Merge tag 'drm-intel-fixes-2013-11-20' of git://people.freedesktop.org/~danvet/drm...
[deliverable/linux.git] / Documentation / networking / packet_mmap.txt
1 --------------------------------------------------------------------------------
2 + ABSTRACT
3 --------------------------------------------------------------------------------
4
5 This file documents the mmap() facility available with the PACKET
6 socket interface on 2.4/2.6/3.x kernels. This type of sockets is used for
7 i) capture network traffic with utilities like tcpdump, ii) transmit network
8 traffic, or any other that needs raw access to network interface.
9
10 You can find the latest version of this document at:
11 http://wiki.ipxwarzone.com/index.php5?title=Linux_packet_mmap
12
13 Howto can be found at:
14 http://wiki.gnu-log.net (packet_mmap)
15
16 Please send your comments to
17 Ulisses Alonso CamarĂ³ <uaca@i.hate.spam.alumni.uv.es>
18 Johann Baudy <johann.baudy@gnu-log.net>
19
20 -------------------------------------------------------------------------------
21 + Why use PACKET_MMAP
22 --------------------------------------------------------------------------------
23
24 In Linux 2.4/2.6/3.x if PACKET_MMAP is not enabled, the capture process is very
25 inefficient. It uses very limited buffers and requires one system call to
26 capture each packet, it requires two if you want to get packet's timestamp
27 (like libpcap always does).
28
29 In the other hand PACKET_MMAP is very efficient. PACKET_MMAP provides a size
30 configurable circular buffer mapped in user space that can be used to either
31 send or receive packets. This way reading packets just needs to wait for them,
32 most of the time there is no need to issue a single system call. Concerning
33 transmission, multiple packets can be sent through one system call to get the
34 highest bandwidth. By using a shared buffer between the kernel and the user
35 also has the benefit of minimizing packet copies.
36
37 It's fine to use PACKET_MMAP to improve the performance of the capture and
38 transmission process, but it isn't everything. At least, if you are capturing
39 at high speeds (this is relative to the cpu speed), you should check if the
40 device driver of your network interface card supports some sort of interrupt
41 load mitigation or (even better) if it supports NAPI, also make sure it is
42 enabled. For transmission, check the MTU (Maximum Transmission Unit) used and
43 supported by devices of your network. CPU IRQ pinning of your network interface
44 card can also be an advantage.
45
46 --------------------------------------------------------------------------------
47 + How to use mmap() to improve capture process
48 --------------------------------------------------------------------------------
49
50 From the user standpoint, you should use the higher level libpcap library, which
51 is a de facto standard, portable across nearly all operating systems
52 including Win32.
53
54 Said that, at time of this writing, official libpcap 0.8.1 is out and doesn't include
55 support for PACKET_MMAP, and also probably the libpcap included in your distribution.
56
57 I'm aware of two implementations of PACKET_MMAP in libpcap:
58
59 http://wiki.ipxwarzone.com/ (by Simon Patarin, based on libpcap 0.6.2)
60 http://public.lanl.gov/cpw/ (by Phil Wood, based on lastest libpcap)
61
62 The rest of this document is intended for people who want to understand
63 the low level details or want to improve libpcap by including PACKET_MMAP
64 support.
65
66 --------------------------------------------------------------------------------
67 + How to use mmap() directly to improve capture process
68 --------------------------------------------------------------------------------
69
70 From the system calls stand point, the use of PACKET_MMAP involves
71 the following process:
72
73
74 [setup] socket() -------> creation of the capture socket
75 setsockopt() ---> allocation of the circular buffer (ring)
76 option: PACKET_RX_RING
77 mmap() ---------> mapping of the allocated buffer to the
78 user process
79
80 [capture] poll() ---------> to wait for incoming packets
81
82 [shutdown] close() --------> destruction of the capture socket and
83 deallocation of all associated
84 resources.
85
86
87 socket creation and destruction is straight forward, and is done
88 the same way with or without PACKET_MMAP:
89
90 int fd = socket(PF_PACKET, mode, htons(ETH_P_ALL));
91
92 where mode is SOCK_RAW for the raw interface were link level
93 information can be captured or SOCK_DGRAM for the cooked
94 interface where link level information capture is not
95 supported and a link level pseudo-header is provided
96 by the kernel.
97
98 The destruction of the socket and all associated resources
99 is done by a simple call to close(fd).
100
101 Next I will describe PACKET_MMAP settings and its constraints,
102 also the mapping of the circular buffer in the user process and
103 the use of this buffer.
104
105 --------------------------------------------------------------------------------
106 + How to use mmap() directly to improve transmission process
107 --------------------------------------------------------------------------------
108 Transmission process is similar to capture as shown below.
109
110 [setup] socket() -------> creation of the transmission socket
111 setsockopt() ---> allocation of the circular buffer (ring)
112 option: PACKET_TX_RING
113 bind() ---------> bind transmission socket with a network interface
114 mmap() ---------> mapping of the allocated buffer to the
115 user process
116
117 [transmission] poll() ---------> wait for free packets (optional)
118 send() ---------> send all packets that are set as ready in
119 the ring
120 The flag MSG_DONTWAIT can be used to return
121 before end of transfer.
