be1fba334bd07c04d42f3f004725b8d25b26841d
[deliverable/linux.git] / arch / alpha / kernel / traps.c
1 /*
2 * arch/alpha/kernel/traps.c
3 *
4 * (C) Copyright 1994 Linus Torvalds
5 */
6
7 /*
8 * This file initializes the trap entry points
9 */
10
11 #include <linux/jiffies.h>
12 #include <linux/mm.h>
13 #include <linux/sched.h>
14 #include <linux/tty.h>
15 #include <linux/delay.h>
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/kallsyms.h>
19 #include <linux/ratelimit.h>
20
21 #include <asm/gentrap.h>
22 #include <asm/uaccess.h>
23 #include <asm/unaligned.h>
24 #include <asm/sysinfo.h>
25 #include <asm/hwrpb.h>
26 #include <asm/mmu_context.h>
27 #include <asm/special_insns.h>
28
29 #include "proto.h"
30
31 /* Work-around for some SRMs which mishandle opDEC faults. */
32
33 static int opDEC_fix;
34
35 static void
36 opDEC_check(void)
37 {
38 __asm__ __volatile__ (
39 /* Load the address of... */
40 " br $16, 1f\n"
41 /* A stub instruction fault handler. Just add 4 to the
42 pc and continue. */
43 " ldq $16, 8($sp)\n"
44 " addq $16, 4, $16\n"
45 " stq $16, 8($sp)\n"
46 " call_pal %[rti]\n"
47 /* Install the instruction fault handler. */
48 "1: lda $17, 3\n"
49 " call_pal %[wrent]\n"
50 /* With that in place, the fault from the round-to-minf fp
51 insn will arrive either at the "lda 4" insn (bad) or one
52 past that (good). This places the correct fixup in %0. */
53 " lda %[fix], 0\n"
54 " cvttq/svm $f31,$f31\n"
55 " lda %[fix], 4"
56 : [fix] "=r" (opDEC_fix)
57 : [rti] "n" (PAL_rti), [wrent] "n" (PAL_wrent)
58 : "$0", "$1", "$16", "$17", "$22", "$23", "$24", "$25");
59
60 if (opDEC_fix)
61 printk("opDEC fixup enabled.\n");
62 }
63
64 void
65 dik_show_regs(struct pt_regs *regs, unsigned long *r9_15)
66 {
67 printk("pc = [<%016lx>] ra = [<%016lx>] ps = %04lx %s\n",
68 regs->pc, regs->r26, regs->ps, print_tainted());
69 print_symbol("pc is at %s\n", regs->pc);
70 print_symbol("ra is at %s\n", regs->r26 );
71 printk("v0 = %016lx t0 = %016lx t1 = %016lx\n",
72 regs->r0, regs->r1, regs->r2);
73 printk("t2 = %016lx t3 = %016lx t4 = %016lx\n",
74 regs->r3, regs->r4, regs->r5);
75 printk("t5 = %016lx t6 = %016lx t7 = %016lx\n",
76 regs->r6, regs->r7, regs->r8);
77
78 if (r9_15) {
79 printk("s0 = %016lx s1 = %016lx s2 = %016lx\n",
80 r9_15[9], r9_15[10], r9_15[11]);
81 printk("s3 = %016lx s4 = %016lx s5 = %016lx\n",
82 r9_15[12], r9_15[13], r9_15[14]);
83 printk("s6 = %016lx\n", r9_15[15]);
84 }
85
86 printk("a0 = %016lx a1 = %016lx a2 = %016lx\n",
87 regs->r16, regs->r17, regs->r18);
88 printk("a3 = %016lx a4 = %016lx a5 = %016lx\n",
89 regs->r19, regs->r20, regs->r21);
90 printk("t8 = %016lx t9 = %016lx t10= %016lx\n",
91 regs->r22, regs->r23, regs->r24);
92 printk("t11= %016lx pv = %016lx at = %016lx\n",
93 regs->r25, regs->r27, regs->r28);
94 printk("gp = %016lx sp = %p\n", regs->gp, regs+1);
95 #if 0
96 __halt();
97 #endif
98 }
99
100 #if 0
101 static char * ireg_name[] = {"v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
102 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "s6",
103 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
104 "t10", "t11", "ra", "pv", "at", "gp", "sp", "zero"};
105 #endif
106
107 static void
108 dik_show_code(unsigned int *pc)
109 {
110 long i;
111
112 printk("Code:");
113 for (i = -6; i < 2; i++) {
114 unsigned int insn;
115 if (__get_user(insn, (unsigned int __user *)pc + i))
116 break;
117 printk("%c%08x%c", i ? ' ' : '<', insn, i ? ' ' : '>');
118 }
119 printk("\n");
120 }
121
122 static void
123 dik_show_trace(unsigned long *sp)
124 {
125 long i = 0;
126 printk("Trace:\n");
127 while (0x1ff8 & (unsigned long) sp) {
128 extern char _stext[], _etext[];
129 unsigned long tmp = *sp;
130 sp++;
131 if (tmp < (unsigned long) &_stext)
132 continue;
133 if (tmp >= (unsigned long) &_etext)
134 continue;
135 printk("[<%lx>]", tmp);
136 print_symbol(" %s", tmp);
137 printk("\n");
138 if (i > 40) {
139 printk(" ...");
140 break;
141 }
142 }
143 printk("\n");
144 }
145
146 static int kstack_depth_to_print = 24;
147
148 void show_stack(struct task_struct *task, unsigned long *sp)
149 {
150 unsigned long *stack;
151 int i;
152
153 /*
154 * debugging aid: "show_stack(NULL);" prints the
155 * back trace for this cpu.
