KVM: only allow one gsi per fd
[deliverable/linux.git] / virt / kvm / kvm_main.c
... / ...
CommitLineData
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18#include "iodev.h"
19
20#include <linux/kvm_host.h>
21#include <linux/kvm.h>
22#include <linux/module.h>
23#include <linux/errno.h>
24#include <linux/percpu.h>
25#include <linux/gfp.h>
26#include <linux/mm.h>
27#include <linux/miscdevice.h>
28#include <linux/vmalloc.h>
29#include <linux/reboot.h>
30#include <linux/debugfs.h>
31#include <linux/highmem.h>
32#include <linux/file.h>
33#include <linux/sysdev.h>
34#include <linux/cpu.h>
35#include <linux/sched.h>
36#include <linux/cpumask.h>
37#include <linux/smp.h>
38#include <linux/anon_inodes.h>
39#include <linux/profile.h>
40#include <linux/kvm_para.h>
41#include <linux/pagemap.h>
42#include <linux/mman.h>
43#include <linux/swap.h>
44#include <linux/bitops.h>
45#include <linux/spinlock.h>
46#include <linux/compat.h>
47
48#include <asm/processor.h>
49#include <asm/io.h>
50#include <asm/uaccess.h>
51#include <asm/pgtable.h>
52#include <asm-generic/bitops/le.h>
53
54#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
55#include "coalesced_mmio.h"
56#endif
57
58#define CREATE_TRACE_POINTS
59#include <trace/events/kvm.h>
60
61MODULE_AUTHOR("Qumranet");
62MODULE_LICENSE("GPL");
63
64/*
65 * Ordering of locks:
66 *
67 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
68 */
69
70DEFINE_SPINLOCK(kvm_lock);
71LIST_HEAD(vm_list);
72
73static cpumask_var_t cpus_hardware_enabled;
74static int kvm_usage_count = 0;
75static atomic_t hardware_enable_failed;
76
77struct kmem_cache *kvm_vcpu_cache;
78EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
79
80static __read_mostly struct preempt_ops kvm_preempt_ops;
81
82struct dentry *kvm_debugfs_dir;
83
84static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
85 unsigned long arg);
86static int hardware_enable_all(void);
87static void hardware_disable_all(void);
88
89static bool kvm_rebooting;
90
91static bool largepages_enabled = true;
92
93inline int kvm_is_mmio_pfn(pfn_t pfn)
94{
95 if (pfn_valid(pfn)) {
96 struct page *page = compound_head(pfn_to_page(pfn));
97 return PageReserved(page);
98 }
99
100 return true;
101}
102
103/*
104 * Switches to specified vcpu, until a matching vcpu_put()
105 */
106void vcpu_load(struct kvm_vcpu *vcpu)
107{
108 int cpu;
109
110 mutex_lock(&vcpu->mutex);
111 cpu = get_cpu();
112 preempt_notifier_register(&vcpu->preempt_notifier);
113 kvm_arch_vcpu_load(vcpu, cpu);
114 put_cpu();
115}
116
117void vcpu_put(struct kvm_vcpu *vcpu)
118{
119 preempt_disable();
120 kvm_arch_vcpu_put(vcpu);
121 preempt_notifier_unregister(&vcpu->preempt_notifier);
122 preempt_enable();
123 mutex_unlock(&vcpu->mutex);
124}
125
126static void ack_flush(void *_completed)
127{
128}
129
130static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
131{
132 int i, cpu, me;
133 cpumask_var_t cpus;
134 bool called = true;
135 struct kvm_vcpu *vcpu;
136
137 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
138
139 spin_lock(&kvm->requests_lock);
140 me = smp_processor_id();
141 kvm_for_each_vcpu(i, vcpu, kvm) {
142 if (test_and_set_bit(req, &vcpu->requests))
143 continue;
144 cpu = vcpu->cpu;
145 if (cpus != NULL && cpu != -1 && cpu != me)
146 cpumask_set_cpu(cpu, cpus);
147 }
148 if (unlikely(cpus == NULL))
149 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
150 else if (!cpumask_empty(cpus))
151 smp_call_function_many(cpus, ack_flush, NULL, 1);
152 else
153 called = false;
154 spin_unlock(&kvm->requests_lock);
155 free_cpumask_var(cpus);
156 return called;
157}
158
159void kvm_flush_remote_tlbs(struct kvm *kvm)
160{
161 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
162 ++kvm->stat.remote_tlb_flush;
163}
164
165void kvm_reload_remote_mmus(struct kvm *kvm)
166{
167 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
168}
169
170int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
171{
172 struct page *page;
173 int r;
174
175 mutex_init(&vcpu->mutex);
176 vcpu->cpu = -1;
177 vcpu->kvm = kvm;
178 vcpu->vcpu_id = id;
179 init_waitqueue_head(&vcpu->wq);
180
181 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
182 if (!page) {
183 r = -ENOMEM;
184 goto fail;
185 }
186 vcpu->run = page_address(page);
187
188 r = kvm_arch_vcpu_init(vcpu);
189 if (r < 0)
190 goto fail_free_run;
191 return 0;
192
193fail_free_run:
194 free_page((unsigned long)vcpu->run);
195fail:
196 return r;
197}
198EXPORT_SYMBOL_GPL(kvm_vcpu_init);
199
200void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
201{
202 kvm_arch_vcpu_uninit(vcpu);
203 free_page((unsigned long)vcpu->run);
204}
205EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
206
207#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
208static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
209{
210 return container_of(mn, struct kvm, mmu_notifier);
211}
212
213static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
214 struct mm_struct *mm,
215 unsigned long address)
216{
217 struct kvm *kvm = mmu_notifier_to_kvm(mn);
218 int need_tlb_flush;
219
220 /*
221 * When ->invalidate_page runs, the linux pte has been zapped
222 * already but the page is still allocated until
223 * ->invalidate_page returns. So if we increase the sequence
224 * here the kvm page fault will notice if the spte can't be
225 * established because the page is going to be freed. If
226 * instead the kvm page fault establishes the spte before
227 * ->invalidate_page runs, kvm_unmap_hva will release it
228 * before returning.
229 *
230 * The sequence increase only need to be seen at spin_unlock
231 * time, and not at spin_lock time.
232 *
233 * Increasing the sequence after the spin_unlock would be
234 * unsafe because the kvm page fault could then establish the
235 * pte after kvm_unmap_hva returned, without noticing the page
236 * is going to be freed.
237 */
238 spin_lock(&kvm->mmu_lock);
239 kvm->mmu_notifier_seq++;
240 need_tlb_flush = kvm_unmap_hva(kvm, address);
241 spin_unlock(&kvm->mmu_lock);
242
243 /* we've to flush the tlb before the pages can be freed */
244 if (need_tlb_flush)
245 kvm_flush_remote_tlbs(kvm);
246
247}
248
249static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
250 struct mm_struct *mm,
251 unsigned long address,
252 pte_t pte)
253{
254 struct kvm *kvm = mmu_notifier_to_kvm(mn);
255
256 spin_lock(&kvm->mmu_lock);
257 kvm->mmu_notifier_seq++;
258 kvm_set_spte_hva(kvm, address, pte);
259 spin_unlock(&kvm->mmu_lock);
260}
261
262static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
263 struct mm_struct *mm,
264 unsigned long start,
265 unsigned long end)
266{
267 struct kvm *kvm = mmu_notifier_to_kvm(mn);
268 int need_tlb_flush = 0;
269
270 spin_lock(&kvm->mmu_lock);
271 /*
272 * The count increase must become visible at unlock time as no
273 * spte can be established without taking the mmu_lock and
274 * count is also read inside the mmu_lock critical section.