122
123 [shutdown] close() --------> destruction of the transmission socket and
124 deallocation of all associated resources.
125
126 Binding the socket to your network interface is mandatory (with zero copy) to
127 know the header size of frames used in the circular buffer.
128
129 As capture, each frame contains two parts:
130
131 --------------------
132 | struct tpacket_hdr | Header. It contains the status of
133 | | of this frame
134 |--------------------|
135 | data buffer |
136 . . Data that will be sent over the network interface.
137 . .
138 --------------------
139
140 bind() associates the socket to your network interface thanks to
141 sll_ifindex parameter of struct sockaddr_ll.
142
143 Initialization example:
144
145 struct sockaddr_ll my_addr;
146 struct ifreq s_ifr;
147 ...
148
149 strncpy (s_ifr.ifr_name, "eth0", sizeof(s_ifr.ifr_name));
150
151 /* get interface index of eth0 */
152 ioctl(this->socket, SIOCGIFINDEX, &s_ifr);
153
154 /* fill sockaddr_ll struct to prepare binding */
155 my_addr.sll_family = AF_PACKET;
156 my_addr.sll_protocol = htons(ETH_P_ALL);
157 my_addr.sll_ifindex = s_ifr.ifr_ifindex;
158
159 /* bind socket to eth0 */
160 bind(this->socket, (struct sockaddr *)&my_addr, sizeof(struct sockaddr_ll));
161
162 A complete tutorial is available at: http://wiki.gnu-log.net/
163
164 By default, the user should put data at :
165 frame base + TPACKET_HDRLEN - sizeof(struct sockaddr_ll)
166
167 So, whatever you choose for the socket mode (SOCK_DGRAM or SOCK_RAW),
168 the beginning of the user data will be at :
169 frame base + TPACKET_ALIGN(sizeof(struct tpacket_hdr))
170
171 If you wish to put user data at a custom offset from the beginning of
172 the frame (for payload alignment with SOCK_RAW mode for instance) you
173 can set tp_net (with SOCK_DGRAM) or tp_mac (with SOCK_RAW). In order
174 to make this work it must be enabled previously with setsockopt()
175 and the PACKET_TX_HAS_OFF option.
176
177 --------------------------------------------------------------------------------
178 + PACKET_MMAP settings
179 --------------------------------------------------------------------------------
180
181 To setup PACKET_MMAP from user level code is done with a call like
182
183 - Capture process
184 setsockopt(fd, SOL_PACKET, PACKET_RX_RING, (void *) &req, sizeof(req))
185 - Transmission process
186 setsockopt(fd, SOL_PACKET, PACKET_TX_RING, (void *) &req, sizeof(req))
187
188 The most significant argument in the previous call is the req parameter,
189 this parameter must to have the following structure:
190
191 struct tpacket_req
192 {
193 unsigned int tp_block_size; /* Minimal size of contiguous block */
194 unsigned int tp_block_nr; /* Number of blocks */
195 unsigned int tp_frame_size; /* Size of frame */
196 unsigned int tp_frame_nr; /* Total number of frames */
197 };
198
199 This structure is defined in /usr/include/linux/if_packet.h and establishes a
200 circular buffer (ring) of unswappable memory.
201 Being mapped in the capture process allows reading the captured frames and
202 related meta-information like timestamps without requiring a system call.
203
204 Frames are grouped in blocks. Each block is a physically contiguous
205 region of memory and holds tp_block_size/tp_frame_size frames. The total number
206 of blocks is tp_block_nr. Note that tp_frame_nr is a redundant parameter because
207
208 frames_per_block = tp_block_size/tp_frame_size
209
210 indeed, packet_set_ring checks that the following condition is true
211
212 frames_per_block * tp_block_nr == tp_frame_nr
213
214 Lets see an example, with the following values:
215
216 tp_block_size= 4096
217 tp_frame_size= 2048
218 tp_block_nr = 4
219 tp_frame_nr = 8
220
221 we will get the following buffer structure:
222
223 block #1 block #2
224 +---------+---------+ +---------+---------+
225 | frame 1 | frame 2 | | frame 3 | frame 4 |
226 +---------+---------+ +---------+---------+
227
228 block #3 block #4
229 +---------+---------+ +---------+---------+
230 | frame 5 | frame 6 | | frame 7 | frame 8 |
231 +---------+---------+ +---------+---------+
232
233 A frame can be of any size with the only condition it can fit in a block. A block
234 can only hold an integer number of frames, or in other words, a frame cannot
235 be spawned across two blocks, so there are some details you have to take into
236 account when choosing the frame_size. See "Mapping and use of the circular
237 buffer (ring)".