156 */
157 if(sp==NULL)
158 sp=(unsigned long*)&sp;
159
160 stack = sp;
161 for(i=0; i < kstack_depth_to_print; i++) {
162 if (((long) stack & (THREAD_SIZE-1)) == 0)
163 break;
164 if (i && ((i % 4) == 0))
165 printk("\n ");
166 printk("%016lx ", *stack++);
167 }
168 printk("\n");
169 dik_show_trace(sp);
170 }
171
172 void
173 die_if_kernel(char * str, struct pt_regs *regs, long err, unsigned long *r9_15)
174 {
175 if (regs->ps & 8)
176 return;
177 #ifdef CONFIG_SMP
178 printk("CPU %d ", hard_smp_processor_id());
179 #endif
180 printk("%s(%d): %s %ld\n", current->comm, task_pid_nr(current), str, err);
181 dik_show_regs(regs, r9_15);
182 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
183 dik_show_trace((unsigned long *)(regs+1));
184 dik_show_code((unsigned int *)regs->pc);
185
186 if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL)) {
187 printk("die_if_kernel recursion detected.\n");
188 local_irq_enable();
189 while (1);
190 }
191 do_exit(SIGSEGV);
192 }
193
194 #ifndef CONFIG_MATHEMU
195 static long dummy_emul(void) { return 0; }
196 long (*alpha_fp_emul_imprecise)(struct pt_regs *regs, unsigned long writemask)
197 = (void *)dummy_emul;
198 long (*alpha_fp_emul) (unsigned long pc)
199 = (void *)dummy_emul;
200 #else
201 long alpha_fp_emul_imprecise(struct pt_regs *regs, unsigned long writemask);
202 long alpha_fp_emul (unsigned long pc);
203 #endif
204
205 asmlinkage void
206 do_entArith(unsigned long summary, unsigned long write_mask,
207 struct pt_regs *regs)
208 {
209 long si_code = FPE_FLTINV;
210 siginfo_t info;
211
212 if (summary & 1) {
213 /* Software-completion summary bit is set, so try to
214 emulate the instruction. If the processor supports
215 precise exceptions, we don't have to search. */
216 if (!amask(AMASK_PRECISE_TRAP))
217 si_code = alpha_fp_emul(regs->pc - 4);
218 else
219 si_code = alpha_fp_emul_imprecise(regs, write_mask);
220 if (si_code == 0)
221 return;
222 }
223 die_if_kernel("Arithmetic fault", regs, 0, NULL);
224
225 info.si_signo = SIGFPE;
226 info.si_errno = 0;
227 info.si_code = si_code;
228 info.si_addr = (void __user *) regs->pc;
229 send_sig_info(SIGFPE, &info, current);
230 }
231
232 asmlinkage void
233 do_entIF(unsigned long type, struct pt_regs *regs)
234 {
235 siginfo_t info;
236 int signo, code;
237
238 if ((regs->ps & ~IPL_MAX) == 0) {
239 if (type == 1) {
240 const unsigned int *data
241 = (const unsigned int *) regs->pc;
242 printk("Kernel bug at %s:%d\n",
243 (const char *)(data[1] | (long)data[2] << 32),
244 data[0]);
245 }
246 die_if_kernel((type == 1 ? "Kernel Bug" : "Instruction fault"),
247 regs, type, NULL);
248 }
249
250 switch (type) {
251 case 0: /* breakpoint */
252 info.si_signo = SIGTRAP;
253 info.si_errno = 0;
254 info.si_code = TRAP_BRKPT;
255 info.si_trapno = 0;
256 info.si_addr = (void __user *) regs->pc;
257
258 if (ptrace_cancel_bpt(current)) {