275 */
276 kvm->mmu_notifier_count++;
277 for (; start < end; start += PAGE_SIZE)
278 need_tlb_flush |= kvm_unmap_hva(kvm, start);
279 spin_unlock(&kvm->mmu_lock);
280
281 /* we've to flush the tlb before the pages can be freed */
282 if (need_tlb_flush)
283 kvm_flush_remote_tlbs(kvm);
284}
285
286static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
287 struct mm_struct *mm,
288 unsigned long start,
289 unsigned long end)
290{
291 struct kvm *kvm = mmu_notifier_to_kvm(mn);
292
293 spin_lock(&kvm->mmu_lock);
294 /*
295 * This sequence increase will notify the kvm page fault that
296 * the page that is going to be mapped in the spte could have
297 * been freed.
298 */
299 kvm->mmu_notifier_seq++;
300 /*
301 * The above sequence increase must be visible before the
302 * below count decrease but both values are read by the kvm
303 * page fault under mmu_lock spinlock so we don't need to add
304 * a smb_wmb() here in between the two.
305 */
306 kvm->mmu_notifier_count--;
307 spin_unlock(&kvm->mmu_lock);
308
309 BUG_ON(kvm->mmu_notifier_count < 0);
310}
311
312static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
313 struct mm_struct *mm,
314 unsigned long address)
315{
316 struct kvm *kvm = mmu_notifier_to_kvm(mn);
317 int young;
318
319 spin_lock(&kvm->mmu_lock);
320 young = kvm_age_hva(kvm, address);
321 spin_unlock(&kvm->mmu_lock);
322
323 if (young)
324 kvm_flush_remote_tlbs(kvm);
325
326 return young;
327}
328
329static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
330 struct mm_struct *mm)
331{
332 struct kvm *kvm = mmu_notifier_to_kvm(mn);
333 kvm_arch_flush_shadow(kvm);
334}
335
336static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
337 .invalidate_page = kvm_mmu_notifier_invalidate_page,
338 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
339 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
340 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
341 .change_pte = kvm_mmu_notifier_change_pte,
342 .release = kvm_mmu_notifier_release,
343};
344#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
345
346static struct kvm *kvm_create_vm(void)
347{
348 int r = 0;
349 struct kvm *kvm = kvm_arch_create_vm();
350#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
351 struct page *page;
352#endif
353
354 if (IS_ERR(kvm))
355 goto out;
356
357 r = hardware_enable_all();
358 if (r)
359 goto out_err_nodisable;
360
361#ifdef CONFIG_HAVE_KVM_IRQCHIP
362 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
363 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
364#endif
365
366#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
367 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
368 if (!page) {
369 r = -ENOMEM;
370 goto out_err;
371 }
372 kvm->coalesced_mmio_ring =
373 (struct kvm_coalesced_mmio_ring *)page_address(page);
374#endif
375
376#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
377 {
378 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
379 r = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
380 if (r) {
381#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
382 put_page(page);
383#endif
384 goto out_err;
385 }
386 }
387#endif
388
389 kvm->mm = current->mm;
390 atomic_inc(&kvm->mm->mm_count);
391 spin_lock_init(&kvm->mmu_lock);
392 spin_lock_init(&kvm->requests_lock);
393 kvm_io_bus_init(&kvm->pio_bus);
394 kvm_eventfd_init(kvm);
395 mutex_init(&kvm->lock);
396 mutex_init(&kvm->irq_lock);
397 kvm_io_bus_init(&kvm->mmio_bus);
398 init_rwsem(&kvm->slots_lock);
399 atomic_set(&kvm->users_count, 1);
400 spin_lock(&kvm_lock);
401 list_add(&kvm->vm_list, &vm_list);
402 spin_unlock(&kvm_lock);
403#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
404 kvm_coalesced_mmio_init(kvm);
405#endif
406out:
407 return kvm;
408
409#if defined(KVM_COALESCED_MMIO_PAGE_OFFSET) || \
410 (defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER))
411out_err:
412 hardware_disable_all();
413#endif
414out_err_nodisable:
415 kfree(kvm);
416 return ERR_PTR(r);
417}
418
419/*
420 * Free any memory in @free but not in @dont.
421 */
422static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
423 struct kvm_memory_slot *dont)
424{
425 int i;
426
427 if (!dont || free->rmap != dont->rmap)
428 vfree(free->rmap);
429
430 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
431 vfree(free->dirty_bitmap);
432
433
434 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
435 if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
436 vfree(free->lpage_info[i]);
437 free->lpage_info[i] = NULL;
438 }
439 }
440
441 free->npages = 0;
442 free->dirty_bitmap = NULL;
443 free->rmap = NULL;
444}
445
446void kvm_free_physmem(struct kvm *kvm)
447{
448 int i;
449
450 for (i = 0; i < kvm->nmemslots; ++i)
451 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
452}
453
454static void kvm_destroy_vm(struct kvm *kvm)
455{
456 struct mm_struct *mm = kvm->mm;
457
458 kvm_arch_sync_events(kvm);
459 spin_lock(&kvm_lock);
460 list_del(&kvm->vm_list);
461 spin_unlock(&kvm_lock);
462 kvm_free_irq_routing(kvm);
463 kvm_io_bus_destroy(&kvm->pio_bus);
464 kvm_io_bus_destroy(&kvm->mmio_bus);
465#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
466 if (kvm->coalesced_mmio_ring != NULL)
467 free_page((unsigned long)kvm->coalesced_mmio_ring);
468#endif
469#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
470 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
471#else
472 kvm_arch_flush_shadow(kvm);
473#endif
474 kvm_arch_destroy_vm(kvm);
475 hardware_disable_all();
476 mmdrop(mm);
477}
478
479void kvm_get_kvm(struct kvm *kvm)
480{
481 atomic_inc(&kvm->users_count);
482}
483EXPORT_SYMBOL_GPL(kvm_get_kvm);
484
485void kvm_put_kvm(struct kvm *kvm)
486{
487 if (atomic_dec_and_test(&kvm->users_count))
488 kvm_destroy_vm(kvm);
489}
490EXPORT_SYMBOL_GPL(kvm_put_kvm);
491
492
493static int kvm_vm_release(struct inode *inode, struct file *filp)
494{
495 struct kvm *kvm = filp->private_data;
496
497 kvm_irqfd_release(kvm);
498
499 kvm_put_kvm(kvm);
500 return 0;
501}
502
503/*
504 * Allocate some memory and give it an address in the guest physical address
505 * space.
506 *
507 * Discontiguous memory is allowed, mostly for framebuffers.
508 *
509 * Must be called holding mmap_sem for write.
510 */
511int __kvm_set_memory_region(struct kvm *kvm,
512 struct kvm_userspace_memory_region *mem,
513 int user_alloc)
514{
515 int r;
516 gfn_t base_gfn;
517 unsigned long npages;
518 unsigned long i;
519 struct kvm_memory_slot *memslot;
520 struct kvm_memory_slot old, new;
521
522 r = -EINVAL;
523 /* General sanity checks */
524 if (mem->memory_size & (PAGE_SIZE - 1))
525 goto out;
526 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
527 goto out;
528 if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
529 goto out;
530 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
531 goto out;
532 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
533 goto out;
534
535 memslot = &kvm->memslots[mem->slot];
536 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
537 npages = mem->memory_size >> PAGE_SHIFT;
538
539 if (!npages)
540 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
541
542 new = old = *memslot;
543
544 new.base_gfn = base_gfn;
545 new.npages = npages;
546 new.flags = mem->flags;
547
548 /* Disallow changing a memory slot's size. */
549 r = -EINVAL;
550 if (npages && old.npages && npages != old.npages)
551 goto out_free;
552
553 /* Check for overlaps */
554 r = -EEXIST;
555 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
556 struct kvm_memory_slot *s = &kvm->memslots[i];
557
558 if (s == memslot || !s->npages)
559 continue;
560 if (!((base_gfn + npages <= s->base_gfn) ||
561 (base_gfn >= s->base_gfn + s->npages)))
562 goto out_free;
563 }
564
565 /* Free page dirty bitmap if unneeded */
566 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
567 new.dirty_bitmap = NULL;
568
569 r = -ENOMEM;
570
571 /* Allocate if a slot is being created */
572#ifndef CONFIG_S390
573 if (npages && !new.rmap) {
574 new.rmap = vmalloc(npages * sizeof(struct page *));
575
576 if (!new.rmap)
577 goto out_free;
578
579 memset(new.rmap, 0, npages * sizeof(*new.rmap));
580
581 new.user_alloc = user_alloc;
582 /*
583 * hva_to_rmmap() serialzies with the mmu_lock and to be
584 * safe it has to ignore memslots with !user_alloc &&
585 * !userspace_addr.