238
239 --------------------------------------------------------------------------------
240 + PACKET_MMAP setting constraints
241 --------------------------------------------------------------------------------
242
243 In kernel versions prior to 2.4.26 (for the 2.4 branch) and 2.6.5 (2.6 branch),
244 the PACKET_MMAP buffer could hold only 32768 frames in a 32 bit architecture or
245 16384 in a 64 bit architecture. For information on these kernel versions
246 see http://pusa.uv.es/~ulisses/packet_mmap/packet_mmap.pre-2.4.26_2.6.5.txt
247
248 Block size limit
249 ------------------
250
251 As stated earlier, each block is a contiguous physical region of memory. These
252 memory regions are allocated with calls to the __get_free_pages() function. As
253 the name indicates, this function allocates pages of memory, and the second
254 argument is "order" or a power of two number of pages, that is
255 (for PAGE_SIZE == 4096) order=0 ==> 4096 bytes, order=1 ==> 8192 bytes,
256 order=2 ==> 16384 bytes, etc. The maximum size of a
257 region allocated by __get_free_pages is determined by the MAX_ORDER macro. More
258 precisely the limit can be calculated as:
259
260 PAGE_SIZE << MAX_ORDER
261
262 In a i386 architecture PAGE_SIZE is 4096 bytes
263 In a 2.4/i386 kernel MAX_ORDER is 10
264 In a 2.6/i386 kernel MAX_ORDER is 11
265
266 So get_free_pages can allocate as much as 4MB or 8MB in a 2.4/2.6 kernel
267 respectively, with an i386 architecture.
268
269 User space programs can include /usr/include/sys/user.h and
270 /usr/include/linux/mmzone.h to get PAGE_SIZE MAX_ORDER declarations.
271
272 The pagesize can also be determined dynamically with the getpagesize (2)
273 system call.
274
275 Block number limit
276 --------------------
277
278 To understand the constraints of PACKET_MMAP, we have to see the structure
279 used to hold the pointers to each block.
280
281 Currently, this structure is a dynamically allocated vector with kmalloc
282 called pg_vec, its size limits the number of blocks that can be allocated.
283
284 +---+---+---+---+
285 | x | x | x | x |
286 +---+---+---+---+
287 | | | |
288 | | | v
289 | | v block #4
290 | v block #3
291 v block #2
292 block #1
293
294 kmalloc allocates any number of bytes of physically contiguous memory from
295 a pool of pre-determined sizes. This pool of memory is maintained by the slab
296 allocator which is at the end the responsible for doing the allocation and
297 hence which imposes the maximum memory that kmalloc can allocate.
298
299 In a 2.4/2.6 kernel and the i386 architecture, the limit is 131072 bytes. The
300 predetermined sizes that kmalloc uses can be checked in the "size-<bytes>"
301 entries of /proc/slabinfo
302
303 In a 32 bit architecture, pointers are 4 bytes long, so the total number of
304 pointers to blocks is
305
306 131072/4 = 32768 blocks
307
308 PACKET_MMAP buffer size calculator
309 ------------------------------------
310
311 Definitions:
312
313 <size-max> : is the maximum size of allocable with kmalloc (see /proc/slabinfo)
314 <pointer size>: depends on the architecture -- sizeof(void *)
315 <page size> : depends on the architecture -- PAGE_SIZE or getpagesize (2)
316 <max-order> : is the value defined with MAX_ORDER
317 <frame size> : it's an upper bound of frame's capture size (more on this later)
318
319 from these definitions we will derive
320
321 <block number> = <size-max>/<pointer size>
322 <block size> = <pagesize> << <max-order>
323
324 so, the max buffer size is
325
326 <block number> * <block size>
327
328 and, the number of frames be
329
330 <block number> * <block size> / <frame size>
331
332 Suppose the following parameters, which apply for 2.6 kernel and an
333 i386 architecture:
334
335 <size-max> = 131072 bytes
336 <pointer size> = 4 bytes
337 <pagesize> = 4096 bytes
338 <max-order> = 11
339
340 and a value for <frame size> of 2048 bytes. These parameters will yield
341
342 <block number> = 131072/4 = 32768 blocks
343 <block size> = 4096 << 11 = 8 MiB.
344
345 and hence the buffer will have a 262144 MiB size. So it can hold
346 262144 MiB / 2048 bytes = 134217728 frames
347
348 Actually, this buffer size is not possible with an i386 architecture.
349 Remember that the memory is allocated in kernel space, in the case of
350 an i386 kernel's memory size is limited to 1GiB.
351
352 All memory allocations are not freed until the socket is closed. The memory
353 allocations are done with GFP_KERNEL priority, this basically means that
354 the allocation can wait and swap other process' memory in order to allocate
355 the necessary memory, so normally limits can be reached.
356
357 Other constraints
358 -------------------
359
360 If you check the source code you will see that what I draw here as a frame
361 is not only the link level frame. At the beginning of each frame there is a
362 header called struct tpacket_hdr used in PACKET_MMAP to hold link level's frame
363 meta information like timestamp. So what we draw here a frame it's really
364 the following (from include/linux/if_packet.h):
365
366 /*
367 Frame structure:
368
369 - Start. Frame must be aligned to TPACKET_ALIGNMENT=16
370 - struct tpacket_hdr
371 - pad to TPACKET_ALIGNMENT=16
372 - struct sockaddr_ll
373 - Gap, chosen so that packet data (Start+tp_net) aligns to
374 TPACKET_ALIGNMENT=16
375 - Start+tp_mac: [ Optional MAC header ]
376 - Start+tp_net: Packet data, aligned to TPACKET_ALIGNMENT=16.
