drv.symmetric_rates)
462 return 0;
463
464 /*
465 * FIXME: The documentation says that SxCCR[WL] should not be
466 * modified while the SSI is enabled. The only time this can
467 * happen is if we're trying to do simultaneous playback and
468 * capture in asynchronous mode. Unfortunately, I have been enable
469 * to get that to work at all on the P1022DS. Therefore, we don't
470 * bother to disable/enable the SSI when setting SxCCR[WL], because
471 * the SSI will stop anyway. Maybe one day, this will get fixed.
472 */
473
474 /* In synchronous mode, the SSI uses STCCR for capture */
475 if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
476 ssi_private->cpu_dai_drv.symmetric_rates)
477 write_ssi_mask(&ssi->stccr, CCSR_SSI_SxCCR_WL_MASK, wl);
478 else
479 write_ssi_mask(&ssi->srccr, CCSR_SSI_SxCCR_WL_MASK, wl);
480
481 return 0;
482}
483
484/**
485 * fsl_ssi_trigger: start and stop the DMA transfer.
486 *
487 * This function is called by ALSA to start, stop, pause, and resume the DMA
488 * transfer of data.
489 *
490 * The DMA channel is in external master start and pause mode, which
491 * means the SSI completely controls the flow of data.
492 */
493static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
494 struct snd_soc_dai *dai)
495{
496 struct snd_soc_pcm_runtime *rtd = substream->private_data;
497 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
498 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
499
500 switch (cmd) {
501 case SNDRV_PCM_TRIGGER_START:
502 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
503 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
504 write_ssi_mask(&ssi->scr, 0,
505 CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE);
506 else
507 write_ssi_mask(&ssi->scr, 0,
508 CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE);
509 break;
510
511 case SNDRV_PCM_TRIGGER_STOP:
512 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
513 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
514 write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_TE, 0);
515 else
516 write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_RE, 0);
517 break;
518
519 default:
520 return -EINVAL;
521 }
522
523 return 0;
524}
525
526/**
527 * fsl_ssi_shutdown: shutdown the SSI
528 *
529 * Shutdown the SSI if there are no other substreams open.
530 */
531static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
532 struct snd_soc_dai *dai)
533{
534 struct snd_soc_pcm_runtime *rtd = substream->private_data;
535 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
536
537 if (ssi_private->first_stream == substream)
538 ssi_private->first_stream = ssi_private->second_stream;
539
540 ssi_private->second_stream = NULL;
541
542 /*
543 * If this is the last active substream, disable the SSI.
544 */
545 if (!ssi_private->first_stream) {
546 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
547
548 write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, 0);
549 }
550}
551
552static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
553 .startup = fsl_ssi_startup,
554 .hw_params = fsl_ssi_hw_params,
555 .shutdown = fsl_ssi_shutdown,
556 .trigger = fsl_ssi_trigger,
557};
558
559/* Template for the CPU dai driver structure */
560static struct snd_soc_dai_driver fsl_ssi_dai_template = {
561 .playback = {
562 /* The SSI does not support monaural audio. */
563 .channels_min = 2,
564 .channels_max = 2,
565 .rates = FSLSSI_I2S_RATES,
566 .formats = FSLSSI_I2S_FORMATS,
567 },
568 .capture = {
569 .channels_min = 2,
570 .channels_max = 2,
571 .rates = FSLSSI_I2S_RATES,
572 .formats = FSLSSI_I2S_FORMATS,
573 },
574 .ops = &fsl_ssi_dai_ops,
575};
576
577/* Show the statistics of a flag only if its interrupt is enabled. The
578 * compiler will optimze this code to a no-op if the interrupt is not
579 * enabled.
580 */
581#define SIER_SHOW(flag, name) \
582 do { \
583 if (SIER_FLAGS & CCSR_SSI_SIER_##flag) \
584 length += sprintf(buf + length, #name "=%u\n", \
585 ssi_private->stats.name); \
586 } while (0)
587
588
589/**
590 * fsl_sysfs_ssi_show: display SSI statistics
591 *
592 * Display the statistics for the current SSI device. To avoid confusion,
593 * we only show those counts that are enabled.