259 regs->pc -= 4; /* make pc point to former bpt */
260 }
261
262 send_sig_info(SIGTRAP, &info, current);
263 return;
264
265 case 1: /* bugcheck */
266 info.si_signo = SIGTRAP;
267 info.si_errno = 0;
268 info.si_code = __SI_FAULT;
269 info.si_addr = (void __user *) regs->pc;
270 info.si_trapno = 0;
271 send_sig_info(SIGTRAP, &info, current);
272 return;
273
274 case 2: /* gentrap */
275 info.si_addr = (void __user *) regs->pc;
276 info.si_trapno = regs->r16;
277 switch ((long) regs->r16) {
278 case GEN_INTOVF:
279 signo = SIGFPE;
280 code = FPE_INTOVF;
281 break;
282 case GEN_INTDIV:
283 signo = SIGFPE;
284 code = FPE_INTDIV;
285 break;
286 case GEN_FLTOVF:
287 signo = SIGFPE;
288 code = FPE_FLTOVF;
289 break;
290 case GEN_FLTDIV:
291 signo = SIGFPE;
292 code = FPE_FLTDIV;
293 break;
294 case GEN_FLTUND:
295 signo = SIGFPE;
296 code = FPE_FLTUND;
297 break;
298 case GEN_FLTINV:
299 signo = SIGFPE;
300 code = FPE_FLTINV;
301 break;
302 case GEN_FLTINE:
303 signo = SIGFPE;
304 code = FPE_FLTRES;
305 break;
306 case GEN_ROPRAND:
307 signo = SIGFPE;
308 code = __SI_FAULT;
309 break;
310
311 case GEN_DECOVF:
312 case GEN_DECDIV:
313 case GEN_DECINV:
314 case GEN_ASSERTERR:
315 case GEN_NULPTRERR:
316 case GEN_STKOVF:
317 case GEN_STRLENERR:
318 case GEN_SUBSTRERR:
319 case GEN_RANGERR:
320 case GEN_SUBRNG:
321 case GEN_SUBRNG1:
322 case GEN_SUBRNG2:
323 case GEN_SUBRNG3:
324 case GEN_SUBRNG4:
325 case GEN_SUBRNG5:
326 case GEN_SUBRNG6:
327 case GEN_SUBRNG7:
328 default:
329 signo = SIGTRAP;
330 code = __SI_FAULT;
331 break;
332 }
333
334 info.si_signo = signo;
335 info.si_errno = 0;
336 info.si_code = code;
337 info.si_addr = (void __user *) regs->pc;
338 send_sig_info(signo, &info, current);
339 return;
340
341 case 4: /* opDEC */
342 if (implver() == IMPLVER_EV4) {
343 long si_code;
344
345 /* The some versions of SRM do not handle
346 the opDEC properly - they return the PC of the
347 opDEC fault, not the instruction after as the
348 Alpha architecture requires. Here we fix it up.
349 We do this by intentionally causing an opDEC
350 fault during the boot sequence and testing if
351 we get the correct PC. If not, we set a flag
352 to correct it every time through. */
353 regs->pc += opDEC_fix;
354
355 /* EV4 does not implement anything except normal
356 rounding. Everything else will come here as
357 an illegal instruction. Emulate them. */
358 si_code = alpha_fp_emul(regs->pc - 4);
359 if (si_code == 0)
360 return;
361 if (si_code > 0) {
362 info.si_signo = SIGFPE;
363 info.si_errno = 0;
364 info.si_code = si_code;
365 info.si_addr = (void __user *) regs->pc;
366 send_sig_info(SIGFPE, &info, current);
367 return;
368 }
369 }
370 break;
371
372 case 3: /* FEN fault */
373 /* Irritating users can call PAL_clrfen to disable the
374 FPU for the process. The kernel will then trap in
375 do_switch_stack and undo_switch_stack when we try
376 to save and restore the FP registers.
