drm/doc: Add GEM/CMA helpers to kerneldoc
[deliverable/linux.git] / Documentation / DocBook / drm.tmpl
1 <?xml version="1.0" encoding="UTF-8"?>
2 <!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
3 "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
4
5 <book id="drmDevelopersGuide">
6 <bookinfo>
7 <title>Linux DRM Developer's Guide</title>
8
9 <authorgroup>
10 <author>
11 <firstname>Jesse</firstname>
12 <surname>Barnes</surname>
13 <contrib>Initial version</contrib>
14 <affiliation>
15 <orgname>Intel Corporation</orgname>
16 <address>
17 <email>jesse.barnes@intel.com</email>
18 </address>
19 </affiliation>
20 </author>
21 <author>
22 <firstname>Laurent</firstname>
23 <surname>Pinchart</surname>
24 <contrib>Driver internals</contrib>
25 <affiliation>
26 <orgname>Ideas on board SPRL</orgname>
27 <address>
28 <email>laurent.pinchart@ideasonboard.com</email>
29 </address>
30 </affiliation>
31 </author>
32 <author>
33 <firstname>Daniel</firstname>
34 <surname>Vetter</surname>
35 <contrib>Contributions all over the place</contrib>
36 <affiliation>
37 <orgname>Intel Corporation</orgname>
38 <address>
39 <email>daniel.vetter@ffwll.ch</email>
40 </address>
41 </affiliation>
42 </author>
43 </authorgroup>
44
45 <copyright>
46 <year>2008-2009</year>
47 <year>2013-2014</year>
48 <holder>Intel Corporation</holder>
49 </copyright>
50 <copyright>
51 <year>2012</year>
52 <holder>Laurent Pinchart</holder>
53 </copyright>
54
55 <legalnotice>
56 <para>
57 The contents of this file may be used under the terms of the GNU
58 General Public License version 2 (the "GPL") as distributed in
59 the kernel source COPYING file.
60 </para>
61 </legalnotice>
62
63 <revhistory>
64 <!-- Put document revisions here, newest first. -->
65 <revision>
66 <revnumber>1.0</revnumber>
67 <date>2012-07-13</date>
68 <authorinitials>LP</authorinitials>
69 <revremark>Added extensive documentation about driver internals.
70 </revremark>
71 </revision>
72 </revhistory>
73 </bookinfo>
74
75 <toc></toc>
76
77 <part id="drmCore">
78 <title>DRM Core</title>
79 <partintro>
80 <para>
81 This first part of the DRM Developer's Guide documents core DRM code,
82 helper libraries for writing drivers and generic userspace interfaces
83 exposed by DRM drivers.
84 </para>
85 </partintro>
86
87 <chapter id="drmIntroduction">
88 <title>Introduction</title>
89 <para>
90 The Linux DRM layer contains code intended to support the needs
91 of complex graphics devices, usually containing programmable
92 pipelines well suited to 3D graphics acceleration. Graphics
93 drivers in the kernel may make use of DRM functions to make
94 tasks like memory management, interrupt handling and DMA easier,
95 and provide a uniform interface to applications.
96 </para>
97 <para>
98 A note on versions: this guide covers features found in the DRM
99 tree, including the TTM memory manager, output configuration and
100 mode setting, and the new vblank internals, in addition to all
101 the regular features found in current kernels.
102 </para>
103 <para>
104 [Insert diagram of typical DRM stack here]
105 </para>
106 </chapter>
107
108 <!-- Internals -->
109
110 <chapter id="drmInternals">
111 <title>DRM Internals</title>
112 <para>
113 This chapter documents DRM internals relevant to driver authors
114 and developers working to add support for the latest features to
115 existing drivers.
116 </para>
117 <para>
118 First, we go over some typical driver initialization
119 requirements, like setting up command buffers, creating an
120 initial output configuration, and initializing core services.
121 Subsequent sections cover core internals in more detail,
122 providing implementation notes and examples.
123 </para>
124 <para>
125 The DRM layer provides several services to graphics drivers,
126 many of them driven by the application interfaces it provides
127 through libdrm, the library that wraps most of the DRM ioctls.
128 These include vblank event handling, memory
129 management, output management, framebuffer management, command
130 submission &amp; fencing, suspend/resume support, and DMA
131 services.
132 </para>
133
134 <!-- Internals: driver init -->
135
136 <sect1>
137 <title>Driver Initialization</title>
138 <para>
139 At the core of every DRM driver is a <structname>drm_driver</structname>
140 structure. Drivers typically statically initialize a drm_driver structure,
141 and then pass it to one of the <function>drm_*_init()</function> functions
142 to register it with the DRM subsystem.
143 </para>
144 <para>
145 Newer drivers that no longer require a <structname>drm_bus</structname>
146 structure can alternatively use the low-level device initialization and
147 registration functions such as <function>drm_dev_alloc()</function> and
148 <function>drm_dev_register()</function> directly.
149 </para>
150 <para>
151 The <structname>drm_driver</structname> structure contains static
152 information that describes the driver and features it supports, and
153 pointers to methods that the DRM core will call to implement the DRM API.
154 We will first go through the <structname>drm_driver</structname> static
155 information fields, and will then describe individual operations in
156 details as they get used in later sections.
157 </para>
158 <sect2>
159 <title>Driver Information</title>
160 <sect3>
161 <title>Driver Features</title>
162 <para>
163 Drivers inform the DRM core about their requirements and supported
164 features by setting appropriate flags in the
165 <structfield>driver_features</structfield> field. Since those flags
166 influence the DRM core behaviour since registration time, most of them
167 must be set to registering the <structname>drm_driver</structname>
168 instance.
169 </para>
170 <synopsis>u32 driver_features;</synopsis>
171 <variablelist>
172 <title>Driver Feature Flags</title>
173 <varlistentry>
174 <term>DRIVER_USE_AGP</term>
175 <listitem><para>
176 Driver uses AGP interface, the DRM core will manage AGP resources.
177 </para></listitem>
178 </varlistentry>
179 <varlistentry>
180 <term>DRIVER_REQUIRE_AGP</term>
181 <listitem><para>
182 Driver needs AGP interface to function. AGP initialization failure
183 will become a fatal error.
184 </para></listitem>
185 </varlistentry>
186 <varlistentry>
187 <term>DRIVER_PCI_DMA</term>
188 <listitem><para>
189 Driver is capable of PCI DMA, mapping of PCI DMA buffers to
190 userspace will be enabled. Deprecated.
191 </para></listitem>
192 </varlistentry>
193 <varlistentry>
194 <term>DRIVER_SG</term>
195 <listitem><para>
196 Driver can perform scatter/gather DMA, allocation and mapping of
197 scatter/gather buffers will be enabled. Deprecated.
198 </para></listitem>
199 </varlistentry>
200 <varlistentry>
201 <term>DRIVER_HAVE_DMA</term>
202 <listitem><para>
203 Driver supports DMA, the userspace DMA API will be supported.
204 Deprecated.
205 </para></listitem>
206 </varlistentry>
207 <varlistentry>
208 <term>DRIVER_HAVE_IRQ</term><term>DRIVER_IRQ_SHARED</term>
209 <listitem><para>
210 DRIVER_HAVE_IRQ indicates whether the driver has an IRQ handler
211 managed by the DRM Core. The core will support simple IRQ handler
212 installation when the flag is set. The installation process is
213 described in <xref linkend="drm-irq-registration"/>.</para>
214 <para>DRIVER_IRQ_SHARED indicates whether the device &amp; handler
215 support shared IRQs (note that this is required of PCI drivers).
216 </para></listitem>
217 </varlistentry>
218 <varlistentry>
219 <term>DRIVER_GEM</term>
220 <listitem><para>
221 Driver use the GEM memory manager.
222 </para></listitem>
223 </varlistentry>
224 <varlistentry>
225 <term>DRIVER_MODESET</term>
226 <listitem><para>
227 Driver supports mode setting interfaces (KMS).
228 </para></listitem>
229 </varlistentry>
230 <varlistentry>
231 <term>DRIVER_PRIME</term>
232 <listitem><para>
233 Driver implements DRM PRIME buffer sharing.
234 </para></listitem>
235 </varlistentry>
236 <varlistentry>
237 <term>DRIVER_RENDER</term>
238 <listitem><para>
239 Driver supports dedicated render nodes.
240 </para></listitem>
241 </varlistentry>
242 </variablelist>
243 </sect3>
244 <sect3>
245 <title>Major, Minor and Patchlevel</title>
246 <synopsis>int major;
247 int minor;
248 int patchlevel;</synopsis>
249 <para>
250 The DRM core identifies driver versions by a major, minor and patch
251 level triplet. The information is printed to the kernel log at
252 initialization time and passed to userspace through the
253 DRM_IOCTL_VERSION ioctl.
254 </para>
255 <para>
256 The major and minor numbers are also used to verify the requested driver
257 API version passed to DRM_IOCTL_SET_VERSION. When the driver API changes
258 between minor versions, applications can call DRM_IOCTL_SET_VERSION to
259 select a specific version of the API. If the requested major isn't equal
260 to the driver major, or the requested minor is larger than the driver
261 minor, the DRM_IOCTL_SET_VERSION call will return an error. Otherwise
262 the driver's set_version() method will be called with the requested
263 version.
264 </para>
265 </sect3>
266 <sect3>
267 <title>Name, Description and Date</title>
268 <synopsis>char *name;
269 char *desc;
270 char *date;</synopsis>
271 <para>
272 The driver name is printed to the kernel log at initialization time,
273 used for IRQ registration and passed to userspace through
274 DRM_IOCTL_VERSION.
275 </para>
276 <para>
277 The driver description is a purely informative string passed to
278 userspace through the DRM_IOCTL_VERSION ioctl and otherwise unused by
279 the kernel.
280 </para>
281 <para>
282 The driver date, formatted as YYYYMMDD, is meant to identify the date of
283 the latest modification to the driver. However, as most drivers fail to
284 update it, its value is mostly useless. The DRM core prints it to the
285 kernel log at initialization time and passes it to userspace through the
286 DRM_IOCTL_VERSION ioctl.
287 </para>
288 </sect3>
289 </sect2>
290 <sect2>
291 <title>Device Registration</title>
292 <para>
293 A number of functions are provided to help with device registration.
294 The functions deal with PCI and platform devices, respectively.
295 </para>
296 !Edrivers/gpu/drm/drm_pci.c
297 !Edrivers/gpu/drm/drm_platform.c
298 <para>
299 New drivers that no longer rely on the services provided by the
300 <structname>drm_bus</structname> structure can call the low-level
301 device registration functions directly. The
302 <function>drm_dev_alloc()</function> function can be used to allocate
303 and initialize a new <structname>drm_device</structname> structure.
304 Drivers will typically want to perform some additional setup on this
305 structure, such as allocating driver-specific data and storing a
306 pointer to it in the DRM device's <structfield>dev_private</structfield>
307 field. Drivers should also set the device's unique name using the
308 <function>drm_dev_set_unique()</function> function. After it has been
309 set up a device can be registered with the DRM subsystem by calling
310 <function>drm_dev_register()</function>. This will cause the device to
311 be exposed to userspace and will call the driver's
312 <structfield>.load()</structfield> implementation. When a device is
313 removed, the DRM device can safely be unregistered and freed by calling
314 <function>drm_dev_unregister()</function> followed by a call to
315 <function>drm_dev_unref()</function>.
316 </para>
317 !Edrivers/gpu/drm/drm_drv.c
318 </sect2>
319 <sect2>
320 <title>Driver Load</title>
321 <para>
322 The <methodname>load</methodname> method is the driver and device
323 initialization entry point. The method is responsible for allocating and
324 initializing driver private data, performing resource allocation and
325 mapping (e.g. acquiring
326 clocks, mapping registers or allocating command buffers), initializing
327 the memory manager (<xref linkend="drm-memory-management"/>), installing
328 the IRQ handler (<xref linkend="drm-irq-registration"/>), setting up
329 vertical blanking handling (<xref linkend="drm-vertical-blank"/>), mode
330 setting (<xref linkend="drm-mode-setting"/>) and initial output
331 configuration (<xref linkend="drm-kms-init"/>).
332 </para>
333 <note><para>
334 If compatibility is a concern (e.g. with drivers converted over from
335 User Mode Setting to Kernel Mode Setting), care must be taken to prevent
336 device initialization and control that is incompatible with currently
337 active userspace drivers. For instance, if user level mode setting
338 drivers are in use, it would be problematic to perform output discovery
339 &amp; configuration at load time. Likewise, if user-level drivers
340 unaware of memory management are in use, memory management and command
341 buffer setup may need to be omitted. These requirements are
342 driver-specific, and care needs to be taken to keep both old and new
343 applications and libraries working.
344 </para></note>
345 <synopsis>int (*load) (struct drm_device *, unsigned long flags);</synopsis>
346 <para>
347 The method takes two arguments, a pointer to the newly created
348 <structname>drm_device</structname> and flags. The flags are used to
349 pass the <structfield>driver_data</structfield> field of the device id
350 corresponding to the device passed to <function>drm_*_init()</function>.
351 Only PCI devices currently use this, USB and platform DRM drivers have
352 their <methodname>load</methodname> method called with flags to 0.
353 </para>
354 <sect3>
355 <title>Driver Private Data</title>
356 <para>
357 The driver private hangs off the main
358 <structname>drm_device</structname> structure and can be used for
359 tracking various device-specific bits of information, like register
360 offsets, command buffer status, register state for suspend/resume, etc.
361 At load time, a driver may simply allocate one and set
362 <structname>drm_device</structname>.<structfield>dev_priv</structfield>
363 appropriately; it should be freed and
364 <structname>drm_device</structname>.<structfield>dev_priv</structfield>
365 set to NULL when the driver is unloaded.
366 </para>
367 </sect3>
368 <sect3 id="drm-irq-registration">
369 <title>IRQ Registration</title>
370 <para>
371 The DRM core tries to facilitate IRQ handler registration and
372 unregistration by providing <function>drm_irq_install</function> and
373 <function>drm_irq_uninstall</function> functions. Those functions only
374 support a single interrupt per device, devices that use more than one
375 IRQs need to be handled manually.
376 </para>
377 <sect4>
378 <title>Managed IRQ Registration</title>
379 <para>
380 <function>drm_irq_install</function> starts by calling the
381 <methodname>irq_preinstall</methodname> driver operation. The operation
382 is optional and must make sure that the interrupt will not get fired by
383 clearing all pending interrupt flags or disabling the interrupt.
384 </para>
385 <para>
386 The passed-in IRQ will then be requested by a call to
387 <function>request_irq</function>. If the DRIVER_IRQ_SHARED driver
388 feature flag is set, a shared (IRQF_SHARED) IRQ handler will be
389 requested.
390 </para>
391 <para>
392 The IRQ handler function must be provided as the mandatory irq_handler
393 driver operation. It will get passed directly to
394 <function>request_irq</function> and thus has the same prototype as all
395 IRQ handlers. It will get called with a pointer to the DRM device as the
396 second argument.
397 </para>
398 <para>
399 Finally the function calls the optional
400 <methodname>irq_postinstall</methodname> driver operation. The operation
401 usually enables interrupts (excluding the vblank interrupt, which is
402 enabled separately), but drivers may choose to enable/disable interrupts
403 at a different time.
404 </para>
405 <para>
406 <function>drm_irq_uninstall</function> is similarly used to uninstall an
407 IRQ handler. It starts by waking up all processes waiting on a vblank
408 interrupt to make sure they don't hang, and then calls the optional
409 <methodname>irq_uninstall</methodname> driver operation. The operation
410 must disable all hardware interrupts. Finally the function frees the IRQ
411 by calling <function>free_irq</function>.
412 </para>
413 </sect4>
414 <sect4>
415 <title>Manual IRQ Registration</title>
416 <para>
417 Drivers that require multiple interrupt handlers can't use the managed
418 IRQ registration functions. In that case IRQs must be registered and
419 unregistered manually (usually with the <function>request_irq</function>
420 and <function>free_irq</function> functions, or their devm_* equivalent).
421 </para>
422 <para>
423 When manually registering IRQs, drivers must not set the DRIVER_HAVE_IRQ
424 driver feature flag, and must not provide the
425 <methodname>irq_handler</methodname> driver operation. They must set the
426 <structname>drm_device</structname> <structfield>irq_enabled</structfield>
427 field to 1 upon registration of the IRQs, and clear it to 0 after
428 unregistering the IRQs.
429 </para>
430 </sect4>
431 </sect3>
432 <sect3>
433 <title>Memory Manager Initialization</title>
434 <para>
435 Every DRM driver requires a memory manager which must be initialized at
436 load time. DRM currently contains two memory managers, the Translation
437 Table Manager (TTM) and the Graphics Execution Manager (GEM).
438 This document describes the use of the GEM memory manager only. See
439 <xref linkend="drm-memory-management"/> for details.
440 </para>
441 </sect3>
442 <sect3>
443 <title>Miscellaneous Device Configuration</title>
444 <para>
445 Another task that may be necessary for PCI devices during configuration
446 is mapping the video BIOS. On many devices, the VBIOS describes device
447 configuration, LCD panel timings (if any), and contains flags indicating
448 device state. Mapping the BIOS can be done using the pci_map_rom() call,
449 a convenience function that takes care of mapping the actual ROM,
450 whether it has been shadowed into memory (typically at address 0xc0000)
451 or exists on the PCI device in the ROM BAR. Note that after the ROM has
452 been mapped and any necessary information has been extracted, it should
453 be unmapped; on many devices, the ROM address decoder is shared with
454 other BARs, so leaving it mapped could cause undesired behaviour like
455 hangs or memory corruption.
456 <!--!Fdrivers/pci/rom.c pci_map_rom-->
457 </para>
458 </sect3>
459 </sect2>
460 </sect1>
461
462 <!-- Internals: memory management -->
463
464 <sect1 id="drm-memory-management">
465 <title>Memory management</title>
466 <para>
467 Modern Linux systems require large amount of graphics memory to store
468 frame buffers, textures, vertices and other graphics-related data. Given
469 the very dynamic nature of many of that data, managing graphics memory
470 efficiently is thus crucial for the graphics stack and plays a central
471 role in the DRM infrastructure.
472 </para>
473 <para>
474 The DRM core includes two memory managers, namely Translation Table Maps
475 (TTM) and Graphics Execution Manager (GEM). TTM was the first DRM memory
476 manager to be developed and tried to be a one-size-fits-them all
477 solution. It provides a single userspace API to accommodate the need of
478 all hardware, supporting both Unified Memory Architecture (UMA) devices
479 and devices with dedicated video RAM (i.e. most discrete video cards).
480 This resulted in a large, complex piece of code that turned out to be
481 hard to use for driver development.
482 </para>
483 <para>
484 GEM started as an Intel-sponsored project in reaction to TTM's
485 complexity. Its design philosophy is completely different: instead of
486 providing a solution to every graphics memory-related problems, GEM
487 identified common code between drivers and created a support library to
488 share it. GEM has simpler initialization and execution requirements than
489 TTM, but has no video RAM management capabilities and is thus limited to
490 UMA devices.
491 </para>
492 <sect2>
493 <title>The Translation Table Manager (TTM)</title>
494 <para>
495 TTM design background and information belongs here.
496 </para>
497 <sect3>
498 <title>TTM initialization</title>
499 <warning><para>This section is outdated.</para></warning>
500 <para>
501 Drivers wishing to support TTM must fill out a drm_bo_driver
502 structure. The structure contains several fields with function
503 pointers for initializing the TTM, allocating and freeing memory,
504 waiting for command completion and fence synchronization, and memory
505 migration. See the radeon_ttm.c file for an example of usage.
506 </para>
507 <para>
508 The ttm_global_reference structure is made up of several fields:
509 </para>
510 <programlisting>
511 struct ttm_global_reference {
512 enum ttm_global_types global_type;
513 size_t size;
514 void *object;
515 int (*init) (struct ttm_global_reference *);
516 void (*release) (struct ttm_global_reference *);
517 };
518 </programlisting>
519 <para>
520 There should be one global reference structure for your memory
521 manager as a whole, and there will be others for each object
522 created by the memory manager at runtime. Your global TTM should
523 have a type of TTM_GLOBAL_TTM_MEM. The size field for the global
524 object should be sizeof(struct ttm_mem_global), and the init and
525 release hooks should point at your driver-specific init and
526 release routines, which probably eventually call
527 ttm_mem_global_init and ttm_mem_global_release, respectively.
528 </para>
529 <para>
530 Once your global TTM accounting structure is set up and initialized
531 by calling ttm_global_item_ref() on it,
532 you need to create a buffer object TTM to
533 provide a pool for buffer object allocation by clients and the
534 kernel itself. The type of this object should be TTM_GLOBAL_TTM_BO,
535 and its size should be sizeof(struct ttm_bo_global). Again,
536 driver-specific init and release functions may be provided,
537 likely eventually calling ttm_bo_global_init() and
538 ttm_bo_global_release(), respectively. Also, like the previous
539 object, ttm_global_item_ref() is used to create an initial reference
540 count for the TTM, which will call your initialization function.
