[ALSA] es1968: Fix hw volume
[deliverable/linux.git] / sound / sparc / dbri.c
... / ...
CommitLineData
1/*
2 * Driver for DBRI sound chip found on Sparcs.
3 * Copyright (C) 2004, 2005 Martin Habets (mhabets@users.sourceforge.net)
4 *
5 * Converted to ring buffered version by Krzysztof Helt (krzysztof.h1@wp.pl)
6 *
7 * Based entirely upon drivers/sbus/audio/dbri.c which is:
8 * Copyright (C) 1997 Rudolf Koenig (rfkoenig@immd4.informatik.uni-erlangen.de)
9 * Copyright (C) 1998, 1999 Brent Baccala (baccala@freesoft.org)
10 *
11 * This is the lowlevel driver for the DBRI & MMCODEC duo used for ISDN & AUDIO
12 * on Sun SPARCstation 10, 20, LX and Voyager models.
13 *
14 * - DBRI: AT&T T5900FX Dual Basic Rates ISDN Interface. It is a 32 channel
15 * data time multiplexer with ISDN support (aka T7259)
16 * Interfaces: SBus,ISDN NT & TE, CHI, 4 bits parallel.
17 * CHI: (spelled ki) Concentration Highway Interface (AT&T or Intel bus ?).
18 * Documentation:
19 * - "STP 4000SBus Dual Basic Rate ISDN (DBRI) Tranceiver" from
20 * Sparc Technology Business (courtesy of Sun Support)
21 * - Data sheet of the T7903, a newer but very similar ISA bus equivalent
22 * available from the Lucent (formarly AT&T microelectronics) home
23 * page.
24 * - http://www.freesoft.org/Linux/DBRI/
25 * - MMCODEC: Crystal Semiconductor CS4215 16 bit Multimedia Audio Codec
26 * Interfaces: CHI, Audio In & Out, 2 bits parallel
27 * Documentation: from the Crystal Semiconductor home page.
28 *
29 * The DBRI is a 32 pipe machine, each pipe can transfer some bits between
30 * memory and a serial device (long pipes, nr 0-15) or between two serial
31 * devices (short pipes, nr 16-31), or simply send a fixed data to a serial
32 * device (short pipes).
33 * A timeslot defines the bit-offset and nr of bits read from a serial device.
34 * The timeslots are linked to 6 circular lists, one for each direction for
35 * each serial device (NT,TE,CHI). A timeslot is associated to 1 or 2 pipes
36 * (the second one is a monitor/tee pipe, valid only for serial input).
37 *
38 * The mmcodec is connected via the CHI bus and needs the data & some
39 * parameters (volume, output selection) timemultiplexed in 8 byte
40 * chunks. It also has a control mode, which serves for audio format setting.
41 *
42 * Looking at the CS4215 data sheet it is easy to set up 2 or 4 codecs on
43 * the same CHI bus, so I thought perhaps it is possible to use the onboard
44 * & the speakerbox codec simultanously, giving 2 (not very independent :-)
45 * audio devices. But the SUN HW group decided against it, at least on my
46 * LX the speakerbox connector has at least 1 pin missing and 1 wrongly
47 * connected.
48 *
49 * I've tried to stick to the following function naming conventions:
50 * snd_* ALSA stuff
51 * cs4215_* CS4215 codec specific stuff
52 * dbri_* DBRI high-level stuff
53 * other DBRI low-level stuff
54 */
55
56#include <sound/driver.h>
57#include <linux/interrupt.h>
58#include <linux/delay.h>
59
60#include <sound/core.h>
61#include <sound/pcm.h>
62#include <sound/pcm_params.h>
63#include <sound/info.h>
64#include <sound/control.h>
65#include <sound/initval.h>
66
67#include <asm/irq.h>
68#include <asm/io.h>
69#include <asm/sbus.h>
70#include <asm/atomic.h>
71
72MODULE_AUTHOR("Rudolf Koenig, Brent Baccala and Martin Habets");
73MODULE_DESCRIPTION("Sun DBRI");
74MODULE_LICENSE("GPL");
75MODULE_SUPPORTED_DEVICE("{{Sun,DBRI}}");
76
77static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
78static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
79static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */
80
81module_param_array(index, int, NULL, 0444);
82MODULE_PARM_DESC(index, "Index value for Sun DBRI soundcard.");
83module_param_array(id, charp, NULL, 0444);
84MODULE_PARM_DESC(id, "ID string for Sun DBRI soundcard.");
85module_param_array(enable, bool, NULL, 0444);
86MODULE_PARM_DESC(enable, "Enable Sun DBRI soundcard.");
87
88#undef DBRI_DEBUG
89
90#define D_INT (1<<0)
91#define D_GEN (1<<1)
92#define D_CMD (1<<2)
93#define D_MM (1<<3)
94#define D_USR (1<<4)
95#define D_DESC (1<<5)
96
97static int dbri_debug;
98module_param(dbri_debug, int, 0644);
99MODULE_PARM_DESC(dbri_debug, "Debug value for Sun DBRI soundcard.");
100
101#ifdef DBRI_DEBUG
102static char *cmds[] = {
103 "WAIT", "PAUSE", "JUMP", "IIQ", "REX", "SDP", "CDP", "DTS",
104 "SSP", "CHI", "NT", "TE", "CDEC", "TEST", "CDM", "RESRV"
105};
106
107#define dprintk(a, x...) if(dbri_debug & a) printk(KERN_DEBUG x)
108
109#else
110#define dprintk(a, x...) do { } while (0)
111
112#endif /* DBRI_DEBUG */
113
114#define DBRI_CMD(cmd, intr, value) ((cmd << 28) | \
115 (intr << 27) | \
116 value)
117
118/***************************************************************************
119 CS4215 specific definitions and structures
120****************************************************************************/
121
122struct cs4215 {
123 __u8 data[4]; /* Data mode: Time slots 5-8 */
124 __u8 ctrl[4]; /* Ctrl mode: Time slots 1-4 */
125 __u8 onboard;
126 __u8 offset; /* Bit offset from frame sync to time slot 1 */
127 volatile __u32 status;
128 volatile __u32 version;
129 __u8 precision; /* In bits, either 8 or 16 */
130 __u8 channels; /* 1 or 2 */
131};
132
133/*
134 * Control mode first
135 */
136
137/* Time Slot 1, Status register */
138#define CS4215_CLB (1<<2) /* Control Latch Bit */
139#define CS4215_OLB (1<<3) /* 1: line: 2.0V, speaker 4V */
140 /* 0: line: 2.8V, speaker 8V */
141#define CS4215_MLB (1<<4) /* 1: Microphone: 20dB gain disabled */
142#define CS4215_RSRVD_1 (1<<5)
143
144/* Time Slot 2, Data Format Register */
145#define CS4215_DFR_LINEAR16 0
146#define CS4215_DFR_ULAW 1
147#define CS4215_DFR_ALAW 2
148#define CS4215_DFR_LINEAR8 3
149#define CS4215_DFR_STEREO (1<<2)
150static struct {
151 unsigned short freq;
152 unsigned char xtal;
153 unsigned char csval;
154} CS4215_FREQ[] = {
155 { 8000, (1 << 4), (0 << 3) },
156 { 16000, (1 << 4), (1 << 3) },
157 { 27429, (1 << 4), (2 << 3) }, /* Actually 24428.57 */
158 { 32000, (1 << 4), (3 << 3) },
159 /* { NA, (1 << 4), (4 << 3) }, */
160 /* { NA, (1 << 4), (5 << 3) }, */
161 { 48000, (1 << 4), (6 << 3) },
162 { 9600, (1 << 4), (7 << 3) },
163 { 5512, (2 << 4), (0 << 3) }, /* Actually 5512.5 */
164 { 11025, (2 << 4), (1 << 3) },
165 { 18900, (2 << 4), (2 << 3) },
166 { 22050, (2 << 4), (3 << 3) },
167 { 37800, (2 << 4), (4 << 3) },
168 { 44100, (2 << 4), (5 << 3) },
169 { 33075, (2 << 4), (6 << 3) },
170 { 6615, (2 << 4), (7 << 3) },
171 { 0, 0, 0}
172};
173
174#define CS4215_HPF (1<<7) /* High Pass Filter, 1: Enabled */
175
176#define CS4215_12_MASK 0xfcbf /* Mask off reserved bits in slot 1 & 2 */
177
178/* Time Slot 3, Serial Port Control register */
179#define CS4215_XEN (1<<0) /* 0: Enable serial output */
180#define CS4215_XCLK (1<<1) /* 1: Master mode: Generate SCLK */
181#define CS4215_BSEL_64 (0<<2) /* Bitrate: 64 bits per frame */
182#define CS4215_BSEL_128 (1<<2)
183#define CS4215_BSEL_256 (2<<2)
184#define CS4215_MCK_MAST (0<<4) /* Master clock */
185#define CS4215_MCK_XTL1 (1<<4) /* 24.576 MHz clock source */
186#define CS4215_MCK_XTL2 (2<<4) /* 16.9344 MHz clock source */
187#define CS4215_MCK_CLK1 (3<<4) /* Clockin, 256 x Fs */
188#define CS4215_MCK_CLK2 (4<<4) /* Clockin, see DFR */
189
190/* Time Slot 4, Test Register */
191#define CS4215_DAD (1<<0) /* 0:Digital-Dig loop, 1:Dig-Analog-Dig loop */
192#define CS4215_ENL (1<<1) /* Enable Loopback Testing */
193
194/* Time Slot 5, Parallel Port Register */
195/* Read only here and the same as the in data mode */
196
197/* Time Slot 6, Reserved */
198
199/* Time Slot 7, Version Register */
200#define CS4215_VERSION_MASK 0xf /* Known versions 0/C, 1/D, 2/E */
201
202/* Time Slot 8, Reserved */
203
204/*
205 * Data mode
206 */
207/* Time Slot 1-2: Left Channel Data, 2-3: Right Channel Data */
208
209/* Time Slot 5, Output Setting */
210#define CS4215_LO(v) v /* Left Output Attenuation 0x3f: -94.5 dB */
211#define CS4215_LE (1<<6) /* Line Out Enable */
212#define CS4215_HE (1<<7) /* Headphone Enable */
213
214/* Time Slot 6, Output Setting */
215#define CS4215_RO(v) v /* Right Output Attenuation 0x3f: -94.5 dB */
216#define CS4215_SE (1<<6) /* Speaker Enable */
217#define CS4215_ADI (1<<7) /* A/D Data Invalid: Busy in calibration */
218
219/* Time Slot 7, Input Setting */
220#define CS4215_LG(v) v /* Left Gain Setting 0xf: 22.5 dB */
221#define CS4215_IS (1<<4) /* Input Select: 1=Microphone, 0=Line */
222#define CS4215_OVR (1<<5) /* 1: Overrange condition occurred */
223#define CS4215_PIO0 (1<<6) /* Parallel I/O 0 */
224#define CS4215_PIO1 (1<<7)
225
226/* Time Slot 8, Input Setting */
227#define CS4215_RG(v) v /* Right Gain Setting 0xf: 22.5 dB */
228#define CS4215_MA(v) (v<<4) /* Monitor Path Attenuation 0xf: mute */
229
230/***************************************************************************
231 DBRI specific definitions and structures
232****************************************************************************/
233
234/* DBRI main registers */
235#define REG0 0x00UL /* Status and Control */
236#define REG1 0x04UL /* Mode and Interrupt */
237#define REG2 0x08UL /* Parallel IO */
238#define REG3 0x0cUL /* Test */
239#define REG8 0x20UL /* Command Queue Pointer */
240#define REG9 0x24UL /* Interrupt Queue Pointer */
241
242#define DBRI_NO_CMDS 64
243#define DBRI_INT_BLK 64
244#define DBRI_NO_DESCS 64
245#define DBRI_NO_PIPES 32
246#define DBRI_MAX_PIPE (DBRI_NO_PIPES - 1)
247
248#define DBRI_REC 0
249#define DBRI_PLAY 1
250#define DBRI_NO_STREAMS 2
251
252/* One transmit/receive descriptor */
253/* When ba != 0 descriptor is used */
254struct dbri_mem {
255 volatile __u32 word1;
256 __u32 ba; /* Transmit/Receive Buffer Address */
257 __u32 nda; /* Next Descriptor Address */
258 volatile __u32 word4;
259};
260
261/* This structure is in a DMA region where it can accessed by both
262 * the CPU and the DBRI
263 */
264struct dbri_dma {
265 s32 cmd[DBRI_NO_CMDS]; /* Place for commands */
266 volatile s32 intr[DBRI_INT_BLK]; /* Interrupt field */
267 struct dbri_mem desc[DBRI_NO_DESCS]; /* Xmit/receive descriptors */
268};
269
270#define dbri_dma_off(member, elem) \
271 ((u32)(unsigned long) \
272 (&(((struct dbri_dma *)0)->member[elem])))
273
274enum in_or_out { PIPEinput, PIPEoutput };
275
276struct dbri_pipe {
277 u32 sdp; /* SDP command word */
278 int nextpipe; /* Next pipe in linked list */
279 int length; /* Length of timeslot (bits) */
280 int first_desc; /* Index of first descriptor */
281 int desc; /* Index of active descriptor */
282 volatile __u32 *recv_fixed_ptr; /* Ptr to receive fixed data */
283};
284
285/* Per stream (playback or record) information */
286struct dbri_streaminfo {
287 struct snd_pcm_substream *substream;
288 u32 dvma_buffer; /* Device view of Alsa DMA buffer */
289 int size; /* Size of DMA buffer */
290 size_t offset; /* offset in user buffer */
291 int pipe; /* Data pipe used */
292 int left_gain; /* mixer elements */
293 int right_gain;
294};
295
296/* This structure holds the information for both chips (DBRI & CS4215) */
297struct snd_dbri {
298 struct snd_card *card; /* ALSA card */
299
300 int regs_size, irq; /* Needed for unload */
301 struct sbus_dev *sdev; /* SBUS device info */
302 spinlock_t lock;
303
304 struct dbri_dma *dma; /* Pointer to our DMA block */
305 u32 dma_dvma; /* DBRI visible DMA address */
306
307 void __iomem *regs; /* dbri HW regs */
308 int dbri_irqp; /* intr queue pointer */
309
310 struct dbri_pipe pipes[DBRI_NO_PIPES]; /* DBRI's 32 data pipes */
311 int next_desc[DBRI_NO_DESCS]; /* Index of next desc, or -1 */