377
378 Given that GCC by default generates code that uses the
379 FP registers, PAL_clrfen is not useful except for DoS
380 attacks. So turn the bleeding FPU back on and be done
381 with it. */
382 current_thread_info()->pcb.flags |= 1;
383 __reload_thread(&current_thread_info()->pcb);
384 return;
385
386 case 5: /* illoc */
387 default: /* unexpected instruction-fault type */
388 ;
389 }
390
391 info.si_signo = SIGILL;
392 info.si_errno = 0;
393 info.si_code = ILL_ILLOPC;
394 info.si_addr = (void __user *) regs->pc;
395 send_sig_info(SIGILL, &info, current);
396 }
397
398 /* There is an ifdef in the PALcode in MILO that enables a
399 "kernel debugging entry point" as an unprivileged call_pal.
400
401 We don't want to have anything to do with it, but unfortunately
402 several versions of MILO included in distributions have it enabled,
403 and if we don't put something on the entry point we'll oops. */
404
405 asmlinkage void
406 do_entDbg(struct pt_regs *regs)
407 {
408 siginfo_t info;
409
410 die_if_kernel("Instruction fault", regs, 0, NULL);
411
412 info.si_signo = SIGILL;
413 info.si_errno = 0;
414 info.si_code = ILL_ILLOPC;
415 info.si_addr = (void __user *) regs->pc;
416 force_sig_info(SIGILL, &info, current);
417 }
418
419
420 /*
421 * entUna has a different register layout to be reasonably simple. It
422 * needs access to all the integer registers (the kernel doesn't use
423 * fp-regs), and it needs to have them in order for simpler access.
424 *
425 * Due to the non-standard register layout (and because we don't want
426 * to handle floating-point regs), user-mode unaligned accesses are
427 * handled separately by do_entUnaUser below.
428 *
429 * Oh, btw, we don't handle the "gp" register correctly, but if we fault
430 * on a gp-register unaligned load/store, something is _very_ wrong
431 * in the kernel anyway..
432 */
433 struct allregs {
434 unsigned long regs[32];
435 unsigned long ps, pc, gp, a0, a1, a2;
436 };
437
438 struct unaligned_stat {
439 unsigned long count, va, pc;
440 } unaligned[2];
441
442
443 /* Macro for exception fixup code to access integer registers. */
444 #define una_reg(r) (_regs[(r) >= 16 && (r) <= 18 ? (r)+19 : (r)])
445
446
447 asmlinkage void
448 do_entUna(void * va, unsigned long opcode, unsigned long reg,
449 struct allregs *regs)
450 {
451 long error, tmp1, tmp2, tmp3, tmp4;
452 unsigned long pc = regs->pc - 4;
453 unsigned long *_regs = regs->regs;
454 const struct exception_table_entry *fixup;
455
456 unaligned[0].count++;
457 unaligned[0].va = (unsigned long) va;
458 unaligned[0].pc = pc;
459
460 /* We don't want to use the generic get/put unaligned macros as
461 we want to trap exceptions. Only if we actually get an
462 exception will we decide whether we should have caught it. */
463
464 switch (opcode) {
465 case 0x0c: /* ldwu */
466 __asm__ __volatile__(
467 "1: ldq_u %1,0(%3)\n"
468 "2: ldq_u %2,1(%3)\n"
469 " extwl %1,%3,%1\n"
470 " extwh %2,%3,%2\n"
471 "3:\n"
472 ".section __ex_table,\"a\"\n"
473 " .long 1b - .\n"
474 " lda %1,3b-1b(%0)\n"
475 " .long 2b - .\n"
476 " lda %2,3b-2b(%0)\n"
477 ".previous"
478 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
479 : "r"(va), "0"(0));
480 if (error)
481 goto got_exception;
482 una_reg(reg) = tmp1|tmp2;
483 return;
484
485 case 0x28: /* ldl */
486 __asm__ __volatile__(
487 "1: ldq_u %1,0(%3)\n"
488 "2: ldq_u %2,3(%3)\n"
489 " extll %1,%3,%1\n"
490 " extlh %2,%3,%2\n"
491 "3:\n"
492 ".section __ex_table,\"a\"\n"
493 " .long 1b - .\n"
494 " lda %1,3b-1b(%0)\n"
495 " .long 2b - .\n"
496 " lda %2,3b-2b(%0)\n"
497 ".previous"
498 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
499 : "r"(va), "0"(0));
500 if (error)
501 goto got_exception;
502 una_reg(reg) = (int)(tmp1|tmp2);
503 return;
504
505 case 0x29: /* ldq */
506 __asm__ __volatile__(
507 "1: ldq_u %1,0(%3)\n"
508 "2: ldq_u %2,7(%3)\n"
509 " extql %1,%3,%1\n"
510 " extqh %2,%3,%2\n"
511 "3:\n"
512 ".section __ex_table,\"a\"\n"
513 " .long 1b - .\n"
514 " lda %1,3b-1b(%0)\n"
515 " .long 2b - .\n"
516 " lda %2,3b-2b(%0)\n"
517 ".previous"
518 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
519 : "r"(va), "0"(0));
520 if (error)
521 goto got_exception;
522 una_reg(reg) = tmp1|tmp2;
523 return;
524
525 /* Note that the store sequences do not indicate that they change
526 memory because it _should_ be affecting nothing in this context.