586 */
587 if (user_alloc)
588 new.userspace_addr = mem->userspace_addr;
589 else
590 new.userspace_addr = 0;
591 }
592 if (!npages)
593 goto skip_lpage;
594
595 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
596 unsigned long ugfn;
597 unsigned long j;
598 int lpages;
599 int level = i + 2;
600
601 /* Avoid unused variable warning if no large pages */
602 (void)level;
603
604 if (new.lpage_info[i])
605 continue;
606
607 lpages = 1 + (base_gfn + npages - 1) /
608 KVM_PAGES_PER_HPAGE(level);
609 lpages -= base_gfn / KVM_PAGES_PER_HPAGE(level);
610
611 new.lpage_info[i] = vmalloc(lpages * sizeof(*new.lpage_info[i]));
612
613 if (!new.lpage_info[i])
614 goto out_free;
615
616 memset(new.lpage_info[i], 0,
617 lpages * sizeof(*new.lpage_info[i]));
618
619 if (base_gfn % KVM_PAGES_PER_HPAGE(level))
620 new.lpage_info[i][0].write_count = 1;
621 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE(level))
622 new.lpage_info[i][lpages - 1].write_count = 1;
623 ugfn = new.userspace_addr >> PAGE_SHIFT;
624 /*
625 * If the gfn and userspace address are not aligned wrt each
626 * other, or if explicitly asked to, disable large page
627 * support for this slot
628 */
629 if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
630 !largepages_enabled)
631 for (j = 0; j < lpages; ++j)
632 new.lpage_info[i][j].write_count = 1;
633 }
634
635skip_lpage:
636
637 /* Allocate page dirty bitmap if needed */
638 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
639 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
640
641 new.dirty_bitmap = vmalloc(dirty_bytes);
642 if (!new.dirty_bitmap)
643 goto out_free;
644 memset(new.dirty_bitmap, 0, dirty_bytes);
645 if (old.npages)
646 kvm_arch_flush_shadow(kvm);
647 }
648#else /* not defined CONFIG_S390 */
649 new.user_alloc = user_alloc;
650 if (user_alloc)
651 new.userspace_addr = mem->userspace_addr;
652#endif /* not defined CONFIG_S390 */
653
654 if (!npages)
655 kvm_arch_flush_shadow(kvm);
656
657 spin_lock(&kvm->mmu_lock);
658 if (mem->slot >= kvm->nmemslots)
659 kvm->nmemslots = mem->slot + 1;
660
661 *memslot = new;
662 spin_unlock(&kvm->mmu_lock);
663
664 r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
665 if (r) {
666 spin_lock(&kvm->mmu_lock);
667 *memslot = old;
668 spin_unlock(&kvm->mmu_lock);
669 goto out_free;
670 }
671
672 kvm_free_physmem_slot(&old, npages ? &new : NULL);
673 /* Slot deletion case: we have to update the current slot */
674 spin_lock(&kvm->mmu_lock);
675 if (!npages)
676 *memslot = old;
677 spin_unlock(&kvm->mmu_lock);
678#ifdef CONFIG_DMAR
679 /* map the pages in iommu page table */
680 r = kvm_iommu_map_pages(kvm, base_gfn, npages);
681 if (r)
682 goto out;
683#endif
684 return 0;
685
686out_free:
687 kvm_free_physmem_slot(&new, &old);
688out:
689 return r;
690
691}
692EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
693
694int kvm_set_memory_region(struct kvm *kvm,
695 struct kvm_userspace_memory_region *mem,
696 int user_alloc)
697{
698 int r;
699
700 down_write(&kvm->slots_lock);
701 r = __kvm_set_memory_region(kvm, mem, user_alloc);
702 up_write(&kvm->slots_lock);
703 return r;
704}
705EXPORT_SYMBOL_GPL(kvm_set_memory_region);
706
707int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
708 struct
709 kvm_userspace_memory_region *mem,
710 int user_alloc)
711{
712 if (mem->slot >= KVM_MEMORY_SLOTS)
713 return -EINVAL;
714 return kvm_set_memory_region(kvm, mem, user_alloc);
715}
716
717int kvm_get_dirty_log(struct kvm *kvm,
718 struct kvm_dirty_log *log, int *is_dirty)
719{
720 struct kvm_memory_slot *memslot;
721 int r, i;
722 int n;
723 unsigned long any = 0;
724
725 r = -EINVAL;
726 if (log->slot >= KVM_MEMORY_SLOTS)
727 goto out;
728
729 memslot = &kvm->memslots[log->slot];
730 r = -ENOENT;
731 if (!memslot->dirty_bitmap)
732 goto out;
733
734 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
735
736 for (i = 0; !any && i < n/sizeof(long); ++i)
737 any = memslot->dirty_bitmap[i];
738
739 r = -EFAULT;
740 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
741 goto out;
742
743 if (any)
744 *is_dirty = 1;
745
746 r = 0;
747out:
748 return r;
749}
750
751void kvm_disable_largepages(void)
752{
753 largepages_enabled = false;
754}
755EXPORT_SYMBOL_GPL(kvm_disable_largepages);
756
757int is_error_page(struct page *page)
758{
759 return page == bad_page;
760}
761EXPORT_SYMBOL_GPL(is_error_page);
762
763int is_error_pfn(pfn_t pfn)
764{
765 return pfn == bad_pfn;
766}
767EXPORT_SYMBOL_GPL(is_error_pfn);
768
769static inline unsigned long bad_hva(void)
770{
771 return PAGE_OFFSET;
772}
773
774int kvm_is_error_hva(unsigned long addr)
775{
776 return addr == bad_hva();
777}
778EXPORT_SYMBOL_GPL(kvm_is_error_hva);
779
780struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
781{
782 int i;
783
784 for (i = 0; i < kvm->nmemslots; ++i) {
785 struct kvm_memory_slot *memslot = &kvm->memslots[i];
786
787 if (gfn >= memslot->base_gfn
788 && gfn < memslot->base_gfn + memslot->npages)
789 return memslot;
790 }
791 return NULL;
792}
793EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
794
795struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
796{
797 gfn = unalias_gfn(kvm, gfn);
798 return gfn_to_memslot_unaliased(kvm, gfn);
799}
800
801int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
802{
803 int i;
804
805 gfn = unalias_gfn(kvm, gfn);
806 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
807 struct kvm_memory_slot *memslot = &kvm->memslots[i];
808
809 if (gfn >= memslot->base_gfn
810 && gfn < memslot->base_gfn + memslot->npages)
811 return 1;
812 }
813 return 0;
814}
815EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
816
817unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
818{
819 struct kvm_memory_slot *slot;
820
821 gfn = unalias_gfn(kvm, gfn);
822 slot = gfn_to_memslot_unaliased(kvm, gfn);
823 if (!slot)
824 return bad_hva();
825 return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
826}
827EXPORT_SYMBOL_GPL(gfn_to_hva);
828
829pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
830{
831 struct page *page[1];
832 unsigned long addr;
833 int npages;
834 pfn_t pfn;
835
836 might_sleep();
837
838 addr = gfn_to_hva(kvm, gfn);
839 if (kvm_is_error_hva(addr)) {
840 get_page(bad_page);
841 return page_to_pfn(bad_page);
842 }
843
844 npages = get_user_pages_fast(addr, 1, 1, page);
845
846 if (unlikely(npages != 1)) {
847 struct vm_area_struct *vma;
848
849 down_read(&current->mm->mmap_sem);
850 vma = find_vma(current->mm, addr);
851
852 if (vma == NULL || addr < vma->vm_start ||
853 !(vma->vm_flags & VM_PFNMAP)) {
854 up_read(&current->mm->mmap_sem);
855 get_page(bad_page);
856 return page_to_pfn(bad_page);
857 }
858
859 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
860 up_read(&current->mm->mmap_sem);
861 BUG_ON(!kvm_is_mmio_pfn(pfn));
862 } else
863 pfn = page_to_pfn(page[0]);
864
865 return pfn;
866}
867
868EXPORT_SYMBOL_GPL(gfn_to_pfn);
869
870struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
871{
872 pfn_t pfn;
873
874 pfn = gfn_to_pfn(kvm, gfn);
875 if (!kvm_is_mmio_pfn(pfn))
876 return pfn_to_page(pfn);
877
878 WARN_ON(kvm_is_mmio_pfn(pfn));
879
880 get_page(bad_page);
881 return bad_page;
882}
883
884EXPORT_SYMBOL_GPL(gfn_to_page);
885
886void kvm_release_page_clean(struct page *page)
