Merge tag 'topic/atomic-helpers-2014-11-09' of git://anongit.freedesktop.org/drm...
[deliverable/linux.git] / Documentation / DocBook / drm.tmpl
1 <?xml version="1.0" encoding="UTF-8"?>
2 <!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
3 "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
4
5 <book id="drmDevelopersGuide">
6 <bookinfo>
7 <title>Linux DRM Developer's Guide</title>
8
9 <authorgroup>
10 <author>
11 <firstname>Jesse</firstname>
12 <surname>Barnes</surname>
13 <contrib>Initial version</contrib>
14 <affiliation>
15 <orgname>Intel Corporation</orgname>
16 <address>
17 <email>jesse.barnes@intel.com</email>
18 </address>
19 </affiliation>
20 </author>
21 <author>
22 <firstname>Laurent</firstname>
23 <surname>Pinchart</surname>
24 <contrib>Driver internals</contrib>
25 <affiliation>
26 <orgname>Ideas on board SPRL</orgname>
27 <address>
28 <email>laurent.pinchart@ideasonboard.com</email>
29 </address>
30 </affiliation>
31 </author>
32 <author>
33 <firstname>Daniel</firstname>
34 <surname>Vetter</surname>
35 <contrib>Contributions all over the place</contrib>
36 <affiliation>
37 <orgname>Intel Corporation</orgname>
38 <address>
39 <email>daniel.vetter@ffwll.ch</email>
40 </address>
41 </affiliation>
42 </author>
43 </authorgroup>
44
45 <copyright>
46 <year>2008-2009</year>
47 <year>2013-2014</year>
48 <holder>Intel Corporation</holder>
49 </copyright>
50 <copyright>
51 <year>2012</year>
52 <holder>Laurent Pinchart</holder>
53 </copyright>
54
55 <legalnotice>
56 <para>
57 The contents of this file may be used under the terms of the GNU
58 General Public License version 2 (the "GPL") as distributed in
59 the kernel source COPYING file.
60 </para>
61 </legalnotice>
62
63 <revhistory>
64 <!-- Put document revisions here, newest first. -->
65 <revision>
66 <revnumber>1.0</revnumber>
67 <date>2012-07-13</date>
68 <authorinitials>LP</authorinitials>
69 <revremark>Added extensive documentation about driver internals.
70 </revremark>
71 </revision>
72 </revhistory>
73 </bookinfo>
74
75 <toc></toc>
76
77 <part id="drmCore">
78 <title>DRM Core</title>
79 <partintro>
80 <para>
81 This first part of the DRM Developer's Guide documents core DRM code,
82 helper libraries for writing drivers and generic userspace interfaces
83 exposed by DRM drivers.
84 </para>
85 </partintro>
86
87 <chapter id="drmIntroduction">
88 <title>Introduction</title>
89 <para>
90 The Linux DRM layer contains code intended to support the needs
91 of complex graphics devices, usually containing programmable
92 pipelines well suited to 3D graphics acceleration. Graphics
93 drivers in the kernel may make use of DRM functions to make
94 tasks like memory management, interrupt handling and DMA easier,
95 and provide a uniform interface to applications.
96 </para>
97 <para>
98 A note on versions: this guide covers features found in the DRM
99 tree, including the TTM memory manager, output configuration and
100 mode setting, and the new vblank internals, in addition to all
101 the regular features found in current kernels.
102 </para>
103 <para>
104 [Insert diagram of typical DRM stack here]
105 </para>
106 </chapter>
107
108 <!-- Internals -->
109
110 <chapter id="drmInternals">
111 <title>DRM Internals</title>
112 <para>
113 This chapter documents DRM internals relevant to driver authors
114 and developers working to add support for the latest features to
115 existing drivers.
116 </para>
117 <para>
118 First, we go over some typical driver initialization
119 requirements, like setting up command buffers, creating an
120 initial output configuration, and initializing core services.
121 Subsequent sections cover core internals in more detail,
122 providing implementation notes and examples.
123 </para>
124 <para>
125 The DRM layer provides several services to graphics drivers,
126 many of them driven by the application interfaces it provides
127 through libdrm, the library that wraps most of the DRM ioctls.
128 These include vblank event handling, memory
129 management, output management, framebuffer management, command
130 submission &amp; fencing, suspend/resume support, and DMA
131 services.
132 </para>
133
134 <!-- Internals: driver init -->
135
136 <sect1>
137 <title>Driver Initialization</title>
138 <para>
139 At the core of every DRM driver is a <structname>drm_driver</structname>
140 structure. Drivers typically statically initialize a drm_driver structure,
141 and then pass it to one of the <function>drm_*_init()</function> functions
142 to register it with the DRM subsystem.
143 </para>
144 <para>
145 Newer drivers that no longer require a <structname>drm_bus</structname>
146 structure can alternatively use the low-level device initialization and
147 registration functions such as <function>drm_dev_alloc()</function> and
148 <function>drm_dev_register()</function> directly.
149 </para>
150 <para>
151 The <structname>drm_driver</structname> structure contains static
152 information that describes the driver and features it supports, and
153 pointers to methods that the DRM core will call to implement the DRM API.
154 We will first go through the <structname>drm_driver</structname> static
155 information fields, and will then describe individual operations in
156 details as they get used in later sections.
157 </para>
158 <sect2>
159 <title>Driver Information</title>
160 <sect3>
161 <title>Driver Features</title>
162 <para>
163 Drivers inform the DRM core about their requirements and supported
164 features by setting appropriate flags in the
165 <structfield>driver_features</structfield> field. Since those flags
166 influence the DRM core behaviour since registration time, most of them
167 must be set to registering the <structname>drm_driver</structname>
168 instance.
169 </para>
170 <synopsis>u32 driver_features;</synopsis>
171 <variablelist>
172 <title>Driver Feature Flags</title>
173 <varlistentry>
174 <term>DRIVER_USE_AGP</term>
175 <listitem><para>
176 Driver uses AGP interface, the DRM core will manage AGP resources.
177 </para></listitem>
178 </varlistentry>
179 <varlistentry>
180 <term>DRIVER_REQUIRE_AGP</term>
181 <listitem><para>
182 Driver needs AGP interface to function. AGP initialization failure
183 will become a fatal error.
184 </para></listitem>
185 </varlistentry>
186 <varlistentry>
187 <term>DRIVER_PCI_DMA</term>
188 <listitem><para>
189 Driver is capable of PCI DMA, mapping of PCI DMA buffers to
190 userspace will be enabled. Deprecated.
191 </para></listitem>
192 </varlistentry>
193 <varlistentry>
194 <term>DRIVER_SG</term>
195 <listitem><para>
196 Driver can perform scatter/gather DMA, allocation and mapping of
197 scatter/gather buffers will be enabled. Deprecated.
198 </para></listitem>
199 </varlistentry>
200 <varlistentry>
201 <term>DRIVER_HAVE_DMA</term>
202 <listitem><para>
203 Driver supports DMA, the userspace DMA API will be supported.
204 Deprecated.
205 </para></listitem>
206 </varlistentry>
207 <varlistentry>
208 <term>DRIVER_HAVE_IRQ</term><term>DRIVER_IRQ_SHARED</term>
209 <listitem><para>
210 DRIVER_HAVE_IRQ indicates whether the driver has an IRQ handler
211 managed by the DRM Core. The core will support simple IRQ handler
212 installation when the flag is set. The installation process is
213 described in <xref linkend="drm-irq-registration"/>.</para>
214 <para>DRIVER_IRQ_SHARED indicates whether the device &amp; handler
215 support shared IRQs (note that this is required of PCI drivers).
216 </para></listitem>
217 </varlistentry>
218 <varlistentry>
219 <term>DRIVER_GEM</term>
220 <listitem><para>
221 Driver use the GEM memory manager.
222 </para></listitem>
223 </varlistentry>
224 <varlistentry>
225 <term>DRIVER_MODESET</term>
226 <listitem><para>
227 Driver supports mode setting interfaces (KMS).
228 </para></listitem>
229 </varlistentry>
230 <varlistentry>
231 <term>DRIVER_PRIME</term>
232 <listitem><para>
233 Driver implements DRM PRIME buffer sharing.
234 </para></listitem>
235 </varlistentry>
236 <varlistentry>
237 <term>DRIVER_RENDER</term>
238 <listitem><para>
239 Driver supports dedicated render nodes.
240 </para></listitem>
241 </varlistentry>
242 </variablelist>
243 </sect3>
244 <sect3>
245 <title>Major, Minor and Patchlevel</title>
246 <synopsis>int major;
247 int minor;
248 int patchlevel;</synopsis>
249 <para>
250 The DRM core identifies driver versions by a major, minor and patch
251 level triplet. The information is printed to the kernel log at
252 initialization time and passed to userspace through the
253 DRM_IOCTL_VERSION ioctl.
254 </para>
255 <para>
256 The major and minor numbers are also used to verify the requested driver
257 API version passed to DRM_IOCTL_SET_VERSION. When the driver API changes
258 between minor versions, applications can call DRM_IOCTL_SET_VERSION to
259 select a specific version of the API. If the requested major isn't equal
260 to the driver major, or the requested minor is larger than the driver
261 minor, the DRM_IOCTL_SET_VERSION call will return an error. Otherwise
262 the driver's set_version() method will be called with the requested
263 version.
264 </para>
265 </sect3>
266 <sect3>
267 <title>Name, Description and Date</title>
268 <synopsis>char *name;
269 char *desc;
270 char *date;</synopsis>
271 <para>
272 The driver name is printed to the kernel log at initialization time,
273 used for IRQ registration and passed to userspace through
274 DRM_IOCTL_VERSION.
275 </para>
276 <para>
277 The driver description is a purely informative string passed to
278 userspace through the DRM_IOCTL_VERSION ioctl and otherwise unused by
279 the kernel.
280 </para>
281 <para>
282 The driver date, formatted as YYYYMMDD, is meant to identify the date of
283 the latest modification to the driver. However, as most drivers fail to
284 update it, its value is mostly useless. The DRM core prints it to the
285 kernel log at initialization time and passes it to userspace through the
286 DRM_IOCTL_VERSION ioctl.
287 </para>
288 </sect3>
289 </sect2>
290 <sect2>
291 <title>Device Registration</title>
292 <para>
293 A number of functions are provided to help with device registration.
294 The functions deal with PCI and platform devices, respectively.
295 </para>
296 !Edrivers/gpu/drm/drm_pci.c
297 !Edrivers/gpu/drm/drm_platform.c
298 <para>
299 New drivers that no longer rely on the services provided by the
300 <structname>drm_bus</structname> structure can call the low-level
301 device registration functions directly. The
302 <function>drm_dev_alloc()</function> function can be used to allocate
303 and initialize a new <structname>drm_device</structname> structure.
304 Drivers will typically want to perform some additional setup on this
305 structure, such as allocating driver-specific data and storing a
306 pointer to it in the DRM device's <structfield>dev_private</structfield>
307 field. Drivers should also set the device's unique name using the
308 <function>drm_dev_set_unique()</function> function. After it has been
309 set up a device can be registered with the DRM subsystem by calling
310 <function>drm_dev_register()</function>. This will cause the device to
311 be exposed to userspace and will call the driver's
312 <structfield>.load()</structfield> implementation. When a device is
313 removed, the DRM device can safely be unregistered and freed by calling
314 <function>drm_dev_unregister()</function> followed by a call to
315 <function>drm_dev_unref()</function>.
316 </para>
317 !Edrivers/gpu/drm/drm_drv.c
318 </sect2>
319 <sect2>
320 <title>Driver Load</title>
321 <para>
322 The <methodname>load</methodname> method is the driver and device
323 initialization entry point. The method is responsible for allocating and
324 initializing driver private data, performing resource allocation and
325 mapping (e.g. acquiring
326 clocks, mapping registers or allocating command buffers), initializing
327 the memory manager (<xref linkend="drm-memory-management"/>), installing
328 the IRQ handler (<xref linkend="drm-irq-registration"/>), setting up
329 vertical blanking handling (<xref linkend="drm-vertical-blank"/>), mode
330 setting (<xref linkend="drm-mode-setting"/>) and initial output
331 configuration (<xref linkend="drm-kms-init"/>).
332 </para>
333 <note><para>
334 If compatibility is a concern (e.g. with drivers converted over from
335 User Mode Setting to Kernel Mode Setting), care must be taken to prevent
336 device initialization and control that is incompatible with currently
337 active userspace drivers. For instance, if user level mode setting
338 drivers are in use, it would be problematic to perform output discovery
339 &amp; configuration at load time. Likewise, if user-level drivers
340 unaware of memory management are in use, memory management and command
341 buffer setup may need to be omitted. These requirements are
342 driver-specific, and care needs to be taken to keep both old and new
343 applications and libraries working.
344 </para></note>
345 <synopsis>int (*load) (struct drm_device *, unsigned long flags);</synopsis>
346 <para>
347 The method takes two arguments, a pointer to the newly created
348 <structname>drm_device</structname> and flags. The flags are used to
349 pass the <structfield>driver_data</structfield> field of the device id
350 corresponding to the device passed to <function>drm_*_init()</function>.
351 Only PCI devices currently use this, USB and platform DRM drivers have
352 their <methodname>load</methodname> method called with flags to 0.
353 </para>
354 <sect3>
355 <title>Driver Private Data</title>
356 <para>
357 The driver private hangs off the main
358 <structname>drm_device</structname> structure and can be used for
359 tracking various device-specific bits of information, like register
360 offsets, command buffer status, register state for suspend/resume, etc.
361 At load time, a driver may simply allocate one and set
362 <structname>drm_device</structname>.<structfield>dev_priv</structfield>
363 appropriately; it should be freed and
364 <structname>drm_device</structname>.<structfield>dev_priv</structfield>
365 set to NULL when the driver is unloaded.
366 </para>
367 </sect3>
368 <sect3 id="drm-irq-registration">
369 <title>IRQ Registration</title>
370 <para>
371 The DRM core tries to facilitate IRQ handler registration and
372 unregistration by providing <function>drm_irq_install</function> and
373 <function>drm_irq_uninstall</function> functions. Those functions only
374 support a single interrupt per device, devices that use more than one
375 IRQs need to be handled manually.
376 </para>
377 <sect4>
378 <title>Managed IRQ Registration</title>
379 <para>
380 <function>drm_irq_install</function> starts by calling the
381 <methodname>irq_preinstall</methodname> driver operation. The operation
382 is optional and must make sure that the interrupt will not get fired by
383 clearing all pending interrupt flags or disabling the interrupt.
384 </para>
385 <para>
386 The passed-in IRQ will then be requested by a call to
387 <function>request_irq</function>. If the DRIVER_IRQ_SHARED driver
388 feature flag is set, a shared (IRQF_SHARED) IRQ handler will be
389 requested.
390 </para>
391 <para>
392 The IRQ handler function must be provided as the mandatory irq_handler
393 driver operation. It will get passed directly to
394 <function>request_irq</function> and thus has the same prototype as all
395 IRQ handlers. It will get called with a pointer to the DRM device as the
396 second argument.
397 </para>
398 <para>
399 Finally the function calls the optional
400 <methodname>irq_postinstall</methodname> driver operation. The operation
401 usually enables interrupts (excluding the vblank interrupt, which is
402 enabled separately), but drivers may choose to enable/disable interrupts
403 at a different time.
404 </para>
405 <para>
406 <function>drm_irq_uninstall</function> is similarly used to uninstall an
407 IRQ handler. It starts by waking up all processes waiting on a vblank
408 interrupt to make sure they don't hang, and then calls the optional
409 <methodname>irq_uninstall</methodname> driver operation. The operation
410 must disable all hardware interrupts. Finally the function frees the IRQ
411 by calling <function>free_irq</function>.
412 </para>
413 </sect4>
414 <sect4>
415 <title>Manual IRQ Registration</title>
416 <para>
417 Drivers that require multiple interrupt handlers can't use the managed
418 IRQ registration functions. In that case IRQs must be registered and
419 unregistered manually (usually with the <function>request_irq</function>
420 and <function>free_irq</function> functions, or their devm_* equivalent).
421 </para>
422 <para>
423 When manually registering IRQs, drivers must not set the DRIVER_HAVE_IRQ
424 driver feature flag, and must not provide the
425 <methodname>irq_handler</methodname> driver operation. They must set the
426 <structname>drm_device</structname> <structfield>irq_enabled</structfield>
427 field to 1 upon registration of the IRQs, and clear it to 0 after
428 unregistering the IRQs.
429 </para>
430 </sect4>
431 </sect3>
432 <sect3>
433 <title>Memory Manager Initialization</title>
434 <para>
435 Every DRM driver requires a memory manager which must be initialized at
436 load time. DRM currently contains two memory managers, the Translation
437 Table Manager (TTM) and the Graphics Execution Manager (GEM).
438 This document describes the use of the GEM memory manager only. See
439 <xref linkend="drm-memory-management"/> for details.
440 </para>
441 </sect3>
442 <sect3>
443 <title>Miscellaneous Device Configuration</title>
444 <para>
445 Another task that may be necessary for PCI devices during configuration
446 is mapping the video BIOS. On many devices, the VBIOS describes device
447 configuration, LCD panel timings (if any), and contains flags indicating
448 device state. Mapping the BIOS can be done using the pci_map_rom() call,
449 a convenience function that takes care of mapping the actual ROM,
450 whether it has been shadowed into memory (typically at address 0xc0000)
451 or exists on the PCI device in the ROM BAR. Note that after the ROM has
452 been mapped and any necessary information has been extracted, it should
453 be unmapped; on many devices, the ROM address decoder is shared with
454 other BARs, so leaving it mapped could cause undesired behaviour like
455 hangs or memory corruption.
456 <!--!Fdrivers/pci/rom.c pci_map_rom-->
457 </para>
458 </sect3>
459 </sect2>
460 </sect1>
461
462 <!-- Internals: memory management -->
463
464 <sect1 id="drm-memory-management">
465 <title>Memory management</title>
466 <para>
467 Modern Linux systems require large amount of graphics memory to store
468 frame buffers, textures, vertices and other graphics-related data. Given
469 the very dynamic nature of many of that data, managing graphics memory
470 efficiently is thus crucial for the graphics stack and plays a central
471 role in the DRM infrastructure.
472 </para>
473 <para>
474 The DRM core includes two memory managers, namely Translation Table Maps
475 (TTM) and Graphics Execution Manager (GEM). TTM was the first DRM memory
476 manager to be developed and tried to be a one-size-fits-them all
477 solution. It provides a single userspace API to accommodate the need of
478 all hardware, supporting both Unified Memory Architecture (UMA) devices
479 and devices with dedicated video RAM (i.e. most discrete video cards).
480 This resulted in a large, complex piece of code that turned out to be
481 hard to use for driver development.
482 </para>
483 <para>
484 GEM started as an Intel-sponsored project in reaction to TTM's
485 complexity. Its design philosophy is completely different: instead of
486 providing a solution to every graphics memory-related problems, GEM
487 identified common code between drivers and created a support library to
488 share it. GEM has simpler initialization and execution requirements than
489 TTM, but has no video RAM management capabilities and is thus limited to
490 UMA devices.
491 </para>
492 <sect2>
493 <title>The Translation Table Manager (TTM)</title>
494 <para>
495 TTM design background and information belongs here.
496 </para>
497 <sect3>
498 <title>TTM initialization</title>
499 <warning><para>This section is outdated.</para></warning>
500 <para>
501 Drivers wishing to support TTM must fill out a drm_bo_driver
502 structure. The structure contains several fields with function
503 pointers for initializing the TTM, allocating and freeing memory,
504 waiting for command completion and fence synchronization, and memory
505 migration. See the radeon_ttm.c file for an example of usage.
506 </para>
507 <para>
508 The ttm_global_reference structure is made up of several fields:
509 </para>
510 <programlisting>
511 struct ttm_global_reference {
512 enum ttm_global_types global_type;
513 size_t size;
514 void *object;
515 int (*init) (struct ttm_global_reference *);
516 void (*release) (struct ttm_global_reference *);
517 };
518 </programlisting>
519 <para>
520 There should be one global reference structure for your memory
521 manager as a whole, and there will be others for each object
522 created by the memory manager at runtime. Your global TTM should
523 have a type of TTM_GLOBAL_TTM_MEM. The size field for the global
524 object should be sizeof(struct ttm_mem_global), and the init and
525 release hooks should point at your driver-specific init and
526 release routines, which probably eventually call
527 ttm_mem_global_init and ttm_mem_global_release, respectively.
528 </para>
529 <para>
530 Once your global TTM accounting structure is set up and initialized
531 by calling ttm_global_item_ref() on it,
532 you need to create a buffer object TTM to
533 provide a pool for buffer object allocation by clients and the
534 kernel itself. The type of this object should be TTM_GLOBAL_TTM_BO,
535 and its size should be sizeof(struct ttm_bo_global). Again,
536 driver-specific init and release functions may be provided,
537 likely eventually calling ttm_bo_global_init() and
538 ttm_bo_global_release(), respectively. Also, like the previous
539 object, ttm_global_item_ref() is used to create an initial reference
540 count for the TTM, which will call your initialization function.
541 </para>
542 </sect3>
543 </sect2>
544 <sect2 id="drm-gem">
545 <title>The Graphics Execution Manager (GEM)</title>
546 <para>
547 The GEM design approach has resulted in a memory manager that doesn't
548 provide full coverage of all (or even all common) use cases in its
549 userspace or kernel API. GEM exposes a set of standard memory-related
550 operations to userspace and a set of helper functions to drivers, and let
551 drivers implement hardware-specific operations with their own private API.