312 spinlock_t cmdlock; /* Protects cmd queue accesses */
313 s32 *cmdptr; /* Pointer to the last queued cmd */
314
315 int chi_bpf;
316
317 struct cs4215 mm; /* mmcodec special info */
318 /* per stream (playback/record) info */
319 struct dbri_streaminfo stream_info[DBRI_NO_STREAMS];
320
321 struct snd_dbri *next;
322};
323
324#define DBRI_MAX_VOLUME 63 /* Output volume */
325#define DBRI_MAX_GAIN 15 /* Input gain */
326
327/* DBRI Reg0 - Status Control Register - defines. (Page 17) */
328#define D_P (1<<15) /* Program command & queue pointer valid */
329#define D_G (1<<14) /* Allow 4-Word SBus Burst */
330#define D_S (1<<13) /* Allow 16-Word SBus Burst */
331#define D_E (1<<12) /* Allow 8-Word SBus Burst */
332#define D_X (1<<7) /* Sanity Timer Disable */
333#define D_T (1<<6) /* Permit activation of the TE interface */
334#define D_N (1<<5) /* Permit activation of the NT interface */
335#define D_C (1<<4) /* Permit activation of the CHI interface */
336#define D_F (1<<3) /* Force Sanity Timer Time-Out */
337#define D_D (1<<2) /* Disable Master Mode */
338#define D_H (1<<1) /* Halt for Analysis */
339#define D_R (1<<0) /* Soft Reset */
340
341/* DBRI Reg1 - Mode and Interrupt Register - defines. (Page 18) */
342#define D_LITTLE_END (1<<8) /* Byte Order */
343#define D_BIG_END (0<<8) /* Byte Order */
344#define D_MRR (1<<4) /* Multiple Error Ack on SBus (readonly) */
345#define D_MLE (1<<3) /* Multiple Late Error on SBus (readonly) */
346#define D_LBG (1<<2) /* Lost Bus Grant on SBus (readonly) */
347#define D_MBE (1<<1) /* Burst Error on SBus (readonly) */
348#define D_IR (1<<0) /* Interrupt Indicator (readonly) */
349
350/* DBRI Reg2 - Parallel IO Register - defines. (Page 18) */
351#define D_ENPIO3 (1<<7) /* Enable Pin 3 */
352#define D_ENPIO2 (1<<6) /* Enable Pin 2 */
353#define D_ENPIO1 (1<<5) /* Enable Pin 1 */
354#define D_ENPIO0 (1<<4) /* Enable Pin 0 */
355#define D_ENPIO (0xf0) /* Enable all the pins */
356#define D_PIO3 (1<<3) /* Pin 3: 1: Data mode, 0: Ctrl mode */
357#define D_PIO2 (1<<2) /* Pin 2: 1: Onboard PDN */
358#define D_PIO1 (1<<1) /* Pin 1: 0: Reset */
359#define D_PIO0 (1<<0) /* Pin 0: 1: Speakerbox PDN */
360
361/* DBRI Commands (Page 20) */
362#define D_WAIT 0x0 /* Stop execution */
363#define D_PAUSE 0x1 /* Flush long pipes */
364#define D_JUMP 0x2 /* New command queue */
365#define D_IIQ 0x3 /* Initialize Interrupt Queue */
366#define D_REX 0x4 /* Report command execution via interrupt */
367#define D_SDP 0x5 /* Setup Data Pipe */
368#define D_CDP 0x6 /* Continue Data Pipe (reread NULL Pointer) */
369#define D_DTS 0x7 /* Define Time Slot */
370#define D_SSP 0x8 /* Set short Data Pipe */
371#define D_CHI 0x9 /* Set CHI Global Mode */
372#define D_NT 0xa /* NT Command */
373#define D_TE 0xb /* TE Command */
374#define D_CDEC 0xc /* Codec setup */
375#define D_TEST 0xd /* No comment */
376#define D_CDM 0xe /* CHI Data mode command */
377
378/* Special bits for some commands */
379#define D_PIPE(v) ((v)<<0) /* Pipe Nr: 0-15 long, 16-21 short */
380
381/* Setup Data Pipe */
382/* IRM */
383#define D_SDP_2SAME (1<<18) /* Report 2nd time in a row value rcvd */
384#define D_SDP_CHANGE (2<<18) /* Report any changes */
385#define D_SDP_EVERY (3<<18) /* Report any changes */
386#define D_SDP_EOL (1<<17) /* EOL interrupt enable */
387#define D_SDP_IDLE (1<<16) /* HDLC idle interrupt enable */
388
389/* Pipe data MODE */
390#define D_SDP_MEM (0<<13) /* To/from memory */
391#define D_SDP_HDLC (2<<13)
392#define D_SDP_HDLC_D (3<<13) /* D Channel (prio control) */
393#define D_SDP_SER (4<<13) /* Serial to serial */
394#define D_SDP_FIXED (6<<13) /* Short only */
395#define D_SDP_MODE(v) ((v)&(7<<13))
396
397#define D_SDP_TO_SER (1<<12) /* Direction */
398#define D_SDP_FROM_SER (0<<12) /* Direction */
399#define D_SDP_MSB (1<<11) /* Bit order within Byte */
400#define D_SDP_LSB (0<<11) /* Bit order within Byte */
401#define D_SDP_P (1<<10) /* Pointer Valid */
402#define D_SDP_A (1<<8) /* Abort */
403#define D_SDP_C (1<<7) /* Clear */
404
405/* Define Time Slot */
406#define D_DTS_VI (1<<17) /* Valid Input Time-Slot Descriptor */
407#define D_DTS_VO (1<<16) /* Valid Output Time-Slot Descriptor */
408#define D_DTS_INS (1<<15) /* Insert Time Slot */
409#define D_DTS_DEL (0<<15) /* Delete Time Slot */
410#define D_DTS_PRVIN(v) ((v)<<10) /* Previous In Pipe */
411#define D_DTS_PRVOUT(v) ((v)<<5) /* Previous Out Pipe */
412
413/* Time Slot defines */
414#define D_TS_LEN(v) ((v)<<24) /* Number of bits in this time slot */
415#define D_TS_CYCLE(v) ((v)<<14) /* Bit Count at start of TS */
416#define D_TS_DI (1<<13) /* Data Invert */
417#define D_TS_1CHANNEL (0<<10) /* Single Channel / Normal mode */
418#define D_TS_MONITOR (2<<10) /* Monitor pipe */
419#define D_TS_NONCONTIG (3<<10) /* Non contiguous mode */
420#define D_TS_ANCHOR (7<<10) /* Starting short pipes */
421#define D_TS_MON(v) ((v)<<5) /* Monitor Pipe */
422#define D_TS_NEXT(v) ((v)<<0) /* Pipe Nr: 0-15 long, 16-21 short */
423
424/* Concentration Highway Interface Modes */
425#define D_CHI_CHICM(v) ((v)<<16) /* Clock mode */
426#define D_CHI_IR (1<<15) /* Immediate Interrupt Report */
427#define D_CHI_EN (1<<14) /* CHIL Interrupt enabled */
428#define D_CHI_OD (1<<13) /* Open Drain Enable */
429#define D_CHI_FE (1<<12) /* Sample CHIFS on Rising Frame Edge */
430#define D_CHI_FD (1<<11) /* Frame Drive */
431#define D_CHI_BPF(v) ((v)<<0) /* Bits per Frame */
432
433/* NT: These are here for completeness */
434#define D_NT_FBIT (1<<17) /* Frame Bit */
435#define D_NT_NBF (1<<16) /* Number of bad frames to loose framing */
436#define D_NT_IRM_IMM (1<<15) /* Interrupt Report & Mask: Immediate */
437#define D_NT_IRM_EN (1<<14) /* Interrupt Report & Mask: Enable */
438#define D_NT_ISNT (1<<13) /* Configfure interface as NT */
439#define D_NT_FT (1<<12) /* Fixed Timing */
440#define D_NT_EZ (1<<11) /* Echo Channel is Zeros */
441#define D_NT_IFA (1<<10) /* Inhibit Final Activation */
442#define D_NT_ACT (1<<9) /* Activate Interface */
443#define D_NT_MFE (1<<8) /* Multiframe Enable */
444#define D_NT_RLB(v) ((v)<<5) /* Remote Loopback */
445#define D_NT_LLB(v) ((v)<<2) /* Local Loopback */
446#define D_NT_FACT (1<<1) /* Force Activation */
447#define D_NT_ABV (1<<0) /* Activate Bipolar Violation */
448
449/* Codec Setup */
450#define D_CDEC_CK(v) ((v)<<24) /* Clock Select */
451#define D_CDEC_FED(v) ((v)<<12) /* FSCOD Falling Edge Delay */
452#define D_CDEC_RED(v) ((v)<<0) /* FSCOD Rising Edge Delay */
453
454/* Test */
455#define D_TEST_RAM(v) ((v)<<16) /* RAM Pointer */
456#define D_TEST_SIZE(v) ((v)<<11) /* */
457#define D_TEST_ROMONOFF 0x5 /* Toggle ROM opcode monitor on/off */
458#define D_TEST_PROC 0x6 /* MicroProcessor test */
459#define D_TEST_SER 0x7 /* Serial-Controller test */
460#define D_TEST_RAMREAD 0x8 /* Copy from Ram to system memory */
461#define D_TEST_RAMWRITE 0x9 /* Copy into Ram from system memory */
462#define D_TEST_RAMBIST 0xa /* RAM Built-In Self Test */
463#define D_TEST_MCBIST 0xb /* Microcontroller Built-In Self Test */
464#define D_TEST_DUMP 0xe /* ROM Dump */
465
466/* CHI Data Mode */
467#define D_CDM_THI (1<<8) /* Transmit Data on CHIDR Pin */
468#define D_CDM_RHI (1<<7) /* Receive Data on CHIDX Pin */
469#define D_CDM_RCE (1<<6) /* Receive on Rising Edge of CHICK */
470#define D_CDM_XCE (1<<2) /* Transmit Data on Rising Edge of CHICK */
471#define D_CDM_XEN (1<<1) /* Transmit Highway Enable */
472#define D_CDM_REN (1<<0) /* Receive Highway Enable */
473
474/* The Interrupts */
475#define D_INTR_BRDY 1 /* Buffer Ready for processing */
476#define D_INTR_MINT 2 /* Marked Interrupt in RD/TD */
477#define D_INTR_IBEG 3 /* Flag to idle transition detected (HDLC) */
478#define D_INTR_IEND 4 /* Idle to flag transition detected (HDLC) */
479#define D_INTR_EOL 5 /* End of List */
480#define D_INTR_CMDI 6 /* Command has bean read */
481#define D_INTR_XCMP 8 /* Transmission of frame complete */
482#define D_INTR_SBRI 9 /* BRI status change info */
483#define D_INTR_FXDT 10 /* Fixed data change */
484#define D_INTR_CHIL 11 /* CHI lost frame sync (channel 36 only) */
485#define D_INTR_COLL 11 /* Unrecoverable D-Channel collision */
486#define D_INTR_DBYT 12 /* Dropped by frame slip */
487#define D_INTR_RBYT 13 /* Repeated by frame slip */
488#define D_INTR_LINT 14 /* Lost Interrupt */
489#define D_INTR_UNDR 15 /* DMA underrun */
490
491#define D_INTR_TE 32
492#define D_INTR_NT 34
493#define D_INTR_CHI 36
494#define D_INTR_CMD 38
495
496#define D_INTR_GETCHAN(v) (((v)>>24) & 0x3f)
497#define D_INTR_GETCODE(v) (((v)>>20) & 0xf)
498#define D_INTR_GETCMD(v) (((v)>>16) & 0xf)
499#define D_INTR_GETVAL(v) ((v) & 0xffff)
500#define D_INTR_GETRVAL(v) ((v) & 0xfffff)
501
502#define D_P_0 0 /* TE receive anchor */
503#define D_P_1 1 /* TE transmit anchor */
504#define D_P_2 2 /* NT transmit anchor */
505#define D_P_3 3 /* NT receive anchor */
506#define D_P_4 4 /* CHI send data */
507#define D_P_5 5 /* CHI receive data */
508#define D_P_6 6 /* */
509#define D_P_7 7 /* */
510#define D_P_8 8 /* */
511#define D_P_9 9 /* */
512#define D_P_10 10 /* */
513#define D_P_11 11 /* */
514#define D_P_12 12 /* */
515#define D_P_13 13 /* */
516#define D_P_14 14 /* */
517#define D_P_15 15 /* */
518#define D_P_16 16 /* CHI anchor pipe */
519#define D_P_17 17 /* CHI send */
520#define D_P_18 18 /* CHI receive */
521#define D_P_19 19 /* CHI receive */
522#define D_P_20 20 /* CHI receive */
523#define D_P_21 21 /* */
524#define D_P_22 22 /* */
525#define D_P_23 23 /* */
526#define D_P_24 24 /* */
527#define D_P_25 25 /* */
528#define D_P_26 26 /* */
529#define D_P_27 27 /* */
530#define D_P_28 28 /* */
531#define D_P_29 29 /* */
532#define D_P_30 30 /* */
533#define D_P_31 31 /* */
534
535/* Transmit descriptor defines */
536#define DBRI_TD_F (1<<31) /* End of Frame */
537#define DBRI_TD_D (1<<30) /* Do not append CRC */
538#define DBRI_TD_CNT(v) ((v)<<16) /* Number of valid bytes in the buffer */
539#define DBRI_TD_B (1<<15) /* Final interrupt */
540#define DBRI_TD_M (1<<14) /* Marker interrupt */
541#define DBRI_TD_I (1<<13) /* Transmit Idle Characters */
542#define DBRI_TD_FCNT(v) (v) /* Flag Count */
543#define DBRI_TD_UNR (1<<3) /* Underrun: transmitter is out of data */
544#define DBRI_TD_ABT (1<<2) /* Abort: frame aborted */
545#define DBRI_TD_TBC (1<<0) /* Transmit buffer Complete */
546#define DBRI_TD_STATUS(v) ((v)&0xff) /* Transmit status */
547 /* Maximum buffer size per TD: almost 8Kb */
548#define DBRI_TD_MAXCNT ((1 << 13) - 4)
549
550/* Receive descriptor defines */
551#define DBRI_RD_F (1<<31) /* End of Frame */
552#define DBRI_RD_C (1<<30) /* Completed buffer */
553#define DBRI_RD_B (1<<15) /* Final interrupt */
554#define DBRI_RD_M (1<<14) /* Marker interrupt */
555#define DBRI_RD_BCNT(v) (v) /* Buffer size */
556#define DBRI_RD_CRC (1<<7) /* 0: CRC is correct */
557#define DBRI_RD_BBC (1<<6) /* 1: Bad Byte received */
558#define DBRI_RD_ABT (1<<5) /* Abort: frame aborted */
559#define DBRI_RD_OVRN (1<<3) /* Overrun: data lost */
560#define DBRI_RD_STATUS(v) ((v)&0xff) /* Receive status */
561#define DBRI_RD_CNT(v) (((v)>>16)&0x1fff) /* Valid bytes in the buffer */
562
563/* stream_info[] access */
564/* Translate the ALSA direction into the array index */
565#define DBRI_STREAMNO(substream) \
566 (substream->stream == \
567 SNDRV_PCM_STREAM_PLAYBACK? DBRI_PLAY: DBRI_REC)
568
569/* Return a pointer to dbri_streaminfo */
570#define DBRI_STREAM(dbri, substream) &dbri->stream_info[DBRI_STREAMNO(substream)]
571
572static struct snd_dbri *dbri_list; /* All DBRI devices */
573
574/*
575 * Short data pipes transmit LSB first. The CS4215 receives MSB first. Grrr.