887{
888 kvm_release_pfn_clean(page_to_pfn(page));
889}
890EXPORT_SYMBOL_GPL(kvm_release_page_clean);
891
892void kvm_release_pfn_clean(pfn_t pfn)
893{
894 if (!kvm_is_mmio_pfn(pfn))
895 put_page(pfn_to_page(pfn));
896}
897EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
898
899void kvm_release_page_dirty(struct page *page)
900{
901 kvm_release_pfn_dirty(page_to_pfn(page));
902}
903EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
904
905void kvm_release_pfn_dirty(pfn_t pfn)
906{
907 kvm_set_pfn_dirty(pfn);
908 kvm_release_pfn_clean(pfn);
909}
910EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
911
912void kvm_set_page_dirty(struct page *page)
913{
914 kvm_set_pfn_dirty(page_to_pfn(page));
915}
916EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
917
918void kvm_set_pfn_dirty(pfn_t pfn)
919{
920 if (!kvm_is_mmio_pfn(pfn)) {
921 struct page *page = pfn_to_page(pfn);
922 if (!PageReserved(page))
923 SetPageDirty(page);
924 }
925}
926EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
927
928void kvm_set_pfn_accessed(pfn_t pfn)
929{
930 if (!kvm_is_mmio_pfn(pfn))
931 mark_page_accessed(pfn_to_page(pfn));
932}
933EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
934
935void kvm_get_pfn(pfn_t pfn)
936{
937 if (!kvm_is_mmio_pfn(pfn))
938 get_page(pfn_to_page(pfn));
939}
940EXPORT_SYMBOL_GPL(kvm_get_pfn);
941
942static int next_segment(unsigned long len, int offset)
943{
944 if (len > PAGE_SIZE - offset)
945 return PAGE_SIZE - offset;
946 else
947 return len;
948}
949
950int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
951 int len)
952{
953 int r;
954 unsigned long addr;
955
956 addr = gfn_to_hva(kvm, gfn);
957 if (kvm_is_error_hva(addr))
958 return -EFAULT;
959 r = copy_from_user(data, (void __user *)addr + offset, len);
960 if (r)
961 return -EFAULT;
962 return 0;
963}
964EXPORT_SYMBOL_GPL(kvm_read_guest_page);
965
966int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
967{
968 gfn_t gfn = gpa >> PAGE_SHIFT;
969 int seg;
970 int offset = offset_in_page(gpa);
971 int ret;
972
973 while ((seg = next_segment(len, offset)) != 0) {
974 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
975 if (ret < 0)
976 return ret;
977 offset = 0;
978 len -= seg;
979 data += seg;
980 ++gfn;
981 }
982 return 0;
983}
984EXPORT_SYMBOL_GPL(kvm_read_guest);
985
986int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
987 unsigned long len)
988{
989 int r;
990 unsigned long addr;
991 gfn_t gfn = gpa >> PAGE_SHIFT;
992 int offset = offset_in_page(gpa);
993
994 addr = gfn_to_hva(kvm, gfn);
995 if (kvm_is_error_hva(addr))
996 return -EFAULT;
997 pagefault_disable();
998 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
999 pagefault_enable();
1000 if (r)
1001 return -EFAULT;
1002 return 0;
1003}
1004EXPORT_SYMBOL(kvm_read_guest_atomic);
1005
1006int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1007 int offset, int len)
1008{
1009 int r;
1010 unsigned long addr;
1011
1012 addr = gfn_to_hva(kvm, gfn);
1013 if (kvm_is_error_hva(addr))
1014 return -EFAULT;
1015 r = copy_to_user((void __user *)addr + offset, data, len);
1016 if (r)
1017 return -EFAULT;
1018 mark_page_dirty(kvm, gfn);
1019 return 0;
1020}
1021EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1022
1023int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1024 unsigned long len)
1025{
1026 gfn_t gfn = gpa >> PAGE_SHIFT;
1027 int seg;
1028 int offset = offset_in_page(gpa);
1029 int ret;
1030
1031 while ((seg = next_segment(len, offset)) != 0) {
1032 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1033 if (ret < 0)
1034 return ret;
1035 offset = 0;
1036 len -= seg;
1037 data += seg;
1038 ++gfn;
1039 }
1040 return 0;
1041}
1042
1043int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1044{
1045 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1046}
1047EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1048
1049int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1050{
1051 gfn_t gfn = gpa >> PAGE_SHIFT;
1052 int seg;
1053 int offset = offset_in_page(gpa);
1054 int ret;
1055
1056 while ((seg = next_segment(len, offset)) != 0) {
1057 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1058 if (ret < 0)
1059 return ret;
1060 offset = 0;
1061 len -= seg;
1062 ++gfn;
1063 }
1064 return 0;
1065}
1066EXPORT_SYMBOL_GPL(kvm_clear_guest);
1067
1068void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1069{
1070 struct kvm_memory_slot *memslot;
1071
1072 gfn = unalias_gfn(kvm, gfn);
1073 memslot = gfn_to_memslot_unaliased(kvm, gfn);
1074 if (memslot && memslot->dirty_bitmap) {
1075 unsigned long rel_gfn = gfn - memslot->base_gfn;
1076
1077 /* avoid RMW */
1078 if (!generic_test_le_bit(rel_gfn, memslot->dirty_bitmap))
1079 generic___set_le_bit(rel_gfn, memslot->dirty_bitmap);
1080 }
1081}
1082
1083/*
1084 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1085 */
1086void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1087{
1088 DEFINE_WAIT(wait);
1089
1090 for (;;) {
1091 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1092
1093 if (kvm_arch_vcpu_runnable(vcpu)) {
1094 set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1095 break;
1096 }
1097 if (kvm_cpu_has_pending_timer(vcpu))
1098 break;
1099 if (signal_pending(current))
1100 break;
1101
1102 schedule();
1103 }
1104
1105 finish_wait(&vcpu->wq, &wait);
1106}
1107
1108void kvm_resched(struct kvm_vcpu *vcpu)
1109{
1110 if (!need_resched())
1111 return;
1112 cond_resched();
1113}
1114EXPORT_SYMBOL_GPL(kvm_resched);
1115
1116void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu)
1117{
1118 ktime_t expires;
1119 DEFINE_WAIT(wait);
1120
1121 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1122
1123 /* Sleep for 100 us, and hope lock-holder got scheduled */
1124 expires = ktime_add_ns(ktime_get(), 100000UL);
1125 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1126
1127 finish_wait(&vcpu->wq, &wait);
1128}
1129EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1130
1131static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1132{
1133 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1134 struct page *page;
1135
1136 if (vmf->pgoff == 0)
1137 page = virt_to_page(vcpu->run);
1138#ifdef CONFIG_X86
1139 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1140 page = virt_to_page(vcpu->arch.pio_data);
1141#endif
1142#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1143 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1144 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1145#endif
1146 else
1147 return VM_FAULT_SIGBUS;
1148 get_page(page);
1149 vmf->page = page;
1150 return 0;
1151}
1152
1153static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1154 .fault = kvm_vcpu_fault,
1155};
1156
1157static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1158{
1159 vma->vm_ops = &kvm_vcpu_vm_ops;
1160 return 0;
1161}
1162
1163static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1164{
1165 struct kvm_vcpu *vcpu = filp->private_data;
1166
1167 kvm_put_kvm(vcpu->kvm);
1168 return 0;
1169}
1170
1171static struct file_operations kvm_vcpu_fops = {
1172 .release = kvm_vcpu_release,
1173 .unlocked_ioctl = kvm_vcpu_ioctl,
1174 .compat_ioctl = kvm_vcpu_ioctl,
1175 .mmap = kvm_vcpu_mmap,
1176};
1177
1178/*
1179 * Allocates an inode for the vcpu.