552 </para>
553 <para>
554 The GEM userspace API is described in the
555 <ulink url="http://lwn.net/Articles/283798/"><citetitle>GEM - the Graphics
556 Execution Manager</citetitle></ulink> article on LWN. While slightly
557 outdated, the document provides a good overview of the GEM API principles.
558 Buffer allocation and read and write operations, described as part of the
559 common GEM API, are currently implemented using driver-specific ioctls.
560 </para>
561 <para>
562 GEM is data-agnostic. It manages abstract buffer objects without knowing
563 what individual buffers contain. APIs that require knowledge of buffer
564 contents or purpose, such as buffer allocation or synchronization
565 primitives, are thus outside of the scope of GEM and must be implemented
566 using driver-specific ioctls.
567 </para>
568 <para>
569 On a fundamental level, GEM involves several operations:
570 <itemizedlist>
571 <listitem>Memory allocation and freeing</listitem>
572 <listitem>Command execution</listitem>
573 <listitem>Aperture management at command execution time</listitem>
574 </itemizedlist>
575 Buffer object allocation is relatively straightforward and largely
576 provided by Linux's shmem layer, which provides memory to back each
577 object.
578 </para>
579 <para>
580 Device-specific operations, such as command execution, pinning, buffer
581 read &amp; write, mapping, and domain ownership transfers are left to
582 driver-specific ioctls.
583 </para>
584 <sect3>
585 <title>GEM Initialization</title>
586 <para>
587 Drivers that use GEM must set the DRIVER_GEM bit in the struct
588 <structname>drm_driver</structname>
589 <structfield>driver_features</structfield> field. The DRM core will
590 then automatically initialize the GEM core before calling the
591 <methodname>load</methodname> operation. Behind the scene, this will
592 create a DRM Memory Manager object which provides an address space
593 pool for object allocation.
594 </para>
595 <para>
596 In a KMS configuration, drivers need to allocate and initialize a
597 command ring buffer following core GEM initialization if required by
598 the hardware. UMA devices usually have what is called a "stolen"
599 memory region, which provides space for the initial framebuffer and
600 large, contiguous memory regions required by the device. This space is
601 typically not managed by GEM, and must be initialized separately into
602 its own DRM MM object.
603 </para>
604 </sect3>
605 <sect3>
606 <title>GEM Objects Creation</title>
607 <para>
608 GEM splits creation of GEM objects and allocation of the memory that
609 backs them in two distinct operations.
610 </para>
611 <para>
612 GEM objects are represented by an instance of struct
613 <structname>drm_gem_object</structname>. Drivers usually need to extend
614 GEM objects with private information and thus create a driver-specific
615 GEM object structure type that embeds an instance of struct
616 <structname>drm_gem_object</structname>.
617 </para>
618 <para>
619 To create a GEM object, a driver allocates memory for an instance of its
620 specific GEM object type and initializes the embedded struct
621 <structname>drm_gem_object</structname> with a call to
622 <function>drm_gem_object_init</function>. The function takes a pointer to
623 the DRM device, a pointer to the GEM object and the buffer object size
624 in bytes.
625 </para>
626 <para>
627 GEM uses shmem to allocate anonymous pageable memory.
628 <function>drm_gem_object_init</function> will create an shmfs file of
629 the requested size and store it into the struct
630 <structname>drm_gem_object</structname> <structfield>filp</structfield>
631 field. The memory is used as either main storage for the object when the
632 graphics hardware uses system memory directly or as a backing store
633 otherwise.
634 </para>
635 <para>
636 Drivers are responsible for the actual physical pages allocation by
637 calling <function>shmem_read_mapping_page_gfp</function> for each page.
638 Note that they can decide to allocate pages when initializing the GEM
639 object, or to delay allocation until the memory is needed (for instance
640 when a page fault occurs as a result of a userspace memory access or
641 when the driver needs to start a DMA transfer involving the memory).
642 </para>
643 <para>
644 Anonymous pageable memory allocation is not always desired, for instance
645 when the hardware requires physically contiguous system memory as is
646 often the case in embedded devices. Drivers can create GEM objects with
647 no shmfs backing (called private GEM objects) by initializing them with
648 a call to <function>drm_gem_private_object_init</function> instead of
649 <function>drm_gem_object_init</function>. Storage for private GEM
650 objects must be managed by drivers.
651 </para>
652 <para>
653 Drivers that do not need to extend GEM objects with private information
654 can call the <function>drm_gem_object_alloc</function> function to
655 allocate and initialize a struct <structname>drm_gem_object</structname>
656 instance. The GEM core will call the optional driver
657 <methodname>gem_init_object</methodname> operation after initializing
658 the GEM object with <function>drm_gem_object_init</function>.
659 <synopsis>int (*gem_init_object) (struct drm_gem_object *obj);</synopsis>
660 </para>
661 <para>
662 No alloc-and-init function exists for private GEM objects.
663 </para>
664 </sect3>
665 <sect3>
666 <title>GEM Objects Lifetime</title>
667 <para>
668 All GEM objects are reference-counted by the GEM core. References can be
669 acquired and release by <function>calling drm_gem_object_reference</function>
670 and <function>drm_gem_object_unreference</function> respectively. The
671 caller must hold the <structname>drm_device</structname>
672 <structfield>struct_mutex</structfield> lock. As a convenience, GEM
673 provides the <function>drm_gem_object_reference_unlocked</function> and
674 <function>drm_gem_object_unreference_unlocked</function> functions that
675 can be called without holding the lock.
676 </para>
677 <para>
678 When the last reference to a GEM object is released the GEM core calls
679 the <structname>drm_driver</structname>
680 <methodname>gem_free_object</methodname> operation. That operation is
681 mandatory for GEM-enabled drivers and must free the GEM object and all
682 associated resources.
683 </para>
684 <para>
685 <synopsis>void (*gem_free_object) (struct drm_gem_object *obj);</synopsis>
686 Drivers are responsible for freeing all GEM object resources, including
687 the resources created by the GEM core. If an mmap offset has been
688 created for the object (in which case
689 <structname>drm_gem_object</structname>::<structfield>map_list</structfield>::<structfield>map</structfield>
690 is not NULL) it must be freed by a call to
691 <function>drm_gem_free_mmap_offset</function>. The shmfs backing store
692 must be released by calling <function>drm_gem_object_release</function>
693 (that function can safely be called if no shmfs backing store has been
694 created).
695 </para>
696 </sect3>
697 <sect3>
698 <title>GEM Objects Naming</title>
699 <para>
700 Communication between userspace and the kernel refers to GEM objects
701 using local handles, global names or, more recently, file descriptors.
702 All of those are 32-bit integer values; the usual Linux kernel limits
703 apply to the file descriptors.
704 </para>
705 <para>
706 GEM handles are local to a DRM file. Applications get a handle to a GEM
707 object through a driver-specific ioctl, and can use that handle to refer
708 to the GEM object in other standard or driver-specific ioctls. Closing a
709 DRM file handle frees all its GEM handles and dereferences the
710 associated GEM objects.
711 </para>
712 <para>
713 To create a handle for a GEM object drivers call
714 <function>drm_gem_handle_create</function>. The function takes a pointer
715 to the DRM file and the GEM object and returns a locally unique handle.
716 When the handle is no longer needed drivers delete it with a call to
717 <function>drm_gem_handle_delete</function>. Finally the GEM object
718 associated with a handle can be retrieved by a call to
719 <function>drm_gem_object_lookup</function>.
720 </para>
721 <para>
722 Handles don't take ownership of GEM objects, they only take a reference
723 to the object that will be dropped when the handle is destroyed. To
724 avoid leaking GEM objects, drivers must make sure they drop the
725 reference(s) they own (such as the initial reference taken at object
726 creation time) as appropriate, without any special consideration for the
727 handle. For example, in the particular case of combined GEM object and
728 handle creation in the implementation of the
729 <methodname>dumb_create</methodname> operation, drivers must drop the
730 initial reference to the GEM object before returning the handle.
731 </para>
732 <para>
733 GEM names are similar in purpose to handles but are not local to DRM
734 files. They can be passed between processes to reference a GEM object
735 globally. Names can't be used directly to refer to objects in the DRM
736 API, applications must convert handles to names and names to handles
737 using the DRM_IOCTL_GEM_FLINK and DRM_IOCTL_GEM_OPEN ioctls
738 respectively. The conversion is handled by the DRM core without any
739 driver-specific support.
740 </para>
741 <para>
742 GEM also supports buffer sharing with dma-buf file descriptors through
743 PRIME. GEM-based drivers must use the provided helpers functions to
744 implement the exporting and importing correctly. See <xref linkend="drm-prime-support" />.
745 Since sharing file descriptors is inherently more secure than the
746 easily guessable and global GEM names it is the preferred buffer
747 sharing mechanism. Sharing buffers through GEM names is only supported
748 for legacy userspace. Furthermore PRIME also allows cross-device
749 buffer sharing since it is based on dma-bufs.
750 </para>
751 </sect3>
752 <sect3 id="drm-gem-objects-mapping">
753 <title>GEM Objects Mapping</title>
754 <para>
755 Because mapping operations are fairly heavyweight GEM favours
756 read/write-like access to buffers, implemented through driver-specific
757 ioctls, over mapping buffers to userspace. However, when random access
758 to the buffer is needed (to perform software rendering for instance),
759 direct access to the object can be more efficient.
760 </para>
761 <para>
762 The mmap system call can't be used directly to map GEM objects, as they
763 don't have their own file handle. Two alternative methods currently
764 co-exist to map GEM objects to userspace. The first method uses a
765 driver-specific ioctl to perform the mapping operation, calling
766 <function>do_mmap</function> under the hood. This is often considered
767 dubious, seems to be discouraged for new GEM-enabled drivers, and will
768 thus not be described here.
769 </para>
770 <para>
771 The second method uses the mmap system call on the DRM file handle.
772 <synopsis>void *mmap(void *addr, size_t length, int prot, int flags, int fd,
773 off_t offset);</synopsis>
774 DRM identifies the GEM object to be mapped by a fake offset passed
775 through the mmap offset argument. Prior to being mapped, a GEM object
776 must thus be associated with a fake offset. To do so, drivers must call
777 <function>drm_gem_create_mmap_offset</function> on the object. The
778 function allocates a fake offset range from a pool and stores the
779 offset divided by PAGE_SIZE in
780 <literal>obj-&gt;map_list.hash.key</literal>. Care must be taken not to
781 call <function>drm_gem_create_mmap_offset</function> if a fake offset
782 has already been allocated for the object. This can be tested by
783 <literal>obj-&gt;map_list.map</literal> being non-NULL.
784 </para>
785 <para>
786 Once allocated, the fake offset value
787 (<literal>obj-&gt;map_list.hash.key &lt;&lt; PAGE_SHIFT</literal>)
788 must be passed to the application in a driver-specific way and can then
789 be used as the mmap offset argument.
790 </para>
791 <para>
792 The GEM core provides a helper method <function>drm_gem_mmap</function>
793 to handle object mapping. The method can be set directly as the mmap
794 file operation handler. It will look up the GEM object based on the
795 offset value and set the VMA operations to the
796 <structname>drm_driver</structname> <structfield>gem_vm_ops</structfield>
797 field. Note that <function>drm_gem_mmap</function> doesn't map memory to
798 userspace, but relies on the driver-provided fault handler to map pages
799 individually.
800 </para>
801 <para>
802 To use <function>drm_gem_mmap</function>, drivers must fill the struct
803 <structname>drm_driver</structname> <structfield>gem_vm_ops</structfield>
804 field with a pointer to VM operations.
805 </para>
806 <para>
807 <synopsis>struct vm_operations_struct *gem_vm_ops
808
809 struct vm_operations_struct {
810 void (*open)(struct vm_area_struct * area);
811 void (*close)(struct vm_area_struct * area);
812 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
813 };</synopsis>
814 </para>
815 <para>
816 The <methodname>open</methodname> and <methodname>close</methodname>
817 operations must update the GEM object reference count. Drivers can use
818 the <function>drm_gem_vm_open</function> and
819 <function>drm_gem_vm_close</function> helper functions directly as open
820 and close handlers.
821 </para>
822 <para>
823 The fault operation handler is responsible for mapping individual pages
824 to userspace when a page fault occurs. Depending on the memory
825 allocation scheme, drivers can allocate pages at fault time, or can
826 decide to allocate memory for the GEM object at the time the object is
827 created.
828 </para>
829 <para>
830 Drivers that want to map the GEM object upfront instead of handling page
831 faults can implement their own mmap file operation handler.
832 </para>
833 </sect3>
834 <sect3>
835 <title>Memory Coherency</title>
836 <para>
837 When mapped to the device or used in a command buffer, backing pages
838 for an object are flushed to memory and marked write combined so as to
839 be coherent with the GPU. Likewise, if the CPU accesses an object
840 after the GPU has finished rendering to the object, then the object
841 must be made coherent with the CPU's view of memory, usually involving
842 GPU cache flushing of various kinds. This core CPU&lt;-&gt;GPU
843 coherency management is provided by a device-specific ioctl, which
844 evaluates an object's current domain and performs any necessary
845 flushing or synchronization to put the object into the desired
846 coherency domain (note that the object may be busy, i.e. an active
847 render target; in that case, setting the domain blocks the client and
848 waits for rendering to complete before performing any necessary
849 flushing operations).
850 </para>
851 </sect3>
852 <sect3>
853 <title>Command Execution</title>
854 <para>
855 Perhaps the most important GEM function for GPU devices is providing a
856 command execution interface to clients. Client programs construct
857 command buffers containing references to previously allocated memory
858 objects, and then submit them to GEM. At that point, GEM takes care to
859 bind all the objects into the GTT, execute the buffer, and provide
860 necessary synchronization between clients accessing the same buffers.
861 This often involves evicting some objects from the GTT and re-binding
862 others (a fairly expensive operation), and providing relocation
863 support which hides fixed GTT offsets from clients. Clients must take
864 care not to submit command buffers that reference more objects than
865 can fit in the GTT; otherwise, GEM will reject them and no rendering
866 will occur. Similarly, if several objects in the buffer require fence
867 registers to be allocated for correct rendering (e.g. 2D blits on
868 pre-965 chips), care must be taken not to require more fence registers
869 than are available to the client. Such resource management should be
870 abstracted from the client in libdrm.
871 </para>
872 </sect3>
873 <sect3>
874 <title>GEM Function Reference</title>
875 !Edrivers/gpu/drm/drm_gem.c
876 </sect3>
877 </sect2>
878 <sect2>
879 <title>VMA Offset Manager</title>
880 !Pdrivers/gpu/drm/drm_vma_manager.c vma offset manager
881 !Edrivers/gpu/drm/drm_vma_manager.c
882 !Iinclude/drm/drm_vma_manager.h
883 </sect2>
884 <sect2 id="drm-prime-support">
885 <title>PRIME Buffer Sharing</title>
886 <para>
887 PRIME is the cross device buffer sharing framework in drm, originally
888 created for the OPTIMUS range of multi-gpu platforms. To userspace
889 PRIME buffers are dma-buf based file descriptors.
890 </para>
891 <sect3>
892 <title>Overview and Driver Interface</title>
893 <para>
894 Similar to GEM global names, PRIME file descriptors are
895 also used to share buffer objects across processes. They offer
896 additional security: as file descriptors must be explicitly sent over
897 UNIX domain sockets to be shared between applications, they can't be
898 guessed like the globally unique GEM names.
899 </para>
900 <para>
901 Drivers that support the PRIME
902 API must set the DRIVER_PRIME bit in the struct
903 <structname>drm_driver</structname>
904 <structfield>driver_features</structfield> field, and implement the
905 <methodname>prime_handle_to_fd</methodname> and
906 <methodname>prime_fd_to_handle</methodname> operations.
907 </para>
908 <para>
909 <synopsis>int (*prime_handle_to_fd)(struct drm_device *dev,
910 struct drm_file *file_priv, uint32_t handle,
911 uint32_t flags, int *prime_fd);
912 int (*prime_fd_to_handle)(struct drm_device *dev,
913 struct drm_file *file_priv, int prime_fd,
914 uint32_t *handle);</synopsis>
915 Those two operations convert a handle to a PRIME file descriptor and
916 vice versa. Drivers must use the kernel dma-buf buffer sharing framework
917 to manage the PRIME file descriptors. Similar to the mode setting
918 API PRIME is agnostic to the underlying buffer object manager, as
919 long as handles are 32bit unsigned integers.
920 </para>
921 <para>
922 While non-GEM drivers must implement the operations themselves, GEM
923 drivers must use the <function>drm_gem_prime_handle_to_fd</function>
924 and <function>drm_gem_prime_fd_to_handle</function> helper functions.
925 Those helpers rely on the driver
926 <methodname>gem_prime_export</methodname> and
927 <methodname>gem_prime_import</methodname> operations to create a dma-buf
928 instance from a GEM object (dma-buf exporter role) and to create a GEM
929 object from a dma-buf instance (dma-buf importer role).
930 </para>
931 <para>
932 <synopsis>struct dma_buf * (*gem_prime_export)(struct drm_device *dev,
933 struct drm_gem_object *obj,
934 int flags);
935 struct drm_gem_object * (*gem_prime_import)(struct drm_device *dev,
936 struct dma_buf *dma_buf);</synopsis>
937 These two operations are mandatory for GEM drivers that support
938 PRIME.
939 </para>
940 </sect3>
941 <sect3>
942 <title>PRIME Helper Functions</title>
943 !Pdrivers/gpu/drm/drm_prime.c PRIME Helpers
944 </sect3>
945 </sect2>
946 <sect2>
947 <title>PRIME Function References</title>
948 !Edrivers/gpu/drm/drm_prime.c
949 </sect2>
950 <sect2>
951 <title>DRM MM Range Allocator</title>
952 <sect3>
953 <title>Overview</title>
954 !Pdrivers/gpu/drm/drm_mm.c Overview
955 </sect3>
956 <sect3>
957 <title>LRU Scan/Eviction Support</title>
958 !Pdrivers/gpu/drm/drm_mm.c lru scan roaster
959 </sect3>
960 </sect2>
961 <sect2>
962 <title>DRM MM Range Allocator Function References</title>
963 !Edrivers/gpu/drm/drm_mm.c
964 !Iinclude/drm/drm_mm.h
965 </sect2>
966 </sect1>
967
968 <!-- Internals: mode setting -->
969
970 <sect1 id="drm-mode-setting">
971 <title>Mode Setting</title>
972 <para>
973 Drivers must initialize the mode setting core by calling
974 <function>drm_mode_config_init</function> on the DRM device. The function
975 initializes the <structname>drm_device</structname>
976 <structfield>mode_config</structfield> field and never fails. Once done,
977 mode configuration must be setup by initializing the following fields.
978 </para>
979 <itemizedlist>
980 <listitem>
981 <synopsis>int min_width, min_height;
982 int max_width, max_height;</synopsis>
983 <para>
984 Minimum and maximum width and height of the frame buffers in pixel
985 units.
986 </para>
987 </listitem>
988 <listitem>
989 <synopsis>struct drm_mode_config_funcs *funcs;</synopsis>
990 <para>Mode setting functions.</para>
991 </listitem>
992 </itemizedlist>
993 <sect2>
994 <title>Display Modes Function Reference</title>
995 !Iinclude/drm/drm_modes.h
996 !Edrivers/gpu/drm/drm_modes.c
997 </sect2>
998 <sect2>
999 <title>Atomic Mode Setting Function Reference</title>
1000 !Edrivers/gpu/drm/drm_atomic.c
1001 </sect2>
1002 <sect2>
1003 <title>Frame Buffer Creation</title>
1004 <synopsis>struct drm_framebuffer *(*fb_create)(struct drm_device *dev,
1005 struct drm_file *file_priv,
1006 struct drm_mode_fb_cmd2 *mode_cmd);</synopsis>
1007 <para>
1008 Frame buffers are abstract memory objects that provide a source of
1009 pixels to scanout to a CRTC. Applications explicitly request the
1010 creation of frame buffers through the DRM_IOCTL_MODE_ADDFB(2) ioctls and
1011 receive an opaque handle that can be passed to the KMS CRTC control,
1012 plane configuration and page flip functions.
1013 </para>
1014 <para>
1015 Frame buffers rely on the underneath memory manager for low-level memory
1016 operations. When creating a frame buffer applications pass a memory
1017 handle (or a list of memory handles for multi-planar formats) through
1018 the <parameter>drm_mode_fb_cmd2</parameter> argument. For drivers using
1019 GEM as their userspace buffer management interface this would be a GEM
1020 handle. Drivers are however free to use their own backing storage object
1021 handles, e.g. vmwgfx directly exposes special TTM handles to userspace
1022 and so expects TTM handles in the create ioctl and not GEM handles.
1023 </para>
1024 <para>
1025 Drivers must first validate the requested frame buffer parameters passed
1026 through the mode_cmd argument. In particular this is where invalid
1027 sizes, pixel formats or pitches can be caught.
1028 </para>
1029 <para>
1030 If the parameters are deemed valid, drivers then create, initialize and
1031 return an instance of struct <structname>drm_framebuffer</structname>.