594 */
595static ssize_t fsl_sysfs_ssi_show(struct device *dev,
596 struct device_attribute *attr, char *buf)
597{
598 struct fsl_ssi_private *ssi_private =
599 container_of(attr, struct fsl_ssi_private, dev_attr);
600 ssize_t length = 0;
601
602 SIER_SHOW(RFRC_EN, rfrc);
603 SIER_SHOW(TFRC_EN, tfrc);
604 SIER_SHOW(CMDAU_EN, cmdau);
605 SIER_SHOW(CMDDU_EN, cmddu);
606 SIER_SHOW(RXT_EN, rxt);
607 SIER_SHOW(RDR1_EN, rdr1);
608 SIER_SHOW(RDR0_EN, rdr0);
609 SIER_SHOW(TDE1_EN, tde1);
610 SIER_SHOW(TDE0_EN, tde0);
611 SIER_SHOW(ROE1_EN, roe1);
612 SIER_SHOW(ROE0_EN, roe0);
613 SIER_SHOW(TUE1_EN, tue1);
614 SIER_SHOW(TUE0_EN, tue0);
615 SIER_SHOW(TFS_EN, tfs);
616 SIER_SHOW(RFS_EN, rfs);
617 SIER_SHOW(TLS_EN, tls);
618 SIER_SHOW(RLS_EN, rls);
619 SIER_SHOW(RFF1_EN, rff1);
620 SIER_SHOW(RFF0_EN, rff0);
621 SIER_SHOW(TFE1_EN, tfe1);
622 SIER_SHOW(TFE0_EN, tfe0);
623
624 return length;
625}
626
627/**
628 * Make every character in a string lower-case
629 */
630static void make_lowercase(char *s)
631{
632 char *p = s;
633 char c;
634
635 while ((c = *p)) {
636 if ((c >= 'A') && (c <= 'Z'))
637 *p = c + ('a' - 'A');
638 p++;
639 }
640}
641
642static int fsl_ssi_probe(struct platform_device *pdev)
643{
644 struct fsl_ssi_private *ssi_private;
645 int ret = 0;
646 struct device_attribute *dev_attr = NULL;
647 struct device_node *np = pdev->dev.of_node;
648 const char *p, *sprop;
649 const uint32_t *iprop;
650 struct resource res;
651 char name[64];
652 bool shared;
653
654 /* SSIs that are not connected on the board should have a
655 * status = "disabled"
656 * property in their device tree nodes.
657 */
658 if (!of_device_is_available(np))
659 return -ENODEV;
660
661 /* We only support the SSI in "I2S Slave" mode */
662 sprop = of_get_property(np, "fsl,mode", NULL);
663 if (!sprop || strcmp(sprop, "i2s-slave")) {
664 dev_notice(&pdev->dev, "mode %s is unsupported\n", sprop);
665 return -ENODEV;
666 }
667
668 /* The DAI name is the last part of the full name of the node. */
669 p = strrchr(np->full_name, '/') + 1;
670 ssi_private = kzalloc(sizeof(struct fsl_ssi_private) + strlen(p),
671 GFP_KERNEL);
672 if (!ssi_private) {
673 dev_err(&pdev->dev, "could not allocate DAI object\n");
674 return -ENOMEM;
675 }
676
677 strcpy(ssi_private->name, p);
678
679 /* Initialize this copy of the CPU DAI driver structure */
680 memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_dai_template,
681 sizeof(fsl_ssi_dai_template));
682 ssi_private->cpu_dai_drv.name = ssi_private->name;
683
684 /* Get the addresses and IRQ */
685 ret = of_address_to_resource(np, 0, &res);
686 if (ret) {
687 dev_err(&pdev->dev, "could not determine device resources\n");
688 goto error_kmalloc;
689 }
690 ssi_private->ssi = of_iomap(np, 0);
691 if (!ssi_private->ssi) {
692 dev_err(&pdev->dev, "could not map device resources\n");
693 ret = -ENOMEM;
694 goto error_kmalloc;
695 }
696 ssi_private->ssi_phys = res.start;
697
698 ssi_private->irq = irq_of_parse_and_map(np, 0);
699 if (ssi_private->irq == NO_IRQ) {
700 dev_err(&pdev->dev, "no irq for node %s\n", np->full_name);
701 ret = -ENXIO;
702 goto error_iomap;
703 }
704
705 /* The 'name' should not have any slashes in it. */
706 ret = request_irq(ssi_private->irq, fsl_ssi_isr, 0, ssi_private->name,