1180 */
1181static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1182{
1183 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1184}
1185
1186/*
1187 * Creates some virtual cpus. Good luck creating more than one.
1188 */
1189static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1190{
1191 int r;
1192 struct kvm_vcpu *vcpu, *v;
1193
1194 vcpu = kvm_arch_vcpu_create(kvm, id);
1195 if (IS_ERR(vcpu))
1196 return PTR_ERR(vcpu);
1197
1198 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1199
1200 r = kvm_arch_vcpu_setup(vcpu);
1201 if (r)
1202 return r;
1203
1204 mutex_lock(&kvm->lock);
1205 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1206 r = -EINVAL;
1207 goto vcpu_destroy;
1208 }
1209
1210 kvm_for_each_vcpu(r, v, kvm)
1211 if (v->vcpu_id == id) {
1212 r = -EEXIST;
1213 goto vcpu_destroy;
1214 }
1215
1216 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1217
1218 /* Now it's all set up, let userspace reach it */
1219 kvm_get_kvm(kvm);
1220 r = create_vcpu_fd(vcpu);
1221 if (r < 0) {
1222 kvm_put_kvm(kvm);
1223 goto vcpu_destroy;
1224 }
1225
1226 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1227 smp_wmb();
1228 atomic_inc(&kvm->online_vcpus);
1229
1230#ifdef CONFIG_KVM_APIC_ARCHITECTURE
1231 if (kvm->bsp_vcpu_id == id)
1232 kvm->bsp_vcpu = vcpu;
1233#endif
1234 mutex_unlock(&kvm->lock);
1235 return r;
1236
1237vcpu_destroy:
1238 mutex_unlock(&kvm->lock);
1239 kvm_arch_vcpu_destroy(vcpu);
1240 return r;
1241}
1242
1243static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1244{
1245 if (sigset) {
1246 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1247 vcpu->sigset_active = 1;
1248 vcpu->sigset = *sigset;
1249 } else
1250 vcpu->sigset_active = 0;
1251 return 0;
1252}
1253
1254static long kvm_vcpu_ioctl(struct file *filp,
1255 unsigned int ioctl, unsigned long arg)
1256{
1257 struct kvm_vcpu *vcpu = filp->private_data;
1258 void __user *argp = (void __user *)arg;
1259 int r;
1260 struct kvm_fpu *fpu = NULL;
1261 struct kvm_sregs *kvm_sregs = NULL;
1262
1263 if (vcpu->kvm->mm != current->mm)
1264 return -EIO;
1265 switch (ioctl) {
1266 case KVM_RUN:
1267 r = -EINVAL;
1268 if (arg)
1269 goto out;
1270 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1271 break;
1272 case KVM_GET_REGS: {
1273 struct kvm_regs *kvm_regs;
1274
1275 r = -ENOMEM;
1276 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1277 if (!kvm_regs)
1278 goto out;
1279 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1280 if (r)
1281 goto out_free1;
1282 r = -EFAULT;
1283 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1284 goto out_free1;
1285 r = 0;
1286out_free1:
1287 kfree(kvm_regs);
1288 break;
1289 }
1290 case KVM_SET_REGS: {
1291 struct kvm_regs *kvm_regs;
1292
1293 r = -ENOMEM;
1294 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1295 if (!kvm_regs)
1296 goto out;
1297 r = -EFAULT;
1298 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1299 goto out_free2;
1300 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1301 if (r)
1302 goto out_free2;
1303 r = 0;
1304out_free2:
1305 kfree(kvm_regs);
1306 break;
1307 }
1308 case KVM_GET_SREGS: {
1309 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1310 r = -ENOMEM;
1311 if (!kvm_sregs)
1312 goto out;
1313 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1314 if (r)
1315 goto out;
1316 r = -EFAULT;
1317 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1318 goto out;
1319 r = 0;
1320 break;
1321 }
1322 case KVM_SET_SREGS: {
1323 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1324 r = -ENOMEM;
1325 if (!kvm_sregs)
1326 goto out;
1327 r = -EFAULT;
1328 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1329 goto out;
1330 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1331 if (r)
1332 goto out;
1333 r = 0;
1334 break;
1335 }
1336 case KVM_GET_MP_STATE: {
1337 struct kvm_mp_state mp_state;
1338
1339 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1340 if (r)
1341 goto out;
1342 r = -EFAULT;
1343 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1344 goto out;
1345 r = 0;
1346 break;
1347 }
1348 case KVM_SET_MP_STATE: {
1349 struct kvm_mp_state mp_state;
1350
1351 r = -EFAULT;
1352 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1353 goto out;
1354 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1355 if (r)
1356 goto out;
1357 r = 0;
1358 break;
1359 }
1360 case KVM_TRANSLATE: {
1361 struct kvm_translation tr;
1362
1363 r = -EFAULT;
1364 if (copy_from_user(&tr, argp, sizeof tr))
1365 goto out;
1366 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1367 if (r)
1368 goto out;
1369 r = -EFAULT;
1370 if (copy_to_user(argp, &tr, sizeof tr))
1371 goto out;
1372 r = 0;
1373 break;
1374 }
1375 case KVM_SET_GUEST_DEBUG: {
1376 struct kvm_guest_debug dbg;
1377
1378 r = -EFAULT;
1379 if (copy_from_user(&dbg, argp, sizeof dbg))
1380 goto out;
1381 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1382 if (r)
1383 goto out;
1384 r = 0;
1385 break;
1386 }
1387 case KVM_SET_SIGNAL_MASK: {
1388 struct kvm_signal_mask __user *sigmask_arg = argp;
1389 struct kvm_signal_mask kvm_sigmask;
1390 sigset_t sigset, *p;
1391
1392 p = NULL;
1393 if (argp) {
1394 r = -EFAULT;
1395 if (copy_from_user(&kvm_sigmask, argp,
1396 sizeof kvm_sigmask))
1397 goto out;
1398 r = -EINVAL;
1399 if (kvm_sigmask.len != sizeof sigset)
1400 goto out;
1401 r = -EFAULT;
1402 if (copy_from_user(&sigset, sigmask_arg->sigset,
1403 sizeof sigset))
1404 goto out;
1405 p = &sigset;
1406 }
1407 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1408 break;
1409 }
1410 case KVM_GET_FPU: {
1411 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1412 r = -ENOMEM;
1413 if (!fpu)
1414 goto out;
1415 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1416 if (r)
1417 goto out;
1418 r = -EFAULT;
1419 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1420 goto out;
1421 r = 0;
1422 break;
1423 }
1424 case KVM_SET_FPU: {
1425 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1426 r = -ENOMEM;
1427 if (!fpu)
1428 goto out;