576 * So we have to reverse the bits. Note: not all bit lengths are supported
577 */
578static __u32 reverse_bytes(__u32 b, int len)
579{
580 switch (len) {
581 case 32:
582 b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
583 case 16:
584 b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
585 case 8:
586 b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
587 case 4:
588 b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
589 case 2:
590 b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
591 case 1:
592 case 0:
593 break;
594 default:
595 printk(KERN_ERR "DBRI reverse_bytes: unsupported length\n");
596 };
597
598 return b;
599}
600
601/*
602****************************************************************************
603************** DBRI initialization and command synchronization *************
604****************************************************************************
605
606Commands are sent to the DBRI by building a list of them in memory,
607then writing the address of the first list item to DBRI register 8.
608The list is terminated with a WAIT command, which generates a
609CPU interrupt to signal completion.
610
611Since the DBRI can run in parallel with the CPU, several means of
612synchronization present themselves. The method implemented here is only
613use of the dbri_cmdwait() to wait for execution of batch of sent commands.
614
615A circular command buffer is used here. A new command is being added
616while another can be executed. The scheme works by adding two WAIT commands
617after each sent batch of commands. When the next batch is prepared it is
618added after the WAIT commands then the WAITs are replaced with single JUMP
619command to the new batch. The the DBRI is forced to reread the last WAIT
620command (replaced by the JUMP by then). If the DBRI is still executing
621previous commands the request to reread the WAIT command is ignored.
622
623Every time a routine wants to write commands to the DBRI, it must
624first call dbri_cmdlock() and get pointer to a free space in
625dbri->dma->cmd buffer. After this, the commands can be written to
626the buffer, and dbri_cmdsend() is called with the final pointer value
627to send them to the DBRI.
628
629*/
630
631#define MAXLOOPS 20
632/*
633 * Wait for the current command string to execute
634 */
635static void dbri_cmdwait(struct snd_dbri *dbri)
636{
637 int maxloops = MAXLOOPS;
638
639 /* Delay if previous commands are still being processed */
640 while ((--maxloops) > 0 && (sbus_readl(dbri->regs + REG0) & D_P))
641 msleep_interruptible(1);
642
643 if (maxloops == 0) {
644 printk(KERN_ERR "DBRI: Chip never completed command buffer\n");
645 } else {
646 dprintk(D_CMD, "Chip completed command buffer (%d)\n",
647 MAXLOOPS - maxloops - 1);
648 }
649}
650/*
651 * Lock the command queue and returns pointer to a space for len cmd words
652 * It locks the cmdlock spinlock.
653 */
654static s32 *dbri_cmdlock(struct snd_dbri * dbri, int len)
655{
656 /* Space for 2 WAIT cmds (replaced later by 1 JUMP cmd) */
657 len += 2;
658 spin_lock(&dbri->cmdlock);
659 if (dbri->cmdptr - dbri->dma->cmd + len < DBRI_NO_CMDS - 2)
660 return dbri->cmdptr + 2;
661 else if (len < sbus_readl(dbri->regs + REG8) - dbri->dma_dvma)
662 return dbri->dma->cmd;
663 else
664 printk(KERN_ERR "DBRI: no space for commands.");
665
666 return 0;
667}
668
669/*
670 * Send prepared cmd string. It works by writting a JUMP cmd into
671 * the last WAIT cmd and force DBRI to reread the cmd.
672 * The JUMP cmd points to the new cmd string.
673 * It also releases the cmdlock spinlock.
674 */
675static void dbri_cmdsend(struct snd_dbri * dbri, s32 * cmd,int len)
676{
677 s32 tmp, addr;
678 unsigned long flags;
679 static int wait_id = 0;
680
681 wait_id++;
682 wait_id &= 0xffff; /* restrict it to a 16 bit counter. */
683 *(cmd) = DBRI_CMD(D_WAIT, 1, wait_id);
684 *(cmd+1) = DBRI_CMD(D_WAIT, 1, wait_id);
685
686 /* Replace the last command with JUMP */
687 addr = dbri->dma_dvma + (cmd - len - dbri->dma->cmd) * sizeof(s32);
688 *(dbri->cmdptr+1) = addr;
689 *(dbri->cmdptr) = DBRI_CMD(D_JUMP, 0, 0);
690
691#ifdef DBRI_DEBUG
692 if (cmd > dbri->cmdptr) {
693 s32 *ptr;
694
695 for (ptr = dbri->cmdptr; ptr < cmd+2; ptr++)
696 dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
697 } else {
698 s32 *ptr = dbri->cmdptr;
699
700 dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
701 ptr++;
702 dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
703 for (ptr = dbri->dma->cmd; ptr < cmd+2; ptr++) {
704 dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
705 }
706 }
707#endif
708
709 spin_lock_irqsave(&dbri->lock, flags);
710 /* Reread the last command */
711 tmp = sbus_readl(dbri->regs + REG0);
712 tmp |= D_P;
713 sbus_writel(tmp, dbri->regs + REG0);
714 spin_unlock_irqrestore(&dbri->lock, flags);
715
716 dbri->cmdptr = cmd;
717 spin_unlock(&dbri->cmdlock);
718}
719
720/* Lock must be held when calling this */
721static void dbri_reset(struct snd_dbri * dbri)
722{
723 int i;
724 u32 tmp;
725
726 dprintk(D_GEN, "reset 0:%x 2:%x 8:%x 9:%x\n",
727 sbus_readl(dbri->regs + REG0),
728 sbus_readl(dbri->regs + REG2),
729 sbus_readl(dbri->regs + REG8), sbus_readl(dbri->regs + REG9));
730
731 sbus_writel(D_R, dbri->regs + REG0); /* Soft Reset */
732 for (i = 0; (sbus_readl(dbri->regs + REG0) & D_R) && i < 64; i++)
733 udelay(10);
734
735 /* A brute approach - DBRI falls back to working burst size by itself
736 * On SS20 D_S does not work, so do not try so high. */
737 tmp = sbus_readl(dbri->regs + REG0);
738 tmp |= D_G | D_E;
739 tmp &= ~D_S;
740 sbus_writel(tmp, dbri->regs + REG0);
741}
742
743/* Lock must not be held before calling this */
744static void dbri_initialize(struct snd_dbri * dbri)
745{
746 s32 *cmd;
747 u32 dma_addr;
748 unsigned long flags;
749 int n;
750
751 spin_lock_irqsave(&dbri->lock, flags);
752
753 dbri_reset(dbri);
754
755 /* Initialize pipes */
756 for (n = 0; n < DBRI_NO_PIPES; n++)
757 dbri->pipes[n].desc = dbri->pipes[n].first_desc = -1;
758
759 spin_lock_init(&dbri->cmdlock);
760 /*
761 * Initialize the interrupt ringbuffer.
762 */
763 dma_addr = dbri->dma_dvma + dbri_dma_off(intr, 0);
764 dbri->dma->intr[0] = dma_addr;
765 dbri->dbri_irqp = 1;
766 /*
767 * Set up the interrupt queue
768 */
769 spin_lock(&dbri->cmdlock);
770 cmd = dbri->cmdptr = dbri->dma->cmd;
771 *(cmd++) = DBRI_CMD(D_IIQ, 0, 0);
772 *(cmd++) = dma_addr;
773 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
774 dbri->cmdptr = cmd;
775 *(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
776 *(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
777 dma_addr = dbri->dma_dvma + dbri_dma_off(cmd, 0);
778 sbus_writel(dma_addr, dbri->regs + REG8);
779 spin_unlock(&dbri->cmdlock);
780 dbri_cmdwait(dbri);
781
782 spin_unlock_irqrestore(&dbri->lock, flags);
783}
784
785/*
786****************************************************************************
787************************** DBRI data pipe management ***********************
788****************************************************************************
789
790While DBRI control functions use the command and interrupt buffers, the
791main data path takes the form of data pipes, which can be short (command
792and interrupt driven), or long (attached to DMA buffers). These functions
793provide a rudimentary means of setting up and managing the DBRI's pipes,
794but the calling functions have to make sure they respect the pipes' linked
795list ordering, among other things. The transmit and receive functions
796here interface closely with the transmit and receive interrupt code.
797
798*/
799static int pipe_active(struct snd_dbri * dbri, int pipe)
800{
801 return ((pipe >= 0) && (dbri->pipes[pipe].desc != -1));
802}
803
804/* reset_pipe(dbri, pipe)
805 *
806 * Called on an in-use pipe to clear anything being transmitted or received
807 * Lock must be held before calling this.
808 */
809static void reset_pipe(struct snd_dbri * dbri, int pipe)
810{
811 int sdp;
812 int desc;
813 s32 *cmd;
814
815 if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
816 printk(KERN_ERR "DBRI: reset_pipe called with illegal pipe number\n");
817 return;
818 }
819
820 sdp = dbri->pipes[pipe].sdp;
821 if (sdp == 0) {
822 printk(KERN_ERR "DBRI: reset_pipe called on uninitialized pipe\n");
823 return;
824 }
825
826 cmd = dbri_cmdlock(dbri, 3);
827 *(cmd++) = DBRI_CMD(D_SDP, 0, sdp | D_SDP_C | D_SDP_P);
828 *(cmd++) = 0;
829 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
830 dbri_cmdsend(dbri, cmd, 3);
831
832 desc = dbri->pipes[pipe].first_desc;
833 if ( desc >= 0)
834 do {
835 dbri->dma->desc[desc].nda = dbri->dma->desc[desc].ba = 0;
836 desc = dbri->next_desc[desc];
837 } while (desc != -1 && desc != dbri->pipes[pipe].first_desc);
838
839 dbri->pipes[pipe].desc = -1;
840 dbri->pipes[pipe].first_desc = -1;
841}
842
843static void setup_pipe(struct snd_dbri * dbri, int pipe, int sdp)
844{
845 if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
846 printk(KERN_ERR "DBRI: setup_pipe called with illegal pipe number\n");
847 return;
848 }
849
850 if ((sdp & 0xf800) != sdp) {
851 printk(KERN_ERR "DBRI: setup_pipe called with strange SDP value\n");
852 /* sdp &= 0xf800; */
853 }
854
855 /* If this is a fixed receive pipe, arrange for an interrupt
856 * every time its data changes
857 */
858 if (D_SDP_MODE(sdp) == D_SDP_FIXED && !(sdp & D_SDP_TO_SER))
859 sdp |= D_SDP_CHANGE;
860
861 sdp |= D_PIPE(pipe);
862 dbri->pipes[pipe].sdp = sdp;
863 dbri->pipes[pipe].desc = -1;
864 dbri->pipes[pipe].first_desc = -1;
865
866 reset_pipe(dbri, pipe);
867}
868
869static void link_time_slot(struct snd_dbri * dbri, int pipe,
870 int prevpipe, int nextpipe,
871 int length, int cycle)
872{
873 s32 *cmd;
874 int val;
875
876 if (pipe < 0 || pipe > DBRI_MAX_PIPE
877 || prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
878 || nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
879 printk(KERN_ERR
880 "DBRI: link_time_slot called with illegal pipe number\n");
881 return;
882 }
883
884 if (dbri->pipes[pipe].sdp == 0
885 || dbri->pipes[prevpipe].sdp == 0
886 || dbri->pipes[nextpipe].sdp == 0) {
887 printk(KERN_ERR "DBRI: link_time_slot called on uninitialized pipe\n");
888 return;
889 }
890
891 dbri->pipes[prevpipe].nextpipe = pipe;
892 dbri->pipes[pipe].nextpipe = nextpipe;
893 dbri->pipes[pipe].length = length;
894
895 cmd = dbri_cmdlock(dbri, 4);
896
897 if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
898 /* Deal with CHI special case:
899 * "If transmission on edges 0 or 1 is desired, then cycle n
900 * (where n = # of bit times per frame...) must be used."