541 </para>
542 </sect3>
543 </sect2>
544 <sect2 id="drm-gem">
545 <title>The Graphics Execution Manager (GEM)</title>
546 <para>
547 The GEM design approach has resulted in a memory manager that doesn't
548 provide full coverage of all (or even all common) use cases in its
549 userspace or kernel API. GEM exposes a set of standard memory-related
550 operations to userspace and a set of helper functions to drivers, and let
551 drivers implement hardware-specific operations with their own private API.
552 </para>
553 <para>
554 The GEM userspace API is described in the
555 <ulink url="http://lwn.net/Articles/283798/"><citetitle>GEM - the Graphics
556 Execution Manager</citetitle></ulink> article on LWN. While slightly
557 outdated, the document provides a good overview of the GEM API principles.
558 Buffer allocation and read and write operations, described as part of the
559 common GEM API, are currently implemented using driver-specific ioctls.
560 </para>
561 <para>
562 GEM is data-agnostic. It manages abstract buffer objects without knowing
563 what individual buffers contain. APIs that require knowledge of buffer
564 contents or purpose, such as buffer allocation or synchronization
565 primitives, are thus outside of the scope of GEM and must be implemented
566 using driver-specific ioctls.
567 </para>
568 <para>
569 On a fundamental level, GEM involves several operations:
570 <itemizedlist>
571 <listitem>Memory allocation and freeing</listitem>
572 <listitem>Command execution</listitem>
573 <listitem>Aperture management at command execution time</listitem>
574 </itemizedlist>
575 Buffer object allocation is relatively straightforward and largely
576 provided by Linux's shmem layer, which provides memory to back each
577 object.
578 </para>
579 <para>
580 Device-specific operations, such as command execution, pinning, buffer
581 read &amp; write, mapping, and domain ownership transfers are left to
582 driver-specific ioctls.
583 </para>
584 <sect3>
585 <title>GEM Initialization</title>
586 <para>
587 Drivers that use GEM must set the DRIVER_GEM bit in the struct
588 <structname>drm_driver</structname>
589 <structfield>driver_features</structfield> field. The DRM core will
590 then automatically initialize the GEM core before calling the
591 <methodname>load</methodname> operation. Behind the scene, this will
592 create a DRM Memory Manager object which provides an address space
593 pool for object allocation.
594 </para>
595 <para>
596 In a KMS configuration, drivers need to allocate and initialize a
597 command ring buffer following core GEM initialization if required by
598 the hardware. UMA devices usually have what is called a "stolen"
599 memory region, which provides space for the initial framebuffer and
600 large, contiguous memory regions required by the device. This space is
601 typically not managed by GEM, and must be initialized separately into
602 its own DRM MM object.
603 </para>
604 </sect3>
605 <sect3>
606 <title>GEM Objects Creation</title>
607 <para>
608 GEM splits creation of GEM objects and allocation of the memory that
609 backs them in two distinct operations.
610 </para>
611 <para>
612 GEM objects are represented by an instance of struct
613 <structname>drm_gem_object</structname>. Drivers usually need to extend
614 GEM objects with private information and thus create a driver-specific
615 GEM object structure type that embeds an instance of struct
616 <structname>drm_gem_object</structname>.
617 </para>
618 <para>
619 To create a GEM object, a driver allocates memory for an instance of its
620 specific GEM object type and initializes the embedded struct
621 <structname>drm_gem_object</structname> with a call to
622 <function>drm_gem_object_init</function>. The function takes a pointer to
623 the DRM device, a pointer to the GEM object and the buffer object size
624 in bytes.
625 </para>
626 <para>
627 GEM uses shmem to allocate anonymous pageable memory.
628 <function>drm_gem_object_init</function> will create an shmfs file of
629 the requested size and store it into the struct
630 <structname>drm_gem_object</structname> <structfield>filp</structfield>
631 field. The memory is used as either main storage for the object when the
632 graphics hardware uses system memory directly or as a backing store
633 otherwise.
634 </para>
635 <para>
636 Drivers are responsible for the actual physical pages allocation by
637 calling <function>shmem_read_mapping_page_gfp</function> for each page.
638 Note that they can decide to allocate pages when initializing the GEM
639 object, or to delay allocation until the memory is needed (for instance
640 when a page fault occurs as a result of a userspace memory access or
641 when the driver needs to start a DMA transfer involving the memory).
642 </para>
643 <para>
644 Anonymous pageable memory allocation is not always desired, for instance
645 when the hardware requires physically contiguous system memory as is
646 often the case in embedded devices. Drivers can create GEM objects with
647 no shmfs backing (called private GEM objects) by initializing them with
648 a call to <function>drm_gem_private_object_init</function> instead of
649 <function>drm_gem_object_init</function>. Storage for private GEM
650 objects must be managed by drivers.
651 </para>
652 <para>
653 Drivers that do not need to extend GEM objects with private information
654 can call the <function>drm_gem_object_alloc</function> function to
655 allocate and initialize a struct <structname>drm_gem_object</structname>
656 instance. The GEM core will call the optional driver
657 <methodname>gem_init_object</methodname> operation after initializing
658 the GEM object with <function>drm_gem_object_init</function>.
659 <synopsis>int (*gem_init_object) (struct drm_gem_object *obj);</synopsis>
660 </para>
661 <para>
662 No alloc-and-init function exists for private GEM objects.
663 </para>
664 </sect3>
665 <sect3>
666 <title>GEM Objects Lifetime</title>
667 <para>
668 All GEM objects are reference-counted by the GEM core. References can be
669 acquired and release by <function>calling drm_gem_object_reference</function>
670 and <function>drm_gem_object_unreference</function> respectively. The
671 caller must hold the <structname>drm_device</structname>
672 <structfield>struct_mutex</structfield> lock. As a convenience, GEM
673 provides the <function>drm_gem_object_reference_unlocked</function> and
674 <function>drm_gem_object_unreference_unlocked</function> functions that
675 can be called without holding the lock.
676 </para>
677 <para>
678 When the last reference to a GEM object is released the GEM core calls
679 the <structname>drm_driver</structname>
680 <methodname>gem_free_object</methodname> operation. That operation is
681 mandatory for GEM-enabled drivers and must free the GEM object and all
682 associated resources.
683 </para>
684 <para>
685 <synopsis>void (*gem_free_object) (struct drm_gem_object *obj);</synopsis>
686 Drivers are responsible for freeing all GEM object resources, including
687 the resources created by the GEM core. If an mmap offset has been
688 created for the object (in which case
689 <structname>drm_gem_object</structname>::<structfield>map_list</structfield>::<structfield>map</structfield>
690 is not NULL) it must be freed by a call to
691 <function>drm_gem_free_mmap_offset</function>. The shmfs backing store
692 must be released by calling <function>drm_gem_object_release</function>
693 (that function can safely be called if no shmfs backing store has been
694 created).
695 </para>
696 </sect3>
697 <sect3>
698 <title>GEM Objects Naming</title>
699 <para>
700 Communication between userspace and the kernel refers to GEM objects
701 using local handles, global names or, more recently, file descriptors.
702 All of those are 32-bit integer values; the usual Linux kernel limits
703 apply to the file descriptors.
704 </para>
705 <para>
706 GEM handles are local to a DRM file. Applications get a handle to a GEM
707 object through a driver-specific ioctl, and can use that handle to refer
708 to the GEM object in other standard or driver-specific ioctls. Closing a
709 DRM file handle frees all its GEM handles and dereferences the
710 associated GEM objects.
711 </para>
712 <para>
713 To create a handle for a GEM object drivers call
714 <function>drm_gem_handle_create</function>. The function takes a pointer
715 to the DRM file and the GEM object and returns a locally unique handle.
716 When the handle is no longer needed drivers delete it with a call to
717 <function>drm_gem_handle_delete</function>. Finally the GEM object
718 associated with a handle can be retrieved by a call to
719 <function>drm_gem_object_lookup</function>.
720 </para>
721 <para>
722 Handles don't take ownership of GEM objects, they only take a reference
723 to the object that will be dropped when the handle is destroyed. To
724 avoid leaking GEM objects, drivers must make sure they drop the
725 reference(s) they own (such as the initial reference taken at object
726 creation time) as appropriate, without any special consideration for the
727 handle. For example, in the particular case of combined GEM object and
728 handle creation in the implementation of the
729 <methodname>dumb_create</methodname> operation, drivers must drop the
730 initial reference to the GEM object before returning the handle.
731 </para>
732 <para>
733 GEM names are similar in purpose to handles but are not local to DRM
734 files. They can be passed between processes to reference a GEM object
735 globally. Names can't be used directly to refer to objects in the DRM
736 API, applications must convert handles to names and names to handles
737 using the DRM_IOCTL_GEM_FLINK and DRM_IOCTL_GEM_OPEN ioctls
738 respectively. The conversion is handled by the DRM core without any
739 driver-specific support.
740 </para>
741 <para>
742 GEM also supports buffer sharing with dma-buf file descriptors through
743 PRIME. GEM-based drivers must use the provided helpers functions to
744 implement the exporting and importing correctly. See <xref linkend="drm-prime-support" />.
745 Since sharing file descriptors is inherently more secure than the
746 easily guessable and global GEM names it is the preferred buffer
747 sharing mechanism. Sharing buffers through GEM names is only supported
748 for legacy userspace. Furthermore PRIME also allows cross-device
749 buffer sharing since it is based on dma-bufs.
750 </para>
751 </sect3>
752 <sect3 id="drm-gem-objects-mapping">
753 <title>GEM Objects Mapping</title>
754 <para>
755 Because mapping operations are fairly heavyweight GEM favours
756 read/write-like access to buffers, implemented through driver-specific
757 ioctls, over mapping buffers to userspace. However, when random access
758 to the buffer is needed (to perform software rendering for instance),
759 direct access to the object can be more efficient.
760 </para>
761 <para>
762 The mmap system call can't be used directly to map GEM objects, as they
763 don't have their own file handle. Two alternative methods currently
764 co-exist to map GEM objects to userspace. The first method uses a
765 driver-specific ioctl to perform the mapping operation, calling
766 <function>do_mmap</function> under the hood. This is often considered
767 dubious, seems to be discouraged for new GEM-enabled drivers, and will
768 thus not be described here.
769 </para>
770 <para>
771 The second method uses the mmap system call on the DRM file handle.
772 <synopsis>void *mmap(void *addr, size_t length, int prot, int flags, int fd,
773 off_t offset);</synopsis>
774 DRM identifies the GEM object to be mapped by a fake offset passed
775 through the mmap offset argument. Prior to being mapped, a GEM object
776 must thus be associated with a fake offset. To do so, drivers must call
777 <function>drm_gem_create_mmap_offset</function> on the object. The
778 function allocates a fake offset range from a pool and stores the
779 offset divided by PAGE_SIZE in
780 <literal>obj-&gt;map_list.hash.key</literal>. Care must be taken not to
781 call <function>drm_gem_create_mmap_offset</function> if a fake offset
782 has already been allocated for the object. This can be tested by
783 <literal>obj-&gt;map_list.map</literal> being non-NULL.
784 </para>
785 <para>
786 Once allocated, the fake offset value
787 (<literal>obj-&gt;map_list.hash.key &lt;&lt; PAGE_SHIFT</literal>)
788 must be passed to the application in a driver-specific way and can then
789 be used as the mmap offset argument.
790 </para>
791 <para>
792 The GEM core provides a helper method <function>drm_gem_mmap</function>
793 to handle object mapping. The method can be set directly as the mmap
794 file operation handler. It will look up the GEM object based on the
795 offset value and set the VMA operations to the
796 <structname>drm_driver</structname> <structfield>gem_vm_ops</structfield>
797 field. Note that <function>drm_gem_mmap</function> doesn't map memory to
798 userspace, but relies on the driver-provided fault handler to map pages
799 individually.
800 </para>
801 <para>
802 To use <function>drm_gem_mmap</function>, drivers must fill the struct
803 <structname>drm_driver</structname> <structfield>gem_vm_ops</structfield>
804 field with a pointer to VM operations.
805 </para>
806 <para>
807 <synopsis>struct vm_operations_struct *gem_vm_ops
808
809 struct vm_operations_struct {
810 void (*open)(struct vm_area_struct * area);
811 void (*close)(struct vm_area_struct * area);
812 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
813 };</synopsis>
814 </para>
815 <para>
816 The <methodname>open</methodname> and <methodname>close</methodname>
817 operations must update the GEM object reference count. Drivers can use
818 the <function>drm_gem_vm_open</function> and
819 <function>drm_gem_vm_close</function> helper functions directly as open
820 and close handlers.
821 </para>
822 <para>
823 The fault operation handler is responsible for mapping individual pages
824 to userspace when a page fault occurs. Depending on the memory
825 allocation scheme, drivers can allocate pages at fault time, or can
826 decide to allocate memory for the GEM object at the time the object is
827 created.
828 </para>
829 <para>
830 Drivers that want to map the GEM object upfront instead of handling page
831 faults can implement their own mmap file operation handler.
832 </para>
833 </sect3>
834 <sect3>
835 <title>Memory Coherency</title>
836 <para>
837 When mapped to the device or used in a command buffer, backing pages
838 for an object are flushed to memory and marked write combined so as to
839 be coherent with the GPU. Likewise, if the CPU accesses an object
840 after the GPU has finished rendering to the object, then the object
841 must be made coherent with the CPU's view of memory, usually involving
842 GPU cache flushing of various kinds. This core CPU&lt;-&gt;GPU
843 coherency management is provided by a device-specific ioctl, which
844 evaluates an object's current domain and performs any necessary
845 flushing or synchronization to put the object into the desired
846 coherency domain (note that the object may be busy, i.e. an active
847 render target; in that case, setting the domain blocks the client and
848 waits for rendering to complete before performing any necessary
849 flushing operations).
850 </para>
851 </sect3>
852 <sect3>
853 <title>Command Execution</title>
854 <para>
855 Perhaps the most important GEM function for GPU devices is providing a
856 command execution interface to clients. Client programs construct
857 command buffers containing references to previously allocated memory
858 objects, and then submit them to GEM. At that point, GEM takes care to
859 bind all the objects into the GTT, execute the buffer, and provide
860 necessary synchronization between clients accessing the same buffers.
861 This often involves evicting some objects from the GTT and re-binding
862 others (a fairly expensive operation), and providing relocation
863 support which hides fixed GTT offsets from clients. Clients must take
864 care not to submit command buffers that reference more objects than
865 can fit in the GTT; otherwise, GEM will reject them and no rendering
866 will occur. Similarly, if several objects in the buffer require fence
867 registers to be allocated for correct rendering (e.g. 2D blits on
868 pre-965 chips), care must be taken not to require more fence registers
869 than are available to the client. Such resource management should be
870 abstracted from the client in libdrm.
871 </para>
872 </sect3>
873 <sect3>
874 <title>GEM Function Reference</title>
875 !Edrivers/gpu/drm/drm_gem.c
876 </sect3>
877 </sect2>
878 <sect2>
879 <title>VMA Offset Manager</title>
880 !Pdrivers/gpu/drm/drm_vma_manager.c vma offset manager
881 !Edrivers/gpu/drm/drm_vma_manager.c
882 !Iinclude/drm/drm_vma_manager.h
883 </sect2>
884 <sect2 id="drm-prime-support">
885 <title>PRIME Buffer Sharing</title>
886 <para>
887 PRIME is the cross device buffer sharing framework in drm, originally
888 created for the OPTIMUS range of multi-gpu platforms. To userspace
889 PRIME buffers are dma-buf based file descriptors.
890 </para>
891 <sect3>
892 <title>Overview and Driver Interface</title>
893 <para>
894 Similar to GEM global names, PRIME file descriptors are
895 also used to share buffer objects across processes. They offer
896 additional security: as file descriptors must be explicitly sent over
897 UNIX domain sockets to be shared between applications, they can't be
898 guessed like the globally unique GEM names.
899 </para>
900 <para>
901 Drivers that support the PRIME
902 API must set the DRIVER_PRIME bit in the struct
903 <structname>drm_driver</structname>
904 <structfield>driver_features</structfield> field, and implement the
905 <methodname>prime_handle_to_fd</methodname> and
906 <methodname>prime_fd_to_handle</methodname> operations.
907 </para>
908 <para>
909 <synopsis>int (*prime_handle_to_fd)(struct drm_device *dev,
910 struct drm_file *file_priv, uint32_t handle,
911 uint32_t flags, int *prime_fd);
912 int (*prime_fd_to_handle)(struct drm_device *dev,
913 struct drm_file *file_priv, int prime_fd,
914 uint32_t *handle);</synopsis>
915 Those two operations convert a handle to a PRIME file descriptor and
916 vice versa. Drivers must use the kernel dma-buf buffer sharing framework
917 to manage the PRIME file descriptors. Similar to the mode setting
918 API PRIME is agnostic to the underlying buffer object manager, as
919 long as handles are 32bit unsigned integers.
920 </para>
921 <para>
922 While non-GEM drivers must implement the operations themselves, GEM
923 drivers must use the <function>drm_gem_prime_handle_to_fd</function>
924 and <function>drm_gem_prime_fd_to_handle</function> helper functions.
925 Those helpers rely on the driver
926 <methodname>gem_prime_export</methodname> and
927 <methodname>gem_prime_import</methodname> operations to create a dma-buf
928 instance from a GEM object (dma-buf exporter role) and to create a GEM
929 object from a dma-buf instance (dma-buf importer role).
930 </para>
931 <para>
932 <synopsis>struct dma_buf * (*gem_prime_export)(struct drm_device *dev,
933 struct drm_gem_object *obj,
934 int flags);
935 struct drm_gem_object * (*gem_prime_import)(struct drm_device *dev,
936 struct dma_buf *dma_buf);</synopsis>
937 These two operations are mandatory for GEM drivers that support
938 PRIME.
939 </para>
940 </sect3>
941 <sect3>
942 <title>PRIME Helper Functions</title>
943 !Pdrivers/gpu/drm/drm_prime.c PRIME Helpers
944 </sect3>
945 </sect2>
946 <sect2>
947 <title>PRIME Function References</title>
948 !Edrivers/gpu/drm/drm_prime.c
949 </sect2>
950 <sect2>
951 <title>DRM MM Range Allocator</title>
952 <sect3>
953 <title>Overview</title>
954 !Pdrivers/gpu/drm/drm_mm.c Overview
955 </sect3>
956 <sect3>
957 <title>LRU Scan/Eviction Support</title>
958 !Pdrivers/gpu/drm/drm_mm.c lru scan roaster
959 </sect3>
960 </sect2>
961 <sect2>
962 <title>DRM MM Range Allocator Function References</title>
963 !Edrivers/gpu/drm/drm_mm.c
964 !Iinclude/drm/drm_mm.h
965 </sect2>
966 <sect2>
967 <title>CMA Helper Functions Reference</title>
968 !Pdrivers/gpu/drm/drm_gem_cma_helper.c cma helpers
969 !Edrivers/gpu/drm/drm_gem_cma_helper.c
970 !Iinclude/drm/drm_gem_cma_helper.h
971 </sect2>
972 </sect1>
973
974 <!-- Internals: mode setting -->
975
976 <sect1 id="drm-mode-setting">
977 <title>Mode Setting</title>
978 <para>
979 Drivers must initialize the mode setting core by calling
980 <function>drm_mode_config_init</function> on the DRM device. The function
981 initializes the <structname>drm_device</structname>
982 <structfield>mode_config</structfield> field and never fails. Once done,
983 mode configuration must be setup by initializing the following fields.
984 </para>
985 <itemizedlist>
986 <listitem>
987 <synopsis>int min_width, min_height;
988 int max_width, max_height;</synopsis>
989 <para>
990 Minimum and maximum width and height of the frame buffers in pixel
991 units.
992 </para>
993 </listitem>
994 <listitem>
995 <synopsis>struct drm_mode_config_funcs *funcs;</synopsis>
996 <para>Mode setting functions.</para>
997 </listitem>
998 </itemizedlist>
999 <sect2>
1000 <title>Display Modes Function Reference</title>
1001 !Iinclude/drm/drm_modes.h
1002 !Edrivers/gpu/drm/drm_modes.c
1003 </sect2>
1004 <sect2>
1005 <title>Frame Buffer Creation</title>
1006 <synopsis>struct drm_framebuffer *(*fb_create)(struct drm_device *dev,
1007 struct drm_file *file_priv,
1008 struct drm_mode_fb_cmd2 *mode_cmd);</synopsis>
1009 <para>
1010 Frame buffers are abstract memory objects that provide a source of
1011 pixels to scanout to a CRTC. Applications explicitly request the
1012 creation of frame buffers through the DRM_IOCTL_MODE_ADDFB(2) ioctls and
1013 receive an opaque handle that can be passed to the KMS CRTC control,
1014 plane configuration and page flip functions.