1032 If desired the instance can be embedded in a larger driver-specific
1033 structure. Drivers must fill its <structfield>width</structfield>,
1034 <structfield>height</structfield>, <structfield>pitches</structfield>,
1035 <structfield>offsets</structfield>, <structfield>depth</structfield>,
1036 <structfield>bits_per_pixel</structfield> and
1037 <structfield>pixel_format</structfield> fields from the values passed
1038 through the <parameter>drm_mode_fb_cmd2</parameter> argument. They
1039 should call the <function>drm_helper_mode_fill_fb_struct</function>
1040 helper function to do so.
1041 </para>
1042
1043 <para>
1044 The initialization of the new framebuffer instance is finalized with a
1045 call to <function>drm_framebuffer_init</function> which takes a pointer
1046 to DRM frame buffer operations (struct
1047 <structname>drm_framebuffer_funcs</structname>). Note that this function
1048 publishes the framebuffer and so from this point on it can be accessed
1049 concurrently from other threads. Hence it must be the last step in the
1050 driver's framebuffer initialization sequence. Frame buffer operations
1051 are
1052 <itemizedlist>
1053 <listitem>
1054 <synopsis>int (*create_handle)(struct drm_framebuffer *fb,
1055 struct drm_file *file_priv, unsigned int *handle);</synopsis>
1056 <para>
1057 Create a handle to the frame buffer underlying memory object. If
1058 the frame buffer uses a multi-plane format, the handle will
1059 reference the memory object associated with the first plane.
1060 </para>
1061 <para>
1062 Drivers call <function>drm_gem_handle_create</function> to create
1063 the handle.
1064 </para>
1065 </listitem>
1066 <listitem>
1067 <synopsis>void (*destroy)(struct drm_framebuffer *framebuffer);</synopsis>
1068 <para>
1069 Destroy the frame buffer object and frees all associated
1070 resources. Drivers must call
1071 <function>drm_framebuffer_cleanup</function> to free resources
1072 allocated by the DRM core for the frame buffer object, and must
1073 make sure to unreference all memory objects associated with the
1074 frame buffer. Handles created by the
1075 <methodname>create_handle</methodname> operation are released by
1076 the DRM core.
1077 </para>
1078 </listitem>
1079 <listitem>
1080 <synopsis>int (*dirty)(struct drm_framebuffer *framebuffer,
1081 struct drm_file *file_priv, unsigned flags, unsigned color,
1082 struct drm_clip_rect *clips, unsigned num_clips);</synopsis>
1083 <para>
1084 This optional operation notifies the driver that a region of the
1085 frame buffer has changed in response to a DRM_IOCTL_MODE_DIRTYFB
1086 ioctl call.
1087 </para>
1088 </listitem>
1089 </itemizedlist>
1090 </para>
1091 <para>
1092 The lifetime of a drm framebuffer is controlled with a reference count,
1093 drivers can grab additional references with
1094 <function>drm_framebuffer_reference</function>and drop them
1095 again with <function>drm_framebuffer_unreference</function>. For
1096 driver-private framebuffers for which the last reference is never
1097 dropped (e.g. for the fbdev framebuffer when the struct
1098 <structname>drm_framebuffer</structname> is embedded into the fbdev
1099 helper struct) drivers can manually clean up a framebuffer at module
1100 unload time with
1101 <function>drm_framebuffer_unregister_private</function>.
1102 </para>
1103 </sect2>
1104 <sect2>
1105 <title>Dumb Buffer Objects</title>
1106 <para>
1107 The KMS API doesn't standardize backing storage object creation and
1108 leaves it to driver-specific ioctls. Furthermore actually creating a
1109 buffer object even for GEM-based drivers is done through a
1110 driver-specific ioctl - GEM only has a common userspace interface for
1111 sharing and destroying objects. While not an issue for full-fledged
1112 graphics stacks that include device-specific userspace components (in
1113 libdrm for instance), this limit makes DRM-based early boot graphics
1114 unnecessarily complex.
1115 </para>
1116 <para>
1117 Dumb objects partly alleviate the problem by providing a standard
1118 API to create dumb buffers suitable for scanout, which can then be used
1119 to create KMS frame buffers.
1120 </para>
1121 <para>
1122 To support dumb objects drivers must implement the
1123 <methodname>dumb_create</methodname>,
1124 <methodname>dumb_destroy</methodname> and
1125 <methodname>dumb_map_offset</methodname> operations.
1126 </para>
1127 <itemizedlist>
1128 <listitem>
1129 <synopsis>int (*dumb_create)(struct drm_file *file_priv, struct drm_device *dev,
1130 struct drm_mode_create_dumb *args);</synopsis>
1131 <para>
1132 The <methodname>dumb_create</methodname> operation creates a driver
1133 object (GEM or TTM handle) suitable for scanout based on the
1134 width, height and depth from the struct
1135 <structname>drm_mode_create_dumb</structname> argument. It fills the
1136 argument's <structfield>handle</structfield>,
1137 <structfield>pitch</structfield> and <structfield>size</structfield>
1138 fields with a handle for the newly created object and its line
1139 pitch and size in bytes.
1140 </para>
1141 </listitem>
1142 <listitem>
1143 <synopsis>int (*dumb_destroy)(struct drm_file *file_priv, struct drm_device *dev,
1144 uint32_t handle);</synopsis>
1145 <para>
1146 The <methodname>dumb_destroy</methodname> operation destroys a dumb
1147 object created by <methodname>dumb_create</methodname>.
1148 </para>
1149 </listitem>
1150 <listitem>
1151 <synopsis>int (*dumb_map_offset)(struct drm_file *file_priv, struct drm_device *dev,
1152 uint32_t handle, uint64_t *offset);</synopsis>
1153 <para>
1154 The <methodname>dumb_map_offset</methodname> operation associates an
1155 mmap fake offset with the object given by the handle and returns
1156 it. Drivers must use the
1157 <function>drm_gem_create_mmap_offset</function> function to
1158 associate the fake offset as described in
1159 <xref linkend="drm-gem-objects-mapping"/>.
1160 </para>
1161 </listitem>
1162 </itemizedlist>
1163 <para>
1164 Note that dumb objects may not be used for gpu acceleration, as has been
1165 attempted on some ARM embedded platforms. Such drivers really must have
1166 a hardware-specific ioctl to allocate suitable buffer objects.
1167 </para>
1168 </sect2>
1169 <sect2>
1170 <title>Output Polling</title>
1171 <synopsis>void (*output_poll_changed)(struct drm_device *dev);</synopsis>
1172 <para>
1173 This operation notifies the driver that the status of one or more
1174 connectors has changed. Drivers that use the fb helper can just call the
1175 <function>drm_fb_helper_hotplug_event</function> function to handle this
1176 operation.
1177 </para>
1178 </sect2>
1179 <sect2>
1180 <title>Locking</title>
1181 <para>
1182 Beside some lookup structures with their own locking (which is hidden
1183 behind the interface functions) most of the modeset state is protected
1184 by the <code>dev-&lt;mode_config.lock</code> mutex and additionally
1185 per-crtc locks to allow cursor updates, pageflips and similar operations
1186 to occur concurrently with background tasks like output detection.
1187 Operations which cross domains like a full modeset always grab all
1188 locks. Drivers there need to protect resources shared between crtcs with
1189 additional locking. They also need to be careful to always grab the
1190 relevant crtc locks if a modset functions touches crtc state, e.g. for
1191 load detection (which does only grab the <code>mode_config.lock</code>
1192 to allow concurrent screen updates on live crtcs).
1193 </para>
1194 </sect2>
1195 </sect1>
1196
1197 <!-- Internals: kms initialization and cleanup -->
1198
1199 <sect1 id="drm-kms-init">
1200 <title>KMS Initialization and Cleanup</title>
1201 <para>
1202 A KMS device is abstracted and exposed as a set of planes, CRTCs, encoders
1203 and connectors. KMS drivers must thus create and initialize all those
1204 objects at load time after initializing mode setting.
1205 </para>
1206 <sect2>
1207 <title>CRTCs (struct <structname>drm_crtc</structname>)</title>
1208 <para>
1209 A CRTC is an abstraction representing a part of the chip that contains a
1210 pointer to a scanout buffer. Therefore, the number of CRTCs available
1211 determines how many independent scanout buffers can be active at any
1212 given time. The CRTC structure contains several fields to support this:
1213 a pointer to some video memory (abstracted as a frame buffer object), a
1214 display mode, and an (x, y) offset into the video memory to support
1215 panning or configurations where one piece of video memory spans multiple
1216 CRTCs.
1217 </para>
1218 <sect3>
1219 <title>CRTC Initialization</title>
1220 <para>
1221 A KMS device must create and register at least one struct
1222 <structname>drm_crtc</structname> instance. The instance is allocated
1223 and zeroed by the driver, possibly as part of a larger structure, and
1224 registered with a call to <function>drm_crtc_init</function> with a
1225 pointer to CRTC functions.
1226 </para>
1227 </sect3>
1228 <sect3 id="drm-kms-crtcops">
1229 <title>CRTC Operations</title>
1230 <sect4>
1231 <title>Set Configuration</title>
1232 <synopsis>int (*set_config)(struct drm_mode_set *set);</synopsis>
1233 <para>
1234 Apply a new CRTC configuration to the device. The configuration
1235 specifies a CRTC, a frame buffer to scan out from, a (x,y) position in
1236 the frame buffer, a display mode and an array of connectors to drive
1237 with the CRTC if possible.
1238 </para>
1239 <para>
1240 If the frame buffer specified in the configuration is NULL, the driver
1241 must detach all encoders connected to the CRTC and all connectors
1242 attached to those encoders and disable them.
1243 </para>
1244 <para>
1245 This operation is called with the mode config lock held.
1246 </para>
1247 <note><para>
1248 Note that the drm core has no notion of restoring the mode setting
1249 state after resume, since all resume handling is in the full
1250 responsibility of the driver. The common mode setting helper library
1251 though provides a helper which can be used for this:
1252 <function>drm_helper_resume_force_mode</function>.
1253 </para></note>
1254 </sect4>
1255 <sect4>
1256 <title>Page Flipping</title>
1257 <synopsis>int (*page_flip)(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1258 struct drm_pending_vblank_event *event);</synopsis>
1259 <para>
1260 Schedule a page flip to the given frame buffer for the CRTC. This
1261 operation is called with the mode config mutex held.
1262 </para>
1263 <para>
1264 Page flipping is a synchronization mechanism that replaces the frame
1265 buffer being scanned out by the CRTC with a new frame buffer during
1266 vertical blanking, avoiding tearing. When an application requests a page
1267 flip the DRM core verifies that the new frame buffer is large enough to
1268 be scanned out by the CRTC in the currently configured mode and then
1269 calls the CRTC <methodname>page_flip</methodname> operation with a
1270 pointer to the new frame buffer.
1271 </para>
1272 <para>
1273 The <methodname>page_flip</methodname> operation schedules a page flip.
1274 Once any pending rendering targeting the new frame buffer has
1275 completed, the CRTC will be reprogrammed to display that frame buffer
1276 after the next vertical refresh. The operation must return immediately
1277 without waiting for rendering or page flip to complete and must block
1278 any new rendering to the frame buffer until the page flip completes.
1279 </para>
1280 <para>
1281 If a page flip can be successfully scheduled the driver must set the
1282 <code>drm_crtc-&lt;fb</code> field to the new framebuffer pointed to
1283 by <code>fb</code>. This is important so that the reference counting
1284 on framebuffers stays balanced.
1285 </para>
1286 <para>
1287 If a page flip is already pending, the
1288 <methodname>page_flip</methodname> operation must return
1289 -<errorname>EBUSY</errorname>.
1290 </para>
1291 <para>
1292 To synchronize page flip to vertical blanking the driver will likely
1293 need to enable vertical blanking interrupts. It should call
1294 <function>drm_vblank_get</function> for that purpose, and call
1295 <function>drm_vblank_put</function> after the page flip completes.
1296 </para>
1297 <para>
1298 If the application has requested to be notified when page flip completes
1299 the <methodname>page_flip</methodname> operation will be called with a
1300 non-NULL <parameter>event</parameter> argument pointing to a
1301 <structname>drm_pending_vblank_event</structname> instance. Upon page
1302 flip completion the driver must call <methodname>drm_send_vblank_event</methodname>
1303 to fill in the event and send to wake up any waiting processes.
1304 This can be performed with
1305 <programlisting><![CDATA[
1306 spin_lock_irqsave(&dev->event_lock, flags);
1307 ...
1308 drm_send_vblank_event(dev, pipe, event);
1309 spin_unlock_irqrestore(&dev->event_lock, flags);
1310 ]]></programlisting>
1311 </para>
1312 <note><para>
1313 FIXME: Could drivers that don't need to wait for rendering to complete
1314 just add the event to <literal>dev-&gt;vblank_event_list</literal> and
1315 let the DRM core handle everything, as for "normal" vertical blanking
1316 events?
1317 </para></note>
1318 <para>
1319 While waiting for the page flip to complete, the
1320 <literal>event-&gt;base.link</literal> list head can be used freely by
1321 the driver to store the pending event in a driver-specific list.
1322 </para>
1323 <para>
1324 If the file handle is closed before the event is signaled, drivers must
1325 take care to destroy the event in their
1326 <methodname>preclose</methodname> operation (and, if needed, call
1327 <function>drm_vblank_put</function>).
1328 </para>
1329 </sect4>
1330 <sect4>
1331 <title>Miscellaneous</title>
1332 <itemizedlist>
1333 <listitem>
1334 <synopsis>void (*set_property)(struct drm_crtc *crtc,
1335 struct drm_property *property, uint64_t value);</synopsis>
1336 <para>
1337 Set the value of the given CRTC property to
1338 <parameter>value</parameter>. See <xref linkend="drm-kms-properties"/>
1339 for more information about properties.
1340 </para>
1341 </listitem>
1342 <listitem>
1343 <synopsis>void (*gamma_set)(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
1344 uint32_t start, uint32_t size);</synopsis>
1345 <para>
1346 Apply a gamma table to the device. The operation is optional.
1347 </para>
1348 </listitem>
1349 <listitem>
1350 <synopsis>void (*destroy)(struct drm_crtc *crtc);</synopsis>
1351 <para>
1352 Destroy the CRTC when not needed anymore. See
1353 <xref linkend="drm-kms-init"/>.
1354 </para>
1355 </listitem>
1356 </itemizedlist>
1357 </sect4>
1358 </sect3>
1359 </sect2>
1360 <sect2>
1361 <title>Planes (struct <structname>drm_plane</structname>)</title>
1362 <para>
1363 A plane represents an image source that can be blended with or overlayed
1364 on top of a CRTC during the scanout process. Planes are associated with
1365 a frame buffer to crop a portion of the image memory (source) and
1366 optionally scale it to a destination size. The result is then blended
1367 with or overlayed on top of a CRTC.
1368 </para>
1369 <para>
1370 The DRM core recognizes three types of planes:
1371 <itemizedlist>
1372 <listitem>
1373 DRM_PLANE_TYPE_PRIMARY represents a "main" plane for a CRTC. Primary
1374 planes are the planes operated upon by by CRTC modesetting and flipping
1375 operations described in <xref linkend="drm-kms-crtcops"/>.
1376 </listitem>
1377 <listitem>
1378 DRM_PLANE_TYPE_CURSOR represents a "cursor" plane for a CRTC. Cursor
1379 planes are the planes operated upon by the DRM_IOCTL_MODE_CURSOR and
1380 DRM_IOCTL_MODE_CURSOR2 ioctls.
1381 </listitem>
1382 <listitem>
1383 DRM_PLANE_TYPE_OVERLAY represents all non-primary, non-cursor planes.
1384 Some drivers refer to these types of planes as "sprites" internally.
1385 </listitem>
1386 </itemizedlist>
1387 For compatibility with legacy userspace, only overlay planes are made
1388 available to userspace by default. Userspace clients may set the
1389 DRM_CLIENT_CAP_UNIVERSAL_PLANES client capability bit to indicate that
1390 they wish to receive a universal plane list containing all plane types.
1391 </para>
1392 <sect3>
1393 <title>Plane Initialization</title>
1394 <para>
1395 To create a plane, a KMS drivers allocates and
1396 zeroes an instances of struct <structname>drm_plane</structname>
1397 (possibly as part of a larger structure) and registers it with a call
1398 to <function>drm_universal_plane_init</function>. The function takes a bitmask
1399 of the CRTCs that can be associated with the plane, a pointer to the
1400 plane functions, a list of format supported formats, and the type of
1401 plane (primary, cursor, or overlay) being initialized.
1402 </para>
1403 <para>
1404 Cursor and overlay planes are optional. All drivers should provide
1405 one primary plane per CRTC (although this requirement may change in
1406 the future); drivers that do not wish to provide special handling for
1407 primary planes may make use of the helper functions described in
1408 <xref linkend="drm-kms-planehelpers"/> to create and register a
1409 primary plane with standard capabilities.
1410 </para>
1411 </sect3>
1412 <sect3>
1413 <title>Plane Operations</title>
1414 <itemizedlist>
1415 <listitem>
1416 <synopsis>int (*update_plane)(struct drm_plane *plane, struct drm_crtc *crtc,
1417 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
1418 unsigned int crtc_w, unsigned int crtc_h,
1419 uint32_t src_x, uint32_t src_y,
1420 uint32_t src_w, uint32_t src_h);</synopsis>
1421 <para>
1422 Enable and configure the plane to use the given CRTC and frame buffer.
1423 </para>
1424 <para>
1425 The source rectangle in frame buffer memory coordinates is given by
1426 the <parameter>src_x</parameter>, <parameter>src_y</parameter>,
1427 <parameter>src_w</parameter> and <parameter>src_h</parameter>
1428 parameters (as 16.16 fixed point values). Devices that don't support
1429 subpixel plane coordinates can ignore the fractional part.
1430 </para>
1431 <para>
1432 The destination rectangle in CRTC coordinates is given by the
1433 <parameter>crtc_x</parameter>, <parameter>crtc_y</parameter>,
1434 <parameter>crtc_w</parameter> and <parameter>crtc_h</parameter>
1435 parameters (as integer values). Devices scale the source rectangle to
1436 the destination rectangle. If scaling is not supported, and the source
1437 rectangle size doesn't match the destination rectangle size, the
1438 driver must return a -<errorname>EINVAL</errorname> error.
1439 </para>
1440 </listitem>
1441 <listitem>
1442 <synopsis>int (*disable_plane)(struct drm_plane *plane);</synopsis>
1443 <para>
1444 Disable the plane. The DRM core calls this method in response to a
1445 DRM_IOCTL_MODE_SETPLANE ioctl call with the frame buffer ID set to 0.
1446 Disabled planes must not be processed by the CRTC.
1447 </para>
1448 </listitem>
1449 <listitem>
1450 <synopsis>void (*destroy)(struct drm_plane *plane);</synopsis>
1451 <para>
1452 Destroy the plane when not needed anymore. See
1453 <xref linkend="drm-kms-init"/>.
1454 </para>
1455 </listitem>
1456 </itemizedlist>
1457 </sect3>
1458 </sect2>
1459 <sect2>
1460 <title>Encoders (struct <structname>drm_encoder</structname>)</title>
1461 <para>
1462 An encoder takes pixel data from a CRTC and converts it to a format
1463 suitable for any attached connectors. On some devices, it may be
1464 possible to have a CRTC send data to more than one encoder. In that
1465 case, both encoders would receive data from the same scanout buffer,
1466 resulting in a "cloned" display configuration across the connectors
1467 attached to each encoder.
1468 </para>
1469 <sect3>
1470 <title>Encoder Initialization</title>
1471 <para>
1472 As for CRTCs, a KMS driver must create, initialize and register at
1473 least one struct <structname>drm_encoder</structname> instance. The
1474 instance is allocated and zeroed by the driver, possibly as part of a
1475 larger structure.
1476 </para>
1477 <para>
1478 Drivers must initialize the struct <structname>drm_encoder</structname>
1479 <structfield>possible_crtcs</structfield> and
1480 <structfield>possible_clones</structfield> fields before registering the
1481 encoder. Both fields are bitmasks of respectively the CRTCs that the
1482 encoder can be connected to, and sibling encoders candidate for cloning.
1483 </para>
1484 <para>
1485 After being initialized, the encoder must be registered with a call to
1486 <function>drm_encoder_init</function>. The function takes a pointer to
1487 the encoder functions and an encoder type. Supported types are
1488 <itemizedlist>
1489 <listitem>
1490 DRM_MODE_ENCODER_DAC for VGA and analog on DVI-I/DVI-A
1491 </listitem>
1492 <listitem>
1493 DRM_MODE_ENCODER_TMDS for DVI, HDMI and (embedded) DisplayPort
1494 </listitem>
1495 <listitem>
1496 DRM_MODE_ENCODER_LVDS for display panels
1497 </listitem>
1498 <listitem>
1499 DRM_MODE_ENCODER_TVDAC for TV output (Composite, S-Video, Component,
1500 SCART)
1501 </listitem>
1502 <listitem>
1503 DRM_MODE_ENCODER_VIRTUAL for virtual machine displays
1504 </listitem>
1505 </itemizedlist>
1506 </para>
1507 <para>
1508 Encoders must be attached to a CRTC to be used. DRM drivers leave
1509 encoders unattached at initialization time. Applications (or the fbdev
1510 compatibility layer when implemented) are responsible for attaching the
1511 encoders they want to use to a CRTC.