901 * - DBRI data sheet, page 11
902 */
903 if (prevpipe == 16 && cycle == 0)
904 cycle = dbri->chi_bpf;
905
906 val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(prevpipe) | pipe;
907 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
908 *(cmd++) = 0;
909 *(cmd++) =
910 D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
911 } else {
912 val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(prevpipe) | pipe;
913 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
914 *(cmd++) =
915 D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
916 *(cmd++) = 0;
917 }
918 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
919
920 dbri_cmdsend(dbri, cmd, 4);
921}
922
923static void unlink_time_slot(struct snd_dbri * dbri, int pipe,
924 enum in_or_out direction, int prevpipe,
925 int nextpipe)
926{
927 s32 *cmd;
928 int val;
929
930 if (pipe < 0 || pipe > DBRI_MAX_PIPE
931 || prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
932 || nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
933 printk(KERN_ERR
934 "DBRI: unlink_time_slot called with illegal pipe number\n");
935 return;
936 }
937
938 cmd = dbri_cmdlock(dbri, 4);
939
940 if (direction == PIPEinput) {
941 val = D_DTS_VI | D_DTS_DEL | D_DTS_PRVIN(prevpipe) | pipe;
942 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
943 *(cmd++) = D_TS_NEXT(nextpipe);
944 *(cmd++) = 0;
945 } else {
946 val = D_DTS_VO | D_DTS_DEL | D_DTS_PRVOUT(prevpipe) | pipe;
947 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
948 *(cmd++) = 0;
949 *(cmd++) = D_TS_NEXT(nextpipe);
950 }
951 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
952
953 dbri_cmdsend(dbri, cmd, 4);
954}
955
956/* xmit_fixed() / recv_fixed()
957 *
958 * Transmit/receive data on a "fixed" pipe - i.e, one whose contents are not
959 * expected to change much, and which we don't need to buffer.
960 * The DBRI only interrupts us when the data changes (receive pipes),
961 * or only changes the data when this function is called (transmit pipes).
962 * Only short pipes (numbers 16-31) can be used in fixed data mode.
963 *
964 * These function operate on a 32-bit field, no matter how large
965 * the actual time slot is. The interrupt handler takes care of bit
966 * ordering and alignment. An 8-bit time slot will always end up
967 * in the low-order 8 bits, filled either MSB-first or LSB-first,
968 * depending on the settings passed to setup_pipe()
969 */
970static void xmit_fixed(struct snd_dbri * dbri, int pipe, unsigned int data)
971{
972 s32 *cmd;
973
974 if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
975 printk(KERN_ERR "DBRI: xmit_fixed: Illegal pipe number\n");
976 return;
977 }
978
979 if (D_SDP_MODE(dbri->pipes[pipe].sdp) == 0) {
980 printk(KERN_ERR "DBRI: xmit_fixed: Uninitialized pipe %d\n", pipe);
981 return;
982 }
983
984 if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
985 printk(KERN_ERR "DBRI: xmit_fixed: Non-fixed pipe %d\n", pipe);
986 return;
987 }
988
989 if (!(dbri->pipes[pipe].sdp & D_SDP_TO_SER)) {
990 printk(KERN_ERR "DBRI: xmit_fixed: Called on receive pipe %d\n", pipe);
991 return;
992 }
993
994 /* DBRI short pipes always transmit LSB first */
995
996 if (dbri->pipes[pipe].sdp & D_SDP_MSB)
997 data = reverse_bytes(data, dbri->pipes[pipe].length);
998
999 cmd = dbri_cmdlock(dbri, 3);
1000
1001 *(cmd++) = DBRI_CMD(D_SSP, 0, pipe);
1002 *(cmd++) = data;
1003 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1004
1005 dbri_cmdsend(dbri, cmd, 3);
1006 dbri_cmdwait(dbri);
1007}
1008
1009static void recv_fixed(struct snd_dbri * dbri, int pipe, volatile __u32 * ptr)
1010{
1011 if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1012 printk(KERN_ERR "DBRI: recv_fixed called with illegal pipe number\n");
1013 return;
1014 }
1015
1016 if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1017 printk(KERN_ERR "DBRI: recv_fixed called on non-fixed pipe %d\n", pipe);
1018 return;
1019 }
1020
1021 if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
1022 printk(KERN_ERR "DBRI: recv_fixed called on transmit pipe %d\n", pipe);
1023 return;
1024 }
1025
1026 dbri->pipes[pipe].recv_fixed_ptr = ptr;
1027}
1028
1029/* setup_descs()
1030 *
1031 * Setup transmit/receive data on a "long" pipe - i.e, one associated
1032 * with a DMA buffer.
1033 *
1034 * Only pipe numbers 0-15 can be used in this mode.
1035 *
1036 * This function takes a stream number pointing to a data buffer,
1037 * and work by building chains of descriptors which identify the
1038 * data buffers. Buffers too large for a single descriptor will
1039 * be spread across multiple descriptors.
1040 *
1041 * All descriptors create a ring buffer.
1042 */
1043static int setup_descs(struct snd_dbri * dbri, int streamno, unsigned int period)
1044{
1045 struct dbri_streaminfo *info = &dbri->stream_info[streamno];
1046 __u32 dvma_buffer;
1047 int desc;
1048 int len;
1049 int first_desc = -1;
1050 int last_desc = -1;
1051
1052 if (info->pipe < 0 || info->pipe > 15) {
1053 printk(KERN_ERR "DBRI: setup_descs: Illegal pipe number\n");
1054 return -2;
1055 }
1056
1057 if (dbri->pipes[info->pipe].sdp == 0) {
1058 printk(KERN_ERR "DBRI: setup_descs: Uninitialized pipe %d\n",
1059 info->pipe);
1060 return -2;
1061 }
1062
1063 dvma_buffer = info->dvma_buffer;
1064 len = info->size;
1065
1066 if (streamno == DBRI_PLAY) {
1067 if (!(dbri->pipes[info->pipe].sdp & D_SDP_TO_SER)) {
1068 printk(KERN_ERR "DBRI: setup_descs: Called on receive pipe %d\n",
1069 info->pipe);
1070 return -2;
1071 }
1072 } else {
1073 if (dbri->pipes[info->pipe].sdp & D_SDP_TO_SER) {
1074 printk(KERN_ERR
1075 "DBRI: setup_descs: Called on transmit pipe %d\n",
1076 info->pipe);
1077 return -2;
1078 }
1079 /* Should be able to queue multiple buffers to receive on a pipe */
1080 if (pipe_active(dbri, info->pipe)) {
1081 printk(KERN_ERR "DBRI: recv_on_pipe: Called on active pipe %d\n",
1082 info->pipe);
1083 return -2;
1084 }
1085
1086 /* Make sure buffer size is multiple of four */
1087 len &= ~3;
1088 }
1089
1090 /* Free descriptors if pipe has any */
1091 desc = dbri->pipes[info->pipe].first_desc;
1092 if ( desc >= 0)
1093 do {
1094 dbri->dma->desc[desc].nda = dbri->dma->desc[desc].ba = 0;
1095 desc = dbri->next_desc[desc];
1096 } while (desc != -1 && desc != dbri->pipes[info->pipe].first_desc);
1097
1098 dbri->pipes[info->pipe].desc = -1;
1099 dbri->pipes[info->pipe].first_desc = -1;
1100
1101 desc = 0;
1102 while (len > 0) {
1103 int mylen;
1104
1105 for (; desc < DBRI_NO_DESCS; desc++) {
1106 if (!dbri->dma->desc[desc].ba)
1107 break;
1108 }
1109 if (desc == DBRI_NO_DESCS) {
1110 printk(KERN_ERR "DBRI: setup_descs: No descriptors\n");
1111 return -1;
1112 }
1113
1114 if (len > DBRI_TD_MAXCNT)
1115 mylen = DBRI_TD_MAXCNT; /* 8KB - 4 */
1116 else
1117 mylen = len;
1118
1119 if (mylen > period)
1120 mylen = period;
1121
1122 dbri->next_desc[desc] = -1;
1123 dbri->dma->desc[desc].ba = dvma_buffer;
1124 dbri->dma->desc[desc].nda = 0;
1125
1126 if (streamno == DBRI_PLAY) {
1127 dbri->dma->desc[desc].word1 = DBRI_TD_CNT(mylen);
1128 dbri->dma->desc[desc].word4 = 0;
1129 dbri->dma->desc[desc].word1 |=
1130 DBRI_TD_F | DBRI_TD_B;
1131 } else {
1132 dbri->dma->desc[desc].word1 = 0;
1133 dbri->dma->desc[desc].word4 =
1134 DBRI_RD_B | DBRI_RD_BCNT(mylen);
1135 }
1136
1137 if (first_desc == -1)
1138 first_desc = desc;
1139 else {
1140 dbri->next_desc[last_desc] = desc;
1141 dbri->dma->desc[last_desc].nda =
1142 dbri->dma_dvma + dbri_dma_off(desc, desc);
1143 }
1144
1145 last_desc = desc;
1146 dvma_buffer += mylen;
1147 len -= mylen;
1148 }
1149
1150 if (first_desc == -1 || last_desc == -1) {
1151 printk(KERN_ERR "DBRI: setup_descs: Not enough descriptors available\n");
1152 return -1;
1153 }
1154
1155 dbri->dma->desc[last_desc].nda =
1156 dbri->dma_dvma + dbri_dma_off(desc, first_desc);
1157 dbri->next_desc[last_desc] = first_desc;
1158 dbri->pipes[info->pipe].first_desc = first_desc;
1159 dbri->pipes[info->pipe].desc = first_desc;
1160
1161#ifdef DBRI_DEBUG
1162 for (desc = first_desc; desc != -1; ) {
1163 dprintk(D_DESC, "DESC %d: %08x %08x %08x %08x\n",
1164 desc,
1165 dbri->dma->desc[desc].word1,
1166 dbri->dma->desc[desc].ba,
1167 dbri->dma->desc[desc].nda, dbri->dma->desc[desc].word4);
1168 desc = dbri->next_desc[desc];
1169 if ( desc == first_desc )
1170 break;
1171 }
1172#endif
1173 return 0;
1174}
1175
1176/*
1177****************************************************************************
1178************************** DBRI - CHI interface ****************************
1179****************************************************************************
1180
1181The CHI is a four-wire (clock, frame sync, data in, data out) time-division
1182multiplexed serial interface which the DBRI can operate in either master
1183(give clock/frame sync) or slave (take clock/frame sync) mode.
1184
1185*/
1186
1187enum master_or_slave { CHImaster, CHIslave };
1188
1189static void reset_chi(struct snd_dbri * dbri, enum master_or_slave master_or_slave,
1190 int bits_per_frame)
1191{
1192 s32 *cmd;
1193 int val;
1194
1195 /* Set CHI Anchor: Pipe 16 */
1196
1197 cmd = dbri_cmdlock(dbri, 4);
1198 val = D_DTS_VO | D_DTS_VI | D_DTS_INS
1199 | D_DTS_PRVIN(16) | D_PIPE(16) | D_DTS_PRVOUT(16);
1200 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
1201 *(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1202 *(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1203 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1204 dbri_cmdsend(dbri, cmd, 4);
1205
1206 dbri->pipes[16].sdp = 1;
1207 dbri->pipes[16].nextpipe = 16;
1208
1209 cmd = dbri_cmdlock(dbri, 4);
1210
1211 if (master_or_slave == CHIslave) {
1212 /* Setup DBRI for CHI Slave - receive clock, frame sync (FS)
1213 *
1214 * CHICM = 0 (slave mode, 8 kHz frame rate)
1215 * IR = give immediate CHI status interrupt
1216 * EN = give CHI status interrupt upon change
1217 */
1218 *(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(0));
1219 } else {
1220 /* Setup DBRI for CHI Master - generate clock, FS
1221 *
1222 * BPF = bits per 8 kHz frame
1223 * 12.288 MHz / CHICM_divisor = clock rate
1224 * FD = 1 - drive CHIFS on rising edge of CHICK
1225 */
1226 int clockrate = bits_per_frame * 8;
1227 int divisor = 12288 / clockrate;
1228
1229 if (divisor > 255 || divisor * clockrate != 12288)
1230 printk(KERN_ERR "DBRI: illegal bits_per_frame in setup_chi\n");
1231
1232 *(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(divisor) | D_CHI_FD
1233 | D_CHI_BPF(bits_per_frame));
1234 }
1235
1236 dbri->chi_bpf = bits_per_frame;
1237
1238 /* CHI Data Mode
1239 *
1240 * RCE = 0 - receive on falling edge of CHICK
1241 * XCE = 1 - transmit on rising edge of CHICK
1242 * XEN = 1 - enable transmitter
1243 * REN = 1 - enable receiver
1244 */
1245
1246 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1247 *(cmd++) = DBRI_CMD(D_CDM, 0, D_CDM_XCE | D_CDM_XEN | D_CDM_REN);
1248 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1249
1250 dbri_cmdsend(dbri, cmd, 4);
1251}
1252
1253/*
1254****************************************************************************
1255*********************** CS4215 audio codec management **********************
1256****************************************************************************
1257
1258In the standard SPARC audio configuration, the CS4215 codec is attached
1259to the DBRI via the CHI interface and few of the DBRI's PIO pins.