377 - Pad to align to TPACKET_ALIGNMENT=16
378 */
379
380 The following are conditions that are checked in packet_set_ring
381
382 tp_block_size must be a multiple of PAGE_SIZE (1)
383 tp_frame_size must be greater than TPACKET_HDRLEN (obvious)
384 tp_frame_size must be a multiple of TPACKET_ALIGNMENT
385 tp_frame_nr must be exactly frames_per_block*tp_block_nr
386
387 Note that tp_block_size should be chosen to be a power of two or there will
388 be a waste of memory.
389
390 --------------------------------------------------------------------------------
391 + Mapping and use of the circular buffer (ring)
392 --------------------------------------------------------------------------------
393
394 The mapping of the buffer in the user process is done with the conventional
395 mmap function. Even the circular buffer is compound of several physically
396 discontiguous blocks of memory, they are contiguous to the user space, hence
397 just one call to mmap is needed:
398
399 mmap(0, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
400
401 If tp_frame_size is a divisor of tp_block_size frames will be
402 contiguously spaced by tp_frame_size bytes. If not, each
403 tp_block_size/tp_frame_size frames there will be a gap between
404 the frames. This is because a frame cannot be spawn across two
405 blocks.
406
407 At the beginning of each frame there is an status field (see
408 struct tpacket_hdr). If this field is 0 means that the frame is ready
409 to be used for the kernel, If not, there is a frame the user can read
410 and the following flags apply:
411
412 +++ Capture process:
413 from include/linux/if_packet.h
414
415 #define TP_STATUS_COPY 2
416 #define TP_STATUS_LOSING 4
417 #define TP_STATUS_CSUMNOTREADY 8
418
419 TP_STATUS_COPY : This flag indicates that the frame (and associated
420 meta information) has been truncated because it's
421 larger than tp_frame_size. This packet can be
422 read entirely with recvfrom().
423
424 In order to make this work it must to be
425 enabled previously with setsockopt() and
426 the PACKET_COPY_THRESH option.
427
428 The number of frames than can be buffered to
429 be read with recvfrom is limited like a normal socket.
430 See the SO_RCVBUF option in the socket (7) man page.
431
432 TP_STATUS_LOSING : indicates there were packet drops from last time
433 statistics where checked with getsockopt() and
434 the PACKET_STATISTICS option.
435
436 TP_STATUS_CSUMNOTREADY: currently it's used for outgoing IP packets which
437 its checksum will be done in hardware. So while
438 reading the packet we should not try to check the
439 checksum.
440
441 for convenience there are also the following defines:
442
443 #define TP_STATUS_KERNEL 0
444 #define TP_STATUS_USER 1
445
446 The kernel initializes all frames to TP_STATUS_KERNEL, when the kernel
447 receives a packet it puts in the buffer and updates the status with
448 at least the TP_STATUS_USER flag. Then the user can read the packet,
449 once the packet is read the user must zero the status field, so the kernel
450 can use again that frame buffer.
451
452 The user can use poll (any other variant should apply too) to check if new
453 packets are in the ring:
454
455 struct pollfd pfd;
456
457 pfd.fd = fd;
458 pfd.revents = 0;
459 pfd.events = POLLIN|POLLRDNORM|POLLERR;
460
461 if (status == TP_STATUS_KERNEL)
462 retval = poll(&pfd, 1, timeout);
463
464 It doesn't incur in a race condition to first check the status value and
465 then poll for frames.
466
467 ++ Transmission process
468 Those defines are also used for transmission:
469
470 #define TP_STATUS_AVAILABLE 0 // Frame is available
471 #define TP_STATUS_SEND_REQUEST 1 // Frame will be sent on next send()
472 #define TP_STATUS_SENDING 2 // Frame is currently in transmission
473 #define TP_STATUS_WRONG_FORMAT 4 // Frame format is not correct
474
475 First, the kernel initializes all frames to TP_STATUS_AVAILABLE. To send a
476 packet, the user fills a data buffer of an available frame, sets tp_len to
477 current data buffer size and sets its status field to TP_STATUS_SEND_REQUEST.
478 This can be done on multiple frames. Once the user is ready to transmit, it
479 calls send(). Then all buffers with status equal to TP_STATUS_SEND_REQUEST are
480 forwarded to the network device. The kernel updates each status of sent
481 frames with TP_STATUS_SENDING until the end of transfer.