1512 </para>
1513 </sect3>
1514 <sect3>
1515 <title>Encoder Operations</title>
1516 <itemizedlist>
1517 <listitem>
1518 <synopsis>void (*destroy)(struct drm_encoder *encoder);</synopsis>
1519 <para>
1520 Called to destroy the encoder when not needed anymore. See
1521 <xref linkend="drm-kms-init"/>.
1522 </para>
1523 </listitem>
1524 <listitem>
1525 <synopsis>void (*set_property)(struct drm_plane *plane,
1526 struct drm_property *property, uint64_t value);</synopsis>
1527 <para>
1528 Set the value of the given plane property to
1529 <parameter>value</parameter>. See <xref linkend="drm-kms-properties"/>
1530 for more information about properties.
1531 </para>
1532 </listitem>
1533 </itemizedlist>
1534 </sect3>
1535 </sect2>
1536 <sect2>
1537 <title>Connectors (struct <structname>drm_connector</structname>)</title>
1538 <para>
1539 A connector is the final destination for pixel data on a device, and
1540 usually connects directly to an external display device like a monitor
1541 or laptop panel. A connector can only be attached to one encoder at a
1542 time. The connector is also the structure where information about the
1543 attached display is kept, so it contains fields for display data, EDID
1544 data, DPMS &amp; connection status, and information about modes
1545 supported on the attached displays.
1546 </para>
1547 <sect3>
1548 <title>Connector Initialization</title>
1549 <para>
1550 Finally a KMS driver must create, initialize, register and attach at
1551 least one struct <structname>drm_connector</structname> instance. The
1552 instance is created as other KMS objects and initialized by setting the
1553 following fields.
1554 </para>
1555 <variablelist>
1556 <varlistentry>
1557 <term><structfield>interlace_allowed</structfield></term>
1558 <listitem><para>
1559 Whether the connector can handle interlaced modes.
1560 </para></listitem>
1561 </varlistentry>
1562 <varlistentry>
1563 <term><structfield>doublescan_allowed</structfield></term>
1564 <listitem><para>
1565 Whether the connector can handle doublescan.
1566 </para></listitem>
1567 </varlistentry>
1568 <varlistentry>
1569 <term><structfield>display_info
1570 </structfield></term>
1571 <listitem><para>
1572 Display information is filled from EDID information when a display
1573 is detected. For non hot-pluggable displays such as flat panels in
1574 embedded systems, the driver should initialize the
1575 <structfield>display_info</structfield>.<structfield>width_mm</structfield>
1576 and
1577 <structfield>display_info</structfield>.<structfield>height_mm</structfield>
1578 fields with the physical size of the display.
1579 </para></listitem>
1580 </varlistentry>
1581 <varlistentry>
1582 <term id="drm-kms-connector-polled"><structfield>polled</structfield></term>
1583 <listitem><para>
1584 Connector polling mode, a combination of
1585 <variablelist>
1586 <varlistentry>
1587 <term>DRM_CONNECTOR_POLL_HPD</term>
1588 <listitem><para>
1589 The connector generates hotplug events and doesn't need to be
1590 periodically polled. The CONNECT and DISCONNECT flags must not
1591 be set together with the HPD flag.
1592 </para></listitem>
1593 </varlistentry>
1594 <varlistentry>
1595 <term>DRM_CONNECTOR_POLL_CONNECT</term>
1596 <listitem><para>
1597 Periodically poll the connector for connection.
1598 </para></listitem>
1599 </varlistentry>
1600 <varlistentry>
1601 <term>DRM_CONNECTOR_POLL_DISCONNECT</term>
1602 <listitem><para>
1603 Periodically poll the connector for disconnection.
1604 </para></listitem>
1605 </varlistentry>
1606 </variablelist>
1607 Set to 0 for connectors that don't support connection status
1608 discovery.
1609 </para></listitem>
1610 </varlistentry>
1611 </variablelist>
1612 <para>
1613 The connector is then registered with a call to
1614 <function>drm_connector_init</function> with a pointer to the connector
1615 functions and a connector type, and exposed through sysfs with a call to
1616 <function>drm_connector_register</function>.
1617 </para>
1618 <para>
1619 Supported connector types are
1620 <itemizedlist>
1621 <listitem>DRM_MODE_CONNECTOR_VGA</listitem>
1622 <listitem>DRM_MODE_CONNECTOR_DVII</listitem>
1623 <listitem>DRM_MODE_CONNECTOR_DVID</listitem>
1624 <listitem>DRM_MODE_CONNECTOR_DVIA</listitem>
1625 <listitem>DRM_MODE_CONNECTOR_Composite</listitem>
1626 <listitem>DRM_MODE_CONNECTOR_SVIDEO</listitem>
1627 <listitem>DRM_MODE_CONNECTOR_LVDS</listitem>
1628 <listitem>DRM_MODE_CONNECTOR_Component</listitem>
1629 <listitem>DRM_MODE_CONNECTOR_9PinDIN</listitem>
1630 <listitem>DRM_MODE_CONNECTOR_DisplayPort</listitem>
1631 <listitem>DRM_MODE_CONNECTOR_HDMIA</listitem>
1632 <listitem>DRM_MODE_CONNECTOR_HDMIB</listitem>
1633 <listitem>DRM_MODE_CONNECTOR_TV</listitem>
1634 <listitem>DRM_MODE_CONNECTOR_eDP</listitem>
1635 <listitem>DRM_MODE_CONNECTOR_VIRTUAL</listitem>
1636 </itemizedlist>
1637 </para>
1638 <para>
1639 Connectors must be attached to an encoder to be used. For devices that
1640 map connectors to encoders 1:1, the connector should be attached at
1641 initialization time with a call to
1642 <function>drm_mode_connector_attach_encoder</function>. The driver must
1643 also set the <structname>drm_connector</structname>
1644 <structfield>encoder</structfield> field to point to the attached
1645 encoder.
1646 </para>
1647 <para>
1648 Finally, drivers must initialize the connectors state change detection
1649 with a call to <function>drm_kms_helper_poll_init</function>. If at
1650 least one connector is pollable but can't generate hotplug interrupts
1651 (indicated by the DRM_CONNECTOR_POLL_CONNECT and
1652 DRM_CONNECTOR_POLL_DISCONNECT connector flags), a delayed work will
1653 automatically be queued to periodically poll for changes. Connectors
1654 that can generate hotplug interrupts must be marked with the
1655 DRM_CONNECTOR_POLL_HPD flag instead, and their interrupt handler must
1656 call <function>drm_helper_hpd_irq_event</function>. The function will
1657 queue a delayed work to check the state of all connectors, but no
1658 periodic polling will be done.
1659 </para>
1660 </sect3>
1661 <sect3>
1662 <title>Connector Operations</title>
1663 <note><para>
1664 Unless otherwise state, all operations are mandatory.
1665 </para></note>
1666 <sect4>
1667 <title>DPMS</title>
1668 <synopsis>void (*dpms)(struct drm_connector *connector, int mode);</synopsis>
1669 <para>
1670 The DPMS operation sets the power state of a connector. The mode
1671 argument is one of
1672 <itemizedlist>
1673 <listitem><para>DRM_MODE_DPMS_ON</para></listitem>
1674 <listitem><para>DRM_MODE_DPMS_STANDBY</para></listitem>
1675 <listitem><para>DRM_MODE_DPMS_SUSPEND</para></listitem>
1676 <listitem><para>DRM_MODE_DPMS_OFF</para></listitem>
1677 </itemizedlist>
1678 </para>
1679 <para>
1680 In all but DPMS_ON mode the encoder to which the connector is attached
1681 should put the display in low-power mode by driving its signals
1682 appropriately. If more than one connector is attached to the encoder
1683 care should be taken not to change the power state of other displays as
1684 a side effect. Low-power mode should be propagated to the encoders and
1685 CRTCs when all related connectors are put in low-power mode.
1686 </para>
1687 </sect4>
1688 <sect4>
1689 <title>Modes</title>
1690 <synopsis>int (*fill_modes)(struct drm_connector *connector, uint32_t max_width,
1691 uint32_t max_height);</synopsis>
1692 <para>
1693 Fill the mode list with all supported modes for the connector. If the
1694 <parameter>max_width</parameter> and <parameter>max_height</parameter>
1695 arguments are non-zero, the implementation must ignore all modes wider
1696 than <parameter>max_width</parameter> or higher than
1697 <parameter>max_height</parameter>.
1698 </para>
1699 <para>
1700 The connector must also fill in this operation its
1701 <structfield>display_info</structfield>
1702 <structfield>width_mm</structfield> and
1703 <structfield>height_mm</structfield> fields with the connected display
1704 physical size in millimeters. The fields should be set to 0 if the value
1705 isn't known or is not applicable (for instance for projector devices).
1706 </para>
1707 </sect4>
1708 <sect4>
1709 <title>Connection Status</title>
1710 <para>
1711 The connection status is updated through polling or hotplug events when
1712 supported (see <xref linkend="drm-kms-connector-polled"/>). The status
1713 value is reported to userspace through ioctls and must not be used
1714 inside the driver, as it only gets initialized by a call to
1715 <function>drm_mode_getconnector</function> from userspace.
1716 </para>
1717 <synopsis>enum drm_connector_status (*detect)(struct drm_connector *connector,
1718 bool force);</synopsis>
1719 <para>
1720 Check to see if anything is attached to the connector. The
1721 <parameter>force</parameter> parameter is set to false whilst polling or
1722 to true when checking the connector due to user request.
1723 <parameter>force</parameter> can be used by the driver to avoid
1724 expensive, destructive operations during automated probing.
1725 </para>
1726 <para>
1727 Return connector_status_connected if something is connected to the
1728 connector, connector_status_disconnected if nothing is connected and
1729 connector_status_unknown if the connection state isn't known.
1730 </para>
1731 <para>
1732 Drivers should only return connector_status_connected if the connection
1733 status has really been probed as connected. Connectors that can't detect
1734 the connection status, or failed connection status probes, should return
1735 connector_status_unknown.
1736 </para>
1737 </sect4>
1738 <sect4>
1739 <title>Miscellaneous</title>
1740 <itemizedlist>
1741 <listitem>
1742 <synopsis>void (*set_property)(struct drm_connector *connector,
1743 struct drm_property *property, uint64_t value);</synopsis>
1744 <para>
1745 Set the value of the given connector property to
1746 <parameter>value</parameter>. See <xref linkend="drm-kms-properties"/>
1747 for more information about properties.
1748 </para>
1749 </listitem>
1750 <listitem>
1751 <synopsis>void (*destroy)(struct drm_connector *connector);</synopsis>
1752 <para>
1753 Destroy the connector when not needed anymore. See
1754 <xref linkend="drm-kms-init"/>.
1755 </para>
1756 </listitem>
1757 </itemizedlist>
1758 </sect4>
1759 </sect3>
1760 </sect2>
1761 <sect2>
1762 <title>Cleanup</title>
1763 <para>
1764 The DRM core manages its objects' lifetime. When an object is not needed
1765 anymore the core calls its destroy function, which must clean up and
1766 free every resource allocated for the object. Every
1767 <function>drm_*_init</function> call must be matched with a
1768 corresponding <function>drm_*_cleanup</function> call to cleanup CRTCs
1769 (<function>drm_crtc_cleanup</function>), planes
1770 (<function>drm_plane_cleanup</function>), encoders
1771 (<function>drm_encoder_cleanup</function>) and connectors
1772 (<function>drm_connector_cleanup</function>). Furthermore, connectors
1773 that have been added to sysfs must be removed by a call to
1774 <function>drm_connector_unregister</function> before calling
1775 <function>drm_connector_cleanup</function>.
1776 </para>
1777 <para>
1778 Connectors state change detection must be cleanup up with a call to
1779 <function>drm_kms_helper_poll_fini</function>.
1780 </para>
1781 </sect2>
1782 <sect2>
1783 <title>Output discovery and initialization example</title>
1784 <programlisting><![CDATA[
1785 void intel_crt_init(struct drm_device *dev)
1786 {
1787 struct drm_connector *connector;
1788 struct intel_output *intel_output;
1789
1790 intel_output = kzalloc(sizeof(struct intel_output), GFP_KERNEL);
1791 if (!intel_output)
1792 return;
1793
1794 connector = &intel_output->base;
1795 drm_connector_init(dev, &intel_output->base,
1796 &intel_crt_connector_funcs, DRM_MODE_CONNECTOR_VGA);
1797
1798 drm_encoder_init(dev, &intel_output->enc, &intel_crt_enc_funcs,
1799 DRM_MODE_ENCODER_DAC);
1800
1801 drm_mode_connector_attach_encoder(&intel_output->base,
1802 &intel_output->enc);
1803
1804 /* Set up the DDC bus. */
1805 intel_output->ddc_bus = intel_i2c_create(dev, GPIOA, "CRTDDC_A");
1806 if (!intel_output->ddc_bus) {
1807 dev_printk(KERN_ERR, &dev->pdev->dev, "DDC bus registration "
1808 "failed.\n");
1809 return;
1810 }
1811
1812 intel_output->type = INTEL_OUTPUT_ANALOG;
1813 connector->interlace_allowed = 0;
1814 connector->doublescan_allowed = 0;
1815
1816 drm_encoder_helper_add(&intel_output->enc, &intel_crt_helper_funcs);
1817 drm_connector_helper_add(connector, &intel_crt_connector_helper_funcs);
1818
1819 drm_connector_register(connector);
1820 }]]></programlisting>
1821 <para>
1822 In the example above (taken from the i915 driver), a CRTC, connector and
1823 encoder combination is created. A device-specific i2c bus is also
1824 created for fetching EDID data and performing monitor detection. Once
1825 the process is complete, the new connector is registered with sysfs to
1826 make its properties available to applications.
1827 </para>
1828 </sect2>
1829 <sect2>
1830 <title>KMS API Functions</title>
1831 !Edrivers/gpu/drm/drm_crtc.c
1832 </sect2>
1833 <sect2>
1834 <title>KMS Data Structures</title>
1835 !Iinclude/drm/drm_crtc.h
1836 </sect2>
1837 <sect2>
1838 <title>KMS Locking</title>
1839 !Pdrivers/gpu/drm/drm_modeset_lock.c kms locking
1840 !Iinclude/drm/drm_modeset_lock.h
1841 !Edrivers/gpu/drm/drm_modeset_lock.c
1842 </sect2>
1843 </sect1>
1844
1845 <!-- Internals: kms helper functions -->
1846
1847 <sect1>
1848 <title>Mode Setting Helper Functions</title>
1849 <para>
1850 The plane, CRTC, encoder and connector functions provided by the drivers
1851 implement the DRM API. They're called by the DRM core and ioctl handlers
1852 to handle device state changes and configuration request. As implementing
1853 those functions often requires logic not specific to drivers, mid-layer
1854 helper functions are available to avoid duplicating boilerplate code.
1855 </para>
1856 <para>
1857 The DRM core contains one mid-layer implementation. The mid-layer provides
1858 implementations of several plane, CRTC, encoder and connector functions
1859 (called from the top of the mid-layer) that pre-process requests and call
1860 lower-level functions provided by the driver (at the bottom of the
1861 mid-layer). For instance, the
1862 <function>drm_crtc_helper_set_config</function> function can be used to
1863 fill the struct <structname>drm_crtc_funcs</structname>
1864 <structfield>set_config</structfield> field. When called, it will split
1865 the <methodname>set_config</methodname> operation in smaller, simpler
1866 operations and call the driver to handle them.
1867 </para>
1868 <para>
1869 To use the mid-layer, drivers call <function>drm_crtc_helper_add</function>,
1870 <function>drm_encoder_helper_add</function> and
1871 <function>drm_connector_helper_add</function> functions to install their
1872 mid-layer bottom operations handlers, and fill the
1873 <structname>drm_crtc_funcs</structname>,
1874 <structname>drm_encoder_funcs</structname> and
1875 <structname>drm_connector_funcs</structname> structures with pointers to
1876 the mid-layer top API functions. Installing the mid-layer bottom operation
1877 handlers is best done right after registering the corresponding KMS object.
1878 </para>
1879 <para>
1880 The mid-layer is not split between CRTC, encoder and connector operations.
1881 To use it, a driver must provide bottom functions for all of the three KMS
1882 entities.
1883 </para>
1884 <sect2>
1885 <title>Helper Functions</title>
1886 <itemizedlist>
1887 <listitem>
1888 <synopsis>int drm_crtc_helper_set_config(struct drm_mode_set *set);</synopsis>
1889 <para>
1890 The <function>drm_crtc_helper_set_config</function> helper function
1891 is a CRTC <methodname>set_config</methodname> implementation. It
1892 first tries to locate the best encoder for each connector by calling
1893 the connector <methodname>best_encoder</methodname> helper
1894 operation.
1895 </para>
1896 <para>
1897 After locating the appropriate encoders, the helper function will
1898 call the <methodname>mode_fixup</methodname> encoder and CRTC helper
1899 operations to adjust the requested mode, or reject it completely in
1900 which case an error will be returned to the application. If the new
1901 configuration after mode adjustment is identical to the current
1902 configuration the helper function will return without performing any
1903 other operation.
1904 </para>
1905 <para>
1906 If the adjusted mode is identical to the current mode but changes to
1907 the frame buffer need to be applied, the
1908 <function>drm_crtc_helper_set_config</function> function will call
1909 the CRTC <methodname>mode_set_base</methodname> helper operation. If
1910 the adjusted mode differs from the current mode, or if the
1911 <methodname>mode_set_base</methodname> helper operation is not
1912 provided, the helper function performs a full mode set sequence by
1913 calling the <methodname>prepare</methodname>,
1914 <methodname>mode_set</methodname> and
1915 <methodname>commit</methodname> CRTC and encoder helper operations,
1916 in that order.
1917 </para>
1918 </listitem>
1919 <listitem>
1920 <synopsis>void drm_helper_connector_dpms(struct drm_connector *connector, int mode);</synopsis>
1921 <para>
1922 The <function>drm_helper_connector_dpms</function> helper function
1923 is a connector <methodname>dpms</methodname> implementation that
1924 tracks power state of connectors. To use the function, drivers must
1925 provide <methodname>dpms</methodname> helper operations for CRTCs
1926 and encoders to apply the DPMS state to the device.
1927 </para>
1928 <para>
1929 The mid-layer doesn't track the power state of CRTCs and encoders.
1930 The <methodname>dpms</methodname> helper operations can thus be
1931 called with a mode identical to the currently active mode.
1932 </para>
1933 </listitem>
1934 <listitem>
1935 <synopsis>int drm_helper_probe_single_connector_modes(struct drm_connector *connector,
1936 uint32_t maxX, uint32_t maxY);</synopsis>
1937 <para>
1938 The <function>drm_helper_probe_single_connector_modes</function> helper
1939 function is a connector <methodname>fill_modes</methodname>
1940 implementation that updates the connection status for the connector
1941 and then retrieves a list of modes by calling the connector
1942 <methodname>get_modes</methodname> helper operation.
1943 </para>
1944 <para>
1945 The function filters out modes larger than
1946 <parameter>max_width</parameter> and <parameter>max_height</parameter>
1947 if specified. It then calls the optional connector
1948 <methodname>mode_valid</methodname> helper operation for each mode in
1949 the probed list to check whether the mode is valid for the connector.
1950 </para>
1951 </listitem>
1952 </itemizedlist>
1953 </sect2>
1954 <sect2>
1955 <title>CRTC Helper Operations</title>
1956 <itemizedlist>
1957 <listitem id="drm-helper-crtc-mode-fixup">
1958 <synopsis>bool (*mode_fixup)(struct drm_crtc *crtc,
1959 const struct drm_display_mode *mode,
1960 struct drm_display_mode *adjusted_mode);</synopsis>
1961 <para>
1962 Let CRTCs adjust the requested mode or reject it completely. This
1963 operation returns true if the mode is accepted (possibly after being
1964 adjusted) or false if it is rejected.
1965 </para>
1966 <para>
1967 The <methodname>mode_fixup</methodname> operation should reject the
1968 mode if it can't reasonably use it. The definition of "reasonable"
1969 is currently fuzzy in this context. One possible behaviour would be
1970 to set the adjusted mode to the panel timings when a fixed-mode
1971 panel is used with hardware capable of scaling. Another behaviour
1972 would be to accept any input mode and adjust it to the closest mode
1973 supported by the hardware (FIXME: This needs to be clarified).
1974 </para>
1975 </listitem>
1976 <listitem>
1977 <synopsis>int (*mode_set_base)(struct drm_crtc *crtc, int x, int y,
1978 struct drm_framebuffer *old_fb)</synopsis>
1979 <para>
1980 Move the CRTC on the current frame buffer (stored in
1981 <literal>crtc-&gt;fb</literal>) to position (x,y). Any of the frame
1982 buffer, x position or y position may have been modified.
1983 </para>
1984 <para>
1985 This helper operation is optional. If not provided, the
1986 <function>drm_crtc_helper_set_config</function> function will fall
1987 back to the <methodname>mode_set</methodname> helper operation.
1988 </para>
1989 <note><para>
1990 FIXME: Why are x and y passed as arguments, as they can be accessed
1991 through <literal>crtc-&gt;x</literal> and
1992 <literal>crtc-&gt;y</literal>?
1993 </para></note>
1994 </listitem>
1995 <listitem>
1996 <synopsis>void (*prepare)(struct drm_crtc *crtc);</synopsis>
1997 <para>
1998 Prepare the CRTC for mode setting. This operation is called after
1999 validating the requested mode. Drivers use it to perform
2000 device-specific operations required before setting the new mode.