1260
1261*/
1262static void cs4215_setup_pipes(struct snd_dbri * dbri)
1263{
1264 /*
1265 * Data mode:
1266 * Pipe 4: Send timeslots 1-4 (audio data)
1267 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1268 * Pipe 6: Receive timeslots 1-4 (audio data)
1269 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1270 * interrupt, and the rest of the data (slot 5 and 8) is
1271 * not relevant for us (only for doublechecking).
1272 *
1273 * Control mode:
1274 * Pipe 17: Send timeslots 1-4 (slots 5-8 are readonly)
1275 * Pipe 18: Receive timeslot 1 (clb).
1276 * Pipe 19: Receive timeslot 7 (version).
1277 */
1278
1279 setup_pipe(dbri, 4, D_SDP_MEM | D_SDP_TO_SER | D_SDP_MSB);
1280 setup_pipe(dbri, 20, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1281 setup_pipe(dbri, 6, D_SDP_MEM | D_SDP_FROM_SER | D_SDP_MSB);
1282 setup_pipe(dbri, 21, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1283
1284 setup_pipe(dbri, 17, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1285 setup_pipe(dbri, 18, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1286 setup_pipe(dbri, 19, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1287
1288 dbri_cmdwait(dbri);
1289}
1290
1291static int cs4215_init_data(struct cs4215 *mm)
1292{
1293 /*
1294 * No action, memory resetting only.
1295 *
1296 * Data Time Slot 5-8
1297 * Speaker,Line and Headphone enable. Gain set to the half.
1298 * Input is mike.
1299 */
1300 mm->data[0] = CS4215_LO(0x20) | CS4215_HE | CS4215_LE;
1301 mm->data[1] = CS4215_RO(0x20) | CS4215_SE;
1302 mm->data[2] = CS4215_LG(0x8) | CS4215_IS | CS4215_PIO0 | CS4215_PIO1;
1303 mm->data[3] = CS4215_RG(0x8) | CS4215_MA(0xf);
1304
1305 /*
1306 * Control Time Slot 1-4
1307 * 0: Default I/O voltage scale
1308 * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
1309 * 2: Serial enable, CHI master, 128 bits per frame, clock 1
1310 * 3: Tests disabled
1311 */
1312 mm->ctrl[0] = CS4215_RSRVD_1 | CS4215_MLB;
1313 mm->ctrl[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
1314 mm->ctrl[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
1315 mm->ctrl[3] = 0;
1316
1317 mm->status = 0;
1318 mm->version = 0xff;
1319 mm->precision = 8; /* For ULAW */
1320 mm->channels = 1;
1321
1322 return 0;
1323}
1324
1325static void cs4215_setdata(struct snd_dbri * dbri, int muted)
1326{
1327 if (muted) {
1328 dbri->mm.data[0] |= 63;
1329 dbri->mm.data[1] |= 63;
1330 dbri->mm.data[2] &= ~15;
1331 dbri->mm.data[3] &= ~15;
1332 } else {
1333 /* Start by setting the playback attenuation. */
1334 struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1335 int left_gain = info->left_gain & 0x3f;
1336 int right_gain = info->right_gain & 0x3f;
1337
1338 dbri->mm.data[0] &= ~0x3f; /* Reset the volume bits */
1339 dbri->mm.data[1] &= ~0x3f;
1340 dbri->mm.data[0] |= (DBRI_MAX_VOLUME - left_gain);
1341 dbri->mm.data[1] |= (DBRI_MAX_VOLUME - right_gain);
1342
1343 /* Now set the recording gain. */
1344 info = &dbri->stream_info[DBRI_REC];
1345 left_gain = info->left_gain & 0xf;
1346 right_gain = info->right_gain & 0xf;
1347 dbri->mm.data[2] |= CS4215_LG(left_gain);
1348 dbri->mm.data[3] |= CS4215_RG(right_gain);
1349 }
1350
1351 xmit_fixed(dbri, 20, *(int *)dbri->mm.data);
1352}
1353
1354/*
1355 * Set the CS4215 to data mode.
1356 */
1357static void cs4215_open(struct snd_dbri * dbri)
1358{
1359 int data_width;
1360 u32 tmp;
1361
1362 dprintk(D_MM, "cs4215_open: %d channels, %d bits\n",
1363 dbri->mm.channels, dbri->mm.precision);
1364
1365 /* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1366 * to make sure this takes. This avoids clicking noises.
1367 */
1368
1369 cs4215_setdata(dbri, 1);
1370 udelay(125);
1371
1372 /*
1373 * Data mode:
1374 * Pipe 4: Send timeslots 1-4 (audio data)
1375 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1376 * Pipe 6: Receive timeslots 1-4 (audio data)
1377 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1378 * interrupt, and the rest of the data (slot 5 and 8) is
1379 * not relevant for us (only for doublechecking).
1380 *
1381 * Just like in control mode, the time slots are all offset by eight
1382 * bits. The CS4215, it seems, observes TSIN (the delayed signal)
1383 * even if it's the CHI master. Don't ask me...
1384 */
1385 tmp = sbus_readl(dbri->regs + REG0);
1386 tmp &= ~(D_C); /* Disable CHI */
1387 sbus_writel(tmp, dbri->regs + REG0);
1388
1389 /* Switch CS4215 to data mode - set PIO3 to 1 */
1390 sbus_writel(D_ENPIO | D_PIO1 | D_PIO3 |
1391 (dbri->mm.onboard ? D_PIO0 : D_PIO2), dbri->regs + REG2);
1392
1393 reset_chi(dbri, CHIslave, 128);
1394
1395 /* Note: this next doesn't work for 8-bit stereo, because the two
1396 * channels would be on timeslots 1 and 3, with 2 and 4 idle.
1397 * (See CS4215 datasheet Fig 15)
1398 *
1399 * DBRI non-contiguous mode would be required to make this work.
1400 */
1401 data_width = dbri->mm.channels * dbri->mm.precision;
1402
1403 link_time_slot(dbri, 4, 16, 16, data_width, dbri->mm.offset);
1404 link_time_slot(dbri, 20, 4, 16, 32, dbri->mm.offset + 32);
1405 link_time_slot(dbri, 6, 16, 16, data_width, dbri->mm.offset);
1406 link_time_slot(dbri, 21, 6, 16, 16, dbri->mm.offset + 40);
1407
1408 /* FIXME: enable CHI after _setdata? */
1409 tmp = sbus_readl(dbri->regs + REG0);
1410 tmp |= D_C; /* Enable CHI */
1411 sbus_writel(tmp, dbri->regs + REG0);
1412
1413 cs4215_setdata(dbri, 0);
1414}
1415
1416/*
1417 * Send the control information (i.e. audio format)
1418 */
1419static int cs4215_setctrl(struct snd_dbri * dbri)
1420{
1421 int i, val;
1422 u32 tmp;
1423
1424 /* FIXME - let the CPU do something useful during these delays */
1425
1426 /* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1427 * to make sure this takes. This avoids clicking noises.
1428 */
1429 cs4215_setdata(dbri, 1);
1430 udelay(125);
1431
1432 /*
1433 * Enable Control mode: Set DBRI's PIO3 (4215's D/~C) to 0, then wait
1434 * 12 cycles <= 12/(5512.5*64) sec = 34.01 usec
1435 */
1436 val = D_ENPIO | D_PIO1 | (dbri->mm.onboard ? D_PIO0 : D_PIO2);
1437 sbus_writel(val, dbri->regs + REG2);
1438 dprintk(D_MM, "cs4215_setctrl: reg2=0x%x\n", val);
1439 udelay(34);
1440
1441 /* In Control mode, the CS4215 is a slave device, so the DBRI must
1442 * operate as CHI master, supplying clocking and frame synchronization.
1443 *
1444 * In Data mode, however, the CS4215 must be CHI master to insure
1445 * that its data stream is synchronous with its codec.
1446 *
1447 * The upshot of all this? We start by putting the DBRI into master
1448 * mode, program the CS4215 in Control mode, then switch the CS4215
1449 * into Data mode and put the DBRI into slave mode. Various timing
1450 * requirements must be observed along the way.
1451 *
1452 * Oh, and one more thing, on a SPARCStation 20 (and maybe
1453 * others?), the addressing of the CS4215's time slots is
1454 * offset by eight bits, so we add eight to all the "cycle"
1455 * values in the Define Time Slot (DTS) commands. This is
1456 * done in hardware by a TI 248 that delays the DBRI->4215
1457 * frame sync signal by eight clock cycles. Anybody know why?
1458 */
1459 tmp = sbus_readl(dbri->regs + REG0);
1460 tmp &= ~D_C; /* Disable CHI */
1461 sbus_writel(tmp, dbri->regs + REG0);
1462
1463 reset_chi(dbri, CHImaster, 128);
1464
1465 /*
1466 * Control mode:
1467 * Pipe 17: Send timeslots 1-4 (slots 5-8 are readonly)
1468 * Pipe 18: Receive timeslot 1 (clb).
1469 * Pipe 19: Receive timeslot 7 (version).
1470 */
1471
1472 link_time_slot(dbri, 17, 16, 16, 32, dbri->mm.offset);
1473 link_time_slot(dbri, 18, 16, 16, 8, dbri->mm.offset);
1474 link_time_slot(dbri, 19, 18, 16, 8, dbri->mm.offset + 48);
1475
1476 /* Wait for the chip to echo back CLB (Control Latch Bit) as zero */
1477 dbri->mm.ctrl[0] &= ~CS4215_CLB;
1478 xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1479
1480 tmp = sbus_readl(dbri->regs + REG0);
1481 tmp |= D_C; /* Enable CHI */
1482 sbus_writel(tmp, dbri->regs + REG0);
1483
1484 for (i = 10; ((dbri->mm.status & 0xe4) != 0x20); --i) {
1485 msleep_interruptible(1);
1486 }
1487 if (i == 0) {
1488 dprintk(D_MM, "CS4215 didn't respond to CLB (0x%02x)\n",
1489 dbri->mm.status);
1490 return -1;
1491 }
1492
1493 /* Disable changes to our copy of the version number, as we are about
1494 * to leave control mode.
1495 */
1496 recv_fixed(dbri, 19, NULL);
1497
1498 /* Terminate CS4215 control mode - data sheet says
1499 * "Set CLB=1 and send two more frames of valid control info"
1500 */
1501 dbri->mm.ctrl[0] |= CS4215_CLB;
1502 xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1503
1504 /* Two frames of control info @ 8kHz frame rate = 250 us delay */
1505 udelay(250);
1506
1507 cs4215_setdata(dbri, 0);
1508
1509 return 0;
1510}
1511
1512/*
1513 * Setup the codec with the sampling rate, audio format and number of
1514 * channels.
1515 * As part of the process we resend the settings for the data
1516 * timeslots as well.
1517 */
1518static int cs4215_prepare(struct snd_dbri * dbri, unsigned int rate,
1519 snd_pcm_format_t format, unsigned int channels)
1520{
1521 int freq_idx;
1522 int ret = 0;
1523
1524 /* Lookup index for this rate */
1525 for (freq_idx = 0; CS4215_FREQ[freq_idx].freq != 0; freq_idx++) {
1526 if (CS4215_FREQ[freq_idx].freq == rate)
1527 break;
1528 }
1529 if (CS4215_FREQ[freq_idx].freq != rate) {
1530 printk(KERN_WARNING "DBRI: Unsupported rate %d Hz\n", rate);
1531 return -1;
1532 }
1533
1534 switch (format) {
1535 case SNDRV_PCM_FORMAT_MU_LAW:
1536 dbri->mm.ctrl[1] = CS4215_DFR_ULAW;
1537 dbri->mm.precision = 8;
1538 break;
1539 case SNDRV_PCM_FORMAT_A_LAW:
1540 dbri->mm.ctrl[1] = CS4215_DFR_ALAW;
1541 dbri->mm.precision = 8;
1542 break;
1543 case SNDRV_PCM_FORMAT_U8:
1544 dbri->mm.ctrl[1] = CS4215_DFR_LINEAR8;
1545 dbri->mm.precision = 8;
1546 break;
1547 case SNDRV_PCM_FORMAT_S16_BE:
1548 dbri->mm.ctrl[1] = CS4215_DFR_LINEAR16;
1549 dbri->mm.precision = 16;
1550 break;
1551 default:
1552 printk(KERN_WARNING "DBRI: Unsupported format %d\n", format);
1553 return -1;
1554 }
1555
1556 /* Add rate parameters */
1557 dbri->mm.ctrl[1] |= CS4215_FREQ[freq_idx].csval;
1558 dbri->mm.ctrl[2] = CS4215_XCLK |
1559 CS4215_BSEL_128 | CS4215_FREQ[freq_idx].xtal;
1560
1561 dbri->mm.channels = channels;
1562 if (channels == 2)
1563 dbri->mm.ctrl[1] |= CS4215_DFR_STEREO;
1564
1565 ret = cs4215_setctrl(dbri);
1566 if (ret == 0)
1567 cs4215_open(dbri); /* set codec to data mode */
1568
1569 return ret;
1570}
1571
1572/*
1573 *
1574 */
1575static int cs4215_init(struct snd_dbri * dbri)
1576{
1577 u32 reg2 = sbus_readl(dbri->regs + REG2);
1578 dprintk(D_MM, "cs4215_init: reg2=0x%x\n", reg2);
1579
1580 /* Look for the cs4215 chips */
1581 if (reg2 & D_PIO2) {
1582 dprintk(D_MM, "Onboard CS4215 detected\n");
1583 dbri->mm.onboard = 1;
1584 }
1585 if (reg2 & D_PIO0) {
1586 dprintk(D_MM, "Speakerbox detected\n");
1587 dbri->mm.onboard = 0;
1588
1589 if (reg2 & D_PIO2) {
1590 printk(KERN_INFO "DBRI: Using speakerbox / "
1591 "ignoring onboard mmcodec.\n");
1592 sbus_writel(D_ENPIO2, dbri->regs + REG2);
1593 }
1594 }
1595
1596 if (!(reg2 & (D_PIO0 | D_PIO2))) {
1597 printk(KERN_ERR "DBRI: no mmcodec found.\n");
1598 return -EIO;
1599 }
1600
1601 cs4215_setup_pipes(dbri);
1602 cs4215_init_data(&dbri->mm);
1603
1604 /* Enable capture of the status & version timeslots. */
1605 recv_fixed(dbri, 18, &dbri->mm.status);
1606 recv_fixed(dbri, 19, &dbri->mm.version);
1607
1608 dbri->mm.offset = dbri->mm.onboard ? 0 : 8;
1609 if (cs4215_setctrl(dbri) == -1 || dbri->mm.version == 0xff) {
1610 dprintk(D_MM, "CS4215 failed probe at offset %d\n",
1611 dbri->mm.offset);
1612 return -EIO;
1613 }
1614 dprintk(D_MM, "Found CS4215 at offset %d\n", dbri->mm.offset);
1615
1616 return 0;
1617}
1618
1619/*
1620****************************************************************************
1621*************************** DBRI interrupt handler *************************
1622****************************************************************************
1623
1624The DBRI communicates with the CPU mainly via a circular interrupt
1625buffer. When an interrupt is signaled, the CPU walks through the
1626buffer and calls dbri_process_one_interrupt() for each interrupt word.