1015 </para>
1016 <para>
1017 Frame buffers rely on the underneath memory manager for low-level memory
1018 operations. When creating a frame buffer applications pass a memory
1019 handle (or a list of memory handles for multi-planar formats) through
1020 the <parameter>drm_mode_fb_cmd2</parameter> argument. For drivers using
1021 GEM as their userspace buffer management interface this would be a GEM
1022 handle. Drivers are however free to use their own backing storage object
1023 handles, e.g. vmwgfx directly exposes special TTM handles to userspace
1024 and so expects TTM handles in the create ioctl and not GEM handles.
1025 </para>
1026 <para>
1027 Drivers must first validate the requested frame buffer parameters passed
1028 through the mode_cmd argument. In particular this is where invalid
1029 sizes, pixel formats or pitches can be caught.
1030 </para>
1031 <para>
1032 If the parameters are deemed valid, drivers then create, initialize and
1033 return an instance of struct <structname>drm_framebuffer</structname>.
1034 If desired the instance can be embedded in a larger driver-specific
1035 structure. Drivers must fill its <structfield>width</structfield>,
1036 <structfield>height</structfield>, <structfield>pitches</structfield>,
1037 <structfield>offsets</structfield>, <structfield>depth</structfield>,
1038 <structfield>bits_per_pixel</structfield> and
1039 <structfield>pixel_format</structfield> fields from the values passed
1040 through the <parameter>drm_mode_fb_cmd2</parameter> argument. They
1041 should call the <function>drm_helper_mode_fill_fb_struct</function>
1042 helper function to do so.
1043 </para>
1044
1045 <para>
1046 The initialization of the new framebuffer instance is finalized with a
1047 call to <function>drm_framebuffer_init</function> which takes a pointer
1048 to DRM frame buffer operations (struct
1049 <structname>drm_framebuffer_funcs</structname>). Note that this function
1050 publishes the framebuffer and so from this point on it can be accessed
1051 concurrently from other threads. Hence it must be the last step in the
1052 driver's framebuffer initialization sequence. Frame buffer operations
1053 are
1054 <itemizedlist>
1055 <listitem>
1056 <synopsis>int (*create_handle)(struct drm_framebuffer *fb,
1057 struct drm_file *file_priv, unsigned int *handle);</synopsis>
1058 <para>
1059 Create a handle to the frame buffer underlying memory object. If
1060 the frame buffer uses a multi-plane format, the handle will
1061 reference the memory object associated with the first plane.
1062 </para>
1063 <para>
1064 Drivers call <function>drm_gem_handle_create</function> to create
1065 the handle.
1066 </para>
1067 </listitem>
1068 <listitem>
1069 <synopsis>void (*destroy)(struct drm_framebuffer *framebuffer);</synopsis>
1070 <para>
1071 Destroy the frame buffer object and frees all associated
1072 resources. Drivers must call
1073 <function>drm_framebuffer_cleanup</function> to free resources
1074 allocated by the DRM core for the frame buffer object, and must
1075 make sure to unreference all memory objects associated with the
1076 frame buffer. Handles created by the
1077 <methodname>create_handle</methodname> operation are released by
1078 the DRM core.
1079 </para>
1080 </listitem>
1081 <listitem>
1082 <synopsis>int (*dirty)(struct drm_framebuffer *framebuffer,
1083 struct drm_file *file_priv, unsigned flags, unsigned color,
1084 struct drm_clip_rect *clips, unsigned num_clips);</synopsis>
1085 <para>
1086 This optional operation notifies the driver that a region of the
1087 frame buffer has changed in response to a DRM_IOCTL_MODE_DIRTYFB
1088 ioctl call.
1089 </para>
1090 </listitem>
1091 </itemizedlist>
1092 </para>
1093 <para>
1094 The lifetime of a drm framebuffer is controlled with a reference count,
1095 drivers can grab additional references with
1096 <function>drm_framebuffer_reference</function>and drop them
1097 again with <function>drm_framebuffer_unreference</function>. For
1098 driver-private framebuffers for which the last reference is never
1099 dropped (e.g. for the fbdev framebuffer when the struct
1100 <structname>drm_framebuffer</structname> is embedded into the fbdev
1101 helper struct) drivers can manually clean up a framebuffer at module
1102 unload time with
1103 <function>drm_framebuffer_unregister_private</function>.
1104 </para>
1105 </sect2>
1106 <sect2>
1107 <title>Dumb Buffer Objects</title>
1108 <para>
1109 The KMS API doesn't standardize backing storage object creation and
1110 leaves it to driver-specific ioctls. Furthermore actually creating a
1111 buffer object even for GEM-based drivers is done through a
1112 driver-specific ioctl - GEM only has a common userspace interface for
1113 sharing and destroying objects. While not an issue for full-fledged
1114 graphics stacks that include device-specific userspace components (in
1115 libdrm for instance), this limit makes DRM-based early boot graphics
1116 unnecessarily complex.
1117 </para>
1118 <para>
1119 Dumb objects partly alleviate the problem by providing a standard
1120 API to create dumb buffers suitable for scanout, which can then be used
1121 to create KMS frame buffers.
1122 </para>
1123 <para>
1124 To support dumb objects drivers must implement the
1125 <methodname>dumb_create</methodname>,
1126 <methodname>dumb_destroy</methodname> and
1127 <methodname>dumb_map_offset</methodname> operations.
1128 </para>
1129 <itemizedlist>
1130 <listitem>
1131 <synopsis>int (*dumb_create)(struct drm_file *file_priv, struct drm_device *dev,
1132 struct drm_mode_create_dumb *args);</synopsis>
1133 <para>
1134 The <methodname>dumb_create</methodname> operation creates a driver
1135 object (GEM or TTM handle) suitable for scanout based on the
1136 width, height and depth from the struct
1137 <structname>drm_mode_create_dumb</structname> argument. It fills the
1138 argument's <structfield>handle</structfield>,
1139 <structfield>pitch</structfield> and <structfield>size</structfield>
1140 fields with a handle for the newly created object and its line
1141 pitch and size in bytes.
1142 </para>
1143 </listitem>
1144 <listitem>
1145 <synopsis>int (*dumb_destroy)(struct drm_file *file_priv, struct drm_device *dev,
1146 uint32_t handle);</synopsis>
1147 <para>
1148 The <methodname>dumb_destroy</methodname> operation destroys a dumb
1149 object created by <methodname>dumb_create</methodname>.
1150 </para>
1151 </listitem>
1152 <listitem>
1153 <synopsis>int (*dumb_map_offset)(struct drm_file *file_priv, struct drm_device *dev,
1154 uint32_t handle, uint64_t *offset);</synopsis>
1155 <para>
1156 The <methodname>dumb_map_offset</methodname> operation associates an
1157 mmap fake offset with the object given by the handle and returns
1158 it. Drivers must use the
1159 <function>drm_gem_create_mmap_offset</function> function to
1160 associate the fake offset as described in
1161 <xref linkend="drm-gem-objects-mapping"/>.
1162 </para>
1163 </listitem>
1164 </itemizedlist>
1165 <para>
1166 Note that dumb objects may not be used for gpu acceleration, as has been
1167 attempted on some ARM embedded platforms. Such drivers really must have
1168 a hardware-specific ioctl to allocate suitable buffer objects.
1169 </para>
1170 </sect2>
1171 <sect2>
1172 <title>Output Polling</title>
1173 <synopsis>void (*output_poll_changed)(struct drm_device *dev);</synopsis>
1174 <para>
1175 This operation notifies the driver that the status of one or more
1176 connectors has changed. Drivers that use the fb helper can just call the
1177 <function>drm_fb_helper_hotplug_event</function> function to handle this
1178 operation.
1179 </para>
1180 </sect2>
1181 <sect2>
1182 <title>Locking</title>
1183 <para>
1184 Beside some lookup structures with their own locking (which is hidden
1185 behind the interface functions) most of the modeset state is protected
1186 by the <code>dev-&lt;mode_config.lock</code> mutex and additionally
1187 per-crtc locks to allow cursor updates, pageflips and similar operations
1188 to occur concurrently with background tasks like output detection.
1189 Operations which cross domains like a full modeset always grab all
1190 locks. Drivers there need to protect resources shared between crtcs with
1191 additional locking. They also need to be careful to always grab the
1192 relevant crtc locks if a modset functions touches crtc state, e.g. for
1193 load detection (which does only grab the <code>mode_config.lock</code>
1194 to allow concurrent screen updates on live crtcs).
1195 </para>
1196 </sect2>
1197 </sect1>
1198
1199 <!-- Internals: kms initialization and cleanup -->
1200
1201 <sect1 id="drm-kms-init">
1202 <title>KMS Initialization and Cleanup</title>
1203 <para>
1204 A KMS device is abstracted and exposed as a set of planes, CRTCs, encoders
1205 and connectors. KMS drivers must thus create and initialize all those
1206 objects at load time after initializing mode setting.
1207 </para>
1208 <sect2>
1209 <title>CRTCs (struct <structname>drm_crtc</structname>)</title>
1210 <para>
1211 A CRTC is an abstraction representing a part of the chip that contains a
1212 pointer to a scanout buffer. Therefore, the number of CRTCs available
1213 determines how many independent scanout buffers can be active at any
1214 given time. The CRTC structure contains several fields to support this:
1215 a pointer to some video memory (abstracted as a frame buffer object), a
1216 display mode, and an (x, y) offset into the video memory to support
1217 panning or configurations where one piece of video memory spans multiple
1218 CRTCs.
1219 </para>
1220 <sect3>
1221 <title>CRTC Initialization</title>
1222 <para>
1223 A KMS device must create and register at least one struct
1224 <structname>drm_crtc</structname> instance. The instance is allocated
1225 and zeroed by the driver, possibly as part of a larger structure, and
1226 registered with a call to <function>drm_crtc_init</function> with a
1227 pointer to CRTC functions.
1228 </para>
1229 </sect3>
1230 <sect3 id="drm-kms-crtcops">
1231 <title>CRTC Operations</title>
1232 <sect4>
1233 <title>Set Configuration</title>
1234 <synopsis>int (*set_config)(struct drm_mode_set *set);</synopsis>
1235 <para>
1236 Apply a new CRTC configuration to the device. The configuration
1237 specifies a CRTC, a frame buffer to scan out from, a (x,y) position in
1238 the frame buffer, a display mode and an array of connectors to drive
1239 with the CRTC if possible.
1240 </para>
1241 <para>
1242 If the frame buffer specified in the configuration is NULL, the driver
1243 must detach all encoders connected to the CRTC and all connectors
1244 attached to those encoders and disable them.
1245 </para>
1246 <para>
1247 This operation is called with the mode config lock held.
1248 </para>
1249 <note><para>
1250 Note that the drm core has no notion of restoring the mode setting
1251 state after resume, since all resume handling is in the full
1252 responsibility of the driver. The common mode setting helper library
1253 though provides a helper which can be used for this:
1254 <function>drm_helper_resume_force_mode</function>.
1255 </para></note>
1256 </sect4>
1257 <sect4>
1258 <title>Page Flipping</title>
1259 <synopsis>int (*page_flip)(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1260 struct drm_pending_vblank_event *event);</synopsis>
1261 <para>
1262 Schedule a page flip to the given frame buffer for the CRTC. This
1263 operation is called with the mode config mutex held.
1264 </para>
1265 <para>
1266 Page flipping is a synchronization mechanism that replaces the frame
1267 buffer being scanned out by the CRTC with a new frame buffer during
1268 vertical blanking, avoiding tearing. When an application requests a page
1269 flip the DRM core verifies that the new frame buffer is large enough to
1270 be scanned out by the CRTC in the currently configured mode and then
1271 calls the CRTC <methodname>page_flip</methodname> operation with a
1272 pointer to the new frame buffer.
1273 </para>
1274 <para>
1275 The <methodname>page_flip</methodname> operation schedules a page flip.
1276 Once any pending rendering targeting the new frame buffer has
1277 completed, the CRTC will be reprogrammed to display that frame buffer
1278 after the next vertical refresh. The operation must return immediately
1279 without waiting for rendering or page flip to complete and must block
1280 any new rendering to the frame buffer until the page flip completes.
1281 </para>
1282 <para>
1283 If a page flip can be successfully scheduled the driver must set the
1284 <code>drm_crtc-&lt;fb</code> field to the new framebuffer pointed to
1285 by <code>fb</code>. This is important so that the reference counting
1286 on framebuffers stays balanced.
1287 </para>
1288 <para>
1289 If a page flip is already pending, the
1290 <methodname>page_flip</methodname> operation must return
1291 -<errorname>EBUSY</errorname>.
1292 </para>
1293 <para>
1294 To synchronize page flip to vertical blanking the driver will likely
1295 need to enable vertical blanking interrupts. It should call
1296 <function>drm_vblank_get</function> for that purpose, and call
1297 <function>drm_vblank_put</function> after the page flip completes.
1298 </para>
1299 <para>
1300 If the application has requested to be notified when page flip completes
1301 the <methodname>page_flip</methodname> operation will be called with a
1302 non-NULL <parameter>event</parameter> argument pointing to a
1303 <structname>drm_pending_vblank_event</structname> instance. Upon page
1304 flip completion the driver must call <methodname>drm_send_vblank_event</methodname>
1305 to fill in the event and send to wake up any waiting processes.
1306 This can be performed with
1307 <programlisting><![CDATA[
1308 spin_lock_irqsave(&dev->event_lock, flags);
1309 ...
1310 drm_send_vblank_event(dev, pipe, event);
1311 spin_unlock_irqrestore(&dev->event_lock, flags);
1312 ]]></programlisting>
1313 </para>
1314 <note><para>
1315 FIXME: Could drivers that don't need to wait for rendering to complete
1316 just add the event to <literal>dev-&gt;vblank_event_list</literal> and
1317 let the DRM core handle everything, as for "normal" vertical blanking
1318 events?
1319 </para></note>
1320 <para>
1321 While waiting for the page flip to complete, the
1322 <literal>event-&gt;base.link</literal> list head can be used freely by
1323 the driver to store the pending event in a driver-specific list.
1324 </para>
1325 <para>
1326 If the file handle is closed before the event is signaled, drivers must
1327 take care to destroy the event in their
1328 <methodname>preclose</methodname> operation (and, if needed, call
1329 <function>drm_vblank_put</function>).
1330 </para>
1331 </sect4>
1332 <sect4>
1333 <title>Miscellaneous</title>
1334 <itemizedlist>
1335 <listitem>
1336 <synopsis>void (*set_property)(struct drm_crtc *crtc,
1337 struct drm_property *property, uint64_t value);</synopsis>
1338 <para>
1339 Set the value of the given CRTC property to
1340 <parameter>value</parameter>. See <xref linkend="drm-kms-properties"/>
1341 for more information about properties.
1342 </para>
1343 </listitem>
1344 <listitem>
1345 <synopsis>void (*gamma_set)(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
1346 uint32_t start, uint32_t size);</synopsis>
1347 <para>
1348 Apply a gamma table to the device. The operation is optional.
1349 </para>
1350 </listitem>
1351 <listitem>
1352 <synopsis>void (*destroy)(struct drm_crtc *crtc);</synopsis>
1353 <para>
1354 Destroy the CRTC when not needed anymore. See
1355 <xref linkend="drm-kms-init"/>.
1356 </para>
1357 </listitem>
1358 </itemizedlist>
1359 </sect4>
1360 </sect3>
1361 </sect2>
1362 <sect2>
1363 <title>Planes (struct <structname>drm_plane</structname>)</title>
1364 <para>
1365 A plane represents an image source that can be blended with or overlayed
1366 on top of a CRTC during the scanout process. Planes are associated with
1367 a frame buffer to crop a portion of the image memory (source) and
1368 optionally scale it to a destination size. The result is then blended
1369 with or overlayed on top of a CRTC.
1370 </para>
1371 <para>
1372 The DRM core recognizes three types of planes:
1373 <itemizedlist>
1374 <listitem>
1375 DRM_PLANE_TYPE_PRIMARY represents a "main" plane for a CRTC. Primary
1376 planes are the planes operated upon by by CRTC modesetting and flipping
1377 operations described in <xref linkend="drm-kms-crtcops"/>.
1378 </listitem>
1379 <listitem>
1380 DRM_PLANE_TYPE_CURSOR represents a "cursor" plane for a CRTC. Cursor
1381 planes are the planes operated upon by the DRM_IOCTL_MODE_CURSOR and
1382 DRM_IOCTL_MODE_CURSOR2 ioctls.
1383 </listitem>
1384 <listitem>
1385 DRM_PLANE_TYPE_OVERLAY represents all non-primary, non-cursor planes.
1386 Some drivers refer to these types of planes as "sprites" internally.
1387 </listitem>
1388 </itemizedlist>
1389 For compatibility with legacy userspace, only overlay planes are made
1390 available to userspace by default. Userspace clients may set the
1391 DRM_CLIENT_CAP_UNIVERSAL_PLANES client capability bit to indicate that
1392 they wish to receive a universal plane list containing all plane types.
1393 </para>
1394 <sect3>
1395 <title>Plane Initialization</title>
1396 <para>
1397 To create a plane, a KMS drivers allocates and
1398 zeroes an instances of struct <structname>drm_plane</structname>
1399 (possibly as part of a larger structure) and registers it with a call
1400 to <function>drm_universal_plane_init</function>. The function takes a bitmask
1401 of the CRTCs that can be associated with the plane, a pointer to the
1402 plane functions, a list of format supported formats, and the type of
1403 plane (primary, cursor, or overlay) being initialized.
1404 </para>
1405 <para>
1406 Cursor and overlay planes are optional. All drivers should provide
1407 one primary plane per CRTC (although this requirement may change in
1408 the future); drivers that do not wish to provide special handling for
1409 primary planes may make use of the helper functions described in
1410 <xref linkend="drm-kms-planehelpers"/> to create and register a
1411 primary plane with standard capabilities.
1412 </para>
1413 </sect3>
1414 <sect3>
1415 <title>Plane Operations</title>
1416 <itemizedlist>
1417 <listitem>
1418 <synopsis>int (*update_plane)(struct drm_plane *plane, struct drm_crtc *crtc,
1419 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
1420 unsigned int crtc_w, unsigned int crtc_h,
1421 uint32_t src_x, uint32_t src_y,
1422 uint32_t src_w, uint32_t src_h);</synopsis>
1423 <para>
1424 Enable and configure the plane to use the given CRTC and frame buffer.
1425 </para>
1426 <para>
1427 The source rectangle in frame buffer memory coordinates is given by
1428 the <parameter>src_x</parameter>, <parameter>src_y</parameter>,
1429 <parameter>src_w</parameter> and <parameter>src_h</parameter>
1430 parameters (as 16.16 fixed point values). Devices that don't support
1431 subpixel plane coordinates can ignore the fractional part.
1432 </para>
1433 <para>
1434 The destination rectangle in CRTC coordinates is given by the
1435 <parameter>crtc_x</parameter>, <parameter>crtc_y</parameter>,
1436 <parameter>crtc_w</parameter> and <parameter>crtc_h</parameter>
1437 parameters (as integer values). Devices scale the source rectangle to
1438 the destination rectangle. If scaling is not supported, and the source
1439 rectangle size doesn't match the destination rectangle size, the
1440 driver must return a -<errorname>EINVAL</errorname> error.
1441 </para>
1442 </listitem>
1443 <listitem>
1444 <synopsis>int (*disable_plane)(struct drm_plane *plane);</synopsis>
1445 <para>
1446 Disable the plane. The DRM core calls this method in response to a
1447 DRM_IOCTL_MODE_SETPLANE ioctl call with the frame buffer ID set to 0.
1448 Disabled planes must not be processed by the CRTC.
1449 </para>
1450 </listitem>
1451 <listitem>
1452 <synopsis>void (*destroy)(struct drm_plane *plane);</synopsis>
1453 <para>
1454 Destroy the plane when not needed anymore. See
1455 <xref linkend="drm-kms-init"/>.
1456 </para>
1457 </listitem>
1458 </itemizedlist>
1459 </sect3>
1460 </sect2>
1461 <sect2>
1462 <title>Encoders (struct <structname>drm_encoder</structname>)</title>
1463 <para>
1464 An encoder takes pixel data from a CRTC and converts it to a format
1465 suitable for any attached connectors. On some devices, it may be
1466 possible to have a CRTC send data to more than one encoder. In that
1467 case, both encoders would receive data from the same scanout buffer,
1468 resulting in a "cloned" display configuration across the connectors
1469 attached to each encoder.
1470 </para>
1471 <sect3>
1472 <title>Encoder Initialization</title>
1473 <para>
1474 As for CRTCs, a KMS driver must create, initialize and register at
1475 least one struct <structname>drm_encoder</structname> instance. The
1476 instance is allocated and zeroed by the driver, possibly as part of a
1477 larger structure.
1478 </para>
1479 <para>
1480 Drivers must initialize the struct <structname>drm_encoder</structname>
1481 <structfield>possible_crtcs</structfield> and
1482 <structfield>possible_clones</structfield> fields before registering the
1483 encoder. Both fields are bitmasks of respectively the CRTCs that the
1484 encoder can be connected to, and sibling encoders candidate for cloning.