2001 </para>
2002 </listitem>
2003 <listitem>
2004 <synopsis>int (*mode_set)(struct drm_crtc *crtc, struct drm_display_mode *mode,
2005 struct drm_display_mode *adjusted_mode, int x, int y,
2006 struct drm_framebuffer *old_fb);</synopsis>
2007 <para>
2008 Set a new mode, position and frame buffer. Depending on the device
2009 requirements, the mode can be stored internally by the driver and
2010 applied in the <methodname>commit</methodname> operation, or
2011 programmed to the hardware immediately.
2012 </para>
2013 <para>
2014 The <methodname>mode_set</methodname> operation returns 0 on success
2015 or a negative error code if an error occurs.
2016 </para>
2017 </listitem>
2018 <listitem>
2019 <synopsis>void (*commit)(struct drm_crtc *crtc);</synopsis>
2020 <para>
2021 Commit a mode. This operation is called after setting the new mode.
2022 Upon return the device must use the new mode and be fully
2023 operational.
2024 </para>
2025 </listitem>
2026 </itemizedlist>
2027 </sect2>
2028 <sect2>
2029 <title>Encoder Helper Operations</title>
2030 <itemizedlist>
2031 <listitem>
2032 <synopsis>bool (*mode_fixup)(struct drm_encoder *encoder,
2033 const struct drm_display_mode *mode,
2034 struct drm_display_mode *adjusted_mode);</synopsis>
2035 <para>
2036 Let encoders adjust the requested mode or reject it completely. This
2037 operation returns true if the mode is accepted (possibly after being
2038 adjusted) or false if it is rejected. See the
2039 <link linkend="drm-helper-crtc-mode-fixup">mode_fixup CRTC helper
2040 operation</link> for an explanation of the allowed adjustments.
2041 </para>
2042 </listitem>
2043 <listitem>
2044 <synopsis>void (*prepare)(struct drm_encoder *encoder);</synopsis>
2045 <para>
2046 Prepare the encoder for mode setting. This operation is called after
2047 validating the requested mode. Drivers use it to perform
2048 device-specific operations required before setting the new mode.
2049 </para>
2050 </listitem>
2051 <listitem>
2052 <synopsis>void (*mode_set)(struct drm_encoder *encoder,
2053 struct drm_display_mode *mode,
2054 struct drm_display_mode *adjusted_mode);</synopsis>
2055 <para>
2056 Set a new mode. Depending on the device requirements, the mode can
2057 be stored internally by the driver and applied in the
2058 <methodname>commit</methodname> operation, or programmed to the
2059 hardware immediately.
2060 </para>
2061 </listitem>
2062 <listitem>
2063 <synopsis>void (*commit)(struct drm_encoder *encoder);</synopsis>
2064 <para>
2065 Commit a mode. This operation is called after setting the new mode.
2066 Upon return the device must use the new mode and be fully
2067 operational.
2068 </para>
2069 </listitem>
2070 </itemizedlist>
2071 </sect2>
2072 <sect2>
2073 <title>Connector Helper Operations</title>
2074 <itemizedlist>
2075 <listitem>
2076 <synopsis>struct drm_encoder *(*best_encoder)(struct drm_connector *connector);</synopsis>
2077 <para>
2078 Return a pointer to the best encoder for the connecter. Device that
2079 map connectors to encoders 1:1 simply return the pointer to the
2080 associated encoder. This operation is mandatory.
2081 </para>
2082 </listitem>
2083 <listitem>
2084 <synopsis>int (*get_modes)(struct drm_connector *connector);</synopsis>
2085 <para>
2086 Fill the connector's <structfield>probed_modes</structfield> list
2087 by parsing EDID data with <function>drm_add_edid_modes</function> or
2088 calling <function>drm_mode_probed_add</function> directly for every
2089 supported mode and return the number of modes it has detected. This
2090 operation is mandatory.
2091 </para>
2092 <para>
2093 When adding modes manually the driver creates each mode with a call to
2094 <function>drm_mode_create</function> and must fill the following fields.
2095 <itemizedlist>
2096 <listitem>
2097 <synopsis>__u32 type;</synopsis>
2098 <para>
2099 Mode type bitmask, a combination of
2100 <variablelist>
2101 <varlistentry>
2102 <term>DRM_MODE_TYPE_BUILTIN</term>
2103 <listitem><para>not used?</para></listitem>
2104 </varlistentry>
2105 <varlistentry>
2106 <term>DRM_MODE_TYPE_CLOCK_C</term>
2107 <listitem><para>not used?</para></listitem>
2108 </varlistentry>
2109 <varlistentry>
2110 <term>DRM_MODE_TYPE_CRTC_C</term>
2111 <listitem><para>not used?</para></listitem>
2112 </varlistentry>
2113 <varlistentry>
2114 <term>
2115 DRM_MODE_TYPE_PREFERRED - The preferred mode for the connector
2116 </term>
2117 <listitem>
2118 <para>not used?</para>
2119 </listitem>
2120 </varlistentry>
2121 <varlistentry>
2122 <term>DRM_MODE_TYPE_DEFAULT</term>
2123 <listitem><para>not used?</para></listitem>
2124 </varlistentry>
2125 <varlistentry>
2126 <term>DRM_MODE_TYPE_USERDEF</term>
2127 <listitem><para>not used?</para></listitem>
2128 </varlistentry>
2129 <varlistentry>
2130 <term>DRM_MODE_TYPE_DRIVER</term>
2131 <listitem>
2132 <para>
2133 The mode has been created by the driver (as opposed to
2134 to user-created modes).
2135 </para>
2136 </listitem>
2137 </varlistentry>
2138 </variablelist>
2139 Drivers must set the DRM_MODE_TYPE_DRIVER bit for all modes they
2140 create, and set the DRM_MODE_TYPE_PREFERRED bit for the preferred
2141 mode.
2142 </para>
2143 </listitem>
2144 <listitem>
2145 <synopsis>__u32 clock;</synopsis>
2146 <para>Pixel clock frequency in kHz unit</para>
2147 </listitem>
2148 <listitem>
2149 <synopsis>__u16 hdisplay, hsync_start, hsync_end, htotal;
2150 __u16 vdisplay, vsync_start, vsync_end, vtotal;</synopsis>
2151 <para>Horizontal and vertical timing information</para>
2152 <screen><![CDATA[
2153 Active Front Sync Back
2154 Region Porch Porch
2155 <-----------------------><----------------><-------------><-------------->
2156
2157 //////////////////////|
2158 ////////////////////// |
2159 ////////////////////// |.................. ................
2160 _______________
2161
2162 <----- [hv]display ----->
2163 <------------- [hv]sync_start ------------>
2164 <--------------------- [hv]sync_end --------------------->
2165 <-------------------------------- [hv]total ----------------------------->
2166 ]]></screen>
2167 </listitem>
2168 <listitem>
2169 <synopsis>__u16 hskew;
2170 __u16 vscan;</synopsis>
2171 <para>Unknown</para>
2172 </listitem>
2173 <listitem>
2174 <synopsis>__u32 flags;</synopsis>
2175 <para>
2176 Mode flags, a combination of
2177 <variablelist>
2178 <varlistentry>
2179 <term>DRM_MODE_FLAG_PHSYNC</term>
2180 <listitem><para>
2181 Horizontal sync is active high
2182 </para></listitem>
2183 </varlistentry>
2184 <varlistentry>
2185 <term>DRM_MODE_FLAG_NHSYNC</term>
2186 <listitem><para>
2187 Horizontal sync is active low
2188 </para></listitem>
2189 </varlistentry>
2190 <varlistentry>
2191 <term>DRM_MODE_FLAG_PVSYNC</term>
2192 <listitem><para>
2193 Vertical sync is active high
2194 </para></listitem>
2195 </varlistentry>
2196 <varlistentry>
2197 <term>DRM_MODE_FLAG_NVSYNC</term>
2198 <listitem><para>
2199 Vertical sync is active low
2200 </para></listitem>
2201 </varlistentry>
2202 <varlistentry>
2203 <term>DRM_MODE_FLAG_INTERLACE</term>
2204 <listitem><para>
2205 Mode is interlaced
2206 </para></listitem>
2207 </varlistentry>
2208 <varlistentry>
2209 <term>DRM_MODE_FLAG_DBLSCAN</term>
2210 <listitem><para>
2211 Mode uses doublescan
2212 </para></listitem>
2213 </varlistentry>
2214 <varlistentry>
2215 <term>DRM_MODE_FLAG_CSYNC</term>
2216 <listitem><para>
2217 Mode uses composite sync
2218 </para></listitem>
2219 </varlistentry>
2220 <varlistentry>
2221 <term>DRM_MODE_FLAG_PCSYNC</term>
2222 <listitem><para>
2223 Composite sync is active high
2224 </para></listitem>
2225 </varlistentry>
2226 <varlistentry>
2227 <term>DRM_MODE_FLAG_NCSYNC</term>
2228 <listitem><para>
2229 Composite sync is active low
2230 </para></listitem>
2231 </varlistentry>
2232 <varlistentry>
2233 <term>DRM_MODE_FLAG_HSKEW</term>
2234 <listitem><para>
2235 hskew provided (not used?)
2236 </para></listitem>
2237 </varlistentry>
2238 <varlistentry>
2239 <term>DRM_MODE_FLAG_BCAST</term>
2240 <listitem><para>
2241 not used?
2242 </para></listitem>
2243 </varlistentry>
2244 <varlistentry>
2245 <term>DRM_MODE_FLAG_PIXMUX</term>
2246 <listitem><para>
2247 not used?
2248 </para></listitem>
2249 </varlistentry>
2250 <varlistentry>
2251 <term>DRM_MODE_FLAG_DBLCLK</term>
2252 <listitem><para>
2253 not used?
2254 </para></listitem>
2255 </varlistentry>
2256 <varlistentry>
2257 <term>DRM_MODE_FLAG_CLKDIV2</term>
2258 <listitem><para>
2259 ?
2260 </para></listitem>
2261 </varlistentry>
2262 </variablelist>
2263 </para>
2264 <para>
2265 Note that modes marked with the INTERLACE or DBLSCAN flags will be
2266 filtered out by
2267 <function>drm_helper_probe_single_connector_modes</function> if
2268 the connector's <structfield>interlace_allowed</structfield> or
2269 <structfield>doublescan_allowed</structfield> field is set to 0.
2270 </para>
2271 </listitem>
2272 <listitem>
2273 <synopsis>char name[DRM_DISPLAY_MODE_LEN];</synopsis>
2274 <para>
2275 Mode name. The driver must call
2276 <function>drm_mode_set_name</function> to fill the mode name from
2277 <structfield>hdisplay</structfield>,
2278 <structfield>vdisplay</structfield> and interlace flag after
2279 filling the corresponding fields.
2280 </para>
2281 </listitem>
2282 </itemizedlist>
2283 </para>
2284 <para>
2285 The <structfield>vrefresh</structfield> value is computed by
2286 <function>drm_helper_probe_single_connector_modes</function>.
2287 </para>
2288 <para>
2289 When parsing EDID data, <function>drm_add_edid_modes</function> fill the
2290 connector <structfield>display_info</structfield>
2291 <structfield>width_mm</structfield> and
2292 <structfield>height_mm</structfield> fields. When creating modes
2293 manually the <methodname>get_modes</methodname> helper operation must
2294 set the <structfield>display_info</structfield>
2295 <structfield>width_mm</structfield> and
2296 <structfield>height_mm</structfield> fields if they haven't been set
2297 already (for instance at initialization time when a fixed-size panel is
2298 attached to the connector). The mode <structfield>width_mm</structfield>
2299 and <structfield>height_mm</structfield> fields are only used internally
2300 during EDID parsing and should not be set when creating modes manually.
2301 </para>
2302 </listitem>
2303 <listitem>
2304 <synopsis>int (*mode_valid)(struct drm_connector *connector,
2305 struct drm_display_mode *mode);</synopsis>
2306 <para>
2307 Verify whether a mode is valid for the connector. Return MODE_OK for
2308 supported modes and one of the enum drm_mode_status values (MODE_*)
2309 for unsupported modes. This operation is optional.
2310 </para>
2311 <para>
2312 As the mode rejection reason is currently not used beside for
2313 immediately removing the unsupported mode, an implementation can
2314 return MODE_BAD regardless of the exact reason why the mode is not
2315 valid.
2316 </para>
2317 <note><para>
2318 Note that the <methodname>mode_valid</methodname> helper operation is
2319 only called for modes detected by the device, and
2320 <emphasis>not</emphasis> for modes set by the user through the CRTC
2321 <methodname>set_config</methodname> operation.
2322 </para></note>
2323 </listitem>
2324 </itemizedlist>
2325 </sect2>
2326 <sect2>
2327 <title>Atomic Modeset Helper Functions Reference</title>
2328 <sect3>
2329 <title>Overview</title>
2330 !Pdrivers/gpu/drm/drm_atomic_helper.c overview
2331 </sect3>
2332 <sect3>
2333 <title>Implementing Asynchronous Atomic Commit</title>
2334 !Pdrivers/gpu/drm/drm_atomic_helper.c implementing async commit
2335 </sect3>
2336 <sect3>
2337 <title>Atomic State Reset and Initialization</title>
2338 !Pdrivers/gpu/drm/drm_atomic_helper.c atomic state reset and initialization
2339 </sect3>
2340 !Edrivers/gpu/drm/drm_atomic_helper.c
2341 </sect2>
2342 <sect2>
2343 <title>Modeset Helper Functions Reference</title>
2344 !Edrivers/gpu/drm/drm_crtc_helper.c
2345 !Pdrivers/gpu/drm/drm_crtc_helper.c overview
2346 </sect2>
2347 <sect2>
2348 <title>Output Probing Helper Functions Reference</title>
2349 !Pdrivers/gpu/drm/drm_probe_helper.c output probing helper overview
2350 !Edrivers/gpu/drm/drm_probe_helper.c
2351 </sect2>
2352 <sect2>
2353 <title>fbdev Helper Functions Reference</title>
2354 !Pdrivers/gpu/drm/drm_fb_helper.c fbdev helpers
2355 !Edrivers/gpu/drm/drm_fb_helper.c
2356 !Iinclude/drm/drm_fb_helper.h
2357 </sect2>
2358 <sect2>
2359 <title>Display Port Helper Functions Reference</title>
2360 !Pdrivers/gpu/drm/drm_dp_helper.c dp helpers
2361 !Iinclude/drm/drm_dp_helper.h
2362 !Edrivers/gpu/drm/drm_dp_helper.c
2363 </sect2>
2364 <sect2>
2365 <title>Display Port MST Helper Functions Reference</title>
2366 !Pdrivers/gpu/drm/drm_dp_mst_topology.c dp mst helper
2367 !Iinclude/drm/drm_dp_mst_helper.h
2368 !Edrivers/gpu/drm/drm_dp_mst_topology.c
2369 </sect2>
2370 <sect2>
2371 <title>EDID Helper Functions Reference</title>
2372 !Edrivers/gpu/drm/drm_edid.c
2373 </sect2>
2374 <sect2>
2375 <title>Rectangle Utilities Reference</title>
2376 !Pinclude/drm/drm_rect.h rect utils
2377 !Iinclude/drm/drm_rect.h
2378 !Edrivers/gpu/drm/drm_rect.c
2379 </sect2>
2380 <sect2>
2381 <title>Flip-work Helper Reference</title>
2382 !Pinclude/drm/drm_flip_work.h flip utils
2383 !Iinclude/drm/drm_flip_work.h
2384 !Edrivers/gpu/drm/drm_flip_work.c
2385 </sect2>
2386 <sect2>
2387 <title>HDMI Infoframes Helper Reference</title>
2388 <para>
2389 Strictly speaking this is not a DRM helper library but generally useable
2390 by any driver interfacing with HDMI outputs like v4l or alsa drivers.
2391 But it nicely fits into the overall topic of mode setting helper
2392 libraries and hence is also included here.
2393 </para>
2394 !Iinclude/linux/hdmi.h
2395 !Edrivers/video/hdmi.c
2396 </sect2>
2397 <sect2>
2398 <title id="drm-kms-planehelpers">Plane Helper Reference</title>
2399 !Edrivers/gpu/drm/drm_plane_helper.c
2400 !Pdrivers/gpu/drm/drm_plane_helper.c overview
2401 </sect2>
2402 </sect1>
2403
2404 <!-- Internals: kms properties -->
2405
2406 <sect1 id="drm-kms-properties">
2407 <title>KMS Properties</title>
2408 <para>
2409 Drivers may need to expose additional parameters to applications than
2410 those described in the previous sections. KMS supports attaching
2411 properties to CRTCs, connectors and planes and offers a userspace API to
2412 list, get and set the property values.
2413 </para>
2414 <para>
2415 Properties are identified by a name that uniquely defines the property
2416 purpose, and store an associated value. For all property types except blob
2417 properties the value is a 64-bit unsigned integer.
2418 </para>
2419 <para>
2420 KMS differentiates between properties and property instances. Drivers
2421 first create properties and then create and associate individual instances
2422 of those properties to objects. A property can be instantiated multiple
2423 times and associated with different objects. Values are stored in property
2424 instances, and all other property information are stored in the property
2425 and shared between all instances of the property.
2426 </para>
2427 <para>
2428 Every property is created with a type that influences how the KMS core
2429 handles the property. Supported property types are
2430 <variablelist>
2431 <varlistentry>
2432 <term>DRM_MODE_PROP_RANGE</term>
2433 <listitem><para>Range properties report their minimum and maximum
2434 admissible values. The KMS core verifies that values set by
2435 application fit in that range.</para></listitem>
2436 </varlistentry>
2437 <varlistentry>
2438 <term>DRM_MODE_PROP_ENUM</term>
2439 <listitem><para>Enumerated properties take a numerical value that
2440 ranges from 0 to the number of enumerated values defined by the
2441 property minus one, and associate a free-formed string name to each
2442 value. Applications can retrieve the list of defined value-name pairs
2443 and use the numerical value to get and set property instance values.
2444 </para></listitem>
2445 </varlistentry>
2446 <varlistentry>
2447 <term>DRM_MODE_PROP_BITMASK</term>
2448 <listitem><para>Bitmask properties are enumeration properties that
2449 additionally restrict all enumerated values to the 0..63 range.
2450 Bitmask property instance values combine one or more of the
2451 enumerated bits defined by the property.</para></listitem>
2452 </varlistentry>
2453 <varlistentry>
2454 <term>DRM_MODE_PROP_BLOB</term>
2455 <listitem><para>Blob properties store a binary blob without any format
2456 restriction. The binary blobs are created as KMS standalone objects,
2457 and blob property instance values store the ID of their associated
2458 blob object.</para>
2459 <para>Blob properties are only used for the connector EDID property
2460 and cannot be created by drivers.</para></listitem>
2461 </varlistentry>
2462 </variablelist>
2463 </para>
2464 <para>
2465 To create a property drivers call one of the following functions depending
2466 on the property type. All property creation functions take property flags
2467 and name, as well as type-specific arguments.
2468 <itemizedlist>
2469 <listitem>
2470 <synopsis>struct drm_property *drm_property_create_range(struct drm_device *dev, int flags,
2471 const char *name,
2472 uint64_t min, uint64_t max);</synopsis>
2473 <para>Create a range property with the given minimum and maximum
2474 values.</para>
2475 </listitem>
2476 <listitem>
2477 <synopsis>struct drm_property *drm_property_create_enum(struct drm_device *dev, int flags,
2478 const char *name,
2479 const struct drm_prop_enum_list *props,
2480 int num_values);</synopsis>
2481 <para>Create an enumerated property. The <parameter>props</parameter>
2482 argument points to an array of <parameter>num_values</parameter>
2483 value-name pairs.</para>
2484 </listitem>
2485 <listitem>
2486 <synopsis>struct drm_property *drm_property_create_bitmask(struct drm_device *dev,
2487 int flags, const char *name,
2488 const struct drm_prop_enum_list *props,
2489 int num_values);</synopsis>
2490 <para>Create a bitmask property. The <parameter>props</parameter>
2491 argument points to an array of <parameter>num_values</parameter>
2492 value-name pairs.</para>
2493 </listitem>
2494 </itemizedlist>
2495 </para>
2496 <para>
2497 Properties can additionally be created as immutable, in which case they
2498 will be read-only for applications but can be modified by the driver. To
2499 create an immutable property drivers must set the DRM_MODE_PROP_IMMUTABLE
2500 flag at property creation time.
2501 </para>
2502 <para>
2503 When no array of value-name pairs is readily available at property
2504 creation time for enumerated or range properties, drivers can create
2505 the property using the <function>drm_property_create</function> function
2506 and manually add enumeration value-name pairs by calling the
2507 <function>drm_property_add_enum</function> function. Care must be taken to
2508 properly specify the property type through the <parameter>flags</parameter>
2509 argument.
2510 </para>
2511 <para>
2512 After creating properties drivers can attach property instances to CRTC,
2513 connector and plane objects by calling the
2514 <function>drm_object_attach_property</function>. The function takes a
2515 pointer to the target object, a pointer to the previously created property
2516 and an initial instance value.
2517 </para>
2518 <sect2>
2519 <title>Existing KMS Properties</title>
2520 <para>
2521 The following table gives description of drm properties exposed by various
2522 modules/drivers.