1429 r = -EFAULT;
1430 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1431 goto out;
1432 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1433 if (r)
1434 goto out;
1435 r = 0;
1436 break;
1437 }
1438 default:
1439 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1440 }
1441out:
1442 kfree(fpu);
1443 kfree(kvm_sregs);
1444 return r;
1445}
1446
1447static long kvm_vm_ioctl(struct file *filp,
1448 unsigned int ioctl, unsigned long arg)
1449{
1450 struct kvm *kvm = filp->private_data;
1451 void __user *argp = (void __user *)arg;
1452 int r;
1453
1454 if (kvm->mm != current->mm)
1455 return -EIO;
1456 switch (ioctl) {
1457 case KVM_CREATE_VCPU:
1458 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1459 if (r < 0)
1460 goto out;
1461 break;
1462 case KVM_SET_USER_MEMORY_REGION: {
1463 struct kvm_userspace_memory_region kvm_userspace_mem;
1464
1465 r = -EFAULT;
1466 if (copy_from_user(&kvm_userspace_mem, argp,
1467 sizeof kvm_userspace_mem))
1468 goto out;
1469
1470 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1471 if (r)
1472 goto out;
1473 break;
1474 }
1475 case KVM_GET_DIRTY_LOG: {
1476 struct kvm_dirty_log log;
1477
1478 r = -EFAULT;
1479 if (copy_from_user(&log, argp, sizeof log))
1480 goto out;
1481 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1482 if (r)
1483 goto out;
1484 break;
1485 }
1486#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1487 case KVM_REGISTER_COALESCED_MMIO: {
1488 struct kvm_coalesced_mmio_zone zone;
1489 r = -EFAULT;
1490 if (copy_from_user(&zone, argp, sizeof zone))
1491 goto out;
1492 r = -ENXIO;
1493 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1494 if (r)
1495 goto out;
1496 r = 0;
1497 break;
1498 }
1499 case KVM_UNREGISTER_COALESCED_MMIO: {
1500 struct kvm_coalesced_mmio_zone zone;
1501 r = -EFAULT;
1502 if (copy_from_user(&zone, argp, sizeof zone))
1503 goto out;
1504 r = -ENXIO;
1505 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1506 if (r)
1507 goto out;
1508 r = 0;
1509 break;
1510 }
1511#endif
1512 case KVM_IRQFD: {
1513 struct kvm_irqfd data;
1514
1515 r = -EFAULT;
1516 if (copy_from_user(&data, argp, sizeof data))
1517 goto out;
1518 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
1519 break;
1520 }
1521 case KVM_IOEVENTFD: {
1522 struct kvm_ioeventfd data;
1523
1524 r = -EFAULT;
1525 if (copy_from_user(&data, argp, sizeof data))
1526 goto out;
1527 r = kvm_ioeventfd(kvm, &data);
1528 break;
1529 }
1530#ifdef CONFIG_KVM_APIC_ARCHITECTURE
1531 case KVM_SET_BOOT_CPU_ID:
1532 r = 0;
1533 mutex_lock(&kvm->lock);
1534 if (atomic_read(&kvm->online_vcpus) != 0)
1535 r = -EBUSY;
1536 else
1537 kvm->bsp_vcpu_id = arg;
1538 mutex_unlock(&kvm->lock);
1539 break;
1540#endif
1541 default:
1542 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1543 if (r == -ENOTTY)
1544 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
1545 }
1546out:
1547 return r;
1548}
1549
1550#ifdef CONFIG_COMPAT
1551struct compat_kvm_dirty_log {
1552 __u32 slot;
1553 __u32 padding1;
1554 union {
1555 compat_uptr_t dirty_bitmap; /* one bit per page */
1556 __u64 padding2;
1557 };
1558};
1559
1560static long kvm_vm_compat_ioctl(struct file *filp,
1561 unsigned int ioctl, unsigned long arg)
1562{
1563 struct kvm *kvm = filp->private_data;
1564 int r;
1565
1566 if (kvm->mm != current->mm)
1567 return -EIO;
1568 switch (ioctl) {
1569 case KVM_GET_DIRTY_LOG: {
1570 struct compat_kvm_dirty_log compat_log;
1571 struct kvm_dirty_log log;
1572
1573 r = -EFAULT;
1574 if (copy_from_user(&compat_log, (void __user *)arg,
1575 sizeof(compat_log)))
1576 goto out;
1577 log.slot = compat_log.slot;
1578 log.padding1 = compat_log.padding1;
1579 log.padding2 = compat_log.padding2;
1580 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
1581
1582 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1583 if (r)
1584 goto out;
1585 break;
1586 }
1587 default:
1588 r = kvm_vm_ioctl(filp, ioctl, arg);
1589 }
1590
1591out:
1592 return r;
1593}
1594#endif
1595
1596static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1597{
1598 struct page *page[1];
1599 unsigned long addr;
1600 int npages;
1601 gfn_t gfn = vmf->pgoff;
1602 struct kvm *kvm = vma->vm_file->private_data;
1603
1604 addr = gfn_to_hva(kvm, gfn);
1605 if (kvm_is_error_hva(addr))
1606 return VM_FAULT_SIGBUS;
1607
1608 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
1609 NULL);
1610 if (unlikely(npages != 1))
1611 return VM_FAULT_SIGBUS;
1612
1613 vmf->page = page[0];
1614 return 0;
1615}
1616
1617static const struct vm_operations_struct kvm_vm_vm_ops = {
1618 .fault = kvm_vm_fault,
1619};
1620
1621static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1622{
1623 vma->vm_ops = &kvm_vm_vm_ops;
1624 return 0;
1625}
1626
1627static struct file_operations kvm_vm_fops = {
1628 .release = kvm_vm_release,
1629 .unlocked_ioctl = kvm_vm_ioctl,
1630#ifdef CONFIG_COMPAT
1631 .compat_ioctl = kvm_vm_compat_ioctl,
1632#endif
1633 .mmap = kvm_vm_mmap,
1634};
1635
1636static int kvm_dev_ioctl_create_vm(void)
1637{
1638 int fd;
1639 struct kvm *kvm;
1640
1641 kvm = kvm_create_vm();
1642 if (IS_ERR(kvm))
1643 return PTR_ERR(kvm);
1644 fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
1645 if (fd < 0)
1646 kvm_put_kvm(kvm);
1647
1648 return fd;
1649}
1650
1651static long kvm_dev_ioctl_check_extension_generic(long arg)
1652{
1653 switch (arg) {
1654 case KVM_CAP_USER_MEMORY:
1655 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
1656 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
1657#ifdef CONFIG_KVM_APIC_ARCHITECTURE
1658 case KVM_CAP_SET_BOOT_CPU_ID:
1659#endif
1660 case KVM_CAP_INTERNAL_ERROR_DATA:
1661 return 1;
1662#ifdef CONFIG_HAVE_KVM_IRQCHIP
1663 case KVM_CAP_IRQ_ROUTING:
1664 return KVM_MAX_IRQ_ROUTES;
1665#endif
1666 default:
1667 break;
1668 }
1669 return kvm_dev_ioctl_check_extension(arg);
1670}
1671
1672static long kvm_dev_ioctl(struct file *filp,
1673 unsigned int ioctl, unsigned long arg)
1674{
1675 long r = -EINVAL;
1676
1677 switch (ioctl) {
1678 case KVM_GET_API_VERSION:
1679 r = -EINVAL;