1485 </para>
1486 <para>
1487 After being initialized, the encoder must be registered with a call to
1488 <function>drm_encoder_init</function>. The function takes a pointer to
1489 the encoder functions and an encoder type. Supported types are
1490 <itemizedlist>
1491 <listitem>
1492 DRM_MODE_ENCODER_DAC for VGA and analog on DVI-I/DVI-A
1493 </listitem>
1494 <listitem>
1495 DRM_MODE_ENCODER_TMDS for DVI, HDMI and (embedded) DisplayPort
1496 </listitem>
1497 <listitem>
1498 DRM_MODE_ENCODER_LVDS for display panels
1499 </listitem>
1500 <listitem>
1501 DRM_MODE_ENCODER_TVDAC for TV output (Composite, S-Video, Component,
1502 SCART)
1503 </listitem>
1504 <listitem>
1505 DRM_MODE_ENCODER_VIRTUAL for virtual machine displays
1506 </listitem>
1507 </itemizedlist>
1508 </para>
1509 <para>
1510 Encoders must be attached to a CRTC to be used. DRM drivers leave
1511 encoders unattached at initialization time. Applications (or the fbdev
1512 compatibility layer when implemented) are responsible for attaching the
1513 encoders they want to use to a CRTC.
1514 </para>
1515 </sect3>
1516 <sect3>
1517 <title>Encoder Operations</title>
1518 <itemizedlist>
1519 <listitem>
1520 <synopsis>void (*destroy)(struct drm_encoder *encoder);</synopsis>
1521 <para>
1522 Called to destroy the encoder when not needed anymore. See
1523 <xref linkend="drm-kms-init"/>.
1524 </para>
1525 </listitem>
1526 <listitem>
1527 <synopsis>void (*set_property)(struct drm_plane *plane,
1528 struct drm_property *property, uint64_t value);</synopsis>
1529 <para>
1530 Set the value of the given plane property to
1531 <parameter>value</parameter>. See <xref linkend="drm-kms-properties"/>
1532 for more information about properties.
1533 </para>
1534 </listitem>
1535 </itemizedlist>
1536 </sect3>
1537 </sect2>
1538 <sect2>
1539 <title>Connectors (struct <structname>drm_connector</structname>)</title>
1540 <para>
1541 A connector is the final destination for pixel data on a device, and
1542 usually connects directly to an external display device like a monitor
1543 or laptop panel. A connector can only be attached to one encoder at a
1544 time. The connector is also the structure where information about the
1545 attached display is kept, so it contains fields for display data, EDID
1546 data, DPMS &amp; connection status, and information about modes
1547 supported on the attached displays.
1548 </para>
1549 <sect3>
1550 <title>Connector Initialization</title>
1551 <para>
1552 Finally a KMS driver must create, initialize, register and attach at
1553 least one struct <structname>drm_connector</structname> instance. The
1554 instance is created as other KMS objects and initialized by setting the
1555 following fields.
1556 </para>
1557 <variablelist>
1558 <varlistentry>
1559 <term><structfield>interlace_allowed</structfield></term>
1560 <listitem><para>
1561 Whether the connector can handle interlaced modes.
1562 </para></listitem>
1563 </varlistentry>
1564 <varlistentry>
1565 <term><structfield>doublescan_allowed</structfield></term>
1566 <listitem><para>
1567 Whether the connector can handle doublescan.
1568 </para></listitem>
1569 </varlistentry>
1570 <varlistentry>
1571 <term><structfield>display_info
1572 </structfield></term>
1573 <listitem><para>
1574 Display information is filled from EDID information when a display
1575 is detected. For non hot-pluggable displays such as flat panels in
1576 embedded systems, the driver should initialize the
1577 <structfield>display_info</structfield>.<structfield>width_mm</structfield>
1578 and
1579 <structfield>display_info</structfield>.<structfield>height_mm</structfield>
1580 fields with the physical size of the display.
1581 </para></listitem>
1582 </varlistentry>
1583 <varlistentry>
1584 <term id="drm-kms-connector-polled"><structfield>polled</structfield></term>
1585 <listitem><para>
1586 Connector polling mode, a combination of
1587 <variablelist>
1588 <varlistentry>
1589 <term>DRM_CONNECTOR_POLL_HPD</term>
1590 <listitem><para>
1591 The connector generates hotplug events and doesn't need to be
1592 periodically polled. The CONNECT and DISCONNECT flags must not
1593 be set together with the HPD flag.
1594 </para></listitem>
1595 </varlistentry>
1596 <varlistentry>
1597 <term>DRM_CONNECTOR_POLL_CONNECT</term>
1598 <listitem><para>
1599 Periodically poll the connector for connection.
1600 </para></listitem>
1601 </varlistentry>
1602 <varlistentry>
1603 <term>DRM_CONNECTOR_POLL_DISCONNECT</term>
1604 <listitem><para>
1605 Periodically poll the connector for disconnection.
1606 </para></listitem>
1607 </varlistentry>
1608 </variablelist>
1609 Set to 0 for connectors that don't support connection status
1610 discovery.
1611 </para></listitem>
1612 </varlistentry>
1613 </variablelist>
1614 <para>
1615 The connector is then registered with a call to
1616 <function>drm_connector_init</function> with a pointer to the connector
1617 functions and a connector type, and exposed through sysfs with a call to
1618 <function>drm_connector_register</function>.
1619 </para>
1620 <para>
1621 Supported connector types are
1622 <itemizedlist>
1623 <listitem>DRM_MODE_CONNECTOR_VGA</listitem>
1624 <listitem>DRM_MODE_CONNECTOR_DVII</listitem>
1625 <listitem>DRM_MODE_CONNECTOR_DVID</listitem>
1626 <listitem>DRM_MODE_CONNECTOR_DVIA</listitem>
1627 <listitem>DRM_MODE_CONNECTOR_Composite</listitem>
1628 <listitem>DRM_MODE_CONNECTOR_SVIDEO</listitem>
1629 <listitem>DRM_MODE_CONNECTOR_LVDS</listitem>
1630 <listitem>DRM_MODE_CONNECTOR_Component</listitem>
1631 <listitem>DRM_MODE_CONNECTOR_9PinDIN</listitem>
1632 <listitem>DRM_MODE_CONNECTOR_DisplayPort</listitem>
1633 <listitem>DRM_MODE_CONNECTOR_HDMIA</listitem>
1634 <listitem>DRM_MODE_CONNECTOR_HDMIB</listitem>
1635 <listitem>DRM_MODE_CONNECTOR_TV</listitem>
1636 <listitem>DRM_MODE_CONNECTOR_eDP</listitem>
1637 <listitem>DRM_MODE_CONNECTOR_VIRTUAL</listitem>
1638 </itemizedlist>
1639 </para>
1640 <para>
1641 Connectors must be attached to an encoder to be used. For devices that
1642 map connectors to encoders 1:1, the connector should be attached at
1643 initialization time with a call to
1644 <function>drm_mode_connector_attach_encoder</function>. The driver must
1645 also set the <structname>drm_connector</structname>
1646 <structfield>encoder</structfield> field to point to the attached
1647 encoder.
1648 </para>
1649 <para>
1650 Finally, drivers must initialize the connectors state change detection
1651 with a call to <function>drm_kms_helper_poll_init</function>. If at
1652 least one connector is pollable but can't generate hotplug interrupts
1653 (indicated by the DRM_CONNECTOR_POLL_CONNECT and
1654 DRM_CONNECTOR_POLL_DISCONNECT connector flags), a delayed work will
1655 automatically be queued to periodically poll for changes. Connectors
1656 that can generate hotplug interrupts must be marked with the
1657 DRM_CONNECTOR_POLL_HPD flag instead, and their interrupt handler must
1658 call <function>drm_helper_hpd_irq_event</function>. The function will
1659 queue a delayed work to check the state of all connectors, but no
1660 periodic polling will be done.
1661 </para>
1662 </sect3>
1663 <sect3>
1664 <title>Connector Operations</title>
1665 <note><para>
1666 Unless otherwise state, all operations are mandatory.
1667 </para></note>
1668 <sect4>
1669 <title>DPMS</title>
1670 <synopsis>void (*dpms)(struct drm_connector *connector, int mode);</synopsis>
1671 <para>
1672 The DPMS operation sets the power state of a connector. The mode
1673 argument is one of
1674 <itemizedlist>
1675 <listitem><para>DRM_MODE_DPMS_ON</para></listitem>
1676 <listitem><para>DRM_MODE_DPMS_STANDBY</para></listitem>
1677 <listitem><para>DRM_MODE_DPMS_SUSPEND</para></listitem>
1678 <listitem><para>DRM_MODE_DPMS_OFF</para></listitem>
1679 </itemizedlist>
1680 </para>
1681 <para>
1682 In all but DPMS_ON mode the encoder to which the connector is attached
1683 should put the display in low-power mode by driving its signals
1684 appropriately. If more than one connector is attached to the encoder
1685 care should be taken not to change the power state of other displays as
1686 a side effect. Low-power mode should be propagated to the encoders and
1687 CRTCs when all related connectors are put in low-power mode.
1688 </para>
1689 </sect4>
1690 <sect4>
1691 <title>Modes</title>
1692 <synopsis>int (*fill_modes)(struct drm_connector *connector, uint32_t max_width,
1693 uint32_t max_height);</synopsis>
1694 <para>
1695 Fill the mode list with all supported modes for the connector. If the
1696 <parameter>max_width</parameter> and <parameter>max_height</parameter>
1697 arguments are non-zero, the implementation must ignore all modes wider
1698 than <parameter>max_width</parameter> or higher than
1699 <parameter>max_height</parameter>.
1700 </para>
1701 <para>
1702 The connector must also fill in this operation its
1703 <structfield>display_info</structfield>
1704 <structfield>width_mm</structfield> and
1705 <structfield>height_mm</structfield> fields with the connected display
1706 physical size in millimeters. The fields should be set to 0 if the value
1707 isn't known or is not applicable (for instance for projector devices).
1708 </para>
1709 </sect4>
1710 <sect4>
1711 <title>Connection Status</title>
1712 <para>
1713 The connection status is updated through polling or hotplug events when
1714 supported (see <xref linkend="drm-kms-connector-polled"/>). The status
1715 value is reported to userspace through ioctls and must not be used
1716 inside the driver, as it only gets initialized by a call to
1717 <function>drm_mode_getconnector</function> from userspace.
1718 </para>
1719 <synopsis>enum drm_connector_status (*detect)(struct drm_connector *connector,
1720 bool force);</synopsis>
1721 <para>
1722 Check to see if anything is attached to the connector. The
1723 <parameter>force</parameter> parameter is set to false whilst polling or
1724 to true when checking the connector due to user request.
1725 <parameter>force</parameter> can be used by the driver to avoid
1726 expensive, destructive operations during automated probing.
1727 </para>
1728 <para>
1729 Return connector_status_connected if something is connected to the
1730 connector, connector_status_disconnected if nothing is connected and
1731 connector_status_unknown if the connection state isn't known.
1732 </para>
1733 <para>
1734 Drivers should only return connector_status_connected if the connection
1735 status has really been probed as connected. Connectors that can't detect
1736 the connection status, or failed connection status probes, should return
1737 connector_status_unknown.
1738 </para>
1739 </sect4>
1740 <sect4>
1741 <title>Miscellaneous</title>
1742 <itemizedlist>
1743 <listitem>
1744 <synopsis>void (*set_property)(struct drm_connector *connector,
1745 struct drm_property *property, uint64_t value);</synopsis>
1746 <para>
1747 Set the value of the given connector property to
1748 <parameter>value</parameter>. See <xref linkend="drm-kms-properties"/>
1749 for more information about properties.
1750 </para>
1751 </listitem>
1752 <listitem>
1753 <synopsis>void (*destroy)(struct drm_connector *connector);</synopsis>
1754 <para>
1755 Destroy the connector when not needed anymore. See
1756 <xref linkend="drm-kms-init"/>.
1757 </para>
1758 </listitem>
1759 </itemizedlist>
1760 </sect4>
1761 </sect3>
1762 </sect2>
1763 <sect2>
1764 <title>Cleanup</title>
1765 <para>
1766 The DRM core manages its objects' lifetime. When an object is not needed
1767 anymore the core calls its destroy function, which must clean up and
1768 free every resource allocated for the object. Every
1769 <function>drm_*_init</function> call must be matched with a
1770 corresponding <function>drm_*_cleanup</function> call to cleanup CRTCs
1771 (<function>drm_crtc_cleanup</function>), planes
1772 (<function>drm_plane_cleanup</function>), encoders
1773 (<function>drm_encoder_cleanup</function>) and connectors
1774 (<function>drm_connector_cleanup</function>). Furthermore, connectors
1775 that have been added to sysfs must be removed by a call to
1776 <function>drm_connector_unregister</function> before calling
1777 <function>drm_connector_cleanup</function>.
1778 </para>
1779 <para>
1780 Connectors state change detection must be cleanup up with a call to
1781 <function>drm_kms_helper_poll_fini</function>.
1782 </para>
1783 </sect2>
1784 <sect2>
1785 <title>Output discovery and initialization example</title>
1786 <programlisting><![CDATA[
1787 void intel_crt_init(struct drm_device *dev)
1788 {
1789 struct drm_connector *connector;
1790 struct intel_output *intel_output;
1791
1792 intel_output = kzalloc(sizeof(struct intel_output), GFP_KERNEL);
1793 if (!intel_output)
1794 return;
1795
1796 connector = &intel_output->base;
1797 drm_connector_init(dev, &intel_output->base,
1798 &intel_crt_connector_funcs, DRM_MODE_CONNECTOR_VGA);
1799
1800 drm_encoder_init(dev, &intel_output->enc, &intel_crt_enc_funcs,
1801 DRM_MODE_ENCODER_DAC);
1802
1803 drm_mode_connector_attach_encoder(&intel_output->base,
1804 &intel_output->enc);
1805
1806 /* Set up the DDC bus. */
1807 intel_output->ddc_bus = intel_i2c_create(dev, GPIOA, "CRTDDC_A");
1808 if (!intel_output->ddc_bus) {
1809 dev_printk(KERN_ERR, &dev->pdev->dev, "DDC bus registration "
1810 "failed.\n");
1811 return;
1812 }
1813
1814 intel_output->type = INTEL_OUTPUT_ANALOG;
1815 connector->interlace_allowed = 0;
1816 connector->doublescan_allowed = 0;
1817
1818 drm_encoder_helper_add(&intel_output->enc, &intel_crt_helper_funcs);
1819 drm_connector_helper_add(connector, &intel_crt_connector_helper_funcs);
1820
1821 drm_connector_register(connector);
1822 }]]></programlisting>
1823 <para>
1824 In the example above (taken from the i915 driver), a CRTC, connector and
1825 encoder combination is created. A device-specific i2c bus is also
1826 created for fetching EDID data and performing monitor detection. Once
1827 the process is complete, the new connector is registered with sysfs to
1828 make its properties available to applications.
1829 </para>
1830 </sect2>
1831 <sect2>
1832 <title>KMS API Functions</title>
1833 !Edrivers/gpu/drm/drm_crtc.c
1834 </sect2>
1835 <sect2>
1836 <title>KMS Locking</title>
1837 !Pdrivers/gpu/drm/drm_modeset_lock.c kms locking
1838 !Iinclude/drm/drm_modeset_lock.h
1839 !Edrivers/gpu/drm/drm_modeset_lock.c
1840 </sect2>
1841 </sect1>
1842
1843 <!-- Internals: kms helper functions -->
1844
1845 <sect1>
1846 <title>Mode Setting Helper Functions</title>
1847 <para>
1848 The plane, CRTC, encoder and connector functions provided by the drivers
1849 implement the DRM API. They're called by the DRM core and ioctl handlers
1850 to handle device state changes and configuration request. As implementing
1851 those functions often requires logic not specific to drivers, mid-layer
1852 helper functions are available to avoid duplicating boilerplate code.
1853 </para>
1854 <para>
1855 The DRM core contains one mid-layer implementation. The mid-layer provides
1856 implementations of several plane, CRTC, encoder and connector functions
1857 (called from the top of the mid-layer) that pre-process requests and call
1858 lower-level functions provided by the driver (at the bottom of the
1859 mid-layer). For instance, the
1860 <function>drm_crtc_helper_set_config</function> function can be used to
1861 fill the struct <structname>drm_crtc_funcs</structname>
1862 <structfield>set_config</structfield> field. When called, it will split
1863 the <methodname>set_config</methodname> operation in smaller, simpler
1864 operations and call the driver to handle them.
1865 </para>
1866 <para>
1867 To use the mid-layer, drivers call <function>drm_crtc_helper_add</function>,
1868 <function>drm_encoder_helper_add</function> and
1869 <function>drm_connector_helper_add</function> functions to install their
1870 mid-layer bottom operations handlers, and fill the
1871 <structname>drm_crtc_funcs</structname>,
1872 <structname>drm_encoder_funcs</structname> and
1873 <structname>drm_connector_funcs</structname> structures with pointers to
1874 the mid-layer top API functions. Installing the mid-layer bottom operation
1875 handlers is best done right after registering the corresponding KMS object.
1876 </para>
1877 <para>
1878 The mid-layer is not split between CRTC, encoder and connector operations.
1879 To use it, a driver must provide bottom functions for all of the three KMS
1880 entities.
1881 </para>
1882 <sect2>
1883 <title>Helper Functions</title>
1884 <itemizedlist>
1885 <listitem>
1886 <synopsis>int drm_crtc_helper_set_config(struct drm_mode_set *set);</synopsis>
1887 <para>
1888 The <function>drm_crtc_helper_set_config</function> helper function
1889 is a CRTC <methodname>set_config</methodname> implementation. It
1890 first tries to locate the best encoder for each connector by calling
1891 the connector <methodname>best_encoder</methodname> helper
1892 operation.
1893 </para>
1894 <para>
1895 After locating the appropriate encoders, the helper function will
1896 call the <methodname>mode_fixup</methodname> encoder and CRTC helper
1897 operations to adjust the requested mode, or reject it completely in
1898 which case an error will be returned to the application. If the new
1899 configuration after mode adjustment is identical to the current
1900 configuration the helper function will return without performing any
1901 other operation.
1902 </para>
1903 <para>
1904 If the adjusted mode is identical to the current mode but changes to
1905 the frame buffer need to be applied, the
1906 <function>drm_crtc_helper_set_config</function> function will call
1907 the CRTC <methodname>mode_set_base</methodname> helper operation. If
1908 the adjusted mode differs from the current mode, or if the
1909 <methodname>mode_set_base</methodname> helper operation is not
1910 provided, the helper function performs a full mode set sequence by
1911 calling the <methodname>prepare</methodname>,
1912 <methodname>mode_set</methodname> and
1913 <methodname>commit</methodname> CRTC and encoder helper operations,
1914 in that order.
1915 </para>
1916 </listitem>
1917 <listitem>
1918 <synopsis>void drm_helper_connector_dpms(struct drm_connector *connector, int mode);</synopsis>
1919 <para>
1920 The <function>drm_helper_connector_dpms</function> helper function
1921 is a connector <methodname>dpms</methodname> implementation that
1922 tracks power state of connectors. To use the function, drivers must
1923 provide <methodname>dpms</methodname> helper operations for CRTCs
1924 and encoders to apply the DPMS state to the device.
1925 </para>
1926 <para>
1927 The mid-layer doesn't track the power state of CRTCs and encoders.
1928 The <methodname>dpms</methodname> helper operations can thus be
1929 called with a mode identical to the currently active mode.
1930 </para>
1931 </listitem>
1932 <listitem>
1933 <synopsis>int drm_helper_probe_single_connector_modes(struct drm_connector *connector,
1934 uint32_t maxX, uint32_t maxY);</synopsis>
1935 <para>
1936 The <function>drm_helper_probe_single_connector_modes</function> helper
1937 function is a connector <methodname>fill_modes</methodname>
1938 implementation that updates the connection status for the connector
1939 and then retrieves a list of modes by calling the connector
1940 <methodname>get_modes</methodname> helper operation.
1941 </para>
1942 <para>
1943 The function filters out modes larger than
1944 <parameter>max_width</parameter> and <parameter>max_height</parameter>
1945 if specified. It then calls the optional connector
1946 <methodname>mode_valid</methodname> helper operation for each mode in
1947 the probed list to check whether the mode is valid for the connector.
1948 </para>
1949 </listitem>
1950 </itemizedlist>
1951 </sect2>
1952 <sect2>
1953 <title>CRTC Helper Operations</title>
1954 <itemizedlist>
1955 <listitem id="drm-helper-crtc-mode-fixup">
1956 <synopsis>bool (*mode_fixup)(struct drm_crtc *crtc,
1957 const struct drm_display_mode *mode,
1958 struct drm_display_mode *adjusted_mode);</synopsis>
1959 <para>
1960 Let CRTCs adjust the requested mode or reject it completely. This
1961 operation returns true if the mode is accepted (possibly after being
1962 adjusted) or false if it is rejected.
1963 </para>
1964 <para>
1965 The <methodname>mode_fixup</methodname> operation should reject the
1966 mode if it can't reasonably use it. The definition of "reasonable"
1967 is currently fuzzy in this context. One possible behaviour would be
1968 to set the adjusted mode to the panel timings when a fixed-mode
1969 panel is used with hardware capable of scaling. Another behaviour
1970 would be to accept any input mode and adjust it to the closest mode
1971 supported by the hardware (FIXME: This needs to be clarified).