482 At the end of each transfer, buffer status returns to TP_STATUS_AVAILABLE.
483
484 header->tp_len = in_i_size;
485 header->tp_status = TP_STATUS_SEND_REQUEST;
486 retval = send(this->socket, NULL, 0, 0);
487
488 The user can also use poll() to check if a buffer is available:
489 (status == TP_STATUS_SENDING)
490
491 struct pollfd pfd;
492 pfd.fd = fd;
493 pfd.revents = 0;
494 pfd.events = POLLOUT;
495 retval = poll(&pfd, 1, timeout);
496
497 -------------------------------------------------------------------------------
498 + What TPACKET versions are available and when to use them?
499 -------------------------------------------------------------------------------
500
501 int val = tpacket_version;
502 setsockopt(fd, SOL_PACKET, PACKET_VERSION, &val, sizeof(val));
503 getsockopt(fd, SOL_PACKET, PACKET_VERSION, &val, sizeof(val));
504
505 where 'tpacket_version' can be TPACKET_V1 (default), TPACKET_V2, TPACKET_V3.
506
507 TPACKET_V1:
508 - Default if not otherwise specified by setsockopt(2)
509 - RX_RING, TX_RING available
510 - VLAN metadata information available for packets
511 (TP_STATUS_VLAN_VALID)
512
513 TPACKET_V1 --> TPACKET_V2:
514 - Made 64 bit clean due to unsigned long usage in TPACKET_V1
515 structures, thus this also works on 64 bit kernel with 32 bit
516 userspace and the like
517 - Timestamp resolution in nanoseconds instead of microseconds
518 - RX_RING, TX_RING available
519 - How to switch to TPACKET_V2:
520 1. Replace struct tpacket_hdr by struct tpacket2_hdr
521 2. Query header len and save
522 3. Set protocol version to 2, set up ring as usual
523 4. For getting the sockaddr_ll,
524 use (void *)hdr + TPACKET_ALIGN(hdrlen) instead of
525 (void *)hdr + TPACKET_ALIGN(sizeof(struct tpacket_hdr))
526
527 TPACKET_V2 --> TPACKET_V3:
528 - Flexible buffer implementation:
529 1. Blocks can be configured with non-static frame-size
530 2. Read/poll is at a block-level (as opposed to packet-level)
531 3. Added poll timeout to avoid indefinite user-space wait
532 on idle links
533 4. Added user-configurable knobs:
534 4.1 block::timeout
535 4.2 tpkt_hdr::sk_rxhash
536 - RX Hash data available in user space
537 - Currently only RX_RING available
538
539 -------------------------------------------------------------------------------
540 + AF_PACKET fanout mode
541 -------------------------------------------------------------------------------
542
543 In the AF_PACKET fanout mode, packet reception can be load balanced among
544 processes. This also works in combination with mmap(2) on packet sockets.
545
546 Currently implemented fanout policies are:
547
548 - PACKET_FANOUT_HASH: schedule to socket by skb's rxhash
549 - PACKET_FANOUT_LB: schedule to socket by round-robin
550 - PACKET_FANOUT_CPU: schedule to socket by CPU packet arrives on
551 - PACKET_FANOUT_RND: schedule to socket by random selection
552 - PACKET_FANOUT_ROLLOVER: if one socket is full, rollover to another
553
554 Minimal example code by David S. Miller (try things like "./test eth0 hash",
555 "./test eth0 lb", etc.):
556
557 #include <stddef.h>
558 #include <stdlib.h>
559 #include <stdio.h>
560 #include <string.h>
561
562 #include <sys/types.h>
563 #include <sys/wait.h>
564 #include <sys/socket.h>
565 #include <sys/ioctl.h>
566
567 #include <unistd.h>
568
569 #include <linux/if_ether.h>
570 #include <linux/if_packet.h>
571
572 #include <net/if.h>
573
574 static const char *device_name;
575 static int fanout_type;
576 static int fanout_id;
577
578 #ifndef PACKET_FANOUT
579 # define PACKET_FANOUT 18
580 # define PACKET_FANOUT_HASH 0
581 # define PACKET_FANOUT_LB 1
582 #endif
583
584 static int setup_socket(void)
585 {
586 int err, fd = socket(AF_PACKET, SOCK_RAW, htons(ETH_P_IP));
587 struct sockaddr_ll ll;
588 struct ifreq ifr;
589 int fanout_arg;
590
591 if (fd < 0) {
592 perror("socket");
593 return EXIT_FAILURE;
594 }
595
596 memset(&ifr, 0, sizeof(ifr));
597 strcpy(ifr.ifr_name, device_name);
598 err = ioctl(fd, SIOCGIFINDEX, &ifr);
599 if (err < 0) {
600 perror("SIOCGIFINDEX");
601 return EXIT_FAILURE;
602 }
603
604 memset(&ll, 0, sizeof(ll));