2523 </para>
2524 <table border="1" cellpadding="0" cellspacing="0">
2525 <tbody>
2526 <tr style="font-weight: bold;">
2527 <td valign="top" >Owner Module/Drivers</td>
2528 <td valign="top" >Group</td>
2529 <td valign="top" >Property Name</td>
2530 <td valign="top" >Type</td>
2531 <td valign="top" >Property Values</td>
2532 <td valign="top" >Object attached</td>
2533 <td valign="top" >Description/Restrictions</td>
2534 </tr>
2535 <tr>
2536 <td rowspan="21" valign="top" >DRM</td>
2537 <td rowspan="2" valign="top" >Generic</td>
2538 <td valign="top" >“EDID”</td>
2539 <td valign="top" >BLOB | IMMUTABLE</td>
2540 <td valign="top" >0</td>
2541 <td valign="top" >Connector</td>
2542 <td valign="top" >Contains id of edid blob ptr object.</td>
2543 </tr>
2544 <tr>
2545 <td valign="top" >“DPMS”</td>
2546 <td valign="top" >ENUM</td>
2547 <td valign="top" >{ “On”, “Standby”, “Suspend”, “Off” }</td>
2548 <td valign="top" >Connector</td>
2549 <td valign="top" >Contains DPMS operation mode value.</td>
2550 </tr>
2551 <tr>
2552 <td rowspan="1" valign="top" >Plane</td>
2553 <td valign="top" >“type”</td>
2554 <td valign="top" >ENUM | IMMUTABLE</td>
2555 <td valign="top" >{ "Overlay", "Primary", "Cursor" }</td>
2556 <td valign="top" >Plane</td>
2557 <td valign="top" >Plane type</td>
2558 </tr>
2559 <tr>
2560 <td rowspan="2" valign="top" >DVI-I</td>
2561 <td valign="top" >“subconnector”</td>
2562 <td valign="top" >ENUM</td>
2563 <td valign="top" >{ “Unknown”, “DVI-D”, “DVI-A” }</td>
2564 <td valign="top" >Connector</td>
2565 <td valign="top" >TBD</td>
2566 </tr>
2567 <tr>
2568 <td valign="top" >“select subconnector”</td>
2569 <td valign="top" >ENUM</td>
2570 <td valign="top" >{ “Automatic”, “DVI-D”, “DVI-A” }</td>
2571 <td valign="top" >Connector</td>
2572 <td valign="top" >TBD</td>
2573 </tr>
2574 <tr>
2575 <td rowspan="13" valign="top" >TV</td>
2576 <td valign="top" >“subconnector”</td>
2577 <td valign="top" >ENUM</td>
2578 <td valign="top" >{ "Unknown", "Composite", "SVIDEO", "Component", "SCART" }</td>
2579 <td valign="top" >Connector</td>
2580 <td valign="top" >TBD</td>
2581 </tr>
2582 <tr>
2583 <td valign="top" >“select subconnector”</td>
2584 <td valign="top" >ENUM</td>
2585 <td valign="top" >{ "Automatic", "Composite", "SVIDEO", "Component", "SCART" }</td>
2586 <td valign="top" >Connector</td>
2587 <td valign="top" >TBD</td>
2588 </tr>
2589 <tr>
2590 <td valign="top" >“mode”</td>
2591 <td valign="top" >ENUM</td>
2592 <td valign="top" >{ "NTSC_M", "NTSC_J", "NTSC_443", "PAL_B" } etc.</td>
2593 <td valign="top" >Connector</td>
2594 <td valign="top" >TBD</td>
2595 </tr>
2596 <tr>
2597 <td valign="top" >“left margin”</td>
2598 <td valign="top" >RANGE</td>
2599 <td valign="top" >Min=0, Max=100</td>
2600 <td valign="top" >Connector</td>
2601 <td valign="top" >TBD</td>
2602 </tr>
2603 <tr>
2604 <td valign="top" >“right margin”</td>
2605 <td valign="top" >RANGE</td>
2606 <td valign="top" >Min=0, Max=100</td>
2607 <td valign="top" >Connector</td>
2608 <td valign="top" >TBD</td>
2609 </tr>
2610 <tr>
2611 <td valign="top" >“top margin”</td>
2612 <td valign="top" >RANGE</td>
2613 <td valign="top" >Min=0, Max=100</td>
2614 <td valign="top" >Connector</td>
2615 <td valign="top" >TBD</td>
2616 </tr>
2617 <tr>
2618 <td valign="top" >“bottom margin”</td>
2619 <td valign="top" >RANGE</td>
2620 <td valign="top" >Min=0, Max=100</td>
2621 <td valign="top" >Connector</td>
2622 <td valign="top" >TBD</td>
2623 </tr>
2624 <tr>
2625 <td valign="top" >“brightness”</td>
2626 <td valign="top" >RANGE</td>
2627 <td valign="top" >Min=0, Max=100</td>
2628 <td valign="top" >Connector</td>
2629 <td valign="top" >TBD</td>
2630 </tr>
2631 <tr>
2632 <td valign="top" >“contrast”</td>
2633 <td valign="top" >RANGE</td>
2634 <td valign="top" >Min=0, Max=100</td>
2635 <td valign="top" >Connector</td>
2636 <td valign="top" >TBD</td>
2637 </tr>
2638 <tr>
2639 <td valign="top" >“flicker reduction”</td>
2640 <td valign="top" >RANGE</td>
2641 <td valign="top" >Min=0, Max=100</td>
2642 <td valign="top" >Connector</td>
2643 <td valign="top" >TBD</td>
2644 </tr>
2645 <tr>
2646 <td valign="top" >“overscan”</td>
2647 <td valign="top" >RANGE</td>
2648 <td valign="top" >Min=0, Max=100</td>
2649 <td valign="top" >Connector</td>
2650 <td valign="top" >TBD</td>
2651 </tr>
2652 <tr>
2653 <td valign="top" >“saturation”</td>
2654 <td valign="top" >RANGE</td>
2655 <td valign="top" >Min=0, Max=100</td>
2656 <td valign="top" >Connector</td>
2657 <td valign="top" >TBD</td>
2658 </tr>
2659 <tr>
2660 <td valign="top" >“hue”</td>
2661 <td valign="top" >RANGE</td>
2662 <td valign="top" >Min=0, Max=100</td>
2663 <td valign="top" >Connector</td>
2664 <td valign="top" >TBD</td>
2665 </tr>
2666 <tr>
2667 <td rowspan="3" valign="top" >Optional</td>
2668 <td valign="top" >“scaling mode”</td>
2669 <td valign="top" >ENUM</td>
2670 <td valign="top" >{ "None", "Full", "Center", "Full aspect" }</td>
2671 <td valign="top" >Connector</td>
2672 <td valign="top" >TBD</td>
2673 </tr>
2674 <tr>
2675 <td valign="top" >"aspect ratio"</td>
2676 <td valign="top" >ENUM</td>
2677 <td valign="top" >{ "None", "4:3", "16:9" }</td>
2678 <td valign="top" >Connector</td>
2679 <td valign="top" >DRM property to set aspect ratio from user space app.
2680 This enum is made generic to allow addition of custom aspect
2681 ratios.</td>
2682 </tr>
2683 <tr>
2684 <td valign="top" >“dirty”</td>
2685 <td valign="top" >ENUM | IMMUTABLE</td>
2686 <td valign="top" >{ "Off", "On", "Annotate" }</td>
2687 <td valign="top" >Connector</td>
2688 <td valign="top" >TBD</td>
2689 </tr>
2690 <tr>
2691 <td rowspan="21" valign="top" >i915</td>
2692 <td rowspan="2" valign="top" >Generic</td>
2693 <td valign="top" >"Broadcast RGB"</td>
2694 <td valign="top" >ENUM</td>
2695 <td valign="top" >{ "Automatic", "Full", "Limited 16:235" }</td>
2696 <td valign="top" >Connector</td>
2697 <td valign="top" >TBD</td>
2698 </tr>
2699 <tr>
2700 <td valign="top" >“audio”</td>
2701 <td valign="top" >ENUM</td>
2702 <td valign="top" >{ "force-dvi", "off", "auto", "on" }</td>
2703 <td valign="top" >Connector</td>
2704 <td valign="top" >TBD</td>
2705 </tr>
2706 <tr>
2707 <td rowspan="1" valign="top" >Plane</td>
2708 <td valign="top" >“rotation”</td>
2709 <td valign="top" >BITMASK</td>
2710 <td valign="top" >{ 0, "rotate-0" }, { 2, "rotate-180" }</td>
2711 <td valign="top" >Plane</td>
2712 <td valign="top" >TBD</td>
2713 </tr>
2714 <tr>
2715 <td rowspan="17" valign="top" >SDVO-TV</td>
2716 <td valign="top" >“mode”</td>
2717 <td valign="top" >ENUM</td>
2718 <td valign="top" >{ "NTSC_M", "NTSC_J", "NTSC_443", "PAL_B" } etc.</td>
2719 <td valign="top" >Connector</td>
2720 <td valign="top" >TBD</td>
2721 </tr>
2722 <tr>
2723 <td valign="top" >"left_margin"</td>
2724 <td valign="top" >RANGE</td>
2725 <td valign="top" >Min=0, Max= SDVO dependent</td>
2726 <td valign="top" >Connector</td>
2727 <td valign="top" >TBD</td>
2728 </tr>
2729 <tr>
2730 <td valign="top" >"right_margin"</td>
2731 <td valign="top" >RANGE</td>
2732 <td valign="top" >Min=0, Max= SDVO dependent</td>
2733 <td valign="top" >Connector</td>
2734 <td valign="top" >TBD</td>
2735 </tr>
2736 <tr>
2737 <td valign="top" >"top_margin"</td>
2738 <td valign="top" >RANGE</td>
2739 <td valign="top" >Min=0, Max= SDVO dependent</td>
2740 <td valign="top" >Connector</td>
2741 <td valign="top" >TBD</td>
2742 </tr>
2743 <tr>
2744 <td valign="top" >"bottom_margin"</td>
2745 <td valign="top" >RANGE</td>
2746 <td valign="top" >Min=0, Max= SDVO dependent</td>
2747 <td valign="top" >Connector</td>
2748 <td valign="top" >TBD</td>
2749 </tr>
2750 <tr>
2751 <td valign="top" >“hpos”</td>
2752 <td valign="top" >RANGE</td>
2753 <td valign="top" >Min=0, Max= SDVO dependent</td>
2754 <td valign="top" >Connector</td>
2755 <td valign="top" >TBD</td>
2756 </tr>
2757 <tr>
2758 <td valign="top" >“vpos”</td>
2759 <td valign="top" >RANGE</td>
2760 <td valign="top" >Min=0, Max= SDVO dependent</td>
2761 <td valign="top" >Connector</td>
2762 <td valign="top" >TBD</td>
2763 </tr>
2764 <tr>
2765 <td valign="top" >“contrast”</td>
2766 <td valign="top" >RANGE</td>
2767 <td valign="top" >Min=0, Max= SDVO dependent</td>
2768 <td valign="top" >Connector</td>
2769 <td valign="top" >TBD</td>
2770 </tr>
2771 <tr>
2772 <td valign="top" >“saturation”</td>
2773 <td valign="top" >RANGE</td>
2774 <td valign="top" >Min=0, Max= SDVO dependent</td>
2775 <td valign="top" >Connector</td>
2776 <td valign="top" >TBD</td>
2777 </tr>
2778 <tr>
2779 <td valign="top" >“hue”</td>
2780 <td valign="top" >RANGE</td>
2781 <td valign="top" >Min=0, Max= SDVO dependent</td>
2782 <td valign="top" >Connector</td>
2783 <td valign="top" >TBD</td>
2784 </tr>
2785 <tr>
2786 <td valign="top" >“sharpness”</td>
2787 <td valign="top" >RANGE</td>
2788 <td valign="top" >Min=0, Max= SDVO dependent</td>
2789 <td valign="top" >Connector</td>
2790 <td valign="top" >TBD</td>
2791 </tr>
2792 <tr>
2793 <td valign="top" >“flicker_filter”</td>
2794 <td valign="top" >RANGE</td>
2795 <td valign="top" >Min=0, Max= SDVO dependent</td>
2796 <td valign="top" >Connector</td>
2797 <td valign="top" >TBD</td>
2798 </tr>
2799 <tr>
2800 <td valign="top" >“flicker_filter_adaptive”</td>
2801 <td valign="top" >RANGE</td>
2802 <td valign="top" >Min=0, Max= SDVO dependent</td>
2803 <td valign="top" >Connector</td>
2804 <td valign="top" >TBD</td>
2805 </tr>
2806 <tr>
2807 <td valign="top" >“flicker_filter_2d”</td>
2808 <td valign="top" >RANGE</td>
2809 <td valign="top" >Min=0, Max= SDVO dependent</td>
2810 <td valign="top" >Connector</td>
2811 <td valign="top" >TBD</td>
2812 </tr>
2813 <tr>
2814 <td valign="top" >“tv_chroma_filter”</td>
2815 <td valign="top" >RANGE</td>
2816 <td valign="top" >Min=0, Max= SDVO dependent</td>
2817 <td valign="top" >Connector</td>
2818 <td valign="top" >TBD</td>
2819 </tr>
2820 <tr>
2821 <td valign="top" >“tv_luma_filter”</td>
2822 <td valign="top" >RANGE</td>
2823 <td valign="top" >Min=0, Max= SDVO dependent</td>
2824 <td valign="top" >Connector</td>
2825 <td valign="top" >TBD</td>
2826 </tr>
2827 <tr>
2828 <td valign="top" >“dot_crawl”</td>
2829 <td valign="top" >RANGE</td>
2830 <td valign="top" >Min=0, Max=1</td>
2831 <td valign="top" >Connector</td>
2832 <td valign="top" >TBD</td>
2833 </tr>
2834 <tr>
2835 <td valign="top" >SDVO-TV/LVDS</td>
2836 <td valign="top" >“brightness”</td>
2837 <td valign="top" >RANGE</td>
2838 <td valign="top" >Min=0, Max= SDVO dependent</td>
2839 <td valign="top" >Connector</td>
2840 <td valign="top" >TBD</td>
2841 </tr>
2842 <tr>
2843 <td rowspan="2" valign="top" >CDV gma-500</td>
2844 <td rowspan="2" valign="top" >Generic</td>
2845 <td valign="top" >"Broadcast RGB"</td>
2846 <td valign="top" >ENUM</td>
2847 <td valign="top" >{ “Full”, “Limited 16:235” }</td>
2848 <td valign="top" >Connector</td>
2849 <td valign="top" >TBD</td>
2850 </tr>
2851 <tr>
2852 <td valign="top" >"Broadcast RGB"</td>
2853 <td valign="top" >ENUM</td>
2854 <td valign="top" >{ “off”, “auto”, “on” }</td>
2855 <td valign="top" >Connector</td>
2856 <td valign="top" >TBD</td>
2857 </tr>
2858 <tr>
2859 <td rowspan="19" valign="top" >Poulsbo</td>
2860 <td rowspan="1" valign="top" >Generic</td>
2861 <td valign="top" >“backlight”</td>
2862 <td valign="top" >RANGE</td>
2863 <td valign="top" >Min=0, Max=100</td>
2864 <td valign="top" >Connector</td>
2865 <td valign="top" >TBD</td>
2866 </tr>
2867 <tr>
2868 <td rowspan="17" valign="top" >SDVO-TV</td>
2869 <td valign="top" >“mode”</td>
2870 <td valign="top" >ENUM</td>
2871 <td valign="top" >{ "NTSC_M", "NTSC_J", "NTSC_443", "PAL_B" } etc.</td>
2872 <td valign="top" >Connector</td>
2873 <td valign="top" >TBD</td>
2874 </tr>
2875 <tr>
2876 <td valign="top" >"left_margin"</td>
2877 <td valign="top" >RANGE</td>
2878 <td valign="top" >Min=0, Max= SDVO dependent</td>
2879 <td valign="top" >Connector</td>
2880 <td valign="top" >TBD</td>
2881 </tr>
2882 <tr>
2883 <td valign="top" >"right_margin"</td>
2884 <td valign="top" >RANGE</td>
2885 <td valign="top" >Min=0, Max= SDVO dependent</td>
2886 <td valign="top" >Connector</td>
2887 <td valign="top" >TBD</td>
2888 </tr>
2889 <tr>
2890 <td valign="top" >"top_margin"</td>
2891 <td valign="top" >RANGE</td>
2892 <td valign="top" >Min=0, Max= SDVO dependent</td>
2893 <td valign="top" >Connector</td>
2894 <td valign="top" >TBD</td>
2895 </tr>
2896 <tr>
2897 <td valign="top" >"bottom_margin"</td>
2898 <td valign="top" >RANGE</td>
2899 <td valign="top" >Min=0, Max= SDVO dependent</td>
2900 <td valign="top" >Connector</td>
2901 <td valign="top" >TBD</td>
2902 </tr>
2903 <tr>
2904 <td valign="top" >“hpos”</td>
2905 <td valign="top" >RANGE</td>
2906 <td valign="top" >Min=0, Max= SDVO dependent</td>
2907 <td valign="top" >Connector</td>
2908 <td valign="top" >TBD</td>
2909 </tr>
2910 <tr>
2911 <td valign="top" >“vpos”</td>
2912 <td valign="top" >RANGE</td>
2913 <td valign="top" >Min=0, Max= SDVO dependent</td>
2914 <td valign="top" >Connector</td>
2915 <td valign="top" >TBD</td>
2916 </tr>
2917 <tr>
2918 <td valign="top" >“contrast”</td>
2919 <td valign="top" >RANGE</td>
2920 <td valign="top" >Min=0, Max= SDVO dependent</td>
2921 <td valign="top" >Connector</td>
2922 <td valign="top" >TBD</td>
2923 </tr>
2924 <tr>
2925 <td valign="top" >“saturation”</td>
2926 <td valign="top" >RANGE</td>
2927 <td valign="top" >Min=0, Max= SDVO dependent</td>
2928 <td valign="top" >Connector</td>
2929 <td valign="top" >TBD</td>
2930 </tr>
2931 <tr>
2932 <td valign="top" >“hue”</td>
2933 <td valign="top" >RANGE</td>
2934 <td valign="top" >Min=0, Max= SDVO dependent</td>
2935 <td valign="top" >Connector</td>
2936 <td valign="top" >TBD</td>
2937 </tr>
2938 <tr>
2939 <td valign="top" >“sharpness”</td>
2940 <td valign="top" >RANGE</td>
2941 <td valign="top" >Min=0, Max= SDVO dependent</td>
2942 <td valign="top" >Connector</td>
2943 <td valign="top" >TBD</td>
2944 </tr>
2945 <tr>
2946 <td valign="top" >“flicker_filter”</td>
2947 <td valign="top" >RANGE</td>
2948 <td valign="top" >Min=0, Max= SDVO dependent</td>
2949 <td valign="top" >Connector</td>
2950 <td valign="top" >TBD</td>
2951 </tr>
2952 <tr>
2953 <td valign="top" >“flicker_filter_adaptive”</td>
2954 <td valign="top" >RANGE</td>
2955 <td valign="top" >Min=0, Max= SDVO dependent</td>
2956 <td valign="top" >Connector</td>
2957 <td valign="top" >TBD</td>
2958 </tr>
2959 <tr>
2960 <td valign="top" >“flicker_filter_2d”</td>
2961 <td valign="top" >RANGE</td>
2962 <td valign="top" >Min=0, Max= SDVO dependent</td>
2963 <td valign="top" >Connector</td>
2964 <td valign="top" >TBD</td>
2965 </tr>
2966 <tr>
2967 <td valign="top" >“tv_chroma_filter”</td>
2968 <td valign="top" >RANGE</td>
2969 <td valign="top" >Min=0, Max= SDVO dependent</td>
2970 <td valign="top" >Connector</td>
2971 <td valign="top" >TBD</td>
2972 </tr>
2973 <tr>
2974 <td valign="top" >“tv_luma_filter”</td>
2975 <td valign="top" >RANGE</td>
2976 <td valign="top" >Min=0, Max= SDVO dependent</td>
2977 <td valign="top" >Connector</td>
2978 <td valign="top" >TBD</td>
2979 </tr>
2980 <tr>
2981 <td valign="top" >“dot_crawl”</td>
2982 <td valign="top" >RANGE</td>
2983 <td valign="top" >Min=0, Max=1</td>
2984 <td valign="top" >Connector</td>
2985 <td valign="top" >TBD</td>
2986 </tr>
2987 <tr>
2988 <td valign="top" >SDVO-TV/LVDS</td>
2989 <td valign="top" >“brightness”</td>
2990 <td valign="top" >RANGE</td>
2991 <td valign="top" >Min=0, Max= SDVO dependent</td>
2992 <td valign="top" >Connector</td>
2993 <td valign="top" >TBD</td>
2994 </tr>
2995 <tr>
2996 <td rowspan="11" valign="top" >armada</td>
2997 <td rowspan="2" valign="top" >CRTC</td>
2998 <td valign="top" >"CSC_YUV"</td>
2999 <td valign="top" >ENUM</td>
3000 <td valign="top" >{ "Auto" , "CCIR601", "CCIR709" }</td>
3001 <td valign="top" >CRTC</td>
3002 <td valign="top" >TBD</td>
3003 </tr>
3004 <tr>
3005 <td valign="top" >"CSC_RGB"</td>
3006 <td valign="top" >ENUM</td>
3007 <td valign="top" >{ "Auto", "Computer system", "Studio" }</td>
3008 <td valign="top" >CRTC</td>
3009 <td valign="top" >TBD</td>
3010 </tr>
3011 <tr>
3012 <td rowspan="9" valign="top" >Overlay</td>
3013 <td valign="top" >"colorkey"</td>
3014 <td valign="top" >RANGE</td>
3015 <td valign="top" >Min=0, Max=0xffffff</td>
3016 <td valign="top" >Plane</td>
3017 <td valign="top" >TBD</td>
3018 </tr>
3019 <tr>
3020 <td valign="top" >"colorkey_min"</td>
3021 <td valign="top" >RANGE</td>
3022 <td valign="top" >Min=0, Max=0xffffff</td>
3023 <td valign="top" >Plane</td>
3024 <td valign="top" >TBD</td>
3025 </tr>
3026 <tr>
3027 <td valign="top" >"colorkey_max"</td>
3028 <td valign="top" >RANGE</td>
3029 <td valign="top" >Min=0, Max=0xffffff</td>
3030 <td valign="top" >Plane</td>
3031 <td valign="top" >TBD</td>
3032 </tr>
3033 <tr>
3034 <td valign="top" >"colorkey_val"</td>
3035 <td valign="top" >RANGE</td>
3036 <td valign="top" >Min=0, Max=0xffffff</td>
3037 <td valign="top" >Plane</td>
3038 <td valign="top" >TBD</td>