1972 </para>
1973 </listitem>
1974 <listitem>
1975 <synopsis>int (*mode_set_base)(struct drm_crtc *crtc, int x, int y,
1976 struct drm_framebuffer *old_fb)</synopsis>
1977 <para>
1978 Move the CRTC on the current frame buffer (stored in
1979 <literal>crtc-&gt;fb</literal>) to position (x,y). Any of the frame
1980 buffer, x position or y position may have been modified.
1981 </para>
1982 <para>
1983 This helper operation is optional. If not provided, the
1984 <function>drm_crtc_helper_set_config</function> function will fall
1985 back to the <methodname>mode_set</methodname> helper operation.
1986 </para>
1987 <note><para>
1988 FIXME: Why are x and y passed as arguments, as they can be accessed
1989 through <literal>crtc-&gt;x</literal> and
1990 <literal>crtc-&gt;y</literal>?
1991 </para></note>
1992 </listitem>
1993 <listitem>
1994 <synopsis>void (*prepare)(struct drm_crtc *crtc);</synopsis>
1995 <para>
1996 Prepare the CRTC for mode setting. This operation is called after
1997 validating the requested mode. Drivers use it to perform
1998 device-specific operations required before setting the new mode.
1999 </para>
2000 </listitem>
2001 <listitem>
2002 <synopsis>int (*mode_set)(struct drm_crtc *crtc, struct drm_display_mode *mode,
2003 struct drm_display_mode *adjusted_mode, int x, int y,
2004 struct drm_framebuffer *old_fb);</synopsis>
2005 <para>
2006 Set a new mode, position and frame buffer. Depending on the device
2007 requirements, the mode can be stored internally by the driver and
2008 applied in the <methodname>commit</methodname> operation, or
2009 programmed to the hardware immediately.
2010 </para>
2011 <para>
2012 The <methodname>mode_set</methodname> operation returns 0 on success
2013 or a negative error code if an error occurs.
2014 </para>
2015 </listitem>
2016 <listitem>
2017 <synopsis>void (*commit)(struct drm_crtc *crtc);</synopsis>
2018 <para>
2019 Commit a mode. This operation is called after setting the new mode.
2020 Upon return the device must use the new mode and be fully
2021 operational.
2022 </para>
2023 </listitem>
2024 </itemizedlist>
2025 </sect2>
2026 <sect2>
2027 <title>Encoder Helper Operations</title>
2028 <itemizedlist>
2029 <listitem>
2030 <synopsis>bool (*mode_fixup)(struct drm_encoder *encoder,
2031 const struct drm_display_mode *mode,
2032 struct drm_display_mode *adjusted_mode);</synopsis>
2033 <para>
2034 Let encoders adjust the requested mode or reject it completely. This
2035 operation returns true if the mode is accepted (possibly after being
2036 adjusted) or false if it is rejected. See the
2037 <link linkend="drm-helper-crtc-mode-fixup">mode_fixup CRTC helper
2038 operation</link> for an explanation of the allowed adjustments.
2039 </para>
2040 </listitem>
2041 <listitem>
2042 <synopsis>void (*prepare)(struct drm_encoder *encoder);</synopsis>
2043 <para>
2044 Prepare the encoder for mode setting. This operation is called after
2045 validating the requested mode. Drivers use it to perform
2046 device-specific operations required before setting the new mode.
2047 </para>
2048 </listitem>
2049 <listitem>
2050 <synopsis>void (*mode_set)(struct drm_encoder *encoder,
2051 struct drm_display_mode *mode,
2052 struct drm_display_mode *adjusted_mode);</synopsis>
2053 <para>
2054 Set a new mode. Depending on the device requirements, the mode can
2055 be stored internally by the driver and applied in the
2056 <methodname>commit</methodname> operation, or programmed to the
2057 hardware immediately.
2058 </para>
2059 </listitem>
2060 <listitem>
2061 <synopsis>void (*commit)(struct drm_encoder *encoder);</synopsis>
2062 <para>
2063 Commit a mode. This operation is called after setting the new mode.
2064 Upon return the device must use the new mode and be fully
2065 operational.
2066 </para>
2067 </listitem>
2068 </itemizedlist>
2069 </sect2>
2070 <sect2>
2071 <title>Connector Helper Operations</title>
2072 <itemizedlist>
2073 <listitem>
2074 <synopsis>struct drm_encoder *(*best_encoder)(struct drm_connector *connector);</synopsis>
2075 <para>
2076 Return a pointer to the best encoder for the connecter. Device that
2077 map connectors to encoders 1:1 simply return the pointer to the
2078 associated encoder. This operation is mandatory.
2079 </para>
2080 </listitem>
2081 <listitem>
2082 <synopsis>int (*get_modes)(struct drm_connector *connector);</synopsis>
2083 <para>
2084 Fill the connector's <structfield>probed_modes</structfield> list
2085 by parsing EDID data with <function>drm_add_edid_modes</function> or
2086 calling <function>drm_mode_probed_add</function> directly for every
2087 supported mode and return the number of modes it has detected. This
2088 operation is mandatory.
2089 </para>
2090 <para>
2091 When adding modes manually the driver creates each mode with a call to
2092 <function>drm_mode_create</function> and must fill the following fields.
2093 <itemizedlist>
2094 <listitem>
2095 <synopsis>__u32 type;</synopsis>
2096 <para>
2097 Mode type bitmask, a combination of
2098 <variablelist>
2099 <varlistentry>
2100 <term>DRM_MODE_TYPE_BUILTIN</term>
2101 <listitem><para>not used?</para></listitem>
2102 </varlistentry>
2103 <varlistentry>
2104 <term>DRM_MODE_TYPE_CLOCK_C</term>
2105 <listitem><para>not used?</para></listitem>
2106 </varlistentry>
2107 <varlistentry>
2108 <term>DRM_MODE_TYPE_CRTC_C</term>
2109 <listitem><para>not used?</para></listitem>
2110 </varlistentry>
2111 <varlistentry>
2112 <term>
2113 DRM_MODE_TYPE_PREFERRED - The preferred mode for the connector
2114 </term>
2115 <listitem>
2116 <para>not used?</para>
2117 </listitem>
2118 </varlistentry>
2119 <varlistentry>
2120 <term>DRM_MODE_TYPE_DEFAULT</term>
2121 <listitem><para>not used?</para></listitem>
2122 </varlistentry>
2123 <varlistentry>
2124 <term>DRM_MODE_TYPE_USERDEF</term>
2125 <listitem><para>not used?</para></listitem>
2126 </varlistentry>
2127 <varlistentry>
2128 <term>DRM_MODE_TYPE_DRIVER</term>
2129 <listitem>
2130 <para>
2131 The mode has been created by the driver (as opposed to
2132 to user-created modes).
2133 </para>
2134 </listitem>
2135 </varlistentry>
2136 </variablelist>
2137 Drivers must set the DRM_MODE_TYPE_DRIVER bit for all modes they
2138 create, and set the DRM_MODE_TYPE_PREFERRED bit for the preferred
2139 mode.
2140 </para>
2141 </listitem>
2142 <listitem>
2143 <synopsis>__u32 clock;</synopsis>
2144 <para>Pixel clock frequency in kHz unit</para>
2145 </listitem>
2146 <listitem>
2147 <synopsis>__u16 hdisplay, hsync_start, hsync_end, htotal;
2148 __u16 vdisplay, vsync_start, vsync_end, vtotal;</synopsis>
2149 <para>Horizontal and vertical timing information</para>
2150 <screen><![CDATA[
2151 Active Front Sync Back
2152 Region Porch Porch
2153 <-----------------------><----------------><-------------><-------------->
2154
2155 //////////////////////|
2156 ////////////////////// |
2157 ////////////////////// |.................. ................
2158 _______________
2159
2160 <----- [hv]display ----->
2161 <------------- [hv]sync_start ------------>
2162 <--------------------- [hv]sync_end --------------------->
2163 <-------------------------------- [hv]total ----------------------------->
2164 ]]></screen>
2165 </listitem>
2166 <listitem>
2167 <synopsis>__u16 hskew;
2168 __u16 vscan;</synopsis>
2169 <para>Unknown</para>
2170 </listitem>
2171 <listitem>
2172 <synopsis>__u32 flags;</synopsis>
2173 <para>
2174 Mode flags, a combination of
2175 <variablelist>
2176 <varlistentry>
2177 <term>DRM_MODE_FLAG_PHSYNC</term>
2178 <listitem><para>
2179 Horizontal sync is active high
2180 </para></listitem>
2181 </varlistentry>
2182 <varlistentry>
2183 <term>DRM_MODE_FLAG_NHSYNC</term>
2184 <listitem><para>
2185 Horizontal sync is active low
2186 </para></listitem>
2187 </varlistentry>
2188 <varlistentry>
2189 <term>DRM_MODE_FLAG_PVSYNC</term>
2190 <listitem><para>
2191 Vertical sync is active high
2192 </para></listitem>
2193 </varlistentry>
2194 <varlistentry>
2195 <term>DRM_MODE_FLAG_NVSYNC</term>
2196 <listitem><para>
2197 Vertical sync is active low
2198 </para></listitem>
2199 </varlistentry>
2200 <varlistentry>
2201 <term>DRM_MODE_FLAG_INTERLACE</term>
2202 <listitem><para>
2203 Mode is interlaced
2204 </para></listitem>
2205 </varlistentry>
2206 <varlistentry>
2207 <term>DRM_MODE_FLAG_DBLSCAN</term>
2208 <listitem><para>
2209 Mode uses doublescan
2210 </para></listitem>
2211 </varlistentry>
2212 <varlistentry>
2213 <term>DRM_MODE_FLAG_CSYNC</term>
2214 <listitem><para>
2215 Mode uses composite sync
2216 </para></listitem>
2217 </varlistentry>
2218 <varlistentry>
2219 <term>DRM_MODE_FLAG_PCSYNC</term>
2220 <listitem><para>
2221 Composite sync is active high
2222 </para></listitem>
2223 </varlistentry>
2224 <varlistentry>
2225 <term>DRM_MODE_FLAG_NCSYNC</term>
2226 <listitem><para>
2227 Composite sync is active low
2228 </para></listitem>
2229 </varlistentry>
2230 <varlistentry>
2231 <term>DRM_MODE_FLAG_HSKEW</term>
2232 <listitem><para>
2233 hskew provided (not used?)
2234 </para></listitem>
2235 </varlistentry>
2236 <varlistentry>
2237 <term>DRM_MODE_FLAG_BCAST</term>
2238 <listitem><para>
2239 not used?
2240 </para></listitem>
2241 </varlistentry>
2242 <varlistentry>
2243 <term>DRM_MODE_FLAG_PIXMUX</term>
2244 <listitem><para>
2245 not used?
2246 </para></listitem>
2247 </varlistentry>
2248 <varlistentry>
2249 <term>DRM_MODE_FLAG_DBLCLK</term>
2250 <listitem><para>
2251 not used?
2252 </para></listitem>
2253 </varlistentry>
2254 <varlistentry>
2255 <term>DRM_MODE_FLAG_CLKDIV2</term>
2256 <listitem><para>
2257 ?
2258 </para></listitem>
2259 </varlistentry>
2260 </variablelist>
2261 </para>
2262 <para>
2263 Note that modes marked with the INTERLACE or DBLSCAN flags will be
2264 filtered out by
2265 <function>drm_helper_probe_single_connector_modes</function> if
2266 the connector's <structfield>interlace_allowed</structfield> or
2267 <structfield>doublescan_allowed</structfield> field is set to 0.
2268 </para>
2269 </listitem>
2270 <listitem>
2271 <synopsis>char name[DRM_DISPLAY_MODE_LEN];</synopsis>
2272 <para>
2273 Mode name. The driver must call
2274 <function>drm_mode_set_name</function> to fill the mode name from
2275 <structfield>hdisplay</structfield>,
2276 <structfield>vdisplay</structfield> and interlace flag after
2277 filling the corresponding fields.
2278 </para>
2279 </listitem>
2280 </itemizedlist>
2281 </para>
2282 <para>
2283 The <structfield>vrefresh</structfield> value is computed by
2284 <function>drm_helper_probe_single_connector_modes</function>.
2285 </para>
2286 <para>
2287 When parsing EDID data, <function>drm_add_edid_modes</function> fill the
2288 connector <structfield>display_info</structfield>
2289 <structfield>width_mm</structfield> and
2290 <structfield>height_mm</structfield> fields. When creating modes
2291 manually the <methodname>get_modes</methodname> helper operation must
2292 set the <structfield>display_info</structfield>
2293 <structfield>width_mm</structfield> and
2294 <structfield>height_mm</structfield> fields if they haven't been set
2295 already (for instance at initialization time when a fixed-size panel is
2296 attached to the connector). The mode <structfield>width_mm</structfield>
2297 and <structfield>height_mm</structfield> fields are only used internally
2298 during EDID parsing and should not be set when creating modes manually.
2299 </para>
2300 </listitem>
2301 <listitem>
2302 <synopsis>int (*mode_valid)(struct drm_connector *connector,
2303 struct drm_display_mode *mode);</synopsis>
2304 <para>
2305 Verify whether a mode is valid for the connector. Return MODE_OK for
2306 supported modes and one of the enum drm_mode_status values (MODE_*)
2307 for unsupported modes. This operation is optional.
2308 </para>
2309 <para>
2310 As the mode rejection reason is currently not used beside for
2311 immediately removing the unsupported mode, an implementation can
2312 return MODE_BAD regardless of the exact reason why the mode is not
2313 valid.
2314 </para>
2315 <note><para>
2316 Note that the <methodname>mode_valid</methodname> helper operation is
2317 only called for modes detected by the device, and
2318 <emphasis>not</emphasis> for modes set by the user through the CRTC
2319 <methodname>set_config</methodname> operation.
2320 </para></note>
2321 </listitem>
2322 </itemizedlist>
2323 </sect2>
2324 <sect2>
2325 <title>Modeset Helper Functions Reference</title>
2326 !Edrivers/gpu/drm/drm_crtc_helper.c
2327 </sect2>
2328 <sect2>
2329 <title>Output Probing Helper Functions Reference</title>
2330 !Pdrivers/gpu/drm/drm_probe_helper.c output probing helper overview
2331 !Edrivers/gpu/drm/drm_probe_helper.c
2332 </sect2>
2333 <sect2>
2334 <title>fbdev Helper Functions Reference</title>
2335 !Pdrivers/gpu/drm/drm_fb_helper.c fbdev helpers
2336 !Edrivers/gpu/drm/drm_fb_helper.c
2337 !Iinclude/drm/drm_fb_helper.h
2338 </sect2>
2339 <sect2>
2340 <title>Display Port Helper Functions Reference</title>
2341 !Pdrivers/gpu/drm/drm_dp_helper.c dp helpers
2342 !Iinclude/drm/drm_dp_helper.h
2343 !Edrivers/gpu/drm/drm_dp_helper.c
2344 </sect2>
2345 <sect2>
2346 <title>Display Port MST Helper Functions Reference</title>
2347 !Pdrivers/gpu/drm/drm_dp_mst_topology.c dp mst helper
2348 !Iinclude/drm/drm_dp_mst_helper.h
2349 !Edrivers/gpu/drm/drm_dp_mst_topology.c
2350 </sect2>
2351 <sect2>
2352 <title>EDID Helper Functions Reference</title>
2353 !Edrivers/gpu/drm/drm_edid.c
2354 </sect2>
2355 <sect2>
2356 <title>Rectangle Utilities Reference</title>
2357 !Pinclude/drm/drm_rect.h rect utils
2358 !Iinclude/drm/drm_rect.h
2359 !Edrivers/gpu/drm/drm_rect.c
2360 </sect2>
2361 <sect2>
2362 <title>Flip-work Helper Reference</title>
2363 !Pinclude/drm/drm_flip_work.h flip utils
2364 !Iinclude/drm/drm_flip_work.h
2365 !Edrivers/gpu/drm/drm_flip_work.c
2366 </sect2>
2367 <sect2>
2368 <title>HDMI Infoframes Helper Reference</title>
2369 <para>
2370 Strictly speaking this is not a DRM helper library but generally useable
2371 by any driver interfacing with HDMI outputs like v4l or alsa drivers.
2372 But it nicely fits into the overall topic of mode setting helper
2373 libraries and hence is also included here.
2374 </para>
2375 !Iinclude/linux/hdmi.h
2376 !Edrivers/video/hdmi.c
2377 </sect2>
2378 <sect2>
2379 <title id="drm-kms-planehelpers">Plane Helper Reference</title>
2380 !Edrivers/gpu/drm/drm_plane_helper.c Plane Helpers
2381 </sect2>
2382 </sect1>
2383
2384 <!-- Internals: kms properties -->
2385
2386 <sect1 id="drm-kms-properties">
2387 <title>KMS Properties</title>
2388 <para>
2389 Drivers may need to expose additional parameters to applications than
2390 those described in the previous sections. KMS supports attaching
2391 properties to CRTCs, connectors and planes and offers a userspace API to
2392 list, get and set the property values.
2393 </para>
2394 <para>
2395 Properties are identified by a name that uniquely defines the property
2396 purpose, and store an associated value. For all property types except blob
2397 properties the value is a 64-bit unsigned integer.
2398 </para>
2399 <para>
2400 KMS differentiates between properties and property instances. Drivers
2401 first create properties and then create and associate individual instances
2402 of those properties to objects. A property can be instantiated multiple
2403 times and associated with different objects. Values are stored in property
2404 instances, and all other property information are stored in the property
2405 and shared between all instances of the property.
2406 </para>
2407 <para>
2408 Every property is created with a type that influences how the KMS core
2409 handles the property. Supported property types are
2410 <variablelist>
2411 <varlistentry>
2412 <term>DRM_MODE_PROP_RANGE</term>
2413 <listitem><para>Range properties report their minimum and maximum
2414 admissible values. The KMS core verifies that values set by
2415 application fit in that range.</para></listitem>
2416 </varlistentry>
2417 <varlistentry>
2418 <term>DRM_MODE_PROP_ENUM</term>
2419 <listitem><para>Enumerated properties take a numerical value that
2420 ranges from 0 to the number of enumerated values defined by the
2421 property minus one, and associate a free-formed string name to each
2422 value. Applications can retrieve the list of defined value-name pairs
2423 and use the numerical value to get and set property instance values.
2424 </para></listitem>
2425 </varlistentry>
2426 <varlistentry>
2427 <term>DRM_MODE_PROP_BITMASK</term>
2428 <listitem><para>Bitmask properties are enumeration properties that
2429 additionally restrict all enumerated values to the 0..63 range.
2430 Bitmask property instance values combine one or more of the
2431 enumerated bits defined by the property.</para></listitem>
2432 </varlistentry>
2433 <varlistentry>
2434 <term>DRM_MODE_PROP_BLOB</term>
2435 <listitem><para>Blob properties store a binary blob without any format
2436 restriction. The binary blobs are created as KMS standalone objects,
2437 and blob property instance values store the ID of their associated
2438 blob object.</para>
2439 <para>Blob properties are only used for the connector EDID property
2440 and cannot be created by drivers.</para></listitem>
2441 </varlistentry>
2442 </variablelist>
2443 </para>
2444 <para>
2445 To create a property drivers call one of the following functions depending
2446 on the property type. All property creation functions take property flags
2447 and name, as well as type-specific arguments.
2448 <itemizedlist>
2449 <listitem>
2450 <synopsis>struct drm_property *drm_property_create_range(struct drm_device *dev, int flags,
2451 const char *name,
2452 uint64_t min, uint64_t max);</synopsis>
2453 <para>Create a range property with the given minimum and maximum
2454 values.</para>
2455 </listitem>
2456 <listitem>
2457 <synopsis>struct drm_property *drm_property_create_enum(struct drm_device *dev, int flags,
2458 const char *name,
2459 const struct drm_prop_enum_list *props,
2460 int num_values);</synopsis>
2461 <para>Create an enumerated property. The <parameter>props</parameter>
2462 argument points to an array of <parameter>num_values</parameter>
2463 value-name pairs.</para>
2464 </listitem>
2465 <listitem>
2466 <synopsis>struct drm_property *drm_property_create_bitmask(struct drm_device *dev,
2467 int flags, const char *name,
2468 const struct drm_prop_enum_list *props,
2469 int num_values);</synopsis>
2470 <para>Create a bitmask property. The <parameter>props</parameter>
2471 argument points to an array of <parameter>num_values</parameter>
2472 value-name pairs.</para>
2473 </listitem>
2474 </itemizedlist>
2475 </para>
2476 <para>
2477 Properties can additionally be created as immutable, in which case they
2478 will be read-only for applications but can be modified by the driver. To
2479 create an immutable property drivers must set the DRM_MODE_PROP_IMMUTABLE
2480 flag at property creation time.