605 ll.sll_family = AF_PACKET;
606 ll.sll_ifindex = ifr.ifr_ifindex;
607 err = bind(fd, (struct sockaddr *) &ll, sizeof(ll));
608 if (err < 0) {
609 perror("bind");
610 return EXIT_FAILURE;
611 }
612
613 fanout_arg = (fanout_id | (fanout_type << 16));
614 err = setsockopt(fd, SOL_PACKET, PACKET_FANOUT,
615 &fanout_arg, sizeof(fanout_arg));
616 if (err) {
617 perror("setsockopt");
618 return EXIT_FAILURE;
619 }
620
621 return fd;
622 }
623
624 static void fanout_thread(void)
625 {
626 int fd = setup_socket();
627 int limit = 10000;
628
629 if (fd < 0)
630 exit(fd);
631
632 while (limit-- > 0) {
633 char buf[1600];
634 int err;
635
636 err = read(fd, buf, sizeof(buf));
637 if (err < 0) {
638 perror("read");
639 exit(EXIT_FAILURE);
640 }
641 if ((limit % 10) == 0)
642 fprintf(stdout, "(%d) \n", getpid());
643 }
644
645 fprintf(stdout, "%d: Received 10000 packets\n", getpid());
646
647 close(fd);
648 exit(0);
649 }
650
651 int main(int argc, char **argp)
652 {
653 int fd, err;
654 int i;
655
656 if (argc != 3) {
657 fprintf(stderr, "Usage: %s INTERFACE {hash|lb}\n", argp[0]);
658 return EXIT_FAILURE;
659 }
660
661 if (!strcmp(argp[2], "hash"))
662 fanout_type = PACKET_FANOUT_HASH;
663 else if (!strcmp(argp[2], "lb"))
664 fanout_type = PACKET_FANOUT_LB;
665 else {
666 fprintf(stderr, "Unknown fanout type [%s]\n", argp[2]);
667 exit(EXIT_FAILURE);
668 }
669
670 device_name = argp[1];
671 fanout_id = getpid() & 0xffff;
672
673 for (i = 0; i < 4; i++) {
674 pid_t pid = fork();
675
676 switch (pid) {
677 case 0:
678 fanout_thread();
679
680 case -1:
681 perror("fork");
682 exit(EXIT_FAILURE);
683 }
684 }
685
686 for (i = 0; i < 4; i++) {
687 int status;
688
689 wait(&status);
690 }
691
692 return 0;
693 }
694
695 -------------------------------------------------------------------------------
696 + AF_PACKET TPACKET_V3 example
697 -------------------------------------------------------------------------------
698
699 AF_PACKET's TPACKET_V3 ring buffer can be configured to use non-static frame
700 sizes by doing it's own memory management. It is based on blocks where polling
701 works on a per block basis instead of per ring as in TPACKET_V2 and predecessor.
702
703 It is said that TPACKET_V3 brings the following benefits:
704 *) ~15 - 20% reduction in CPU-usage
705 *) ~20% increase in packet capture rate
706 *) ~2x increase in packet density
707 *) Port aggregation analysis
708 *) Non static frame size to capture entire packet payload
709
710 So it seems to be a good candidate to be used with packet fanout.
711
712 Minimal example code by Daniel Borkmann based on Chetan Loke's lolpcap (compile
713 it with gcc -Wall -O2 blob.c, and try things like "./a.out eth0", etc.):
714
715 /* Written from scratch, but kernel-to-user space API usage
716 * dissected from lolpcap:
717 * Copyright 2011, Chetan Loke <loke.chetan@gmail.com>
718 * License: GPL, version 2.0
719 */
720
721 #include <stdio.h>
722 #include <stdlib.h>
723 #include <stdint.h>
724 #include <string.h>
725 #include <assert.h>
726 #include <net/if.h>
727 #include <arpa/inet.h>
728 #include <netdb.h>
729 #include <poll.h>
730 #include <unistd.h>
731 #include <signal.h>
732 #include <inttypes.h>
733 #include <sys/socket.h>
734 #include <sys/mman.h>
735 #include <linux/if_packet.h>
736 #include <linux/if_ether.h>
737 #include <linux/ip.h>
738
739 #ifndef likely
740 # define likely(x) __builtin_expect(!!(x), 1)
741 #endif
742 #ifndef unlikely
743 # define unlikely(x) __builtin_expect(!!(x), 0)
744 #endif
745
746 struct block_desc {
747 uint32_t version;
748 uint32_t offset_to_priv;
749 struct tpacket_hdr_v1 h1;
750 };
751
752 struct ring {
753 struct iovec *rd;
754 uint8_t *map;
755 struct tpacket_req3 req;
756 };
757
758 static unsigned long packets_total = 0, bytes_total = 0;
759 static sig_atomic_t sigint = 0;
760
761 static void sighandler(int num)
762 {
763 sigint = 1;
764 }
765
766 static int setup_socket(struct ring *ring, char *netdev)
767 {
768 int err, i, fd, v = TPACKET_V3;
769 struct sockaddr_ll ll;
770 unsigned int blocksiz = 1 << 22, framesiz = 1 << 11;