707 ssi_private);
708 if (ret < 0) {
709 dev_err(&pdev->dev, "could not claim irq %u\n", ssi_private->irq);
710 goto error_irqmap;
711 }
712
713 /* Are the RX and the TX clocks locked? */
714 if (!of_find_property(np, "fsl,ssi-asynchronous", NULL))
715 ssi_private->cpu_dai_drv.symmetric_rates = 1;
716
717 /* Determine the FIFO depth. */
718 iprop = of_get_property(np, "fsl,fifo-depth", NULL);
719 if (iprop)
720 ssi_private->fifo_depth = be32_to_cpup(iprop);
721 else
722 /* Older 8610 DTs didn't have the fifo-depth property */
723 ssi_private->fifo_depth = 8;
724
725 if (of_device_is_compatible(pdev->dev.of_node, "fsl,imx21-ssi")) {
726 u32 dma_events[2];
727 ssi_private->ssi_on_imx = true;
728
729 ssi_private->clk = clk_get(&pdev->dev, NULL);
730 if (IS_ERR(ssi_private->clk)) {
731 ret = PTR_ERR(ssi_private->clk);
732 dev_err(&pdev->dev, "could not get clock: %d\n", ret);
733 goto error_irq;
734 }
735 clk_prepare_enable(ssi_private->clk);
736
737 /*
738 * We have burstsize be "fifo_depth - 2" to match the SSI
739 * watermark setting in fsl_ssi_startup().
740 */
741 ssi_private->dma_params_tx.burstsize =
742 ssi_private->fifo_depth - 2;
743 ssi_private->dma_params_rx.burstsize =
744 ssi_private->fifo_depth - 2;
745 ssi_private->dma_params_tx.dma_addr =
746 ssi_private->ssi_phys + offsetof(struct ccsr_ssi, stx0);
747 ssi_private->dma_params_rx.dma_addr =
748 ssi_private->ssi_phys + offsetof(struct ccsr_ssi, srx0);
749 /*
750 * TODO: This is a temporary solution and should be changed
751 * to use generic DMA binding later when the helplers get in.
752 */
753 ret = of_property_read_u32_array(pdev->dev.of_node,
754 "fsl,ssi-dma-events", dma_events, 2);
755 if (ret) {
756 dev_err(&pdev->dev, "could not get dma events\n");
757 goto error_clk;
758 }
759
760 shared = of_device_is_compatible(of_get_parent(np),
761 "fsl,spba-bus");
762
763 imx_pcm_dma_params_init_data(&ssi_private->dma_params_tx,
764 dma_events[0], shared);
765 imx_pcm_dma_params_init_data(&ssi_private->dma_params_rx,
766 dma_events[1], shared);
767 }
768
769 /* Initialize the the device_attribute structure */
770 dev_attr = &ssi_private->dev_attr;
771 sysfs_attr_init(&dev_attr->attr);
772 dev_attr->attr.name = "statistics";
773 dev_attr->attr.mode = S_IRUGO;
774 dev_attr->show = fsl_sysfs_ssi_show;
775
776 ret = device_create_file(&pdev->dev, dev_attr);
777 if (ret) {
778 dev_err(&pdev->dev, "could not create sysfs %s file\n",
779 ssi_private->dev_attr.attr.name);
780 goto error_irq;
781 }
782
783 /* Register with ASoC */
784 dev_set_drvdata(&pdev->dev, ssi_private);
785
786 ret = snd_soc_register_dai(&pdev->dev, &ssi_private->cpu_dai_drv);
787 if (ret) {
788 dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
789 goto error_dev;
790 }
791
792 if (ssi_private->ssi_on_imx) {
793 ssi_private->imx_pcm_pdev =
794 platform_device_register_simple("imx-pcm-audio",
795 -1, NULL, 0);
796 if (IS_ERR(ssi_private->imx_pcm_pdev)) {
797 ret = PTR_ERR(ssi_private->imx_pcm_pdev);
798 goto error_dev;
799 }
800 }
801
802 /*
803 * If codec-handle property is missing from SSI node, we assume
804 * that the machine driver uses new binding which does not require
805 * SSI driver to trigger machine driver's probe.