2481 </para>
2482 <para>
2483 When no array of value-name pairs is readily available at property
2484 creation time for enumerated or range properties, drivers can create
2485 the property using the <function>drm_property_create</function> function
2486 and manually add enumeration value-name pairs by calling the
2487 <function>drm_property_add_enum</function> function. Care must be taken to
2488 properly specify the property type through the <parameter>flags</parameter>
2489 argument.
2490 </para>
2491 <para>
2492 After creating properties drivers can attach property instances to CRTC,
2493 connector and plane objects by calling the
2494 <function>drm_object_attach_property</function>. The function takes a
2495 pointer to the target object, a pointer to the previously created property
2496 and an initial instance value.
2497 </para>
2498 <sect2>
2499 <title>Existing KMS Properties</title>
2500 <para>
2501 The following table gives description of drm properties exposed by various
2502 modules/drivers.
2503 </para>
2504 <table border="1" cellpadding="0" cellspacing="0">
2505 <tbody>
2506 <tr style="font-weight: bold;">
2507 <td valign="top" >Owner Module/Drivers</td>
2508 <td valign="top" >Group</td>
2509 <td valign="top" >Property Name</td>
2510 <td valign="top" >Type</td>
2511 <td valign="top" >Property Values</td>
2512 <td valign="top" >Object attached</td>
2513 <td valign="top" >Description/Restrictions</td>
2514 </tr>
2515 <tr>
2516 <td rowspan="21" valign="top" >DRM</td>
2517 <td rowspan="2" valign="top" >Generic</td>
2518 <td valign="top" >“EDID”</td>
2519 <td valign="top" >BLOB | IMMUTABLE</td>
2520 <td valign="top" >0</td>
2521 <td valign="top" >Connector</td>
2522 <td valign="top" >Contains id of edid blob ptr object.</td>
2523 </tr>
2524 <tr>
2525 <td valign="top" >“DPMS”</td>
2526 <td valign="top" >ENUM</td>
2527 <td valign="top" >{ “On”, “Standby”, “Suspend”, “Off” }</td>
2528 <td valign="top" >Connector</td>
2529 <td valign="top" >Contains DPMS operation mode value.</td>
2530 </tr>
2531 <tr>
2532 <td rowspan="1" valign="top" >Plane</td>
2533 <td valign="top" >“type”</td>
2534 <td valign="top" >ENUM | IMMUTABLE</td>
2535 <td valign="top" >{ "Overlay", "Primary", "Cursor" }</td>
2536 <td valign="top" >Plane</td>
2537 <td valign="top" >Plane type</td>
2538 </tr>
2539 <tr>
2540 <td rowspan="2" valign="top" >DVI-I</td>
2541 <td valign="top" >“subconnector”</td>
2542 <td valign="top" >ENUM</td>
2543 <td valign="top" >{ “Unknown”, “DVI-D”, “DVI-A” }</td>
2544 <td valign="top" >Connector</td>
2545 <td valign="top" >TBD</td>
2546 </tr>
2547 <tr>
2548 <td valign="top" >“select subconnector”</td>
2549 <td valign="top" >ENUM</td>
2550 <td valign="top" >{ “Automatic”, “DVI-D”, “DVI-A” }</td>
2551 <td valign="top" >Connector</td>
2552 <td valign="top" >TBD</td>
2553 </tr>
2554 <tr>
2555 <td rowspan="13" valign="top" >TV</td>
2556 <td valign="top" >“subconnector”</td>
2557 <td valign="top" >ENUM</td>
2558 <td valign="top" >{ "Unknown", "Composite", "SVIDEO", "Component", "SCART" }</td>
2559 <td valign="top" >Connector</td>
2560 <td valign="top" >TBD</td>
2561 </tr>
2562 <tr>
2563 <td valign="top" >“select subconnector”</td>
2564 <td valign="top" >ENUM</td>
2565 <td valign="top" >{ "Automatic", "Composite", "SVIDEO", "Component", "SCART" }</td>
2566 <td valign="top" >Connector</td>
2567 <td valign="top" >TBD</td>
2568 </tr>
2569 <tr>
2570 <td valign="top" >“mode”</td>
2571 <td valign="top" >ENUM</td>
2572 <td valign="top" >{ "NTSC_M", "NTSC_J", "NTSC_443", "PAL_B" } etc.</td>
2573 <td valign="top" >Connector</td>
2574 <td valign="top" >TBD</td>
2575 </tr>
2576 <tr>
2577 <td valign="top" >“left margin”</td>
2578 <td valign="top" >RANGE</td>
2579 <td valign="top" >Min=0, Max=100</td>
2580 <td valign="top" >Connector</td>
2581 <td valign="top" >TBD</td>
2582 </tr>
2583 <tr>
2584 <td valign="top" >“right margin”</td>
2585 <td valign="top" >RANGE</td>
2586 <td valign="top" >Min=0, Max=100</td>
2587 <td valign="top" >Connector</td>
2588 <td valign="top" >TBD</td>
2589 </tr>
2590 <tr>
2591 <td valign="top" >“top margin”</td>
2592 <td valign="top" >RANGE</td>
2593 <td valign="top" >Min=0, Max=100</td>
2594 <td valign="top" >Connector</td>
2595 <td valign="top" >TBD</td>
2596 </tr>
2597 <tr>
2598 <td valign="top" >“bottom margin”</td>
2599 <td valign="top" >RANGE</td>
2600 <td valign="top" >Min=0, Max=100</td>
2601 <td valign="top" >Connector</td>
2602 <td valign="top" >TBD</td>
2603 </tr>
2604 <tr>
2605 <td valign="top" >“brightness”</td>
2606 <td valign="top" >RANGE</td>
2607 <td valign="top" >Min=0, Max=100</td>
2608 <td valign="top" >Connector</td>
2609 <td valign="top" >TBD</td>
2610 </tr>
2611 <tr>
2612 <td valign="top" >“contrast”</td>
2613 <td valign="top" >RANGE</td>
2614 <td valign="top" >Min=0, Max=100</td>
2615 <td valign="top" >Connector</td>
2616 <td valign="top" >TBD</td>
2617 </tr>
2618 <tr>
2619 <td valign="top" >“flicker reduction”</td>
2620 <td valign="top" >RANGE</td>
2621 <td valign="top" >Min=0, Max=100</td>
2622 <td valign="top" >Connector</td>
2623 <td valign="top" >TBD</td>
2624 </tr>
2625 <tr>
2626 <td valign="top" >“overscan”</td>
2627 <td valign="top" >RANGE</td>
2628 <td valign="top" >Min=0, Max=100</td>
2629 <td valign="top" >Connector</td>
2630 <td valign="top" >TBD</td>
2631 </tr>
2632 <tr>
2633 <td valign="top" >“saturation”</td>
2634 <td valign="top" >RANGE</td>
2635 <td valign="top" >Min=0, Max=100</td>
2636 <td valign="top" >Connector</td>
2637 <td valign="top" >TBD</td>
2638 </tr>
2639 <tr>
2640 <td valign="top" >“hue”</td>
2641 <td valign="top" >RANGE</td>
2642 <td valign="top" >Min=0, Max=100</td>
2643 <td valign="top" >Connector</td>
2644 <td valign="top" >TBD</td>
2645 </tr>
2646 <tr>
2647 <td rowspan="3" valign="top" >Optional</td>
2648 <td valign="top" >“scaling mode”</td>
2649 <td valign="top" >ENUM</td>
2650 <td valign="top" >{ "None", "Full", "Center", "Full aspect" }</td>
2651 <td valign="top" >Connector</td>
2652 <td valign="top" >TBD</td>
2653 </tr>
2654 <tr>
2655 <td valign="top" >"aspect ratio"</td>
2656 <td valign="top" >ENUM</td>
2657 <td valign="top" >{ "None", "4:3", "16:9" }</td>
2658 <td valign="top" >Connector</td>
2659 <td valign="top" >DRM property to set aspect ratio from user space app.
2660 This enum is made generic to allow addition of custom aspect
2661 ratios.</td>
2662 </tr>
2663 <tr>
2664 <td valign="top" >“dirty”</td>
2665 <td valign="top" >ENUM | IMMUTABLE</td>
2666 <td valign="top" >{ "Off", "On", "Annotate" }</td>
2667 <td valign="top" >Connector</td>
2668 <td valign="top" >TBD</td>
2669 </tr>
2670 <tr>
2671 <td rowspan="21" valign="top" >i915</td>
2672 <td rowspan="2" valign="top" >Generic</td>
2673 <td valign="top" >"Broadcast RGB"</td>
2674 <td valign="top" >ENUM</td>
2675 <td valign="top" >{ "Automatic", "Full", "Limited 16:235" }</td>
2676 <td valign="top" >Connector</td>
2677 <td valign="top" >TBD</td>
2678 </tr>
2679 <tr>
2680 <td valign="top" >“audio”</td>
2681 <td valign="top" >ENUM</td>
2682 <td valign="top" >{ "force-dvi", "off", "auto", "on" }</td>
2683 <td valign="top" >Connector</td>
2684 <td valign="top" >TBD</td>
2685 </tr>
2686 <tr>
2687 <td rowspan="1" valign="top" >Plane</td>
2688 <td valign="top" >“rotation”</td>
2689 <td valign="top" >BITMASK</td>
2690 <td valign="top" >{ 0, "rotate-0" }, { 2, "rotate-180" }</td>
2691 <td valign="top" >Plane</td>
2692 <td valign="top" >TBD</td>
2693 </tr>
2694 <tr>
2695 <td rowspan="17" valign="top" >SDVO-TV</td>
2696 <td valign="top" >“mode”</td>
2697 <td valign="top" >ENUM</td>
2698 <td valign="top" >{ "NTSC_M", "NTSC_J", "NTSC_443", "PAL_B" } etc.</td>
2699 <td valign="top" >Connector</td>
2700 <td valign="top" >TBD</td>
2701 </tr>
2702 <tr>
2703 <td valign="top" >"left_margin"</td>
2704 <td valign="top" >RANGE</td>
2705 <td valign="top" >Min=0, Max= SDVO dependent</td>
2706 <td valign="top" >Connector</td>
2707 <td valign="top" >TBD</td>
2708 </tr>
2709 <tr>
2710 <td valign="top" >"right_margin"</td>
2711 <td valign="top" >RANGE</td>
2712 <td valign="top" >Min=0, Max= SDVO dependent</td>
2713 <td valign="top" >Connector</td>
2714 <td valign="top" >TBD</td>
2715 </tr>
2716 <tr>
2717 <td valign="top" >"top_margin"</td>
2718 <td valign="top" >RANGE</td>
2719 <td valign="top" >Min=0, Max= SDVO dependent</td>
2720 <td valign="top" >Connector</td>
2721 <td valign="top" >TBD</td>
2722 </tr>
2723 <tr>
2724 <td valign="top" >"bottom_margin"</td>
2725 <td valign="top" >RANGE</td>
2726 <td valign="top" >Min=0, Max= SDVO dependent</td>
2727 <td valign="top" >Connector</td>
2728 <td valign="top" >TBD</td>
2729 </tr>
2730 <tr>
2731 <td valign="top" >“hpos”</td>
2732 <td valign="top" >RANGE</td>
2733 <td valign="top" >Min=0, Max= SDVO dependent</td>
2734 <td valign="top" >Connector</td>
2735 <td valign="top" >TBD</td>
2736 </tr>
2737 <tr>
2738 <td valign="top" >“vpos”</td>
2739 <td valign="top" >RANGE</td>
2740 <td valign="top" >Min=0, Max= SDVO dependent</td>
2741 <td valign="top" >Connector</td>
2742 <td valign="top" >TBD</td>
2743 </tr>
2744 <tr>
2745 <td valign="top" >“contrast”</td>
2746 <td valign="top" >RANGE</td>
2747 <td valign="top" >Min=0, Max= SDVO dependent</td>
2748 <td valign="top" >Connector</td>
2749 <td valign="top" >TBD</td>
2750 </tr>
2751 <tr>
2752 <td valign="top" >“saturation”</td>
2753 <td valign="top" >RANGE</td>
2754 <td valign="top" >Min=0, Max= SDVO dependent</td>
2755 <td valign="top" >Connector</td>
2756 <td valign="top" >TBD</td>
2757 </tr>
2758 <tr>
2759 <td valign="top" >“hue”</td>
2760 <td valign="top" >RANGE</td>
2761 <td valign="top" >Min=0, Max= SDVO dependent</td>
2762 <td valign="top" >Connector</td>
2763 <td valign="top" >TBD</td>
2764 </tr>
2765 <tr>
2766 <td valign="top" >“sharpness”</td>
2767 <td valign="top" >RANGE</td>
2768 <td valign="top" >Min=0, Max= SDVO dependent</td>
2769 <td valign="top" >Connector</td>
2770 <td valign="top" >TBD</td>
2771 </tr>
2772 <tr>
2773 <td valign="top" >“flicker_filter”</td>
2774 <td valign="top" >RANGE</td>
2775 <td valign="top" >Min=0, Max= SDVO dependent</td>
2776 <td valign="top" >Connector</td>
2777 <td valign="top" >TBD</td>
2778 </tr>
2779 <tr>
2780 <td valign="top" >“flicker_filter_adaptive”</td>
2781 <td valign="top" >RANGE</td>
2782 <td valign="top" >Min=0, Max= SDVO dependent</td>
2783 <td valign="top" >Connector</td>
2784 <td valign="top" >TBD</td>
2785 </tr>
2786 <tr>
2787 <td valign="top" >“flicker_filter_2d”</td>
2788 <td valign="top" >RANGE</td>
2789 <td valign="top" >Min=0, Max= SDVO dependent</td>
2790 <td valign="top" >Connector</td>
2791 <td valign="top" >TBD</td>
2792 </tr>
2793 <tr>
2794 <td valign="top" >“tv_chroma_filter”</td>
2795 <td valign="top" >RANGE</td>
2796 <td valign="top" >Min=0, Max= SDVO dependent</td>
2797 <td valign="top" >Connector</td>
2798 <td valign="top" >TBD</td>
2799 </tr>
2800 <tr>
2801 <td valign="top" >“tv_luma_filter”</td>
2802 <td valign="top" >RANGE</td>
2803 <td valign="top" >Min=0, Max= SDVO dependent</td>
2804 <td valign="top" >Connector</td>
2805 <td valign="top" >TBD</td>
2806 </tr>
2807 <tr>
2808 <td valign="top" >“dot_crawl”</td>
2809 <td valign="top" >RANGE</td>
2810 <td valign="top" >Min=0, Max=1</td>
2811 <td valign="top" >Connector</td>
2812 <td valign="top" >TBD</td>
2813 </tr>
2814 <tr>
2815 <td valign="top" >SDVO-TV/LVDS</td>
2816 <td valign="top" >“brightness”</td>
2817 <td valign="top" >RANGE</td>
2818 <td valign="top" >Min=0, Max= SDVO dependent</td>
2819 <td valign="top" >Connector</td>
2820 <td valign="top" >TBD</td>
2821 </tr>
2822 <tr>
2823 <td rowspan="2" valign="top" >CDV gma-500</td>
2824 <td rowspan="2" valign="top" >Generic</td>
2825 <td valign="top" >"Broadcast RGB"</td>
2826 <td valign="top" >ENUM</td>
2827 <td valign="top" >{ “Full”, “Limited 16:235” }</td>
2828 <td valign="top" >Connector</td>
2829 <td valign="top" >TBD</td>
2830 </tr>
2831 <tr>
2832 <td valign="top" >"Broadcast RGB"</td>
2833 <td valign="top" >ENUM</td>
2834 <td valign="top" >{ “off”, “auto”, “on” }</td>
2835 <td valign="top" >Connector</td>
2836 <td valign="top" >TBD</td>
2837 </tr>
2838 <tr>
2839 <td rowspan="19" valign="top" >Poulsbo</td>
2840 <td rowspan="1" valign="top" >Generic</td>
2841 <td valign="top" >“backlight”</td>
2842 <td valign="top" >RANGE</td>
2843 <td valign="top" >Min=0, Max=100</td>
2844 <td valign="top" >Connector</td>
2845 <td valign="top" >TBD</td>
2846 </tr>
2847 <tr>
2848 <td rowspan="17" valign="top" >SDVO-TV</td>
2849 <td valign="top" >“mode”</td>
2850 <td valign="top" >ENUM</td>
2851 <td valign="top" >{ "NTSC_M", "NTSC_J", "NTSC_443", "PAL_B" } etc.</td>
2852 <td valign="top" >Connector</td>
2853 <td valign="top" >TBD</td>
2854 </tr>
2855 <tr>
2856 <td valign="top" >"left_margin"</td>
2857 <td valign="top" >RANGE</td>
2858 <td valign="top" >Min=0, Max= SDVO dependent</td>
2859 <td valign="top" >Connector</td>
2860 <td valign="top" >TBD</td>
2861 </tr>
2862 <tr>
2863 <td valign="top" >"right_margin"</td>
2864 <td valign="top" >RANGE</td>
2865 <td valign="top" >Min=0, Max= SDVO dependent</td>
2866 <td valign="top" >Connector</td>
2867 <td valign="top" >TBD</td>
2868 </tr>
2869 <tr>
2870 <td valign="top" >"top_margin"</td>
2871 <td valign="top" >RANGE</td>
2872 <td valign="top" >Min=0, Max= SDVO dependent</td>
2873 <td valign="top" >Connector</td>
2874 <td valign="top" >TBD</td>
2875 </tr>
2876 <tr>
2877 <td valign="top" >"bottom_margin"</td>
2878 <td valign="top" >RANGE</td>
2879 <td valign="top" >Min=0, Max= SDVO dependent</td>
2880 <td valign="top" >Connector</td>
2881 <td valign="top" >TBD</td>
2882 </tr>
2883 <tr>
2884 <td valign="top" >“hpos”</td>
2885 <td valign="top" >RANGE</td>
2886 <td valign="top" >Min=0, Max= SDVO dependent</td>
2887 <td valign="top" >Connector</td>
2888 <td valign="top" >TBD</td>
2889 </tr>
2890 <tr>
2891 <td valign="top" >“vpos”</td>
2892 <td valign="top" >RANGE</td>
2893 <td valign="top" >Min=0, Max= SDVO dependent</td>
2894 <td valign="top" >Connector</td>
2895 <td valign="top" >TBD</td>
2896 </tr>
2897 <tr>
2898 <td valign="top" >“contrast”</td>
2899 <td valign="top" >RANGE</td>
2900 <td valign="top" >Min=0, Max= SDVO dependent</td>
2901 <td valign="top" >Connector</td>
2902 <td valign="top" >TBD</td>
2903 </tr>
2904 <tr>
2905 <td valign="top" >“saturation”</td>
2906 <td valign="top" >RANGE</td>
2907 <td valign="top" >Min=0, Max= SDVO dependent</td>
2908 <td valign="top" >Connector</td>
2909 <td valign="top" >TBD</td>
2910 </tr>
2911 <tr>
2912 <td valign="top" >“hue”</td>
2913 <td valign="top" >RANGE</td>
2914 <td valign="top" >Min=0, Max= SDVO dependent</td>
2915 <td valign="top" >Connector</td>
2916 <td valign="top" >TBD</td>
2917 </tr>
2918 <tr>
2919 <td valign="top" >“sharpness”</td>
2920 <td valign="top" >RANGE</td>
2921 <td valign="top" >Min=0, Max= SDVO dependent</td>
2922 <td valign="top" >Connector</td>
2923 <td valign="top" >TBD</td>
2924 </tr>
2925 <tr>
2926 <td valign="top" >“flicker_filter”</td>
2927 <td valign="top" >RANGE</td>
2928 <td valign="top" >Min=0, Max= SDVO dependent</td>
2929 <td valign="top" >Connector</td>
2930 <td valign="top" >TBD</td>
2931 </tr>
2932 <tr>
2933 <td valign="top" >“flicker_filter_adaptive”</td>
2934 <td valign="top" >RANGE</td>
2935 <td valign="top" >Min=0, Max= SDVO dependent</td>
2936 <td valign="top" >Connector</td>
2937 <td valign="top" >TBD</td>
2938 </tr>
2939 <tr>
2940 <td valign="top" >“flicker_filter_2d”</td>
2941 <td valign="top" >RANGE</td>
2942 <td valign="top" >Min=0, Max= SDVO dependent</td>
2943 <td valign="top" >Connector</td>
2944 <td valign="top" >TBD</td>
2945 </tr>
2946 <tr>
2947 <td valign="top" >“tv_chroma_filter”</td>
2948 <td valign="top" >RANGE</td>
2949 <td valign="top" >Min=0, Max= SDVO dependent</td>
2950 <td valign="top" >Connector</td>
2951 <td valign="top" >TBD</td>
2952 </tr>
2953 <tr>
2954 <td valign="top" >“tv_luma_filter”</td>
2955 <td valign="top" >RANGE</td>
2956 <td valign="top" >Min=0, Max= SDVO dependent</td>
2957 <td valign="top" >Connector</td>
2958 <td valign="top" >TBD</td>
2959 </tr>
2960 <tr>
2961 <td valign="top" >“dot_crawl”</td>
2962 <td valign="top" >RANGE</td>
2963 <td valign="top" >Min=0, Max=1</td>
2964 <td valign="top" >Connector</td>
2965 <td valign="top" >TBD</td>
2966 </tr>
2967 <tr>
2968 <td valign="top" >SDVO-TV/LVDS</td>
2969 <td valign="top" >“brightness”</td>
2970 <td valign="top" >RANGE</td>
2971 <td valign="top" >Min=0, Max= SDVO dependent</td>
2972 <td valign="top" >Connector</td>
2973 <td valign="top" >TBD</td>
2974 </tr>
2975 <tr>
2976 <td rowspan="11" valign="top" >armada</td>