1680 if (arg)
1681 goto out;
1682 r = KVM_API_VERSION;
1683 break;
1684 case KVM_CREATE_VM:
1685 r = -EINVAL;
1686 if (arg)
1687 goto out;
1688 r = kvm_dev_ioctl_create_vm();
1689 break;
1690 case KVM_CHECK_EXTENSION:
1691 r = kvm_dev_ioctl_check_extension_generic(arg);
1692 break;
1693 case KVM_GET_VCPU_MMAP_SIZE:
1694 r = -EINVAL;
1695 if (arg)
1696 goto out;
1697 r = PAGE_SIZE; /* struct kvm_run */
1698#ifdef CONFIG_X86
1699 r += PAGE_SIZE; /* pio data page */
1700#endif
1701#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1702 r += PAGE_SIZE; /* coalesced mmio ring page */
1703#endif
1704 break;
1705 case KVM_TRACE_ENABLE:
1706 case KVM_TRACE_PAUSE:
1707 case KVM_TRACE_DISABLE:
1708 r = -EOPNOTSUPP;
1709 break;
1710 default:
1711 return kvm_arch_dev_ioctl(filp, ioctl, arg);
1712 }
1713out:
1714 return r;
1715}
1716
1717static struct file_operations kvm_chardev_ops = {
1718 .unlocked_ioctl = kvm_dev_ioctl,
1719 .compat_ioctl = kvm_dev_ioctl,
1720};
1721
1722static struct miscdevice kvm_dev = {
1723 KVM_MINOR,
1724 "kvm",
1725 &kvm_chardev_ops,
1726};
1727
1728static void hardware_enable(void *junk)
1729{
1730 int cpu = raw_smp_processor_id();
1731 int r;
1732
1733 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
1734 return;
1735
1736 cpumask_set_cpu(cpu, cpus_hardware_enabled);
1737
1738 r = kvm_arch_hardware_enable(NULL);
1739
1740 if (r) {
1741 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
1742 atomic_inc(&hardware_enable_failed);
1743 printk(KERN_INFO "kvm: enabling virtualization on "
1744 "CPU%d failed\n", cpu);
1745 }
1746}
1747
1748static void hardware_disable(void *junk)
1749{
1750 int cpu = raw_smp_processor_id();
1751
1752 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
1753 return;
1754 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
1755 kvm_arch_hardware_disable(NULL);
1756}
1757
1758static void hardware_disable_all_nolock(void)
1759{
1760 BUG_ON(!kvm_usage_count);
1761
1762 kvm_usage_count--;
1763 if (!kvm_usage_count)
1764 on_each_cpu(hardware_disable, NULL, 1);
1765}
1766
1767static void hardware_disable_all(void)
1768{
1769 spin_lock(&kvm_lock);
1770 hardware_disable_all_nolock();
1771 spin_unlock(&kvm_lock);
1772}
1773
1774static int hardware_enable_all(void)
1775{
1776 int r = 0;
1777
1778 spin_lock(&kvm_lock);
1779
1780 kvm_usage_count++;
1781 if (kvm_usage_count == 1) {
1782 atomic_set(&hardware_enable_failed, 0);
1783 on_each_cpu(hardware_enable, NULL, 1);
1784
1785 if (atomic_read(&hardware_enable_failed)) {
1786 hardware_disable_all_nolock();
1787 r = -EBUSY;
1788 }
1789 }
1790
1791 spin_unlock(&kvm_lock);
1792
1793 return r;
1794}
1795
1796static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
1797 void *v)
1798{
1799 int cpu = (long)v;
1800
1801 if (!kvm_usage_count)
1802 return NOTIFY_OK;
1803
1804 val &= ~CPU_TASKS_FROZEN;
1805 switch (val) {
1806 case CPU_DYING:
1807 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1808 cpu);
1809 hardware_disable(NULL);
1810 break;
1811 case CPU_UP_CANCELED:
1812 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1813 cpu);
1814 smp_call_function_single(cpu, hardware_disable, NULL, 1);
1815 break;
1816 case CPU_ONLINE:
1817 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
1818 cpu);
1819 smp_call_function_single(cpu, hardware_enable, NULL, 1);
1820 break;
1821 }
1822 return NOTIFY_OK;
1823}
1824
1825
1826asmlinkage void kvm_handle_fault_on_reboot(void)
1827{
1828 if (kvm_rebooting)
1829 /* spin while reset goes on */
1830 while (true)
1831 ;
1832 /* Fault while not rebooting. We want the trace. */
1833 BUG();
1834}
1835EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
1836
1837static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1838 void *v)
1839{
1840 /*
1841 * Some (well, at least mine) BIOSes hang on reboot if
1842 * in vmx root mode.
1843 *
1844 * And Intel TXT required VMX off for all cpu when system shutdown.
1845 */
1846 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
1847 kvm_rebooting = true;
1848 on_each_cpu(hardware_disable, NULL, 1);
1849 return NOTIFY_OK;
1850}
1851
1852static struct notifier_block kvm_reboot_notifier = {
1853 .notifier_call = kvm_reboot,
1854 .priority = 0,
1855};
1856
1857void kvm_io_bus_init(struct kvm_io_bus *bus)
1858{
1859 memset(bus, 0, sizeof(*bus));
1860}
1861
1862void kvm_io_bus_destroy(struct kvm_io_bus *bus)
1863{
1864 int i;
1865
1866 for (i = 0; i < bus->dev_count; i++) {
1867 struct kvm_io_device *pos = bus->devs[i];
1868
1869 kvm_iodevice_destructor(pos);
1870 }
1871}
1872
1873/* kvm_io_bus_write - called under kvm->slots_lock */
1874int kvm_io_bus_write(struct kvm_io_bus *bus, gpa_t addr,
1875 int len, const void *val)
1876{
1877 int i;
1878 for (i = 0; i < bus->dev_count; i++)
1879 if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
1880 return 0;
1881 return -EOPNOTSUPP;
1882}
1883
1884/* kvm_io_bus_read - called under kvm->slots_lock */
1885int kvm_io_bus_read(struct kvm_io_bus *bus, gpa_t addr, int len, void *val)
1886{
1887 int i;
1888 for (i = 0; i < bus->dev_count; i++)
1889 if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
1890 return 0;
1891 return -EOPNOTSUPP;
1892}
1893
1894int kvm_io_bus_register_dev(struct kvm *kvm, struct kvm_io_bus *bus,
1895 struct kvm_io_device *dev)
1896{
1897 int ret;
1898
1899 down_write(&kvm->slots_lock);
1900 ret = __kvm_io_bus_register_dev(bus, dev);
1901 up_write(&kvm->slots_lock);
1902
1903 return ret;
1904}
1905
1906/* An unlocked version. Caller must have write lock on slots_lock. */
1907int __kvm_io_bus_register_dev(struct kvm_io_bus *bus,
1908 struct kvm_io_device *dev)
1909{
1910 if (bus->dev_count > NR_IOBUS_DEVS-1)
1911 return -ENOSPC;
1912
1913 bus->devs[bus->dev_count++] = dev;
1914
1915 return 0;
1916}
1917
1918void kvm_io_bus_unregister_dev(struct kvm *kvm,
1919 struct kvm_io_bus *bus,
1920 struct kvm_io_device *dev)
1921{
1922 down_write(&kvm->slots_lock);
1923 __kvm_io_bus_unregister_dev(bus, dev);
1924 up_write(&kvm->slots_lock);
1925}
1926