3039 </tr>
3040 <tr>
3041 <td valign="top" >"colorkey_alpha"</td>
3042 <td valign="top" >RANGE</td>
3043 <td valign="top" >Min=0, Max=0xffffff</td>
3044 <td valign="top" >Plane</td>
3045 <td valign="top" >TBD</td>
3046 </tr>
3047 <tr>
3048 <td valign="top" >"colorkey_mode"</td>
3049 <td valign="top" >ENUM</td>
3050 <td valign="top" >{ "disabled", "Y component", "U component"
3051 , "V component", "RGB", “R component", "G component", "B component" }</td>
3052 <td valign="top" >Plane</td>
3053 <td valign="top" >TBD</td>
3054 </tr>
3055 <tr>
3056 <td valign="top" >"brightness"</td>
3057 <td valign="top" >RANGE</td>
3058 <td valign="top" >Min=0, Max=256 + 255</td>
3059 <td valign="top" >Plane</td>
3060 <td valign="top" >TBD</td>
3061 </tr>
3062 <tr>
3063 <td valign="top" >"contrast"</td>
3064 <td valign="top" >RANGE</td>
3065 <td valign="top" >Min=0, Max=0x7fff</td>
3066 <td valign="top" >Plane</td>
3067 <td valign="top" >TBD</td>
3068 </tr>
3069 <tr>
3070 <td valign="top" >"saturation"</td>
3071 <td valign="top" >RANGE</td>
3072 <td valign="top" >Min=0, Max=0x7fff</td>
3073 <td valign="top" >Plane</td>
3074 <td valign="top" >TBD</td>
3075 </tr>
3076 <tr>
3077 <td rowspan="2" valign="top" >exynos</td>
3078 <td valign="top" >CRTC</td>
3079 <td valign="top" >“mode”</td>
3080 <td valign="top" >ENUM</td>
3081 <td valign="top" >{ "normal", "blank" }</td>
3082 <td valign="top" >CRTC</td>
3083 <td valign="top" >TBD</td>
3084 </tr>
3085 <tr>
3086 <td valign="top" >Overlay</td>
3087 <td valign="top" >“zpos”</td>
3088 <td valign="top" >RANGE</td>
3089 <td valign="top" >Min=0, Max=MAX_PLANE-1</td>
3090 <td valign="top" >Plane</td>
3091 <td valign="top" >TBD</td>
3092 </tr>
3093 <tr>
3094 <td rowspan="2" valign="top" >i2c/ch7006_drv</td>
3095 <td valign="top" >Generic</td>
3096 <td valign="top" >“scale”</td>
3097 <td valign="top" >RANGE</td>
3098 <td valign="top" >Min=0, Max=2</td>
3099 <td valign="top" >Connector</td>
3100 <td valign="top" >TBD</td>
3101 </tr>
3102 <tr>
3103 <td rowspan="1" valign="top" >TV</td>
3104 <td valign="top" >“mode”</td>
3105 <td valign="top" >ENUM</td>
3106 <td valign="top" >{ "PAL", "PAL-M","PAL-N"}, ”PAL-Nc"
3107 , "PAL-60", "NTSC-M", "NTSC-J" }</td>
3108 <td valign="top" >Connector</td>
3109 <td valign="top" >TBD</td>
3110 </tr>
3111 <tr>
3112 <td rowspan="15" valign="top" >nouveau</td>
3113 <td rowspan="6" valign="top" >NV10 Overlay</td>
3114 <td valign="top" >"colorkey"</td>
3115 <td valign="top" >RANGE</td>
3116 <td valign="top" >Min=0, Max=0x01ffffff</td>
3117 <td valign="top" >Plane</td>
3118 <td valign="top" >TBD</td>
3119 </tr>
3120 <tr>
3121 <td valign="top" >“contrast”</td>
3122 <td valign="top" >RANGE</td>
3123 <td valign="top" >Min=0, Max=8192-1</td>
3124 <td valign="top" >Plane</td>
3125 <td valign="top" >TBD</td>
3126 </tr>
3127 <tr>
3128 <td valign="top" >“brightness”</td>
3129 <td valign="top" >RANGE</td>
3130 <td valign="top" >Min=0, Max=1024</td>
3131 <td valign="top" >Plane</td>
3132 <td valign="top" >TBD</td>
3133 </tr>
3134 <tr>
3135 <td valign="top" >“hue”</td>
3136 <td valign="top" >RANGE</td>
3137 <td valign="top" >Min=0, Max=359</td>
3138 <td valign="top" >Plane</td>
3139 <td valign="top" >TBD</td>
3140 </tr>
3141 <tr>
3142 <td valign="top" >“saturation”</td>
3143 <td valign="top" >RANGE</td>
3144 <td valign="top" >Min=0, Max=8192-1</td>
3145 <td valign="top" >Plane</td>
3146 <td valign="top" >TBD</td>
3147 </tr>
3148 <tr>
3149 <td valign="top" >“iturbt_709”</td>
3150 <td valign="top" >RANGE</td>
3151 <td valign="top" >Min=0, Max=1</td>
3152 <td valign="top" >Plane</td>
3153 <td valign="top" >TBD</td>
3154 </tr>
3155 <tr>
3156 <td rowspan="2" valign="top" >Nv04 Overlay</td>
3157 <td valign="top" >“colorkey”</td>
3158 <td valign="top" >RANGE</td>
3159 <td valign="top" >Min=0, Max=0x01ffffff</td>
3160 <td valign="top" >Plane</td>
3161 <td valign="top" >TBD</td>
3162 </tr>
3163 <tr>
3164 <td valign="top" >“brightness”</td>
3165 <td valign="top" >RANGE</td>
3166 <td valign="top" >Min=0, Max=1024</td>
3167 <td valign="top" >Plane</td>
3168 <td valign="top" >TBD</td>
3169 </tr>
3170 <tr>
3171 <td rowspan="7" valign="top" >Display</td>
3172 <td valign="top" >“dithering mode”</td>
3173 <td valign="top" >ENUM</td>
3174 <td valign="top" >{ "auto", "off", "on" }</td>
3175 <td valign="top" >Connector</td>
3176 <td valign="top" >TBD</td>
3177 </tr>
3178 <tr>
3179 <td valign="top" >“dithering depth”</td>
3180 <td valign="top" >ENUM</td>
3181 <td valign="top" >{ "auto", "off", "on", "static 2x2", "dynamic 2x2", "temporal" }</td>
3182 <td valign="top" >Connector</td>
3183 <td valign="top" >TBD</td>
3184 </tr>
3185 <tr>
3186 <td valign="top" >“underscan”</td>
3187 <td valign="top" >ENUM</td>
3188 <td valign="top" >{ "auto", "6 bpc", "8 bpc" }</td>
3189 <td valign="top" >Connector</td>
3190 <td valign="top" >TBD</td>
3191 </tr>
3192 <tr>
3193 <td valign="top" >“underscan hborder”</td>
3194 <td valign="top" >RANGE</td>
3195 <td valign="top" >Min=0, Max=128</td>
3196 <td valign="top" >Connector</td>
3197 <td valign="top" >TBD</td>
3198 </tr>
3199 <tr>
3200 <td valign="top" >“underscan vborder”</td>
3201 <td valign="top" >RANGE</td>
3202 <td valign="top" >Min=0, Max=128</td>
3203 <td valign="top" >Connector</td>
3204 <td valign="top" >TBD</td>
3205 </tr>
3206 <tr>
3207 <td valign="top" >“vibrant hue”</td>
3208 <td valign="top" >RANGE</td>
3209 <td valign="top" >Min=0, Max=180</td>
3210 <td valign="top" >Connector</td>
3211 <td valign="top" >TBD</td>
3212 </tr>
3213 <tr>
3214 <td valign="top" >“color vibrance”</td>
3215 <td valign="top" >RANGE</td>
3216 <td valign="top" >Min=0, Max=200</td>
3217 <td valign="top" >Connector</td>
3218 <td valign="top" >TBD</td>
3219 </tr>
3220 <tr>
3221 <td rowspan="2" valign="top" >omap</td>
3222 <td rowspan="2" valign="top" >Generic</td>
3223 <td valign="top" >“rotation”</td>
3224 <td valign="top" >BITMASK</td>
3225 <td valign="top" >{ 0, "rotate-0" },
3226 { 1, "rotate-90" },
3227 { 2, "rotate-180" },
3228 { 3, "rotate-270" },
3229 { 4, "reflect-x" },
3230 { 5, "reflect-y" }</td>
3231 <td valign="top" >CRTC, Plane</td>
3232 <td valign="top" >TBD</td>
3233 </tr>
3234 <tr>
3235 <td valign="top" >“zorder”</td>
3236 <td valign="top" >RANGE</td>
3237 <td valign="top" >Min=0, Max=3</td>
3238 <td valign="top" >CRTC, Plane</td>
3239 <td valign="top" >TBD</td>
3240 </tr>
3241 <tr>
3242 <td valign="top" >qxl</td>
3243 <td valign="top" >Generic</td>
3244 <td valign="top" >“hotplug_mode_update"</td>
3245 <td valign="top" >RANGE</td>
3246 <td valign="top" >Min=0, Max=1</td>
3247 <td valign="top" >Connector</td>
3248 <td valign="top" >TBD</td>
3249 </tr>
3250 <tr>
3251 <td rowspan="9" valign="top" >radeon</td>
3252 <td valign="top" >DVI-I</td>
3253 <td valign="top" >“coherent”</td>
3254 <td valign="top" >RANGE</td>
3255 <td valign="top" >Min=0, Max=1</td>
3256 <td valign="top" >Connector</td>
3257 <td valign="top" >TBD</td>
3258 </tr>
3259 <tr>
3260 <td valign="top" >DAC enable load detect</td>
3261 <td valign="top" >“load detection”</td>
3262 <td valign="top" >RANGE</td>
3263 <td valign="top" >Min=0, Max=1</td>
3264 <td valign="top" >Connector</td>
3265 <td valign="top" >TBD</td>
3266 </tr>
3267 <tr>
3268 <td valign="top" >TV Standard</td>
3269 <td valign="top" >"tv standard"</td>
3270 <td valign="top" >ENUM</td>
3271 <td valign="top" >{ "ntsc", "pal", "pal-m", "pal-60", "ntsc-j"
3272 , "scart-pal", "pal-cn", "secam" }</td>
3273 <td valign="top" >Connector</td>
3274 <td valign="top" >TBD</td>
3275 </tr>
3276 <tr>
3277 <td valign="top" >legacy TMDS PLL detect</td>
3278 <td valign="top" >"tmds_pll"</td>
3279 <td valign="top" >ENUM</td>
3280 <td valign="top" >{ "driver", "bios" }</td>
3281 <td valign="top" >-</td>
3282 <td valign="top" >TBD</td>
3283 </tr>
3284 <tr>
3285 <td rowspan="3" valign="top" >Underscan</td>
3286 <td valign="top" >"underscan"</td>
3287 <td valign="top" >ENUM</td>
3288 <td valign="top" >{ "off", "on", "auto" }</td>
3289 <td valign="top" >Connector</td>
3290 <td valign="top" >TBD</td>
3291 </tr>
3292 <tr>
3293 <td valign="top" >"underscan hborder"</td>
3294 <td valign="top" >RANGE</td>
3295 <td valign="top" >Min=0, Max=128</td>
3296 <td valign="top" >Connector</td>
3297 <td valign="top" >TBD</td>
3298 </tr>
3299 <tr>
3300 <td valign="top" >"underscan vborder"</td>
3301 <td valign="top" >RANGE</td>
3302 <td valign="top" >Min=0, Max=128</td>
3303 <td valign="top" >Connector</td>
3304 <td valign="top" >TBD</td>
3305 </tr>
3306 <tr>
3307 <td valign="top" >Audio</td>
3308 <td valign="top" >“audio”</td>
3309 <td valign="top" >ENUM</td>
3310 <td valign="top" >{ "off", "on", "auto" }</td>
3311 <td valign="top" >Connector</td>
3312 <td valign="top" >TBD</td>
3313 </tr>
3314 <tr>
3315 <td valign="top" >FMT Dithering</td>
3316 <td valign="top" >“dither”</td>
3317 <td valign="top" >ENUM</td>
3318 <td valign="top" >{ "off", "on" }</td>
3319 <td valign="top" >Connector</td>
3320 <td valign="top" >TBD</td>
3321 </tr>
3322 <tr>
3323 <td rowspan="3" valign="top" >rcar-du</td>
3324 <td rowspan="3" valign="top" >Generic</td>
3325 <td valign="top" >"alpha"</td>
3326 <td valign="top" >RANGE</td>
3327 <td valign="top" >Min=0, Max=255</td>
3328 <td valign="top" >Plane</td>
3329 <td valign="top" >TBD</td>
3330 </tr>
3331 <tr>
3332 <td valign="top" >"colorkey"</td>
3333 <td valign="top" >RANGE</td>
3334 <td valign="top" >Min=0, Max=0x01ffffff</td>
3335 <td valign="top" >Plane</td>
3336 <td valign="top" >TBD</td>
3337 </tr>
3338 <tr>
3339 <td valign="top" >"zpos"</td>
3340 <td valign="top" >RANGE</td>
3341 <td valign="top" >Min=1, Max=7</td>
3342 <td valign="top" >Plane</td>
3343 <td valign="top" >TBD</td>
3344 </tr>
3345 </tbody>
3346 </table>
3347 </sect2>
3348 </sect1>
3349
3350 <!-- Internals: vertical blanking -->
3351
3352 <sect1 id="drm-vertical-blank">
3353 <title>Vertical Blanking</title>
3354 <para>
3355 Vertical blanking plays a major role in graphics rendering. To achieve
3356 tear-free display, users must synchronize page flips and/or rendering to
3357 vertical blanking. The DRM API offers ioctls to perform page flips
3358 synchronized to vertical blanking and wait for vertical blanking.
3359 </para>
3360 <para>
3361 The DRM core handles most of the vertical blanking management logic, which
3362 involves filtering out spurious interrupts, keeping race-free blanking
3363 counters, coping with counter wrap-around and resets and keeping use
3364 counts. It relies on the driver to generate vertical blanking interrupts
3365 and optionally provide a hardware vertical blanking counter. Drivers must
3366 implement the following operations.
3367 </para>
3368 <itemizedlist>
3369 <listitem>
3370 <synopsis>int (*enable_vblank) (struct drm_device *dev, int crtc);
3371 void (*disable_vblank) (struct drm_device *dev, int crtc);</synopsis>
3372 <para>
3373 Enable or disable vertical blanking interrupts for the given CRTC.
3374 </para>
3375 </listitem>
3376 <listitem>
3377 <synopsis>u32 (*get_vblank_counter) (struct drm_device *dev, int crtc);</synopsis>
3378 <para>
3379 Retrieve the value of the vertical blanking counter for the given
3380 CRTC. If the hardware maintains a vertical blanking counter its value
3381 should be returned. Otherwise drivers can use the
3382 <function>drm_vblank_count</function> helper function to handle this
3383 operation.
3384 </para>
3385 </listitem>
3386 </itemizedlist>
3387 <para>
3388 Drivers must initialize the vertical blanking handling core with a call to
3389 <function>drm_vblank_init</function> in their
3390 <methodname>load</methodname> operation. The function will set the struct
3391 <structname>drm_device</structname>
3392 <structfield>vblank_disable_allowed</structfield> field to 0. This will
3393 keep vertical blanking interrupts enabled permanently until the first mode
3394 set operation, where <structfield>vblank_disable_allowed</structfield> is
3395 set to 1. The reason behind this is not clear. Drivers can set the field
3396 to 1 after <function>calling drm_vblank_init</function> to make vertical
3397 blanking interrupts dynamically managed from the beginning.
3398 </para>
3399 <para>
3400 Vertical blanking interrupts can be enabled by the DRM core or by drivers
3401 themselves (for instance to handle page flipping operations). The DRM core
3402 maintains a vertical blanking use count to ensure that the interrupts are
3403 not disabled while a user still needs them. To increment the use count,
3404 drivers call <function>drm_vblank_get</function>. Upon return vertical
3405 blanking interrupts are guaranteed to be enabled.
3406 </para>
3407 <para>
3408 To decrement the use count drivers call
3409 <function>drm_vblank_put</function>. Only when the use count drops to zero
3410 will the DRM core disable the vertical blanking interrupts after a delay
3411 by scheduling a timer. The delay is accessible through the vblankoffdelay
3412 module parameter or the <varname>drm_vblank_offdelay</varname> global
3413 variable and expressed in milliseconds. Its default value is 5000 ms.
3414 Zero means never disable, and a negative value means disable immediately.
3415 Drivers may override the behaviour by setting the
3416 <structname>drm_device</structname>
3417 <structfield>vblank_disable_immediate</structfield> flag, which when set
3418 causes vblank interrupts to be disabled immediately regardless of the
3419 drm_vblank_offdelay value. The flag should only be set if there's a
3420 properly working hardware vblank counter present.
3421 </para>
3422 <para>
3423 When a vertical blanking interrupt occurs drivers only need to call the
3424 <function>drm_handle_vblank</function> function to account for the
3425 interrupt.
3426 </para>
3427 <para>
3428 Resources allocated by <function>drm_vblank_init</function> must be freed
3429 with a call to <function>drm_vblank_cleanup</function> in the driver
3430 <methodname>unload</methodname> operation handler.
3431 </para>
3432 <sect2>
3433 <title>Vertical Blanking and Interrupt Handling Functions Reference</title>
3434 !Edrivers/gpu/drm/drm_irq.c
3435 !Finclude/drm/drmP.h drm_crtc_vblank_waitqueue
3436 </sect2>
3437 </sect1>
3438
3439 <!-- Internals: open/close, file operations and ioctls -->
3440
3441 <sect1>
3442 <title>Open/Close, File Operations and IOCTLs</title>
3443 <sect2>
3444 <title>Open and Close</title>
3445 <synopsis>int (*firstopen) (struct drm_device *);
3446 void (*lastclose) (struct drm_device *);
3447 int (*open) (struct drm_device *, struct drm_file *);
3448 void (*preclose) (struct drm_device *, struct drm_file *);
3449 void (*postclose) (struct drm_device *, struct drm_file *);</synopsis>
3450 <abstract>Open and close handlers. None of those methods are mandatory.
3451 </abstract>
3452 <para>
3453 The <methodname>firstopen</methodname> method is called by the DRM core
3454 for legacy UMS (User Mode Setting) drivers only when an application
3455 opens a device that has no other opened file handle. UMS drivers can
3456 implement it to acquire device resources. KMS drivers can't use the
3457 method and must acquire resources in the <methodname>load</methodname>
3458 method instead.
3459 </para>
3460 <para>
3461 Similarly the <methodname>lastclose</methodname> method is called when
3462 the last application holding a file handle opened on the device closes
3463 it, for both UMS and KMS drivers. Additionally, the method is also
3464 called at module unload time or, for hot-pluggable devices, when the
3465 device is unplugged. The <methodname>firstopen</methodname> and
3466 <methodname>lastclose</methodname> calls can thus be unbalanced.
3467 </para>
3468 <para>
3469 The <methodname>open</methodname> method is called every time the device
3470 is opened by an application. Drivers can allocate per-file private data
3471 in this method and store them in the struct
3472 <structname>drm_file</structname> <structfield>driver_priv</structfield>
3473 field. Note that the <methodname>open</methodname> method is called
3474 before <methodname>firstopen</methodname>.
3475 </para>
3476 <para>
3477 The close operation is split into <methodname>preclose</methodname> and
3478 <methodname>postclose</methodname> methods. Drivers must stop and
3479 cleanup all per-file operations in the <methodname>preclose</methodname>
3480 method. For instance pending vertical blanking and page flip events must
3481 be cancelled. No per-file operation is allowed on the file handle after
3482 returning from the <methodname>preclose</methodname> method.
3483 </para>
3484 <para>
3485 Finally the <methodname>postclose</methodname> method is called as the
3486 last step of the close operation, right before calling the
3487 <methodname>lastclose</methodname> method if no other open file handle
3488 exists for the device. Drivers that have allocated per-file private data
3489 in the <methodname>open</methodname> method should free it here.