2977 <td rowspan="2" valign="top" >CRTC</td>
2978 <td valign="top" >"CSC_YUV"</td>
2979 <td valign="top" >ENUM</td>
2980 <td valign="top" >{ "Auto" , "CCIR601", "CCIR709" }</td>
2981 <td valign="top" >CRTC</td>
2982 <td valign="top" >TBD</td>
2983 </tr>
2984 <tr>
2985 <td valign="top" >"CSC_RGB"</td>
2986 <td valign="top" >ENUM</td>
2987 <td valign="top" >{ "Auto", "Computer system", "Studio" }</td>
2988 <td valign="top" >CRTC</td>
2989 <td valign="top" >TBD</td>
2990 </tr>
2991 <tr>
2992 <td rowspan="9" valign="top" >Overlay</td>
2993 <td valign="top" >"colorkey"</td>
2994 <td valign="top" >RANGE</td>
2995 <td valign="top" >Min=0, Max=0xffffff</td>
2996 <td valign="top" >Plane</td>
2997 <td valign="top" >TBD</td>
2998 </tr>
2999 <tr>
3000 <td valign="top" >"colorkey_min"</td>
3001 <td valign="top" >RANGE</td>
3002 <td valign="top" >Min=0, Max=0xffffff</td>
3003 <td valign="top" >Plane</td>
3004 <td valign="top" >TBD</td>
3005 </tr>
3006 <tr>
3007 <td valign="top" >"colorkey_max"</td>
3008 <td valign="top" >RANGE</td>
3009 <td valign="top" >Min=0, Max=0xffffff</td>
3010 <td valign="top" >Plane</td>
3011 <td valign="top" >TBD</td>
3012 </tr>
3013 <tr>
3014 <td valign="top" >"colorkey_val"</td>
3015 <td valign="top" >RANGE</td>
3016 <td valign="top" >Min=0, Max=0xffffff</td>
3017 <td valign="top" >Plane</td>
3018 <td valign="top" >TBD</td>
3019 </tr>
3020 <tr>
3021 <td valign="top" >"colorkey_alpha"</td>
3022 <td valign="top" >RANGE</td>
3023 <td valign="top" >Min=0, Max=0xffffff</td>
3024 <td valign="top" >Plane</td>
3025 <td valign="top" >TBD</td>
3026 </tr>
3027 <tr>
3028 <td valign="top" >"colorkey_mode"</td>
3029 <td valign="top" >ENUM</td>
3030 <td valign="top" >{ "disabled", "Y component", "U component"
3031 , "V component", "RGB", “R component", "G component", "B component" }</td>
3032 <td valign="top" >Plane</td>
3033 <td valign="top" >TBD</td>
3034 </tr>
3035 <tr>
3036 <td valign="top" >"brightness"</td>
3037 <td valign="top" >RANGE</td>
3038 <td valign="top" >Min=0, Max=256 + 255</td>
3039 <td valign="top" >Plane</td>
3040 <td valign="top" >TBD</td>
3041 </tr>
3042 <tr>
3043 <td valign="top" >"contrast"</td>
3044 <td valign="top" >RANGE</td>
3045 <td valign="top" >Min=0, Max=0x7fff</td>
3046 <td valign="top" >Plane</td>
3047 <td valign="top" >TBD</td>
3048 </tr>
3049 <tr>
3050 <td valign="top" >"saturation"</td>
3051 <td valign="top" >RANGE</td>
3052 <td valign="top" >Min=0, Max=0x7fff</td>
3053 <td valign="top" >Plane</td>
3054 <td valign="top" >TBD</td>
3055 </tr>
3056 <tr>
3057 <td rowspan="2" valign="top" >exynos</td>
3058 <td valign="top" >CRTC</td>
3059 <td valign="top" >“mode”</td>
3060 <td valign="top" >ENUM</td>
3061 <td valign="top" >{ "normal", "blank" }</td>
3062 <td valign="top" >CRTC</td>
3063 <td valign="top" >TBD</td>
3064 </tr>
3065 <tr>
3066 <td valign="top" >Overlay</td>
3067 <td valign="top" >“zpos”</td>
3068 <td valign="top" >RANGE</td>
3069 <td valign="top" >Min=0, Max=MAX_PLANE-1</td>
3070 <td valign="top" >Plane</td>
3071 <td valign="top" >TBD</td>
3072 </tr>
3073 <tr>
3074 <td rowspan="2" valign="top" >i2c/ch7006_drv</td>
3075 <td valign="top" >Generic</td>
3076 <td valign="top" >“scale”</td>
3077 <td valign="top" >RANGE</td>
3078 <td valign="top" >Min=0, Max=2</td>
3079 <td valign="top" >Connector</td>
3080 <td valign="top" >TBD</td>
3081 </tr>
3082 <tr>
3083 <td rowspan="1" valign="top" >TV</td>
3084 <td valign="top" >“mode”</td>
3085 <td valign="top" >ENUM</td>
3086 <td valign="top" >{ "PAL", "PAL-M","PAL-N"}, ”PAL-Nc"
3087 , "PAL-60", "NTSC-M", "NTSC-J" }</td>
3088 <td valign="top" >Connector</td>
3089 <td valign="top" >TBD</td>
3090 </tr>
3091 <tr>
3092 <td rowspan="15" valign="top" >nouveau</td>
3093 <td rowspan="6" valign="top" >NV10 Overlay</td>
3094 <td valign="top" >"colorkey"</td>
3095 <td valign="top" >RANGE</td>
3096 <td valign="top" >Min=0, Max=0x01ffffff</td>
3097 <td valign="top" >Plane</td>
3098 <td valign="top" >TBD</td>
3099 </tr>
3100 <tr>
3101 <td valign="top" >“contrast”</td>
3102 <td valign="top" >RANGE</td>
3103 <td valign="top" >Min=0, Max=8192-1</td>
3104 <td valign="top" >Plane</td>
3105 <td valign="top" >TBD</td>
3106 </tr>
3107 <tr>
3108 <td valign="top" >“brightness”</td>
3109 <td valign="top" >RANGE</td>
3110 <td valign="top" >Min=0, Max=1024</td>
3111 <td valign="top" >Plane</td>
3112 <td valign="top" >TBD</td>
3113 </tr>
3114 <tr>
3115 <td valign="top" >“hue”</td>
3116 <td valign="top" >RANGE</td>
3117 <td valign="top" >Min=0, Max=359</td>
3118 <td valign="top" >Plane</td>
3119 <td valign="top" >TBD</td>
3120 </tr>
3121 <tr>
3122 <td valign="top" >“saturation”</td>
3123 <td valign="top" >RANGE</td>
3124 <td valign="top" >Min=0, Max=8192-1</td>
3125 <td valign="top" >Plane</td>
3126 <td valign="top" >TBD</td>
3127 </tr>
3128 <tr>
3129 <td valign="top" >“iturbt_709”</td>
3130 <td valign="top" >RANGE</td>
3131 <td valign="top" >Min=0, Max=1</td>
3132 <td valign="top" >Plane</td>
3133 <td valign="top" >TBD</td>
3134 </tr>
3135 <tr>
3136 <td rowspan="2" valign="top" >Nv04 Overlay</td>
3137 <td valign="top" >“colorkey”</td>
3138 <td valign="top" >RANGE</td>
3139 <td valign="top" >Min=0, Max=0x01ffffff</td>
3140 <td valign="top" >Plane</td>
3141 <td valign="top" >TBD</td>
3142 </tr>
3143 <tr>
3144 <td valign="top" >“brightness”</td>
3145 <td valign="top" >RANGE</td>
3146 <td valign="top" >Min=0, Max=1024</td>
3147 <td valign="top" >Plane</td>
3148 <td valign="top" >TBD</td>
3149 </tr>
3150 <tr>
3151 <td rowspan="7" valign="top" >Display</td>
3152 <td valign="top" >“dithering mode”</td>
3153 <td valign="top" >ENUM</td>
3154 <td valign="top" >{ "auto", "off", "on" }</td>
3155 <td valign="top" >Connector</td>
3156 <td valign="top" >TBD</td>
3157 </tr>
3158 <tr>
3159 <td valign="top" >“dithering depth”</td>
3160 <td valign="top" >ENUM</td>
3161 <td valign="top" >{ "auto", "off", "on", "static 2x2", "dynamic 2x2", "temporal" }</td>
3162 <td valign="top" >Connector</td>
3163 <td valign="top" >TBD</td>
3164 </tr>
3165 <tr>
3166 <td valign="top" >“underscan”</td>
3167 <td valign="top" >ENUM</td>
3168 <td valign="top" >{ "auto", "6 bpc", "8 bpc" }</td>
3169 <td valign="top" >Connector</td>
3170 <td valign="top" >TBD</td>
3171 </tr>
3172 <tr>
3173 <td valign="top" >“underscan hborder”</td>
3174 <td valign="top" >RANGE</td>
3175 <td valign="top" >Min=0, Max=128</td>
3176 <td valign="top" >Connector</td>
3177 <td valign="top" >TBD</td>
3178 </tr>
3179 <tr>
3180 <td valign="top" >“underscan vborder”</td>
3181 <td valign="top" >RANGE</td>
3182 <td valign="top" >Min=0, Max=128</td>
3183 <td valign="top" >Connector</td>
3184 <td valign="top" >TBD</td>
3185 </tr>
3186 <tr>
3187 <td valign="top" >“vibrant hue”</td>
3188 <td valign="top" >RANGE</td>
3189 <td valign="top" >Min=0, Max=180</td>
3190 <td valign="top" >Connector</td>
3191 <td valign="top" >TBD</td>
3192 </tr>
3193 <tr>
3194 <td valign="top" >“color vibrance”</td>
3195 <td valign="top" >RANGE</td>
3196 <td valign="top" >Min=0, Max=200</td>
3197 <td valign="top" >Connector</td>
3198 <td valign="top" >TBD</td>
3199 </tr>
3200 <tr>
3201 <td rowspan="2" valign="top" >omap</td>
3202 <td rowspan="2" valign="top" >Generic</td>
3203 <td valign="top" >“rotation”</td>
3204 <td valign="top" >BITMASK</td>
3205 <td valign="top" >{ 0, "rotate-0" },
3206 { 1, "rotate-90" },
3207 { 2, "rotate-180" },
3208 { 3, "rotate-270" },
3209 { 4, "reflect-x" },
3210 { 5, "reflect-y" }</td>
3211 <td valign="top" >CRTC, Plane</td>
3212 <td valign="top" >TBD</td>
3213 </tr>
3214 <tr>
3215 <td valign="top" >“zorder”</td>
3216 <td valign="top" >RANGE</td>
3217 <td valign="top" >Min=0, Max=3</td>
3218 <td valign="top" >CRTC, Plane</td>
3219 <td valign="top" >TBD</td>
3220 </tr>
3221 <tr>
3222 <td valign="top" >qxl</td>
3223 <td valign="top" >Generic</td>
3224 <td valign="top" >“hotplug_mode_update"</td>
3225 <td valign="top" >RANGE</td>
3226 <td valign="top" >Min=0, Max=1</td>
3227 <td valign="top" >Connector</td>
3228 <td valign="top" >TBD</td>
3229 </tr>
3230 <tr>
3231 <td rowspan="9" valign="top" >radeon</td>
3232 <td valign="top" >DVI-I</td>
3233 <td valign="top" >“coherent”</td>
3234 <td valign="top" >RANGE</td>
3235 <td valign="top" >Min=0, Max=1</td>
3236 <td valign="top" >Connector</td>
3237 <td valign="top" >TBD</td>
3238 </tr>
3239 <tr>
3240 <td valign="top" >DAC enable load detect</td>
3241 <td valign="top" >“load detection”</td>
3242 <td valign="top" >RANGE</td>
3243 <td valign="top" >Min=0, Max=1</td>
3244 <td valign="top" >Connector</td>
3245 <td valign="top" >TBD</td>
3246 </tr>
3247 <tr>
3248 <td valign="top" >TV Standard</td>
3249 <td valign="top" >"tv standard"</td>
3250 <td valign="top" >ENUM</td>
3251 <td valign="top" >{ "ntsc", "pal", "pal-m", "pal-60", "ntsc-j"
3252 , "scart-pal", "pal-cn", "secam" }</td>
3253 <td valign="top" >Connector</td>
3254 <td valign="top" >TBD</td>
3255 </tr>
3256 <tr>
3257 <td valign="top" >legacy TMDS PLL detect</td>
3258 <td valign="top" >"tmds_pll"</td>
3259 <td valign="top" >ENUM</td>
3260 <td valign="top" >{ "driver", "bios" }</td>
3261 <td valign="top" >-</td>
3262 <td valign="top" >TBD</td>
3263 </tr>
3264 <tr>
3265 <td rowspan="3" valign="top" >Underscan</td>
3266 <td valign="top" >"underscan"</td>
3267 <td valign="top" >ENUM</td>
3268 <td valign="top" >{ "off", "on", "auto" }</td>
3269 <td valign="top" >Connector</td>
3270 <td valign="top" >TBD</td>
3271 </tr>
3272 <tr>
3273 <td valign="top" >"underscan hborder"</td>
3274 <td valign="top" >RANGE</td>
3275 <td valign="top" >Min=0, Max=128</td>
3276 <td valign="top" >Connector</td>
3277 <td valign="top" >TBD</td>
3278 </tr>
3279 <tr>
3280 <td valign="top" >"underscan vborder"</td>
3281 <td valign="top" >RANGE</td>
3282 <td valign="top" >Min=0, Max=128</td>
3283 <td valign="top" >Connector</td>
3284 <td valign="top" >TBD</td>
3285 </tr>
3286 <tr>
3287 <td valign="top" >Audio</td>
3288 <td valign="top" >“audio”</td>
3289 <td valign="top" >ENUM</td>
3290 <td valign="top" >{ "off", "on", "auto" }</td>
3291 <td valign="top" >Connector</td>
3292 <td valign="top" >TBD</td>
3293 </tr>
3294 <tr>
3295 <td valign="top" >FMT Dithering</td>
3296 <td valign="top" >“dither”</td>
3297 <td valign="top" >ENUM</td>
3298 <td valign="top" >{ "off", "on" }</td>
3299 <td valign="top" >Connector</td>
3300 <td valign="top" >TBD</td>
3301 </tr>
3302 <tr>
3303 <td rowspan="3" valign="top" >rcar-du</td>
3304 <td rowspan="3" valign="top" >Generic</td>
3305 <td valign="top" >"alpha"</td>
3306 <td valign="top" >RANGE</td>
3307 <td valign="top" >Min=0, Max=255</td>
3308 <td valign="top" >Plane</td>
3309 <td valign="top" >TBD</td>
3310 </tr>
3311 <tr>
3312 <td valign="top" >"colorkey"</td>
3313 <td valign="top" >RANGE</td>
3314 <td valign="top" >Min=0, Max=0x01ffffff</td>
3315 <td valign="top" >Plane</td>
3316 <td valign="top" >TBD</td>
3317 </tr>
3318 <tr>
3319 <td valign="top" >"zpos"</td>
3320 <td valign="top" >RANGE</td>
3321 <td valign="top" >Min=1, Max=7</td>
3322 <td valign="top" >Plane</td>
3323 <td valign="top" >TBD</td>
3324 </tr>
3325 </tbody>
3326 </table>
3327 </sect2>
3328 </sect1>
3329
3330 <!-- Internals: vertical blanking -->
3331
3332 <sect1 id="drm-vertical-blank">
3333 <title>Vertical Blanking</title>
3334 <para>
3335 Vertical blanking plays a major role in graphics rendering. To achieve
3336 tear-free display, users must synchronize page flips and/or rendering to
3337 vertical blanking. The DRM API offers ioctls to perform page flips
3338 synchronized to vertical blanking and wait for vertical blanking.
3339 </para>
3340 <para>
3341 The DRM core handles most of the vertical blanking management logic, which
3342 involves filtering out spurious interrupts, keeping race-free blanking
3343 counters, coping with counter wrap-around and resets and keeping use
3344 counts. It relies on the driver to generate vertical blanking interrupts
3345 and optionally provide a hardware vertical blanking counter. Drivers must
3346 implement the following operations.
3347 </para>
3348 <itemizedlist>
3349 <listitem>
3350 <synopsis>int (*enable_vblank) (struct drm_device *dev, int crtc);
3351 void (*disable_vblank) (struct drm_device *dev, int crtc);</synopsis>
3352 <para>
3353 Enable or disable vertical blanking interrupts for the given CRTC.
3354 </para>
3355 </listitem>
3356 <listitem>
3357 <synopsis>u32 (*get_vblank_counter) (struct drm_device *dev, int crtc);</synopsis>
3358 <para>
3359 Retrieve the value of the vertical blanking counter for the given
3360 CRTC. If the hardware maintains a vertical blanking counter its value
3361 should be returned. Otherwise drivers can use the
3362 <function>drm_vblank_count</function> helper function to handle this
3363 operation.
3364 </para>
3365 </listitem>
3366 </itemizedlist>
3367 <para>
3368 Drivers must initialize the vertical blanking handling core with a call to
3369 <function>drm_vblank_init</function> in their
3370 <methodname>load</methodname> operation. The function will set the struct
3371 <structname>drm_device</structname>
3372 <structfield>vblank_disable_allowed</structfield> field to 0. This will
3373 keep vertical blanking interrupts enabled permanently until the first mode
3374 set operation, where <structfield>vblank_disable_allowed</structfield> is
3375 set to 1. The reason behind this is not clear. Drivers can set the field
3376 to 1 after <function>calling drm_vblank_init</function> to make vertical
3377 blanking interrupts dynamically managed from the beginning.
3378 </para>
3379 <para>
3380 Vertical blanking interrupts can be enabled by the DRM core or by drivers
3381 themselves (for instance to handle page flipping operations). The DRM core
3382 maintains a vertical blanking use count to ensure that the interrupts are
3383 not disabled while a user still needs them. To increment the use count,
3384 drivers call <function>drm_vblank_get</function>. Upon return vertical
3385 blanking interrupts are guaranteed to be enabled.
3386 </para>
3387 <para>
3388 To decrement the use count drivers call
3389 <function>drm_vblank_put</function>. Only when the use count drops to zero
3390 will the DRM core disable the vertical blanking interrupts after a delay
3391 by scheduling a timer. The delay is accessible through the vblankoffdelay
3392 module parameter or the <varname>drm_vblank_offdelay</varname> global
3393 variable and expressed in milliseconds. Its default value is 5000 ms.
3394 Zero means never disable, and a negative value means disable immediately.
3395 Drivers may override the behaviour by setting the
3396 <structname>drm_device</structname>
3397 <structfield>vblank_disable_immediate</structfield> flag, which when set
3398 causes vblank interrupts to be disabled immediately regardless of the
3399 drm_vblank_offdelay value. The flag should only be set if there's a
3400 properly working hardware vblank counter present.
3401 </para>
3402 <para>
3403 When a vertical blanking interrupt occurs drivers only need to call the
3404 <function>drm_handle_vblank</function> function to account for the
3405 interrupt.
3406 </para>
3407 <para>
3408 Resources allocated by <function>drm_vblank_init</function> must be freed
3409 with a call to <function>drm_vblank_cleanup</function> in the driver
3410 <methodname>unload</methodname> operation handler.
3411 </para>
3412 <sect2>
3413 <title>Vertical Blanking and Interrupt Handling Functions Reference</title>
3414 !Edrivers/gpu/drm/drm_irq.c
3415 !Finclude/drm/drmP.h drm_crtc_vblank_waitqueue
3416 </sect2>
3417 </sect1>
3418
3419 <!-- Internals: open/close, file operations and ioctls -->
3420
3421 <sect1>
3422 <title>Open/Close, File Operations and IOCTLs</title>
3423 <sect2>
3424 <title>Open and Close</title>
3425 <synopsis>int (*firstopen) (struct drm_device *);
3426 void (*lastclose) (struct drm_device *);
3427 int (*open) (struct drm_device *, struct drm_file *);
3428 void (*preclose) (struct drm_device *, struct drm_file *);
3429 void (*postclose) (struct drm_device *, struct drm_file *);</synopsis>
3430 <abstract>Open and close handlers. None of those methods are mandatory.
3431 </abstract>
3432 <para>
3433 The <methodname>firstopen</methodname> method is called by the DRM core
3434 for legacy UMS (User Mode Setting) drivers only when an application
3435 opens a device that has no other opened file handle. UMS drivers can
3436 implement it to acquire device resources. KMS drivers can't use the
3437 method and must acquire resources in the <methodname>load</methodname>
3438 method instead.