806 */
807 if (!of_get_property(np, "codec-handle", NULL)) {
808 ssi_private->new_binding = true;
809 goto done;
810 }
811
812 /* Trigger the machine driver's probe function. The platform driver
813 * name of the machine driver is taken from /compatible property of the
814 * device tree. We also pass the address of the CPU DAI driver
815 * structure.
816 */
817 sprop = of_get_property(of_find_node_by_path("/"), "compatible", NULL);
818 /* Sometimes the compatible name has a "fsl," prefix, so we strip it. */
819 p = strrchr(sprop, ',');
820 if (p)
821 sprop = p + 1;
822 snprintf(name, sizeof(name), "snd-soc-%s", sprop);
823 make_lowercase(name);
824
825 ssi_private->pdev =
826 platform_device_register_data(&pdev->dev, name, 0, NULL, 0);
827 if (IS_ERR(ssi_private->pdev)) {
828 ret = PTR_ERR(ssi_private->pdev);
829 dev_err(&pdev->dev, "failed to register platform: %d\n", ret);
830 goto error_dai;
831 }
832
833done:
834 return 0;
835
836error_dai:
837 if (ssi_private->ssi_on_imx)
838 platform_device_unregister(ssi_private->imx_pcm_pdev);
839 snd_soc_unregister_dai(&pdev->dev);
840
841error_dev:
842 dev_set_drvdata(&pdev->dev, NULL);
843 device_remove_file(&pdev->dev, dev_attr);
844
845error_clk:
846 if (ssi_private->ssi_on_imx) {
847 clk_disable_unprepare(ssi_private->clk);
848 clk_put(ssi_private->clk);
849 }
850
851error_irq:
852 free_irq(ssi_private->irq, ssi_private);
853
854error_irqmap:
855 irq_dispose_mapping(ssi_private->irq);
856
857error_iomap:
858 iounmap(ssi_private->ssi);
859
860error_kmalloc:
861 kfree(ssi_private);
862
863 return ret;
864}
865
866static int fsl_ssi_remove(struct platform_device *pdev)
867{
868 struct fsl_ssi_private *ssi_private = dev_get_drvdata(&pdev->dev);
869
870 if (!ssi_private->new_binding)
871 platform_device_unregister(ssi_private->pdev);
872 if (ssi_private->ssi_on_imx) {
873 platform_device_unregister(ssi_private->imx_pcm_pdev);
874 clk_disable_unprepare(ssi_private->clk);
875 clk_put(ssi_private->clk);
876 }
877 snd_soc_unregister_dai(&pdev->dev);
878 device_remove_file(&pdev->dev, &ssi_private->dev_attr);
879
880 free_irq(ssi_private->irq, ssi_private);
881 irq_dispose_mapping(ssi_private->irq);
882
883 kfree(ssi_private);
884 dev_set_drvdata(&pdev->dev, NULL);
885
886 return 0;
887}
888
889static const struct of_device_id fsl_ssi_ids[] = {
890 { .compatible = "fsl,mpc8610-ssi", },
891 { .compatible = "fsl,imx21-ssi", },
892 {}
893};
894MODULE_DEVICE_TABLE(of, fsl_ssi_ids);
895
896static struct platform_driver fsl_ssi_driver = {
897 .driver = {
898 .name = "fsl-ssi-dai",
899 .owner = THIS_MODULE,
900 .of_match_table = fsl_ssi_ids,
901 },
902 .probe = fsl_ssi_probe,
903 .remove = fsl_ssi_remove,
904};
905
906module_platform_driver(fsl_ssi_driver);
907
908MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
909MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
910MODULE_LICENSE("GPL v2");
This page took 0.026385 seconds and 5 git commands to generate.