1627Complicated interrupts are handled by dedicated functions (which
1628appear first in this file). Any pending interrupts can be serviced by
1629calling dbri_process_interrupt_buffer(), which works even if the CPU's
1630interrupts are disabled.
1631
1632*/
1633
1634/* xmit_descs()
1635 *
1636 * Starts transmiting the current TD's for recording/playing.
1637 * For playback, ALSA has filled the DMA memory with new data (we hope).
1638 */
1639static void xmit_descs(struct snd_dbri *dbri)
1640{
1641 struct dbri_streaminfo *info;
1642 s32 *cmd;
1643 unsigned long flags;
1644 int first_td;
1645
1646 if (dbri == NULL)
1647 return; /* Disabled */
1648
1649 info = &dbri->stream_info[DBRI_REC];
1650 spin_lock_irqsave(&dbri->lock, flags);
1651
1652 if (info->pipe >= 0) {
1653 first_td = dbri->pipes[info->pipe].first_desc;
1654
1655 dprintk(D_DESC, "xmit_descs rec @ TD %d\n", first_td);
1656
1657 /* Stream could be closed by the time we run. */
1658 if (first_td >= 0) {
1659 cmd = dbri_cmdlock(dbri, 2);
1660 *(cmd++) = DBRI_CMD(D_SDP, 0,
1661 dbri->pipes[info->pipe].sdp
1662 | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1663 *(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, first_td);
1664 dbri_cmdsend(dbri, cmd, 2);
1665
1666 /* Reset our admin of the pipe. */
1667 dbri->pipes[info->pipe].desc = first_td;
1668 }
1669 }
1670
1671 info = &dbri->stream_info[DBRI_PLAY];
1672
1673 if (info->pipe >= 0) {
1674 first_td = dbri->pipes[info->pipe].first_desc;
1675
1676 dprintk(D_DESC, "xmit_descs play @ TD %d\n", first_td);
1677
1678 /* Stream could be closed by the time we run. */
1679 if (first_td >= 0) {
1680 cmd = dbri_cmdlock(dbri, 2);
1681 *(cmd++) = DBRI_CMD(D_SDP, 0,
1682 dbri->pipes[info->pipe].sdp
1683 | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1684 *(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, first_td);
1685 dbri_cmdsend(dbri, cmd, 2);
1686
1687 /* Reset our admin of the pipe. */
1688 dbri->pipes[info->pipe].desc = first_td;
1689 }
1690 }
1691 spin_unlock_irqrestore(&dbri->lock, flags);
1692}
1693
1694/* transmission_complete_intr()
1695 *
1696 * Called by main interrupt handler when DBRI signals transmission complete
1697 * on a pipe (interrupt triggered by the B bit in a transmit descriptor).
1698 *
1699 * Walks through the pipe's list of transmit buffer descriptors and marks
1700 * them as available. Stops when the first descriptor is found without
1701 * TBC (Transmit Buffer Complete) set, or we've run through them all.
1702 *
1703 * The DMA buffers are not released. They form a ring buffer and
1704 * they are filled by ALSA while others are transmitted by DMA.
1705 *
1706 */
1707
1708static void transmission_complete_intr(struct snd_dbri * dbri, int pipe)
1709{
1710 struct dbri_streaminfo *info;
1711 int td;
1712 int status;
1713
1714 info = &dbri->stream_info[DBRI_PLAY];
1715
1716 td = dbri->pipes[pipe].desc;
1717 while (td >= 0) {
1718 if (td >= DBRI_NO_DESCS) {
1719 printk(KERN_ERR "DBRI: invalid td on pipe %d\n", pipe);
1720 return;
1721 }
1722
1723 status = DBRI_TD_STATUS(dbri->dma->desc[td].word4);
1724 if (!(status & DBRI_TD_TBC)) {
1725 break;
1726 }
1727
1728 dprintk(D_INT, "TD %d, status 0x%02x\n", td, status);
1729
1730 dbri->dma->desc[td].word4 = 0; /* Reset it for next time. */
1731 info->offset += DBRI_RD_CNT(dbri->dma->desc[td].word1);
1732
1733 td = dbri->next_desc[td];
1734 dbri->pipes[pipe].desc = td;
1735 }
1736
1737 /* Notify ALSA */
1738 if (spin_is_locked(&dbri->lock)) {
1739 spin_unlock(&dbri->lock);
1740 snd_pcm_period_elapsed(info->substream);
1741 spin_lock(&dbri->lock);
1742 } else
1743 snd_pcm_period_elapsed(info->substream);
1744}
1745
1746static void reception_complete_intr(struct snd_dbri * dbri, int pipe)
1747{
1748 struct dbri_streaminfo *info;
1749 int rd = dbri->pipes[pipe].desc;
1750 s32 status;
1751
1752 if (rd < 0 || rd >= DBRI_NO_DESCS) {
1753 printk(KERN_ERR "DBRI: invalid rd on pipe %d\n", pipe);
1754 return;
1755 }
1756
1757 dbri->pipes[pipe].desc = dbri->next_desc[rd];
1758 status = dbri->dma->desc[rd].word1;
1759 dbri->dma->desc[rd].word1 = 0; /* Reset it for next time. */
1760
1761 info = &dbri->stream_info[DBRI_REC];
1762 info->offset += DBRI_RD_CNT(status);
1763
1764 /* FIXME: Check status */
1765
1766 dprintk(D_INT, "Recv RD %d, status 0x%02x, len %d\n",
1767 rd, DBRI_RD_STATUS(status), DBRI_RD_CNT(status));
1768
1769 /* Notify ALSA */
1770 if (spin_is_locked(&dbri->lock)) {
1771 spin_unlock(&dbri->lock);
1772 snd_pcm_period_elapsed(info->substream);
1773 spin_lock(&dbri->lock);
1774 } else
1775 snd_pcm_period_elapsed(info->substream);
1776}
1777
1778static void dbri_process_one_interrupt(struct snd_dbri * dbri, int x)
1779{
1780 int val = D_INTR_GETVAL(x);
1781 int channel = D_INTR_GETCHAN(x);
1782 int command = D_INTR_GETCMD(x);
1783 int code = D_INTR_GETCODE(x);
1784#ifdef DBRI_DEBUG
1785 int rval = D_INTR_GETRVAL(x);
1786#endif
1787
1788 if (channel == D_INTR_CMD) {
1789 dprintk(D_CMD, "INTR: Command: %-5s Value:%d\n",
1790 cmds[command], val);
1791 } else {
1792 dprintk(D_INT, "INTR: Chan:%d Code:%d Val:%#x\n",
1793 channel, code, rval);
1794 }
1795
1796 switch (code) {
1797 case D_INTR_CMDI:
1798 if (command != D_WAIT)
1799 printk(KERN_ERR "DBRI: Command read interrupt\n");
1800 break;
1801 case D_INTR_BRDY:
1802 reception_complete_intr(dbri, channel);
1803 break;
1804 case D_INTR_XCMP:
1805 case D_INTR_MINT:
1806 transmission_complete_intr(dbri, channel);
1807 break;
1808 case D_INTR_UNDR:
1809 /* UNDR - Transmission underrun
1810 * resend SDP command with clear pipe bit (C) set
1811 */
1812 {
1813 /* FIXME: do something useful in case of underrun */
1814 printk(KERN_ERR "DBRI: Underrun error\n");
1815#if 0
1816 s32 *cmd;
1817 int pipe = channel;
1818 int td = dbri->pipes[pipe].desc;
1819
1820 dbri->dma->desc[td].word4 = 0;
1821 cmd = dbri_cmdlock(dbri, NoGetLock);
1822 *(cmd++) = DBRI_CMD(D_SDP, 0,
1823 dbri->pipes[pipe].sdp
1824 | D_SDP_P | D_SDP_C | D_SDP_2SAME);
1825 *(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, td);
1826 dbri_cmdsend(dbri, cmd);
1827#endif
1828 }
1829 break;
1830 case D_INTR_FXDT:
1831 /* FXDT - Fixed data change */
1832 if (dbri->pipes[channel].sdp & D_SDP_MSB)
1833 val = reverse_bytes(val, dbri->pipes[channel].length);
1834
1835 if (dbri->pipes[channel].recv_fixed_ptr)
1836 *(dbri->pipes[channel].recv_fixed_ptr) = val;
1837 break;
1838 default:
1839 if (channel != D_INTR_CMD)
1840 printk(KERN_WARNING
1841 "DBRI: Ignored Interrupt: %d (0x%x)\n", code, x);
1842 }
1843}
1844
1845/* dbri_process_interrupt_buffer advances through the DBRI's interrupt
1846 * buffer until it finds a zero word (indicating nothing more to do
1847 * right now). Non-zero words require processing and are handed off
1848 * to dbri_process_one_interrupt AFTER advancing the pointer.
1849 */
1850static void dbri_process_interrupt_buffer(struct snd_dbri * dbri)
1851{
1852 s32 x;
1853
1854 while ((x = dbri->dma->intr[dbri->dbri_irqp]) != 0) {
1855 dbri->dma->intr[dbri->dbri_irqp] = 0;
1856 dbri->dbri_irqp++;
1857 if (dbri->dbri_irqp == DBRI_INT_BLK)
1858 dbri->dbri_irqp = 1;
1859
1860 dbri_process_one_interrupt(dbri, x);
1861 }
1862}
1863
1864static irqreturn_t snd_dbri_interrupt(int irq, void *dev_id,
1865 struct pt_regs *regs)
1866{
1867 struct snd_dbri *dbri = dev_id;
1868 static int errcnt = 0;
1869 int x;
1870
1871 if (dbri == NULL)
1872 return IRQ_NONE;
1873 spin_lock(&dbri->lock);
1874
1875 /*
1876 * Read it, so the interrupt goes away.
1877 */
1878 x = sbus_readl(dbri->regs + REG1);
1879
1880 if (x & (D_MRR | D_MLE | D_LBG | D_MBE)) {
1881 u32 tmp;
1882
1883 if (x & D_MRR)
1884 printk(KERN_ERR
1885 "DBRI: Multiple Error Ack on SBus reg1=0x%x\n",
1886 x);
1887 if (x & D_MLE)
1888 printk(KERN_ERR
1889 "DBRI: Multiple Late Error on SBus reg1=0x%x\n",
1890 x);
1891 if (x & D_LBG)
1892 printk(KERN_ERR
1893 "DBRI: Lost Bus Grant on SBus reg1=0x%x\n", x);
1894 if (x & D_MBE)
1895 printk(KERN_ERR
1896 "DBRI: Burst Error on SBus reg1=0x%x\n", x);
1897
1898 /* Some of these SBus errors cause the chip's SBus circuitry
1899 * to be disabled, so just re-enable and try to keep going.
1900 *
1901 * The only one I've seen is MRR, which will be triggered
1902 * if you let a transmit pipe underrun, then try to CDP it.
1903 *
1904 * If these things persist, we reset the chip.