3439 </para>
3440 <para>
3441 Similarly the <methodname>lastclose</methodname> method is called when
3442 the last application holding a file handle opened on the device closes
3443 it, for both UMS and KMS drivers. Additionally, the method is also
3444 called at module unload time or, for hot-pluggable devices, when the
3445 device is unplugged. The <methodname>firstopen</methodname> and
3446 <methodname>lastclose</methodname> calls can thus be unbalanced.
3447 </para>
3448 <para>
3449 The <methodname>open</methodname> method is called every time the device
3450 is opened by an application. Drivers can allocate per-file private data
3451 in this method and store them in the struct
3452 <structname>drm_file</structname> <structfield>driver_priv</structfield>
3453 field. Note that the <methodname>open</methodname> method is called
3454 before <methodname>firstopen</methodname>.
3455 </para>
3456 <para>
3457 The close operation is split into <methodname>preclose</methodname> and
3458 <methodname>postclose</methodname> methods. Drivers must stop and
3459 cleanup all per-file operations in the <methodname>preclose</methodname>
3460 method. For instance pending vertical blanking and page flip events must
3461 be cancelled. No per-file operation is allowed on the file handle after
3462 returning from the <methodname>preclose</methodname> method.
3463 </para>
3464 <para>
3465 Finally the <methodname>postclose</methodname> method is called as the
3466 last step of the close operation, right before calling the
3467 <methodname>lastclose</methodname> method if no other open file handle
3468 exists for the device. Drivers that have allocated per-file private data
3469 in the <methodname>open</methodname> method should free it here.
3470 </para>
3471 <para>
3472 The <methodname>lastclose</methodname> method should restore CRTC and
3473 plane properties to default value, so that a subsequent open of the
3474 device will not inherit state from the previous user. It can also be
3475 used to execute delayed power switching state changes, e.g. in
3476 conjunction with the vga-switcheroo infrastructure. Beyond that KMS
3477 drivers should not do any further cleanup. Only legacy UMS drivers might
3478 need to clean up device state so that the vga console or an independent
3479 fbdev driver could take over.
3480 </para>
3481 </sect2>
3482 <sect2>
3483 <title>File Operations</title>
3484 <synopsis>const struct file_operations *fops</synopsis>
3485 <abstract>File operations for the DRM device node.</abstract>
3486 <para>
3487 Drivers must define the file operations structure that forms the DRM
3488 userspace API entry point, even though most of those operations are
3489 implemented in the DRM core. The <methodname>open</methodname>,
3490 <methodname>release</methodname> and <methodname>ioctl</methodname>
3491 operations are handled by
3492 <programlisting>
3493 .owner = THIS_MODULE,
3494 .open = drm_open,
3495 .release = drm_release,
3496 .unlocked_ioctl = drm_ioctl,
3497 #ifdef CONFIG_COMPAT
3498 .compat_ioctl = drm_compat_ioctl,
3499 #endif
3500 </programlisting>
3501 </para>
3502 <para>
3503 Drivers that implement private ioctls that requires 32/64bit
3504 compatibility support must provide their own
3505 <methodname>compat_ioctl</methodname> handler that processes private
3506 ioctls and calls <function>drm_compat_ioctl</function> for core ioctls.
3507 </para>
3508 <para>
3509 The <methodname>read</methodname> and <methodname>poll</methodname>
3510 operations provide support for reading DRM events and polling them. They
3511 are implemented by
3512 <programlisting>
3513 .poll = drm_poll,
3514 .read = drm_read,
3515 .llseek = no_llseek,
3516 </programlisting>
3517 </para>
3518 <para>
3519 The memory mapping implementation varies depending on how the driver
3520 manages memory. Pre-GEM drivers will use <function>drm_mmap</function>,
3521 while GEM-aware drivers will use <function>drm_gem_mmap</function>. See
3522 <xref linkend="drm-gem"/>.
3523 <programlisting>
3524 .mmap = drm_gem_mmap,
3525 </programlisting>
3526 </para>
3527 <para>
3528 No other file operation is supported by the DRM API.
3529 </para>
3530 </sect2>
3531 <sect2>
3532 <title>IOCTLs</title>
3533 <synopsis>struct drm_ioctl_desc *ioctls;
3534 int num_ioctls;</synopsis>
3535 <abstract>Driver-specific ioctls descriptors table.</abstract>
3536 <para>
3537 Driver-specific ioctls numbers start at DRM_COMMAND_BASE. The ioctls
3538 descriptors table is indexed by the ioctl number offset from the base
3539 value. Drivers can use the DRM_IOCTL_DEF_DRV() macro to initialize the
3540 table entries.
3541 </para>
3542 <para>
3543 <programlisting>DRM_IOCTL_DEF_DRV(ioctl, func, flags)</programlisting>
3544 <para>
3545 <parameter>ioctl</parameter> is the ioctl name. Drivers must define
3546 the DRM_##ioctl and DRM_IOCTL_##ioctl macros to the ioctl number
3547 offset from DRM_COMMAND_BASE and the ioctl number respectively. The
3548 first macro is private to the device while the second must be exposed
3549 to userspace in a public header.
3550 </para>
3551 <para>
3552 <parameter>func</parameter> is a pointer to the ioctl handler function
3553 compatible with the <type>drm_ioctl_t</type> type.
3554 <programlisting>typedef int drm_ioctl_t(struct drm_device *dev, void *data,
3555 struct drm_file *file_priv);</programlisting>
3556 </para>
3557 <para>
3558 <parameter>flags</parameter> is a bitmask combination of the following
3559 values. It restricts how the ioctl is allowed to be called.
3560 <itemizedlist>
3561 <listitem><para>
3562 DRM_AUTH - Only authenticated callers allowed
3563 </para></listitem>
3564 <listitem><para>
3565 DRM_MASTER - The ioctl can only be called on the master file
3566 handle
3567 </para></listitem>
3568 <listitem><para>
3569 DRM_ROOT_ONLY - Only callers with the SYSADMIN capability allowed
3570 </para></listitem>
3571 <listitem><para>
3572 DRM_CONTROL_ALLOW - The ioctl can only be called on a control
3573 device
3574 </para></listitem>
3575 <listitem><para>
3576 DRM_UNLOCKED - The ioctl handler will be called without locking
3577 the DRM global mutex
3578 </para></listitem>
3579 </itemizedlist>
3580 </para>
3581 </para>
3582 </sect2>
3583 </sect1>
3584 <sect1>
3585 <title>Legacy Support Code</title>
3586 <para>
3587 The section very briefly covers some of the old legacy support code which
3588 is only used by old DRM drivers which have done a so-called shadow-attach
3589 to the underlying device instead of registering as a real driver. This
3590 also includes some of the old generic buffer management and command
3591 submission code. Do not use any of this in new and modern drivers.
3592 </para>
3593
3594 <sect2>
3595 <title>Legacy Suspend/Resume</title>
3596 <para>
3597 The DRM core provides some suspend/resume code, but drivers wanting full
3598 suspend/resume support should provide save() and restore() functions.
3599 These are called at suspend, hibernate, or resume time, and should perform
3600 any state save or restore required by your device across suspend or
3601 hibernate states.
3602 </para>
3603 <synopsis>int (*suspend) (struct drm_device *, pm_message_t state);
3604 int (*resume) (struct drm_device *);</synopsis>
3605 <para>
3606 Those are legacy suspend and resume methods which
3607 <emphasis>only</emphasis> work with the legacy shadow-attach driver
3608 registration functions. New driver should use the power management
3609 interface provided by their bus type (usually through
3610 the struct <structname>device_driver</structname> dev_pm_ops) and set
3611 these methods to NULL.
3612 </para>
3613 </sect2>
3614
3615 <sect2>
3616 <title>Legacy DMA Services</title>
3617 <para>
3618 This should cover how DMA mapping etc. is supported by the core.
3619 These functions are deprecated and should not be used.
3620 </para>
3621 </sect2>
3622 </sect1>
3623 </chapter>
3624
3625 <!-- TODO
3626
3627 - Add a glossary
3628 - Document the struct_mutex catch-all lock
3629 - Document connector properties
3630
3631 - Why is the load method optional?
3632 - What are drivers supposed to set the initial display state to, and how?
3633 Connector's DPMS states are not initialized and are thus equal to
3634 DRM_MODE_DPMS_ON. The fbcon compatibility layer calls
3635 drm_helper_disable_unused_functions(), which disables unused encoders and
3636 CRTCs, but doesn't touch the connectors' DPMS state, and
3637 drm_helper_connector_dpms() in reaction to fbdev blanking events. Do drivers
3638 that don't implement (or just don't use) fbcon compatibility need to call
3639 those functions themselves?
3640 - KMS drivers must call drm_vblank_pre_modeset() and drm_vblank_post_modeset()
3641 around mode setting. Should this be done in the DRM core?
3642 - vblank_disable_allowed is set to 1 in the first drm_vblank_post_modeset()
3643 call and never set back to 0. It seems to be safe to permanently set it to 1
3644 in drm_vblank_init() for KMS driver, and it might be safe for UMS drivers as
3645 well. This should be investigated.
3646 - crtc and connector .save and .restore operations are only used internally in
3647 drivers, should they be removed from the core?
3648 - encoder mid-layer .save and .restore operations are only used internally in
3649 drivers, should they be removed from the core?
3650 - encoder mid-layer .detect operation is only used internally in drivers,
3651 should it be removed from the core?
3652 -->
3653
3654 <!-- External interfaces -->
3655
3656 <chapter id="drmExternals">
3657 <title>Userland interfaces</title>
3658 <para>
3659 The DRM core exports several interfaces to applications,
3660 generally intended to be used through corresponding libdrm
3661 wrapper functions. In addition, drivers export device-specific
3662 interfaces for use by userspace drivers &amp; device-aware
3663 applications through ioctls and sysfs files.
3664 </para>
3665 <para>
3666 External interfaces include: memory mapping, context management,
3667 DMA operations, AGP management, vblank control, fence
3668 management, memory management, and output management.
3669 </para>
3670 <para>
3671 Cover generic ioctls and sysfs layout here. We only need high-level
3672 info, since man pages should cover the rest.
3673 </para>
3674
3675 <!-- External: render nodes -->
3676
3677 <sect1>
3678 <title>Render nodes</title>
3679 <para>
3680 DRM core provides multiple character-devices for user-space to use.
3681 Depending on which device is opened, user-space can perform a different
3682 set of operations (mainly ioctls). The primary node is always created
3683 and called card&lt;num&gt;. Additionally, a currently
3684 unused control node, called controlD&lt;num&gt; is also
3685 created. The primary node provides all legacy operations and
3686 historically was the only interface used by userspace. With KMS, the
3687 control node was introduced. However, the planned KMS control interface
3688 has never been written and so the control node stays unused to date.
3689 </para>
3690 <para>
3691 With the increased use of offscreen renderers and GPGPU applications,
3692 clients no longer require running compositors or graphics servers to
3693 make use of a GPU. But the DRM API required unprivileged clients to
3694 authenticate to a DRM-Master prior to getting GPU access. To avoid this
3695 step and to grant clients GPU access without authenticating, render
3696 nodes were introduced. Render nodes solely serve render clients, that
3697 is, no modesetting or privileged ioctls can be issued on render nodes.
3698 Only non-global rendering commands are allowed. If a driver supports
3699 render nodes, it must advertise it via the DRIVER_RENDER
3700 DRM driver capability. If not supported, the primary node must be used
3701 for render clients together with the legacy drmAuth authentication
3702 procedure.
3703 </para>
3704 <para>
3705 If a driver advertises render node support, DRM core will create a
3706 separate render node called renderD&lt;num&gt;. There will
3707 be one render node per device. No ioctls except PRIME-related ioctls
3708 will be allowed on this node. Especially GEM_OPEN will be
3709 explicitly prohibited. Render nodes are designed to avoid the
3710 buffer-leaks, which occur if clients guess the flink names or mmap
3711 offsets on the legacy interface. Additionally to this basic interface,
3712 drivers must mark their driver-dependent render-only ioctls as
3713 DRM_RENDER_ALLOW so render clients can use them. Driver
3714 authors must be careful not to allow any privileged ioctls on render
3715 nodes.
3716 </para>
3717 <para>
3718 With render nodes, user-space can now control access to the render node
3719 via basic file-system access-modes. A running graphics server which
3720 authenticates clients on the privileged primary/legacy node is no longer
3721 required. Instead, a client can open the render node and is immediately
3722 granted GPU access. Communication between clients (or servers) is done
3723 via PRIME. FLINK from render node to legacy node is not supported. New
3724 clients must not use the insecure FLINK interface.
3725 </para>
3726 <para>
3727 Besides dropping all modeset/global ioctls, render nodes also drop the
3728 DRM-Master concept. There is no reason to associate render clients with
3729 a DRM-Master as they are independent of any graphics server. Besides,
3730 they must work without any running master, anyway.
3731 Drivers must be able to run without a master object if they support
3732 render nodes. If, on the other hand, a driver requires shared state
3733 between clients which is visible to user-space and accessible beyond
3734 open-file boundaries, they cannot support render nodes.
3735 </para>
3736 </sect1>
3737
3738 <!-- External: vblank handling -->
3739
3740 <sect1>
3741 <title>VBlank event handling</title>
3742 <para>
3743 The DRM core exposes two vertical blank related ioctls:
3744 <variablelist>
3745 <varlistentry>
3746 <term>DRM_IOCTL_WAIT_VBLANK</term>
3747 <listitem>
3748 <para>
3749 This takes a struct drm_wait_vblank structure as its argument,
3750 and it is used to block or request a signal when a specified
3751 vblank event occurs.
3752 </para>
3753 </listitem>
3754 </varlistentry>
3755 <varlistentry>
3756 <term>DRM_IOCTL_MODESET_CTL</term>
3757 <listitem>
3758 <para>
3759 This was only used for user-mode-settind drivers around
3760 modesetting changes to allow the kernel to update the vblank
3761 interrupt after mode setting, since on many devices the vertical
3762 blank counter is reset to 0 at some point during modeset. Modern
3763 drivers should not call this any more since with kernel mode
3764 setting it is a no-op.
3765 </para>
3766 </listitem>
3767 </varlistentry>
3768 </variablelist>
3769 </para>
3770 </sect1>
3771
3772 </chapter>
3773 </part>
3774 <part id="drmDrivers">
3775 <title>DRM Drivers</title>
3776
3777 <partintro>
3778 <para>
3779 This second part of the DRM Developer's Guide documents driver code,
3780 implementation details and also all the driver-specific userspace
3781 interfaces. Especially since all hardware-acceleration interfaces to
3782 userspace are driver specific for efficiency and other reasons these
3783 interfaces can be rather substantial. Hence every driver has its own
3784 chapter.
3785 </para>
3786 </partintro>
3787
3788 <chapter id="drmI915">
3789 <title>drm/i915 Intel GFX Driver</title>
3790 <para>
3791 The drm/i915 driver supports all (with the exception of some very early
3792 models) integrated GFX chipsets with both Intel display and rendering
3793 blocks. This excludes a set of SoC platforms with an SGX rendering unit,
3794 those have basic support through the gma500 drm driver.
3795 </para>
3796 <sect1>
3797 <title>Display Hardware Handling</title>
3798 <para>
3799 This section covers everything related to the display hardware including
3800 the mode setting infrastructure, plane, sprite and cursor handling and
3801 display, output probing and related topics.
3802 </para>
3803 <sect2>
3804 <title>Mode Setting Infrastructure</title>
3805 <para>
3806 The i915 driver is thus far the only DRM driver which doesn't use the
3807 common DRM helper code to implement mode setting sequences. Thus it
3808 has its own tailor-made infrastructure for executing a display
3809 configuration change.
3810 </para>
3811 </sect2>
3812 <sect2>
3813 <title>Plane Configuration</title>
3814 <para>
3815 This section covers plane configuration and composition with the
3816 primary plane, sprites, cursors and overlays. This includes the
3817 infrastructure to do atomic vsync'ed updates of all this state and
3818 also tightly coupled topics like watermark setup and computation,
3819 framebuffer compression and panel self refresh.
3820 </para>
3821 </sect2>
3822 <sect2>
3823 <title>Output Probing</title>
3824 <para>
3825 This section covers output probing and related infrastructure like the
3826 hotplug interrupt storm detection and mitigation code. Note that the
3827 i915 driver still uses most of the common DRM helper code for output
3828 probing, so those sections fully apply.
3829 </para>
3830 </sect2>
3831 <sect2>
3832 <title>DPIO</title>
3833 !Pdrivers/gpu/drm/i915/i915_reg.h DPIO
3834 <table id="dpiox2">
3835 <title>Dual channel PHY (VLV/CHV)</title>
3836 <tgroup cols="8">
3837 <colspec colname="c0" />
3838 <colspec colname="c1" />
3839 <colspec colname="c2" />
3840 <colspec colname="c3" />
3841 <colspec colname="c4" />
3842 <colspec colname="c5" />
3843 <colspec colname="c6" />
3844 <colspec colname="c7" />
3845 <spanspec spanname="ch0" namest="c0" nameend="c3" />
3846 <spanspec spanname="ch1" namest="c4" nameend="c7" />
3847 <spanspec spanname="ch0pcs01" namest="c0" nameend="c1" />
3848 <spanspec spanname="ch0pcs23" namest="c2" nameend="c3" />
3849 <spanspec spanname="ch1pcs01" namest="c4" nameend="c5" />
3850 <spanspec spanname="ch1pcs23" namest="c6" nameend="c7" />
3851 <thead>
3852 <row>
3853 <entry spanname="ch0">CH0</entry>
3854 <entry spanname="ch1">CH1</entry>
3855 </row>
3856 </thead>
3857 <tbody valign="top" align="center">
3858 <row>
3859 <entry spanname="ch0">CMN/PLL/REF</entry>
3860 <entry spanname="ch1">CMN/PLL/REF</entry>
3861 </row>
3862 <row>
3863 <entry spanname="ch0pcs01">PCS01</entry>
3864 <entry spanname="ch0pcs23">PCS23</entry>
3865 <entry spanname="ch1pcs01">PCS01</entry>
3866 <entry spanname="ch1pcs23">PCS23</entry>
3867 </row>
3868 <row>
3869 <entry>TX0</entry>
3870 <entry>TX1</entry>
3871 <entry>TX2</entry>
3872 <entry>TX3</entry>
3873 <entry>TX0</entry>
3874 <entry>TX1</entry>
3875 <entry>TX2</entry>
3876 <entry>TX3</entry>
3877 </row>
3878 <row>
3879 <entry spanname="ch0">DDI0</entry>
3880 <entry spanname="ch1">DDI1</entry>
3881 </row>
3882 </tbody>
3883 </tgroup>
3884 </table>
3885 <table id="dpiox1">
3886 <title>Single channel PHY (CHV)</title>
3887 <tgroup cols="4">
3888 <colspec colname="c0" />
3889 <colspec colname="c1" />
3890 <colspec colname="c2" />
3891 <colspec colname="c3" />
3892 <spanspec spanname="ch0" namest="c0" nameend="c3" />
3893 <spanspec spanname="ch0pcs01" namest="c0" nameend="c1" />
3894 <spanspec spanname="ch0pcs23" namest="c2" nameend="c3" />
3895 <thead>
3896 <row>
3897 <entry spanname="ch0">CH0</entry>
3898 </row>
3899 </thead>
3900 <tbody valign="top" align="center">
3901 <row>
3902 <entry spanname="ch0">CMN/PLL/REF</entry>
3903 </row>
3904 <row>
3905 <entry spanname="ch0pcs01">PCS01</entry>
3906 <entry spanname="ch0pcs23">PCS23</entry>
3907 </row>
3908 <row>
3909 <entry>TX0</entry>
3910 <entry>TX1</entry>
3911 <entry>TX2</entry>
3912 <entry>TX3</entry>
3913 </row>
3914 <row>
3915 <entry spanname="ch0">DDI2</entry>
3916 </row>
3917 </tbody>
3918 </tgroup>
3919 </table>
3920 </sect2>
3921 </sect1>
3922
3923 <sect1>
3924 <title>Memory Management and Command Submission</title>
3925 <para>
3926 This sections covers all things related to the GEM implementation in the
3927 i915 driver.
3928 </para>
3929 <sect2>
3930 <title>Batchbuffer Parsing</title>
3931 !Pdrivers/gpu/drm/i915/i915_cmd_parser.c batch buffer command parser
3932 !Idrivers/gpu/drm/i915/i915_cmd_parser.c
3933 </sect2>
3934 <sect2>
3935 <title>Logical Rings, Logical Ring Contexts and Execlists</title>
3936 !Pdrivers/gpu/drm/i915/intel_lrc.c Logical Rings, Logical Ring Contexts and Execlists
3937 !Idrivers/gpu/drm/i915/intel_lrc.c
3938 </sect2>
3939 </sect1>
3940 </chapter>
3941 </part>
3942 </book>
This page took 0.10725 seconds and 6 git commands to generate.