771 unsigned int blocknum = 64;
772
773 fd = socket(AF_PACKET, SOCK_RAW, htons(ETH_P_ALL));
774 if (fd < 0) {
775 perror("socket");
776 exit(1);
777 }
778
779 err = setsockopt(fd, SOL_PACKET, PACKET_VERSION, &v, sizeof(v));
780 if (err < 0) {
781 perror("setsockopt");
782 exit(1);
783 }
784
785 memset(&ring->req, 0, sizeof(ring->req));
786 ring->req.tp_block_size = blocksiz;
787 ring->req.tp_frame_size = framesiz;
788 ring->req.tp_block_nr = blocknum;
789 ring->req.tp_frame_nr = (blocksiz * blocknum) / framesiz;
790 ring->req.tp_retire_blk_tov = 60;
791 ring->req.tp_feature_req_word = TP_FT_REQ_FILL_RXHASH;
792
793 err = setsockopt(fd, SOL_PACKET, PACKET_RX_RING, &ring->req,
794 sizeof(ring->req));
795 if (err < 0) {
796 perror("setsockopt");
797 exit(1);
798 }
799
800 ring->map = mmap(NULL, ring->req.tp_block_size * ring->req.tp_block_nr,
801 PROT_READ | PROT_WRITE, MAP_SHARED | MAP_LOCKED, fd, 0);
802 if (ring->map == MAP_FAILED) {
803 perror("mmap");
804 exit(1);
805 }
806
807 ring->rd = malloc(ring->req.tp_block_nr * sizeof(*ring->rd));
808 assert(ring->rd);
809 for (i = 0; i < ring->req.tp_block_nr; ++i) {
810 ring->rd[i].iov_base = ring->map + (i * ring->req.tp_block_size);
811 ring->rd[i].iov_len = ring->req.tp_block_size;
812 }
813
814 memset(&ll, 0, sizeof(ll));
815 ll.sll_family = PF_PACKET;
816 ll.sll_protocol = htons(ETH_P_ALL);
817 ll.sll_ifindex = if_nametoindex(netdev);
818 ll.sll_hatype = 0;
819 ll.sll_pkttype = 0;
820 ll.sll_halen = 0;
821
822 err = bind(fd, (struct sockaddr *) &ll, sizeof(ll));
823 if (err < 0) {
824 perror("bind");
825 exit(1);
826 }
827
828 return fd;
829 }
830
831 static void display(struct tpacket3_hdr *ppd)
832 {
833 struct ethhdr *eth = (struct ethhdr *) ((uint8_t *) ppd + ppd->tp_mac);
834 struct iphdr *ip = (struct iphdr *) ((uint8_t *) eth + ETH_HLEN);
835
836 if (eth->h_proto == htons(ETH_P_IP)) {
837 struct sockaddr_in ss, sd;
838 char sbuff[NI_MAXHOST], dbuff[NI_MAXHOST];
839
840 memset(&ss, 0, sizeof(ss));
841 ss.sin_family = PF_INET;
842 ss.sin_addr.s_addr = ip->saddr;
843 getnameinfo((struct sockaddr *) &ss, sizeof(ss),
844 sbuff, sizeof(sbuff), NULL, 0, NI_NUMERICHOST);
845
846 memset(&sd, 0, sizeof(sd));
847 sd.sin_family = PF_INET;
848 sd.sin_addr.s_addr = ip->daddr;
849 getnameinfo((struct sockaddr *) &sd, sizeof(sd),
850 dbuff, sizeof(dbuff), NULL, 0, NI_NUMERICHOST);
851
852 printf("%s -> %s, ", sbuff, dbuff);
853 }
854
855 printf("rxhash: 0x%x\n", ppd->hv1.tp_rxhash);
856 }
857
858 static void walk_block(struct block_desc *pbd, const int block_num)
859 {
860 int num_pkts = pbd->h1.num_pkts, i;
861 unsigned long bytes = 0;
862 struct tpacket3_hdr *ppd;
863
864 ppd = (struct tpacket3_hdr *) ((uint8_t *) pbd +
865 pbd->h1.offset_to_first_pkt);
866 for (i = 0; i < num_pkts; ++i) {
867 bytes += ppd->tp_snaplen;
868 display(ppd);
869
870 ppd = (struct tpacket3_hdr *) ((uint8_t *) ppd +
871 ppd->tp_next_offset);
872 }
873
874 packets_total += num_pkts;
875 bytes_total += bytes;
876 }
877
878 static void flush_block(struct block_desc *pbd)
879 {
880 pbd->h1.block_status = TP_STATUS_KERNEL;
881 }
882
883 static void teardown_socket(struct ring *ring, int fd)
884 {
885 munmap(ring->map, ring->req.tp_block_size * ring->req.tp_block_nr);
886 free(ring->rd);
887 close(fd);
888 }
889
890 int main(int argc, char **argp)
891 {
892 int fd, err;
893 socklen_t len;
894 struct ring ring;
895 struct pollfd pfd;
896 unsigned int block_num = 0, blocks = 64;
897 struct block_desc *pbd;
898 struct tpacket_stats_v3 stats;
899
900 if (argc != 2) {
901 fprintf(stderr, "Usage: %s INTERFACE\n", argp[0]);
902 return EXIT_FAILURE;
903 }
904
905 signal(SIGINT, sighandler);
906
907 memset(&ring, 0, sizeof(ring));
908 fd = setup_socket(&ring, argp[argc - 1]);
909 assert(fd > 0);
910
911 memset(&pfd, 0, sizeof(pfd));
912 pfd.fd = fd;
913 pfd.events = POLLIN | POLLERR;
914 pfd.revents = 0;
915
916 while (likely(!sigint)) {
917 pbd = (struct block_desc *) ring.rd[block_num].iov_base;
918
919 if ((pbd->h1.block_status & TP_STATUS_USER) == 0) {
920 poll(&pfd, 1, -1);
921 continue;
922 }
923