527 (Otherwise we have other, much larger, problems.) */
528 case 0x0d: /* stw */
529 __asm__ __volatile__(
530 "1: ldq_u %2,1(%5)\n"
531 "2: ldq_u %1,0(%5)\n"
532 " inswh %6,%5,%4\n"
533 " inswl %6,%5,%3\n"
534 " mskwh %2,%5,%2\n"
535 " mskwl %1,%5,%1\n"
536 " or %2,%4,%2\n"
537 " or %1,%3,%1\n"
538 "3: stq_u %2,1(%5)\n"
539 "4: stq_u %1,0(%5)\n"
540 "5:\n"
541 ".section __ex_table,\"a\"\n"
542 " .long 1b - .\n"
543 " lda %2,5b-1b(%0)\n"
544 " .long 2b - .\n"
545 " lda %1,5b-2b(%0)\n"
546 " .long 3b - .\n"
547 " lda $31,5b-3b(%0)\n"
548 " .long 4b - .\n"
549 " lda $31,5b-4b(%0)\n"
550 ".previous"
551 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
552 "=&r"(tmp3), "=&r"(tmp4)
553 : "r"(va), "r"(una_reg(reg)), "0"(0));
554 if (error)
555 goto got_exception;
556 return;
557
558 case 0x2c: /* stl */
559 __asm__ __volatile__(
560 "1: ldq_u %2,3(%5)\n"
561 "2: ldq_u %1,0(%5)\n"
562 " inslh %6,%5,%4\n"
563 " insll %6,%5,%3\n"
564 " msklh %2,%5,%2\n"
565 " mskll %1,%5,%1\n"
566 " or %2,%4,%2\n"
567 " or %1,%3,%1\n"
568 "3: stq_u %2,3(%5)\n"
569 "4: stq_u %1,0(%5)\n"
570 "5:\n"
571 ".section __ex_table,\"a\"\n"
572 " .long 1b - .\n"
573 " lda %2,5b-1b(%0)\n"
574 " .long 2b - .\n"
575 " lda %1,5b-2b(%0)\n"
576 " .long 3b - .\n"
577 " lda $31,5b-3b(%0)\n"
578 " .long 4b - .\n"
579 " lda $31,5b-4b(%0)\n"
580 ".previous"
581 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
582 "=&r"(tmp3), "=&r"(tmp4)
583 : "r"(va), "r"(una_reg(reg)), "0"(0));
584 if (error)
585 goto got_exception;
586 return;
587
588 case 0x2d: /* stq */
589 __asm__ __volatile__(
590 "1: ldq_u %2,7(%5)\n"
591 "2: ldq_u %1,0(%5)\n"
592 " insqh %6,%5,%4\n"
593 " insql %6,%5,%3\n"
594 " mskqh %2,%5,%2\n"
595 " mskql %1,%5,%1\n"
596 " or %2,%4,%2\n"
597 " or %1,%3,%1\n"
598 "3: stq_u %2,7(%5)\n"
599 "4: stq_u %1,0(%5)\n"
600 "5:\n"
601 ".section __ex_table,\"a\"\n\t"
602 " .long 1b - .\n"
603 " lda %2,5b-1b(%0)\n"
604 " .long 2b - .\n"
605 " lda %1,5b-2b(%0)\n"
606 " .long 3b - .\n"
607 " lda $31,5b-3b(%0)\n"
608 " .long 4b - .\n"
609 " lda $31,5b-4b(%0)\n"
610 ".previous"
611 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
612 "=&r"(tmp3), "=&r"(tmp4)
613 : "r"(va), "r"(una_reg(reg)), "0"(0));
614 if (error)
615 goto got_exception;
616 return;
617 }
618
619 printk("Bad unaligned kernel access at %016lx: %p %lx %lu\n",
620 pc, va, opcode, reg);
621 do_exit(SIGSEGV);
622
623 got_exception:
624 /* Ok, we caught the exception, but we don't want it. Is there
625 someone to pass it along to? */
626 if ((fixup = search_exception_tables(pc)) != 0) {
627 unsigned long newpc;
628 newpc = fixup_exception(una_reg, fixup, pc);
629
630 printk("Forwarding unaligned exception at %lx (%lx)\n",
631 pc, newpc);
632
633 regs->pc = newpc;
634 return;
635 }
636
637 /*
638 * Yikes! No one to forward the exception to.