1905 */
1906 if ((++errcnt) % 10 == 0) {
1907 dprintk(D_INT, "Interrupt errors exceeded.\n");
1908 dbri_reset(dbri);
1909 } else {
1910 tmp = sbus_readl(dbri->regs + REG0);
1911 tmp &= ~(D_D);
1912 sbus_writel(tmp, dbri->regs + REG0);
1913 }
1914 }
1915
1916 dbri_process_interrupt_buffer(dbri);
1917
1918 spin_unlock(&dbri->lock);
1919
1920 return IRQ_HANDLED;
1921}
1922
1923/****************************************************************************
1924 PCM Interface
1925****************************************************************************/
1926static struct snd_pcm_hardware snd_dbri_pcm_hw = {
1927 .info = (SNDRV_PCM_INFO_MMAP |
1928 SNDRV_PCM_INFO_INTERLEAVED |
1929 SNDRV_PCM_INFO_BLOCK_TRANSFER |
1930 SNDRV_PCM_INFO_MMAP_VALID),
1931 .formats = SNDRV_PCM_FMTBIT_MU_LAW |
1932 SNDRV_PCM_FMTBIT_A_LAW |
1933 SNDRV_PCM_FMTBIT_U8 |
1934 SNDRV_PCM_FMTBIT_S16_BE,
1935 .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_5512,
1936 .rate_min = 5512,
1937 .rate_max = 48000,
1938 .channels_min = 1,
1939 .channels_max = 2,
1940 .buffer_bytes_max = (64 * 1024),
1941 .period_bytes_min = 1,
1942 .period_bytes_max = DBRI_TD_MAXCNT,
1943 .periods_min = 1,
1944 .periods_max = 1024,
1945};
1946
1947static int snd_hw_rule_format(struct snd_pcm_hw_params *params,
1948 struct snd_pcm_hw_rule *rule)
1949{
1950 struct snd_interval *c = hw_param_interval(params,
1951 SNDRV_PCM_HW_PARAM_CHANNELS);
1952 struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
1953 struct snd_mask fmt;
1954
1955 snd_mask_any(&fmt);
1956 if (c->min > 1) {
1957 fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_BE;
1958 return snd_mask_refine(f, &fmt);
1959 }
1960 return 0;
1961}
1962
1963static int snd_hw_rule_channels(struct snd_pcm_hw_params *params,
1964 struct snd_pcm_hw_rule *rule)
1965{
1966 struct snd_interval *c = hw_param_interval(params,
1967 SNDRV_PCM_HW_PARAM_CHANNELS);
1968 struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
1969 struct snd_interval ch;
1970
1971 snd_interval_any(&ch);
1972 if (!(f->bits[0] & SNDRV_PCM_FMTBIT_S16_BE)) {
1973 ch.min = ch.max = 1;
1974 ch.integer = 1;
1975 return snd_interval_refine(c, &ch);
1976 }
1977 return 0;
1978}
1979
1980static int snd_dbri_open(struct snd_pcm_substream *substream)
1981{
1982 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
1983 struct snd_pcm_runtime *runtime = substream->runtime;
1984 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
1985 unsigned long flags;
1986
1987 dprintk(D_USR, "open audio output.\n");
1988 runtime->hw = snd_dbri_pcm_hw;
1989
1990 spin_lock_irqsave(&dbri->lock, flags);
1991 info->substream = substream;
1992 info->offset = 0;
1993 info->dvma_buffer = 0;
1994 info->pipe = -1;
1995 spin_unlock_irqrestore(&dbri->lock, flags);
1996
1997 snd_pcm_hw_rule_add(runtime,0,SNDRV_PCM_HW_PARAM_CHANNELS,
1998 snd_hw_rule_format, 0, SNDRV_PCM_HW_PARAM_FORMAT,
1999 -1);
2000 snd_pcm_hw_rule_add(runtime,0,SNDRV_PCM_HW_PARAM_FORMAT,
2001 snd_hw_rule_channels, 0,
2002 SNDRV_PCM_HW_PARAM_CHANNELS,
2003 -1);
2004
2005 cs4215_open(dbri);
2006
2007 return 0;
2008}
2009
2010static int snd_dbri_close(struct snd_pcm_substream *substream)
2011{
2012 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2013 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2014
2015 dprintk(D_USR, "close audio output.\n");
2016 info->substream = NULL;
2017 info->offset = 0;
2018
2019 return 0;
2020}
2021
2022static int snd_dbri_hw_params(struct snd_pcm_substream *substream,
2023 struct snd_pcm_hw_params *hw_params)
2024{
2025 struct snd_pcm_runtime *runtime = substream->runtime;
2026 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2027 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2028 int direction;
2029 int ret;
2030
2031 /* set sampling rate, audio format and number of channels */
2032 ret = cs4215_prepare(dbri, params_rate(hw_params),
2033 params_format(hw_params),
2034 params_channels(hw_params));
2035 if (ret != 0)
2036 return ret;
2037
2038 if ((ret = snd_pcm_lib_malloc_pages(substream,
2039 params_buffer_bytes(hw_params))) < 0) {
2040 printk(KERN_ERR "malloc_pages failed with %d\n", ret);
2041 return ret;
2042 }
2043
2044 /* hw_params can get called multiple times. Only map the DMA once.
2045 */
2046 if (info->dvma_buffer == 0) {
2047 if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2048 direction = SBUS_DMA_TODEVICE;
2049 else
2050 direction = SBUS_DMA_FROMDEVICE;
2051
2052 info->dvma_buffer = sbus_map_single(dbri->sdev,
2053 runtime->dma_area,
2054 params_buffer_bytes(hw_params),
2055 direction);
2056 }
2057
2058 direction = params_buffer_bytes(hw_params);
2059 dprintk(D_USR, "hw_params: %d bytes, dvma=%x\n",
2060 direction, info->dvma_buffer);
2061 return 0;
2062}
2063
2064static int snd_dbri_hw_free(struct snd_pcm_substream *substream)
2065{
2066 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2067 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2068 int direction;
2069
2070 dprintk(D_USR, "hw_free.\n");
2071
2072 /* hw_free can get called multiple times. Only unmap the DMA once.
2073 */
2074 if (info->dvma_buffer) {
2075 if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2076 direction = SBUS_DMA_TODEVICE;
2077 else
2078 direction = SBUS_DMA_FROMDEVICE;
2079
2080 sbus_unmap_single(dbri->sdev, info->dvma_buffer,
2081 substream->runtime->buffer_size, direction);
2082 info->dvma_buffer = 0;
2083 }
2084 if (info->pipe != -1) {
2085 reset_pipe(dbri, info->pipe);
2086 info->pipe = -1;
2087 }
2088
2089 return snd_pcm_lib_free_pages(substream);
2090}
2091
2092static int snd_dbri_prepare(struct snd_pcm_substream *substream)
2093{
2094 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2095 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2096 struct snd_pcm_runtime *runtime = substream->runtime;
2097 int ret;
2098
2099 info->size = snd_pcm_lib_buffer_bytes(substream);
2100 if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2101 info->pipe = 4; /* Send pipe */
2102 else
2103 info->pipe = 6; /* Receive pipe */
2104
2105 spin_lock_irq(&dbri->lock);
2106 info->offset = 0;
2107
2108 /* Setup the all the transmit/receive desciptors to cover the
2109 * whole DMA buffer.
2110 */
2111 ret = setup_descs(dbri, DBRI_STREAMNO(substream),
2112 snd_pcm_lib_period_bytes(substream));
2113
2114 spin_unlock_irq(&dbri->lock);
2115
2116 dprintk(D_USR, "prepare audio output. %d bytes\n", info->size);
2117 return ret;
2118}
2119
2120static int snd_dbri_trigger(struct snd_pcm_substream *substream, int cmd)
2121{
2122 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2123 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2124 int ret = 0;
2125
2126 switch (cmd) {
2127 case SNDRV_PCM_TRIGGER_START:
2128 dprintk(D_USR, "start audio, period is %d bytes\n",
2129 (int)snd_pcm_lib_period_bytes(substream));
2130 /* Re-submit the TDs. */
2131 xmit_descs(dbri);
2132 break;
2133 case SNDRV_PCM_TRIGGER_STOP:
2134 dprintk(D_USR, "stop audio.\n");
2135 reset_pipe(dbri, info->pipe);
2136 break;
2137 default:
2138 ret = -EINVAL;
2139 }
2140
2141 return ret;
2142}
2143
2144static snd_pcm_uframes_t snd_dbri_pointer(struct snd_pcm_substream *substream)
2145{
2146 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2147 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2148 snd_pcm_uframes_t ret;
2149
2150 ret = bytes_to_frames(substream->runtime, info->offset)
2151 % substream->runtime->buffer_size;
2152 dprintk(D_USR, "I/O pointer: %ld frames of %ld.\n",
2153 ret, substream->runtime->buffer_size);
2154 return ret;
2155}
2156
2157static struct snd_pcm_ops snd_dbri_ops = {
2158 .open = snd_dbri_open,
2159 .close = snd_dbri_close,
2160 .ioctl = snd_pcm_lib_ioctl,
2161 .hw_params = snd_dbri_hw_params,
2162 .hw_free = snd_dbri_hw_free,
2163 .prepare = snd_dbri_prepare,
2164 .trigger = snd_dbri_trigger,
2165 .pointer = snd_dbri_pointer,
2166};
2167
2168static int __devinit snd_dbri_pcm(struct snd_dbri * dbri)
2169{
2170 struct snd_pcm *pcm;
2171 int err;
2172
2173 if ((err = snd_pcm_new(dbri->card,
2174 /* ID */ "sun_dbri",
2175 /* device */ 0,
2176 /* playback count */ 1,
2177 /* capture count */ 1, &pcm)) < 0)
2178 return err;
2179 snd_assert(pcm != NULL, return -EINVAL);
2180
2181 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_dbri_ops);
2182 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_dbri_ops);
2183
2184 pcm->private_data = dbri;
2185 pcm->info_flags = 0;
2186 strcpy(pcm->name, dbri->card->shortname);
2187
2188 if ((err = snd_pcm_lib_preallocate_pages_for_all(pcm,
2189 SNDRV_DMA_TYPE_CONTINUOUS,
2190 snd_dma_continuous_data(GFP_KERNEL),
2191 64 * 1024, 64 * 1024)) < 0) {
2192 return err;
2193 }
2194
2195 return 0;
2196}
2197
2198/*****************************************************************************
2199 Mixer interface
2200*****************************************************************************/
2201
2202static int snd_cs4215_info_volume(struct snd_kcontrol *kcontrol,
2203 struct snd_ctl_elem_info *uinfo)
2204{
2205 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2206 uinfo->count = 2;
2207 uinfo->value.integer.min = 0;
2208 if (kcontrol->private_value == DBRI_PLAY) {
2209 uinfo->value.integer.max = DBRI_MAX_VOLUME;
2210 } else {
2211 uinfo->value.integer.max = DBRI_MAX_GAIN;
2212 }
2213 return 0;
2214}
2215
2216static int snd_cs4215_get_volume(struct snd_kcontrol *kcontrol,
2217 struct snd_ctl_elem_value *ucontrol)
2218{
2219 struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2220 struct dbri_streaminfo *info;
2221 snd_assert(dbri != NULL, return -EINVAL);
2222 info = &dbri->stream_info[kcontrol->private_value];
2223 snd_assert(info != NULL, return -EINVAL);
2224
2225 ucontrol->value.integer.value[0] = info->left_gain;
2226 ucontrol->value.integer.value[1] = info->right_gain;
2227 return 0;
2228}
2229
2230static int snd_cs4215_put_volume(struct snd_kcontrol *kcontrol,
2231 struct snd_ctl_elem_value *ucontrol)
2232{
2233 struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2234 struct dbri_streaminfo *info = &dbri->stream_info[kcontrol->private_value];
2235 unsigned long flags;
2236 int changed = 0;
2237
2238 if (info->left_gain != ucontrol->value.integer.value[0]) {
2239 info->left_gain = ucontrol->value.integer.value[0];
2240 changed = 1;
2241 }
2242 if (info->right_gain != ucontrol->value.integer.value[1]) {
2243 info->right_gain = ucontrol->value.integer.value[1];
2244 changed = 1;
2245 }
2246 if (changed == 1) {
2247 /* First mute outputs, and wait 1/8000 sec (125 us)
2248 * to make sure this takes. This avoids clicking noises.
2249 */
2250 spin_lock_irqsave(&dbri->lock, flags);
2251
2252 cs4215_setdata(dbri, 1);
2253 udelay(125);
2254 cs4215_setdata(dbri, 0);
2255
2256 spin_unlock_irqrestore(&dbri->lock, flags);
2257 }
2258 return changed;
2259}
2260
2261static int snd_cs4215_info_single(struct snd_kcontrol *kcontrol,
2262 struct snd_ctl_elem_info *uinfo)
2263{
2264 int mask = (kcontrol->private_value >> 16) & 0xff;
2265
2266 uinfo->type = (mask == 1) ?
2267 SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2268 uinfo->count = 1;
2269 uinfo->value.integer.min = 0;
2270 uinfo->value.integer.max = mask;
2271 return 0;
2272}
2273
2274static int snd_cs4215_get_single(struct snd_kcontrol *kcontrol,
2275 struct snd_ctl_elem_value *ucontrol)
2276{
2277 struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2278 int elem = kcontrol->private_value & 0xff;
2279 int shift = (kcontrol->private_value >> 8) & 0xff;
2280 int mask = (kcontrol->private_value >> 16) & 0xff;
2281 int invert = (kcontrol->private_value >> 24) & 1;
2282 snd_assert(dbri != NULL, return -EINVAL);
2283
2284 if (elem < 4) {
2285 ucontrol->value.integer.value[0] =
2286 (dbri->mm.data[elem] >> shift) & mask;
2287 } else {
2288 ucontrol->value.integer.value[0] =
2289 (dbri->mm.ctrl[elem - 4] >> shift) & mask;
2290 }
2291
2292 if (invert == 1) {
2293 ucontrol->value.integer.value[0] =
2294 mask - ucontrol->value.integer.value[0];
2295 }
2296 return 0;
2297}
2298
2299static int snd_cs4215_put_single(struct snd_kcontrol *kcontrol,
2300 struct snd_ctl_elem_value *ucontrol)
2301{
2302 struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2303 unsigned long flags;
2304 int elem = kcontrol->private_value & 0xff;
2305 int shift = (kcontrol->private_value >> 8) & 0xff;
2306 int mask = (kcontrol->private_value >> 16) & 0xff;
2307 int invert = (kcontrol->private_value >> 24) & 1;
2308 int changed = 0;
2309 unsigned short val;
2310 snd_assert(dbri != NULL, return -EINVAL);
2311
2312 val = (ucontrol->value.integer.value[0] & mask);
2313 if (invert == 1)
2314 val = mask - val;
2315 val <<= shift;
2316
2317 if (elem < 4) {
2318 dbri->mm.data[elem] = (dbri->mm.data[elem] &
2319 ~(mask << shift)) | val;
2320 changed = (val != dbri->mm.data[elem]);
2321 } else {
2322 dbri->mm.ctrl[elem - 4] = (dbri->mm.ctrl[elem - 4] &
2323 ~(mask << shift)) | val;
2324 changed = (val != dbri->mm.ctrl[elem - 4]);
2325 }
2326
2327 dprintk(D_GEN, "put_single: mask=0x%x, changed=%d, "
2328 "mixer-value=%ld, mm-value=0x%x\n",
2329 mask, changed, ucontrol->value.integer.value[0],
2330 dbri->mm.data[elem & 3]);
2331
2332 if (changed) {
2333 /* First mute outputs, and wait 1/8000 sec (125 us)
2334 * to make sure this takes. This avoids clicking noises.