924 walk_block(pbd, block_num);
925 flush_block(pbd);
926 block_num = (block_num + 1) % blocks;
927 }
928
929 len = sizeof(stats);
930 err = getsockopt(fd, SOL_PACKET, PACKET_STATISTICS, &stats, &len);
931 if (err < 0) {
932 perror("getsockopt");
933 exit(1);
934 }
935
936 fflush(stdout);
937 printf("\nReceived %u packets, %lu bytes, %u dropped, freeze_q_cnt: %u\n",
938 stats.tp_packets, bytes_total, stats.tp_drops,
939 stats.tp_freeze_q_cnt);
940
941 teardown_socket(&ring, fd);
942 return 0;
943 }
944
945 -------------------------------------------------------------------------------
946 + PACKET_TIMESTAMP
947 -------------------------------------------------------------------------------
948
949 The PACKET_TIMESTAMP setting determines the source of the timestamp in
950 the packet meta information for mmap(2)ed RX_RING and TX_RINGs. If your
951 NIC is capable of timestamping packets in hardware, you can request those
952 hardware timestamps to be used. Note: you may need to enable the generation
953 of hardware timestamps with SIOCSHWTSTAMP (see related information from
954 Documentation/networking/timestamping.txt).
955
956 PACKET_TIMESTAMP accepts the same integer bit field as
957 SO_TIMESTAMPING. However, only the SOF_TIMESTAMPING_SYS_HARDWARE
958 and SOF_TIMESTAMPING_RAW_HARDWARE values are recognized by
959 PACKET_TIMESTAMP. SOF_TIMESTAMPING_SYS_HARDWARE takes precedence over
960 SOF_TIMESTAMPING_RAW_HARDWARE if both bits are set.
961
962 int req = 0;
963 req |= SOF_TIMESTAMPING_SYS_HARDWARE;
964 setsockopt(fd, SOL_PACKET, PACKET_TIMESTAMP, (void *) &req, sizeof(req))
965
966 For the mmap(2)ed ring buffers, such timestamps are stored in the
967 tpacket{,2,3}_hdr structure's tp_sec and tp_{n,u}sec members. To determine
968 what kind of timestamp has been reported, the tp_status field is binary |'ed
969 with the following possible bits ...
970
971 TP_STATUS_TS_SYS_HARDWARE
972 TP_STATUS_TS_RAW_HARDWARE
973 TP_STATUS_TS_SOFTWARE
974
975 ... that are equivalent to its SOF_TIMESTAMPING_* counterparts. For the
976 RX_RING, if none of those 3 are set (i.e. PACKET_TIMESTAMP is not set),
977 then this means that a software fallback was invoked *within* PF_PACKET's
978 processing code (less precise).
979
980 Getting timestamps for the TX_RING works as follows: i) fill the ring frames,
981 ii) call sendto() e.g. in blocking mode, iii) wait for status of relevant
982 frames to be updated resp. the frame handed over to the application, iv) walk
983 through the frames to pick up the individual hw/sw timestamps.
984
985 Only (!) if transmit timestamping is enabled, then these bits are combined
986 with binary | with TP_STATUS_AVAILABLE, so you must check for that in your
987 application (e.g. !(tp_status & (TP_STATUS_SEND_REQUEST | TP_STATUS_SENDING))
988 in a first step to see if the frame belongs to the application, and then
989 one can extract the type of timestamp in a second step from tp_status)!
990
991 If you don't care about them, thus having it disabled, checking for
992 TP_STATUS_AVAILABLE resp. TP_STATUS_WRONG_FORMAT is sufficient. If in the
993 TX_RING part only TP_STATUS_AVAILABLE is set, then the tp_sec and tp_{n,u}sec
994 members do not contain a valid value. For TX_RINGs, by default no timestamp
995 is generated!
996
997 See include/linux/net_tstamp.h and Documentation/networking/timestamping
998 for more information on hardware timestamps.
999
1000 -------------------------------------------------------------------------------
1001 + Miscellaneous bits
1002 -------------------------------------------------------------------------------
1003
1004 - Packet sockets work well together with Linux socket filters, thus you also
1005 might want to have a look at Documentation/networking/filter.txt
1006
1007 --------------------------------------------------------------------------------
1008 + THANKS
1009 --------------------------------------------------------------------------------
1010
1011 Jesse Brandeburg, for fixing my grammathical/spelling errors
1012
This page took 0.089952 seconds and 5 git commands to generate.