1927/* An unlocked version. Caller must have write lock on slots_lock. */
1928void __kvm_io_bus_unregister_dev(struct kvm_io_bus *bus,
1929 struct kvm_io_device *dev)
1930{
1931 int i;
1932
1933 for (i = 0; i < bus->dev_count; i++)
1934 if (bus->devs[i] == dev) {
1935 bus->devs[i] = bus->devs[--bus->dev_count];
1936 break;
1937 }
1938}
1939
1940static struct notifier_block kvm_cpu_notifier = {
1941 .notifier_call = kvm_cpu_hotplug,
1942 .priority = 20, /* must be > scheduler priority */
1943};
1944
1945static int vm_stat_get(void *_offset, u64 *val)
1946{
1947 unsigned offset = (long)_offset;
1948 struct kvm *kvm;
1949
1950 *val = 0;
1951 spin_lock(&kvm_lock);
1952 list_for_each_entry(kvm, &vm_list, vm_list)
1953 *val += *(u32 *)((void *)kvm + offset);
1954 spin_unlock(&kvm_lock);
1955 return 0;
1956}
1957
1958DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
1959
1960static int vcpu_stat_get(void *_offset, u64 *val)
1961{
1962 unsigned offset = (long)_offset;
1963 struct kvm *kvm;
1964 struct kvm_vcpu *vcpu;
1965 int i;
1966
1967 *val = 0;
1968 spin_lock(&kvm_lock);
1969 list_for_each_entry(kvm, &vm_list, vm_list)
1970 kvm_for_each_vcpu(i, vcpu, kvm)
1971 *val += *(u32 *)((void *)vcpu + offset);
1972
1973 spin_unlock(&kvm_lock);
1974 return 0;
1975}
1976
1977DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
1978
1979static const struct file_operations *stat_fops[] = {
1980 [KVM_STAT_VCPU] = &vcpu_stat_fops,
1981 [KVM_STAT_VM] = &vm_stat_fops,
1982};
1983
1984static void kvm_init_debug(void)
1985{
1986 struct kvm_stats_debugfs_item *p;
1987
1988 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
1989 for (p = debugfs_entries; p->name; ++p)
1990 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
1991 (void *)(long)p->offset,
1992 stat_fops[p->kind]);
1993}
1994
1995static void kvm_exit_debug(void)
1996{
1997 struct kvm_stats_debugfs_item *p;
1998
1999 for (p = debugfs_entries; p->name; ++p)
2000 debugfs_remove(p->dentry);
2001 debugfs_remove(kvm_debugfs_dir);
2002}
2003
2004static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2005{
2006 if (kvm_usage_count)
2007 hardware_disable(NULL);
2008 return 0;
2009}
2010
2011static int kvm_resume(struct sys_device *dev)
2012{
2013 if (kvm_usage_count)
2014 hardware_enable(NULL);
2015 return 0;
2016}
2017
2018static struct sysdev_class kvm_sysdev_class = {
2019 .name = "kvm",
2020 .suspend = kvm_suspend,
2021 .resume = kvm_resume,
2022};
2023
2024static struct sys_device kvm_sysdev = {
2025 .id = 0,
2026 .cls = &kvm_sysdev_class,
2027};
2028
2029struct page *bad_page;
2030pfn_t bad_pfn;
2031
2032static inline
2033struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2034{
2035 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2036}
2037
2038static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2039{
2040 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2041
2042 kvm_arch_vcpu_load(vcpu, cpu);
2043}
2044
2045static void kvm_sched_out(struct preempt_notifier *pn,
2046 struct task_struct *next)
2047{
2048 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2049
2050 kvm_arch_vcpu_put(vcpu);
2051}
2052
2053int kvm_init(void *opaque, unsigned int vcpu_size,
2054 struct module *module)
2055{
2056 int r;
2057 int cpu;
2058
2059 r = kvm_arch_init(opaque);
2060 if (r)
2061 goto out_fail;
2062
2063 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2064
2065 if (bad_page == NULL) {
2066 r = -ENOMEM;
2067 goto out;
2068 }
2069
2070 bad_pfn = page_to_pfn(bad_page);
2071
2072 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2073 r = -ENOMEM;
2074 goto out_free_0;
2075 }
2076
2077 r = kvm_arch_hardware_setup();
2078 if (r < 0)
2079 goto out_free_0a;
2080
2081 for_each_online_cpu(cpu) {
2082 smp_call_function_single(cpu,
2083 kvm_arch_check_processor_compat,
2084 &r, 1);
2085 if (r < 0)
2086 goto out_free_1;
2087 }
2088
2089 r = register_cpu_notifier(&kvm_cpu_notifier);
2090 if (r)
2091 goto out_free_2;
2092 register_reboot_notifier(&kvm_reboot_notifier);
2093
2094 r = sysdev_class_register(&kvm_sysdev_class);
2095 if (r)
2096 goto out_free_3;
2097
2098 r = sysdev_register(&kvm_sysdev);
2099 if (r)
2100 goto out_free_4;
2101
2102 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2103 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2104 __alignof__(struct kvm_vcpu),
2105 0, NULL);
2106 if (!kvm_vcpu_cache) {
2107 r = -ENOMEM;
2108 goto out_free_5;
2109 }
2110
2111 kvm_chardev_ops.owner = module;
2112 kvm_vm_fops.owner = module;
2113 kvm_vcpu_fops.owner = module;
2114
2115 r = misc_register(&kvm_dev);
2116 if (r) {
2117 printk(KERN_ERR "kvm: misc device register failed\n");
2118 goto out_free;
2119 }
2120
2121 kvm_preempt_ops.sched_in = kvm_sched_in;
2122 kvm_preempt_ops.sched_out = kvm_sched_out;
2123
2124 kvm_init_debug();
2125
2126 return 0;
2127
2128out_free:
2129 kmem_cache_destroy(kvm_vcpu_cache);
2130out_free_5:
2131 sysdev_unregister(&kvm_sysdev);
2132out_free_4:
2133 sysdev_class_unregister(&kvm_sysdev_class);
2134out_free_3:
2135 unregister_reboot_notifier(&kvm_reboot_notifier);
2136 unregister_cpu_notifier(&kvm_cpu_notifier);
2137out_free_2:
2138out_free_1:
2139 kvm_arch_hardware_unsetup();
2140out_free_0a:
2141 free_cpumask_var(cpus_hardware_enabled);
2142out_free_0:
2143 __free_page(bad_page);
2144out:
2145 kvm_arch_exit();
2146out_fail:
2147 return r;
2148}
2149EXPORT_SYMBOL_GPL(kvm_init);
2150
2151void kvm_exit(void)
2152{
2153 tracepoint_synchronize_unregister();
2154 kvm_exit_debug();
2155 misc_deregister(&kvm_dev);
2156 kmem_cache_destroy(kvm_vcpu_cache);
2157 sysdev_unregister(&kvm_sysdev);
2158 sysdev_class_unregister(&kvm_sysdev_class);
2159 unregister_reboot_notifier(&kvm_reboot_notifier);
2160 unregister_cpu_notifier(&kvm_cpu_notifier);
2161 on_each_cpu(hardware_disable, NULL, 1);
2162 kvm_arch_hardware_unsetup();
2163 kvm_arch_exit();
2164 free_cpumask_var(cpus_hardware_enabled);
2165 __free_page(bad_page);
2166}
2167EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.038849 seconds and 5 git commands to generate.