2335 */
2336 spin_lock_irqsave(&dbri->lock, flags);
2337
2338 cs4215_setdata(dbri, 1);
2339 udelay(125);
2340 cs4215_setdata(dbri, 0);
2341
2342 spin_unlock_irqrestore(&dbri->lock, flags);
2343 }
2344 return changed;
2345}
2346
2347/* Entries 0-3 map to the 4 data timeslots, entries 4-7 map to the 4 control
2348 timeslots. Shift is the bit offset in the timeslot, mask defines the
2349 number of bits. invert is a boolean for use with attenuation.
2350 */
2351#define CS4215_SINGLE(xname, entry, shift, mask, invert) \
2352{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2353 .info = snd_cs4215_info_single, \
2354 .get = snd_cs4215_get_single, .put = snd_cs4215_put_single, \
2355 .private_value = entry | (shift << 8) | (mask << 16) | (invert << 24) },
2356
2357static struct snd_kcontrol_new dbri_controls[] __devinitdata = {
2358 {
2359 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2360 .name = "Playback Volume",
2361 .info = snd_cs4215_info_volume,
2362 .get = snd_cs4215_get_volume,
2363 .put = snd_cs4215_put_volume,
2364 .private_value = DBRI_PLAY,
2365 },
2366 CS4215_SINGLE("Headphone switch", 0, 7, 1, 0)
2367 CS4215_SINGLE("Line out switch", 0, 6, 1, 0)
2368 CS4215_SINGLE("Speaker switch", 1, 6, 1, 0)
2369 {
2370 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2371 .name = "Capture Volume",
2372 .info = snd_cs4215_info_volume,
2373 .get = snd_cs4215_get_volume,
2374 .put = snd_cs4215_put_volume,
2375 .private_value = DBRI_REC,
2376 },
2377 /* FIXME: mic/line switch */
2378 CS4215_SINGLE("Line in switch", 2, 4, 1, 0)
2379 CS4215_SINGLE("High Pass Filter switch", 5, 7, 1, 0)
2380 CS4215_SINGLE("Monitor Volume", 3, 4, 0xf, 1)
2381 CS4215_SINGLE("Mic boost", 4, 4, 1, 1)
2382};
2383
2384#define NUM_CS4215_CONTROLS (sizeof(dbri_controls)/sizeof(struct snd_kcontrol_new))
2385
2386static int __init snd_dbri_mixer(struct snd_dbri * dbri)
2387{
2388 struct snd_card *card;
2389 int idx, err;
2390
2391 snd_assert(dbri != NULL && dbri->card != NULL, return -EINVAL);
2392
2393 card = dbri->card;
2394 strcpy(card->mixername, card->shortname);
2395
2396 for (idx = 0; idx < NUM_CS4215_CONTROLS; idx++) {
2397 if ((err = snd_ctl_add(card,
2398 snd_ctl_new1(&dbri_controls[idx], dbri))) < 0)
2399 return err;
2400 }
2401
2402 for (idx = DBRI_REC; idx < DBRI_NO_STREAMS; idx++) {
2403 dbri->stream_info[idx].left_gain = 0;
2404 dbri->stream_info[idx].right_gain = 0;
2405 }
2406
2407 return 0;
2408}
2409
2410/****************************************************************************
2411 /proc interface
2412****************************************************************************/
2413static void dbri_regs_read(struct snd_info_entry * entry, struct snd_info_buffer *buffer)
2414{
2415 struct snd_dbri *dbri = entry->private_data;
2416
2417 snd_iprintf(buffer, "REG0: 0x%x\n", sbus_readl(dbri->regs + REG0));
2418 snd_iprintf(buffer, "REG2: 0x%x\n", sbus_readl(dbri->regs + REG2));
2419 snd_iprintf(buffer, "REG8: 0x%x\n", sbus_readl(dbri->regs + REG8));
2420 snd_iprintf(buffer, "REG9: 0x%x\n", sbus_readl(dbri->regs + REG9));
2421}
2422
2423#ifdef DBRI_DEBUG
2424static void dbri_debug_read(struct snd_info_entry * entry,
2425 struct snd_info_buffer *buffer)
2426{
2427 struct snd_dbri *dbri = entry->private_data;
2428 int pipe;
2429 snd_iprintf(buffer, "debug=%d\n", dbri_debug);
2430
2431 for (pipe = 0; pipe < 32; pipe++) {
2432 if (pipe_active(dbri, pipe)) {
2433 struct dbri_pipe *pptr = &dbri->pipes[pipe];
2434 snd_iprintf(buffer,
2435 "Pipe %d: %s SDP=0x%x desc=%d, "
2436 "len=%d next %d\n",
2437 pipe,
2438 ((pptr->sdp & D_SDP_TO_SER) ? "output" : "input"),
2439 pptr->sdp, pptr->desc,
2440 pptr->length, pptr->nextpipe);
2441 }
2442 }
2443}
2444#endif
2445
2446void snd_dbri_proc(struct snd_dbri * dbri)
2447{
2448 struct snd_info_entry *entry;
2449
2450 if (! snd_card_proc_new(dbri->card, "regs", &entry))
2451 snd_info_set_text_ops(entry, dbri, dbri_regs_read);
2452
2453#ifdef DBRI_DEBUG
2454 if (! snd_card_proc_new(dbri->card, "debug", &entry)) {
2455 snd_info_set_text_ops(entry, dbri, dbri_debug_read);
2456 entry->mode = S_IFREG | S_IRUGO; /* Readable only. */
2457 }
2458#endif
2459}
2460
2461/*
2462****************************************************************************
2463**************************** Initialization ********************************
2464****************************************************************************
2465*/
2466static void snd_dbri_free(struct snd_dbri * dbri);
2467
2468static int __init snd_dbri_create(struct snd_card *card,
2469 struct sbus_dev *sdev,
2470 struct linux_prom_irqs *irq, int dev)
2471{
2472 struct snd_dbri *dbri = card->private_data;
2473 int err;
2474
2475 spin_lock_init(&dbri->lock);
2476 dbri->card = card;
2477 dbri->sdev = sdev;
2478 dbri->irq = irq->pri;
2479
2480 dbri->dma = sbus_alloc_consistent(sdev, sizeof(struct dbri_dma),
2481 &dbri->dma_dvma);
2482 memset((void *)dbri->dma, 0, sizeof(struct dbri_dma));
2483
2484 dprintk(D_GEN, "DMA Cmd Block 0x%p (0x%08x)\n",
2485 dbri->dma, dbri->dma_dvma);
2486
2487 /* Map the registers into memory. */
2488 dbri->regs_size = sdev->reg_addrs[0].reg_size;
2489 dbri->regs = sbus_ioremap(&sdev->resource[0], 0,
2490 dbri->regs_size, "DBRI Registers");
2491 if (!dbri->regs) {
2492 printk(KERN_ERR "DBRI: could not allocate registers\n");
2493 sbus_free_consistent(sdev, sizeof(struct dbri_dma),
2494 (void *)dbri->dma, dbri->dma_dvma);
2495 return -EIO;
2496 }
2497
2498 err = request_irq(dbri->irq, snd_dbri_interrupt, IRQF_SHARED,
2499 "DBRI audio", dbri);
2500 if (err) {
2501 printk(KERN_ERR "DBRI: Can't get irq %d\n", dbri->irq);
2502 sbus_iounmap(dbri->regs, dbri->regs_size);
2503 sbus_free_consistent(sdev, sizeof(struct dbri_dma),
2504 (void *)dbri->dma, dbri->dma_dvma);
2505 return err;
2506 }
2507
2508 /* Do low level initialization of the DBRI and CS4215 chips */
2509 dbri_initialize(dbri);
2510 err = cs4215_init(dbri);
2511 if (err) {
2512 snd_dbri_free(dbri);
2513 return err;
2514 }
2515
2516 dbri->next = dbri_list;
2517 dbri_list = dbri;
2518
2519 return 0;
2520}
2521
2522static void snd_dbri_free(struct snd_dbri * dbri)
2523{
2524 dprintk(D_GEN, "snd_dbri_free\n");
2525 dbri_reset(dbri);
2526
2527 if (dbri->irq)
2528 free_irq(dbri->irq, dbri);
2529
2530 if (dbri->regs)
2531 sbus_iounmap(dbri->regs, dbri->regs_size);
2532
2533 if (dbri->dma)
2534 sbus_free_consistent(dbri->sdev, sizeof(struct dbri_dma),
2535 (void *)dbri->dma, dbri->dma_dvma);
2536}
2537
2538static int __init dbri_attach(int prom_node, struct sbus_dev *sdev)
2539{
2540 struct snd_dbri *dbri;
2541 struct linux_prom_irqs irq;
2542 struct resource *rp;
2543 struct snd_card *card;
2544 static int dev = 0;
2545 int err;
2546
2547 if (sdev->prom_name[9] < 'e') {
2548 printk(KERN_ERR "DBRI: unsupported chip version %c found.\n",
2549 sdev->prom_name[9]);
2550 return -EIO;
2551 }
2552
2553 if (dev >= SNDRV_CARDS)
2554 return -ENODEV;
2555 if (!enable[dev]) {
2556 dev++;
2557 return -ENOENT;
2558 }
2559
2560 err = prom_getproperty(prom_node, "intr", (char *)&irq, sizeof(irq));
2561 if (err < 0) {
2562 printk(KERN_ERR "DBRI-%d: Firmware node lacks IRQ property.\n", dev);
2563 return -ENODEV;
2564 }
2565
2566 card = snd_card_new(index[dev], id[dev], THIS_MODULE,
2567 sizeof(struct snd_dbri));
2568 if (card == NULL)
2569 return -ENOMEM;
2570
2571 strcpy(card->driver, "DBRI");
2572 strcpy(card->shortname, "Sun DBRI");
2573 rp = &sdev->resource[0];
2574 sprintf(card->longname, "%s at 0x%02lx:0x%016Lx, irq %d",
2575 card->shortname,
2576 rp->flags & 0xffL, (unsigned long long)rp->start, irq.pri);
2577
2578 if ((err = snd_dbri_create(card, sdev, &irq, dev)) < 0) {
2579 snd_card_free(card);
2580 return err;
2581 }
2582
2583 dbri = card->private_data;
2584 if ((err = snd_dbri_pcm(dbri)) < 0)
2585 goto _err;
2586
2587 if ((err = snd_dbri_mixer(dbri)) < 0)
2588 goto _err;
2589
2590 /* /proc file handling */
2591 snd_dbri_proc(dbri);
2592
2593 if ((err = snd_card_register(card)) < 0)
2594 goto _err;
2595
2596 printk(KERN_INFO "audio%d at %p (irq %d) is DBRI(%c)+CS4215(%d)\n",
2597 dev, dbri->regs,
2598 dbri->irq, sdev->prom_name[9], dbri->mm.version);
2599 dev++;
2600
2601 return 0;
2602
2603 _err:
2604 snd_dbri_free(dbri);
2605 snd_card_free(card);
2606 return err;
2607}
2608
2609/* Probe for the dbri chip and then attach the driver. */
2610static int __init dbri_init(void)
2611{
2612 struct sbus_bus *sbus;
2613 struct sbus_dev *sdev;
2614 int found = 0;
2615
2616 /* Probe each SBUS for the DBRI chip(s). */
2617 for_all_sbusdev(sdev, sbus) {
2618 /*
2619 * The version is coded in the last character
2620 */
2621 if (!strncmp(sdev->prom_name, "SUNW,DBRI", 9)) {
2622 dprintk(D_GEN, "DBRI: Found %s in SBUS slot %d\n",
2623 sdev->prom_name, sdev->slot);
2624
2625 if (dbri_attach(sdev->prom_node, sdev) == 0)
2626 found++;
2627 }
2628 }
2629
2630 return (found > 0) ? 0 : -EIO;
2631}
2632
2633static void __exit dbri_exit(void)
2634{
2635 struct snd_dbri *this = dbri_list;
2636
2637 while (this != NULL) {
2638 struct snd_dbri *next = this->next;
2639 struct snd_card *card = this->card;
2640
2641 snd_dbri_free(this);
2642 snd_card_free(card);
2643 this = next;
2644 }
2645 dbri_list = NULL;
2646}
2647
2648module_init(dbri_init);
2649module_exit(dbri_exit);
This page took 0.033734 seconds and 5 git commands to generate.