3490 </para>
3491 <para>
3492 The <methodname>lastclose</methodname> method should restore CRTC and
3493 plane properties to default value, so that a subsequent open of the
3494 device will not inherit state from the previous user. It can also be
3495 used to execute delayed power switching state changes, e.g. in
3496 conjunction with the vga-switcheroo infrastructure. Beyond that KMS
3497 drivers should not do any further cleanup. Only legacy UMS drivers might
3498 need to clean up device state so that the vga console or an independent
3499 fbdev driver could take over.
3500 </para>
3501 </sect2>
3502 <sect2>
3503 <title>File Operations</title>
3504 <synopsis>const struct file_operations *fops</synopsis>
3505 <abstract>File operations for the DRM device node.</abstract>
3506 <para>
3507 Drivers must define the file operations structure that forms the DRM
3508 userspace API entry point, even though most of those operations are
3509 implemented in the DRM core. The <methodname>open</methodname>,
3510 <methodname>release</methodname> and <methodname>ioctl</methodname>
3511 operations are handled by
3512 <programlisting>
3513 .owner = THIS_MODULE,
3514 .open = drm_open,
3515 .release = drm_release,
3516 .unlocked_ioctl = drm_ioctl,
3517 #ifdef CONFIG_COMPAT
3518 .compat_ioctl = drm_compat_ioctl,
3519 #endif
3520 </programlisting>
3521 </para>
3522 <para>
3523 Drivers that implement private ioctls that requires 32/64bit
3524 compatibility support must provide their own
3525 <methodname>compat_ioctl</methodname> handler that processes private
3526 ioctls and calls <function>drm_compat_ioctl</function> for core ioctls.
3527 </para>
3528 <para>
3529 The <methodname>read</methodname> and <methodname>poll</methodname>
3530 operations provide support for reading DRM events and polling them. They
3531 are implemented by
3532 <programlisting>
3533 .poll = drm_poll,
3534 .read = drm_read,
3535 .llseek = no_llseek,
3536 </programlisting>
3537 </para>
3538 <para>
3539 The memory mapping implementation varies depending on how the driver
3540 manages memory. Pre-GEM drivers will use <function>drm_mmap</function>,
3541 while GEM-aware drivers will use <function>drm_gem_mmap</function>. See
3542 <xref linkend="drm-gem"/>.
3543 <programlisting>
3544 .mmap = drm_gem_mmap,
3545 </programlisting>
3546 </para>
3547 <para>
3548 No other file operation is supported by the DRM API.
3549 </para>
3550 </sect2>
3551 <sect2>
3552 <title>IOCTLs</title>
3553 <synopsis>struct drm_ioctl_desc *ioctls;
3554 int num_ioctls;</synopsis>
3555 <abstract>Driver-specific ioctls descriptors table.</abstract>
3556 <para>
3557 Driver-specific ioctls numbers start at DRM_COMMAND_BASE. The ioctls
3558 descriptors table is indexed by the ioctl number offset from the base
3559 value. Drivers can use the DRM_IOCTL_DEF_DRV() macro to initialize the
3560 table entries.
3561 </para>
3562 <para>
3563 <programlisting>DRM_IOCTL_DEF_DRV(ioctl, func, flags)</programlisting>
3564 <para>
3565 <parameter>ioctl</parameter> is the ioctl name. Drivers must define
3566 the DRM_##ioctl and DRM_IOCTL_##ioctl macros to the ioctl number
3567 offset from DRM_COMMAND_BASE and the ioctl number respectively. The
3568 first macro is private to the device while the second must be exposed
3569 to userspace in a public header.
3570 </para>
3571 <para>
3572 <parameter>func</parameter> is a pointer to the ioctl handler function
3573 compatible with the <type>drm_ioctl_t</type> type.
3574 <programlisting>typedef int drm_ioctl_t(struct drm_device *dev, void *data,
3575 struct drm_file *file_priv);</programlisting>
3576 </para>
3577 <para>
3578 <parameter>flags</parameter> is a bitmask combination of the following
3579 values. It restricts how the ioctl is allowed to be called.
3580 <itemizedlist>
3581 <listitem><para>
3582 DRM_AUTH - Only authenticated callers allowed
3583 </para></listitem>
3584 <listitem><para>
3585 DRM_MASTER - The ioctl can only be called on the master file
3586 handle
3587 </para></listitem>
3588 <listitem><para>
3589 DRM_ROOT_ONLY - Only callers with the SYSADMIN capability allowed
3590 </para></listitem>
3591 <listitem><para>
3592 DRM_CONTROL_ALLOW - The ioctl can only be called on a control
3593 device
3594 </para></listitem>
3595 <listitem><para>
3596 DRM_UNLOCKED - The ioctl handler will be called without locking
3597 the DRM global mutex
3598 </para></listitem>
3599 </itemizedlist>
3600 </para>
3601 </para>
3602 </sect2>
3603 </sect1>
3604 <sect1>
3605 <title>Legacy Support Code</title>
3606 <para>
3607 The section very briefly covers some of the old legacy support code which
3608 is only used by old DRM drivers which have done a so-called shadow-attach
3609 to the underlying device instead of registering as a real driver. This
3610 also includes some of the old generic buffer management and command
3611 submission code. Do not use any of this in new and modern drivers.
3612 </para>
3613
3614 <sect2>
3615 <title>Legacy Suspend/Resume</title>
3616 <para>
3617 The DRM core provides some suspend/resume code, but drivers wanting full
3618 suspend/resume support should provide save() and restore() functions.
3619 These are called at suspend, hibernate, or resume time, and should perform
3620 any state save or restore required by your device across suspend or
3621 hibernate states.
3622 </para>
3623 <synopsis>int (*suspend) (struct drm_device *, pm_message_t state);
3624 int (*resume) (struct drm_device *);</synopsis>
3625 <para>
3626 Those are legacy suspend and resume methods which
3627 <emphasis>only</emphasis> work with the legacy shadow-attach driver
3628 registration functions. New driver should use the power management
3629 interface provided by their bus type (usually through
3630 the struct <structname>device_driver</structname> dev_pm_ops) and set
3631 these methods to NULL.
3632 </para>
3633 </sect2>
3634
3635 <sect2>
3636 <title>Legacy DMA Services</title>
3637 <para>
3638 This should cover how DMA mapping etc. is supported by the core.
3639 These functions are deprecated and should not be used.
3640 </para>
3641 </sect2>
3642 </sect1>
3643 </chapter>
3644
3645 <!-- TODO
3646
3647 - Add a glossary
3648 - Document the struct_mutex catch-all lock
3649 - Document connector properties
3650
3651 - Why is the load method optional?
3652 - What are drivers supposed to set the initial display state to, and how?
3653 Connector's DPMS states are not initialized and are thus equal to
3654 DRM_MODE_DPMS_ON. The fbcon compatibility layer calls
3655 drm_helper_disable_unused_functions(), which disables unused encoders and
3656 CRTCs, but doesn't touch the connectors' DPMS state, and
3657 drm_helper_connector_dpms() in reaction to fbdev blanking events. Do drivers
3658 that don't implement (or just don't use) fbcon compatibility need to call
3659 those functions themselves?
3660 - KMS drivers must call drm_vblank_pre_modeset() and drm_vblank_post_modeset()
3661 around mode setting. Should this be done in the DRM core?
3662 - vblank_disable_allowed is set to 1 in the first drm_vblank_post_modeset()
3663 call and never set back to 0. It seems to be safe to permanently set it to 1
3664 in drm_vblank_init() for KMS driver, and it might be safe for UMS drivers as
3665 well. This should be investigated.
3666 - crtc and connector .save and .restore operations are only used internally in
3667 drivers, should they be removed from the core?
3668 - encoder mid-layer .save and .restore operations are only used internally in
3669 drivers, should they be removed from the core?
3670 - encoder mid-layer .detect operation is only used internally in drivers,
3671 should it be removed from the core?
3672 -->
3673
3674 <!-- External interfaces -->
3675
3676 <chapter id="drmExternals">
3677 <title>Userland interfaces</title>
3678 <para>
3679 The DRM core exports several interfaces to applications,
3680 generally intended to be used through corresponding libdrm
3681 wrapper functions. In addition, drivers export device-specific
3682 interfaces for use by userspace drivers &amp; device-aware
3683 applications through ioctls and sysfs files.
3684 </para>
3685 <para>
3686 External interfaces include: memory mapping, context management,
3687 DMA operations, AGP management, vblank control, fence
3688 management, memory management, and output management.
3689 </para>
3690 <para>
3691 Cover generic ioctls and sysfs layout here. We only need high-level
3692 info, since man pages should cover the rest.
3693 </para>
3694
3695 <!-- External: render nodes -->
3696
3697 <sect1>
3698 <title>Render nodes</title>
3699 <para>
3700 DRM core provides multiple character-devices for user-space to use.
3701 Depending on which device is opened, user-space can perform a different
3702 set of operations (mainly ioctls). The primary node is always created
3703 and called card&lt;num&gt;. Additionally, a currently
3704 unused control node, called controlD&lt;num&gt; is also
3705 created. The primary node provides all legacy operations and
3706 historically was the only interface used by userspace. With KMS, the
3707 control node was introduced. However, the planned KMS control interface
3708 has never been written and so the control node stays unused to date.
3709 </para>
3710 <para>
3711 With the increased use of offscreen renderers and GPGPU applications,
3712 clients no longer require running compositors or graphics servers to
3713 make use of a GPU. But the DRM API required unprivileged clients to
3714 authenticate to a DRM-Master prior to getting GPU access. To avoid this
3715 step and to grant clients GPU access without authenticating, render
3716 nodes were introduced. Render nodes solely serve render clients, that
3717 is, no modesetting or privileged ioctls can be issued on render nodes.
3718 Only non-global rendering commands are allowed. If a driver supports
3719 render nodes, it must advertise it via the DRIVER_RENDER
3720 DRM driver capability. If not supported, the primary node must be used
3721 for render clients together with the legacy drmAuth authentication
3722 procedure.
3723 </para>
3724 <para>
3725 If a driver advertises render node support, DRM core will create a
3726 separate render node called renderD&lt;num&gt;. There will
3727 be one render node per device. No ioctls except PRIME-related ioctls
3728 will be allowed on this node. Especially GEM_OPEN will be
3729 explicitly prohibited. Render nodes are designed to avoid the
3730 buffer-leaks, which occur if clients guess the flink names or mmap
3731 offsets on the legacy interface. Additionally to this basic interface,
3732 drivers must mark their driver-dependent render-only ioctls as
3733 DRM_RENDER_ALLOW so render clients can use them. Driver
3734 authors must be careful not to allow any privileged ioctls on render
3735 nodes.
3736 </para>
3737 <para>
3738 With render nodes, user-space can now control access to the render node
3739 via basic file-system access-modes. A running graphics server which
3740 authenticates clients on the privileged primary/legacy node is no longer
3741 required. Instead, a client can open the render node and is immediately
3742 granted GPU access. Communication between clients (or servers) is done
3743 via PRIME. FLINK from render node to legacy node is not supported. New
3744 clients must not use the insecure FLINK interface.
3745 </para>
3746 <para>
3747 Besides dropping all modeset/global ioctls, render nodes also drop the
3748 DRM-Master concept. There is no reason to associate render clients with
3749 a DRM-Master as they are independent of any graphics server. Besides,
3750 they must work without any running master, anyway.
3751 Drivers must be able to run without a master object if they support
3752 render nodes. If, on the other hand, a driver requires shared state
3753 between clients which is visible to user-space and accessible beyond
3754 open-file boundaries, they cannot support render nodes.
3755 </para>
3756 </sect1>
3757
3758 <!-- External: vblank handling -->
3759
3760 <sect1>
3761 <title>VBlank event handling</title>
3762 <para>
3763 The DRM core exposes two vertical blank related ioctls:
3764 <variablelist>
3765 <varlistentry>
3766 <term>DRM_IOCTL_WAIT_VBLANK</term>
3767 <listitem>
3768 <para>
3769 This takes a struct drm_wait_vblank structure as its argument,
3770 and it is used to block or request a signal when a specified
3771 vblank event occurs.
3772 </para>
3773 </listitem>
3774 </varlistentry>
3775 <varlistentry>
3776 <term>DRM_IOCTL_MODESET_CTL</term>
3777 <listitem>
3778 <para>
3779 This was only used for user-mode-settind drivers around
3780 modesetting changes to allow the kernel to update the vblank
3781 interrupt after mode setting, since on many devices the vertical
3782 blank counter is reset to 0 at some point during modeset. Modern
3783 drivers should not call this any more since with kernel mode
3784 setting it is a no-op.
3785 </para>
3786 </listitem>
3787 </varlistentry>
3788 </variablelist>
3789 </para>
3790 </sect1>
3791
3792 </chapter>
3793 </part>
3794 <part id="drmDrivers">
3795 <title>DRM Drivers</title>
3796
3797 <partintro>
3798 <para>
3799 This second part of the DRM Developer's Guide documents driver code,
3800 implementation details and also all the driver-specific userspace
3801 interfaces. Especially since all hardware-acceleration interfaces to
3802 userspace are driver specific for efficiency and other reasons these
3803 interfaces can be rather substantial. Hence every driver has its own
3804 chapter.
3805 </para>
3806 </partintro>
3807
3808 <chapter id="drmI915">
3809 <title>drm/i915 Intel GFX Driver</title>
3810 <para>
3811 The drm/i915 driver supports all (with the exception of some very early
3812 models) integrated GFX chipsets with both Intel display and rendering
3813 blocks. This excludes a set of SoC platforms with an SGX rendering unit,
3814 those have basic support through the gma500 drm driver.
3815 </para>
3816 <sect1>
3817 <title>Core Driver Infrastructure</title>
3818 <para>
3819 This section covers core driver infrastructure used by both the display
3820 and the GEM parts of the driver.
3821 </para>
3822 <sect2>
3823 <title>Runtime Power Management</title>
3824 !Pdrivers/gpu/drm/i915/intel_runtime_pm.c runtime pm
3825 !Idrivers/gpu/drm/i915/intel_runtime_pm.c
3826 </sect2>
3827 <sect2>
3828 <title>Interrupt Handling</title>
3829 !Pdrivers/gpu/drm/i915/i915_irq.c interrupt handling
3830 !Fdrivers/gpu/drm/i915/i915_irq.c intel_irq_init intel_irq_init_hw intel_hpd_init
3831 !Fdrivers/gpu/drm/i915/i915_irq.c intel_irq_fini
3832 !Fdrivers/gpu/drm/i915/i915_irq.c intel_runtime_pm_disable_interrupts
3833 !Fdrivers/gpu/drm/i915/i915_irq.c intel_runtime_pm_enable_interrupts
3834 </sect2>
3835 </sect1>
3836 <sect1>
3837 <title>Display Hardware Handling</title>
3838 <para>
3839 This section covers everything related to the display hardware including
3840 the mode setting infrastructure, plane, sprite and cursor handling and
3841 display, output probing and related topics.
3842 </para>
3843 <sect2>
3844 <title>Mode Setting Infrastructure</title>
3845 <para>
3846 The i915 driver is thus far the only DRM driver which doesn't use the
3847 common DRM helper code to implement mode setting sequences. Thus it
3848 has its own tailor-made infrastructure for executing a display
3849 configuration change.
3850 </para>
3851 </sect2>
3852 <sect2>
3853 <title>Frontbuffer Tracking</title>
3854 !Pdrivers/gpu/drm/i915/intel_frontbuffer.c frontbuffer tracking
3855 !Idrivers/gpu/drm/i915/intel_frontbuffer.c
3856 !Fdrivers/gpu/drm/i915/intel_drv.h intel_frontbuffer_flip
3857 !Fdrivers/gpu/drm/i915/i915_gem.c i915_gem_track_fb
3858 </sect2>
3859 <sect2>
3860 <title>Display FIFO Underrun Reporting</title>
3861 !Pdrivers/gpu/drm/i915/intel_fifo_underrun.c fifo underrun handling
3862 !Idrivers/gpu/drm/i915/intel_fifo_underrun.c
3863 </sect2>
3864 <sect2>
3865 <title>Plane Configuration</title>
3866 <para>
3867 This section covers plane configuration and composition with the
3868 primary plane, sprites, cursors and overlays. This includes the
3869 infrastructure to do atomic vsync'ed updates of all this state and
3870 also tightly coupled topics like watermark setup and computation,
3871 framebuffer compression and panel self refresh.
3872 </para>
3873 </sect2>
3874 <sect2>
3875 <title>Output Probing</title>
3876 <para>
3877 This section covers output probing and related infrastructure like the
3878 hotplug interrupt storm detection and mitigation code. Note that the
3879 i915 driver still uses most of the common DRM helper code for output
3880 probing, so those sections fully apply.
3881 </para>
3882 </sect2>
3883 <sect2>
3884 <title>DPIO</title>
3885 !Pdrivers/gpu/drm/i915/i915_reg.h DPIO
3886 <table id="dpiox2">
3887 <title>Dual channel PHY (VLV/CHV)</title>
3888 <tgroup cols="8">
3889 <colspec colname="c0" />
3890 <colspec colname="c1" />
3891 <colspec colname="c2" />
3892 <colspec colname="c3" />
3893 <colspec colname="c4" />
3894 <colspec colname="c5" />
3895 <colspec colname="c6" />
3896 <colspec colname="c7" />
3897 <spanspec spanname="ch0" namest="c0" nameend="c3" />
3898 <spanspec spanname="ch1" namest="c4" nameend="c7" />
3899 <spanspec spanname="ch0pcs01" namest="c0" nameend="c1" />
3900 <spanspec spanname="ch0pcs23" namest="c2" nameend="c3" />
3901 <spanspec spanname="ch1pcs01" namest="c4" nameend="c5" />
3902 <spanspec spanname="ch1pcs23" namest="c6" nameend="c7" />
3903 <thead>
3904 <row>
3905 <entry spanname="ch0">CH0</entry>
3906 <entry spanname="ch1">CH1</entry>
3907 </row>
3908 </thead>
3909 <tbody valign="top" align="center">
3910 <row>
3911 <entry spanname="ch0">CMN/PLL/REF</entry>
3912 <entry spanname="ch1">CMN/PLL/REF</entry>
3913 </row>
3914 <row>
3915 <entry spanname="ch0pcs01">PCS01</entry>
3916 <entry spanname="ch0pcs23">PCS23</entry>
3917 <entry spanname="ch1pcs01">PCS01</entry>
3918 <entry spanname="ch1pcs23">PCS23</entry>
3919 </row>
3920 <row>
3921 <entry>TX0</entry>
3922 <entry>TX1</entry>
3923 <entry>TX2</entry>
3924 <entry>TX3</entry>
3925 <entry>TX0</entry>
3926 <entry>TX1</entry>
3927 <entry>TX2</entry>
3928 <entry>TX3</entry>
3929 </row>
3930 <row>
3931 <entry spanname="ch0">DDI0</entry>
3932 <entry spanname="ch1">DDI1</entry>
3933 </row>
3934 </tbody>
3935 </tgroup>
3936 </table>
3937 <table id="dpiox1">
3938 <title>Single channel PHY (CHV)</title>
3939 <tgroup cols="4">
3940 <colspec colname="c0" />
3941 <colspec colname="c1" />
3942 <colspec colname="c2" />
3943 <colspec colname="c3" />
3944 <spanspec spanname="ch0" namest="c0" nameend="c3" />
3945 <spanspec spanname="ch0pcs01" namest="c0" nameend="c1" />
3946 <spanspec spanname="ch0pcs23" namest="c2" nameend="c3" />
3947 <thead>
3948 <row>
3949 <entry spanname="ch0">CH0</entry>
3950 </row>
3951 </thead>
3952 <tbody valign="top" align="center">
3953 <row>
3954 <entry spanname="ch0">CMN/PLL/REF</entry>
3955 </row>
3956 <row>
3957 <entry spanname="ch0pcs01">PCS01</entry>
3958 <entry spanname="ch0pcs23">PCS23</entry>
3959 </row>
3960 <row>
3961 <entry>TX0</entry>
3962 <entry>TX1</entry>
3963 <entry>TX2</entry>
3964 <entry>TX3</entry>
3965 </row>
3966 <row>
3967 <entry spanname="ch0">DDI2</entry>
3968 </row>
3969 </tbody>
3970 </tgroup>
3971 </table>
3972 </sect2>
3973 </sect1>
3974
3975 <sect1>
3976 <title>Memory Management and Command Submission</title>
3977 <para>
3978 This sections covers all things related to the GEM implementation in the
3979 i915 driver.
3980 </para>
3981 <sect2>
3982 <title>Batchbuffer Parsing</title>
3983 !Pdrivers/gpu/drm/i915/i915_cmd_parser.c batch buffer command parser
3984 !Idrivers/gpu/drm/i915/i915_cmd_parser.c
3985 </sect2>
3986 <sect2>
3987 <title>Logical Rings, Logical Ring Contexts and Execlists</title>
3988 !Pdrivers/gpu/drm/i915/intel_lrc.c Logical Rings, Logical Ring Contexts and Execlists
3989 !Idrivers/gpu/drm/i915/intel_lrc.c
3990 </sect2>
3991 </sect1>
3992 </chapter>
3993 !Cdrivers/gpu/drm/i915/i915_irq.c
3994 </part>
3995 </book>
This page took 0.119111 seconds and 6 git commands to generate.