639 * Since the registers are in a weird format, dump them ourselves.
640 */
641
642 printk("%s(%d): unhandled unaligned exception\n",
643 current->comm, task_pid_nr(current));
644
645 printk("pc = [<%016lx>] ra = [<%016lx>] ps = %04lx\n",
646 pc, una_reg(26), regs->ps);
647 printk("r0 = %016lx r1 = %016lx r2 = %016lx\n",
648 una_reg(0), una_reg(1), una_reg(2));
649 printk("r3 = %016lx r4 = %016lx r5 = %016lx\n",
650 una_reg(3), una_reg(4), una_reg(5));
651 printk("r6 = %016lx r7 = %016lx r8 = %016lx\n",
652 una_reg(6), una_reg(7), una_reg(8));
653 printk("r9 = %016lx r10= %016lx r11= %016lx\n",
654 una_reg(9), una_reg(10), una_reg(11));
655 printk("r12= %016lx r13= %016lx r14= %016lx\n",
656 una_reg(12), una_reg(13), una_reg(14));
657 printk("r15= %016lx\n", una_reg(15));
658 printk("r16= %016lx r17= %016lx r18= %016lx\n",
659 una_reg(16), una_reg(17), una_reg(18));
660 printk("r19= %016lx r20= %016lx r21= %016lx\n",
661 una_reg(19), una_reg(20), una_reg(21));
662 printk("r22= %016lx r23= %016lx r24= %016lx\n",
663 una_reg(22), una_reg(23), una_reg(24));
664 printk("r25= %016lx r27= %016lx r28= %016lx\n",
665 una_reg(25), una_reg(27), una_reg(28));
666 printk("gp = %016lx sp = %p\n", regs->gp, regs+1);
667
668 dik_show_code((unsigned int *)pc);
669 dik_show_trace((unsigned long *)(regs+1));
670
671 if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL)) {
672 printk("die_if_kernel recursion detected.\n");
673 local_irq_enable();
674 while (1);
675 }
676 do_exit(SIGSEGV);
677 }
678
679 /*
680 * Convert an s-floating point value in memory format to the
681 * corresponding value in register format. The exponent
682 * needs to be remapped to preserve non-finite values
683 * (infinities, not-a-numbers, denormals).
684 */
685 static inline unsigned long
686 s_mem_to_reg (unsigned long s_mem)
687 {
688 unsigned long frac = (s_mem >> 0) & 0x7fffff;
689 unsigned long sign = (s_mem >> 31) & 0x1;
690 unsigned long exp_msb = (s_mem >> 30) & 0x1;
691 unsigned long exp_low = (s_mem >> 23) & 0x7f;
692 unsigned long exp;
693
694 exp = (exp_msb << 10) | exp_low; /* common case */
695 if (exp_msb) {
696 if (exp_low == 0x7f) {
697 exp = 0x7ff;
698 }
699 } else {
700 if (exp_low == 0x00) {
701 exp = 0x000;
702 } else {
703 exp |= (0x7 << 7);
704 }
705 }
706 return (sign << 63) | (exp << 52) | (frac << 29);
707 }
708
709 /*
710 * Convert an s-floating point value in register format to the
711 * corresponding value in memory format.
712 */
713 static inline unsigned long
714 s_reg_to_mem (unsigned long s_reg)
715 {
716 return ((s_reg >> 62) << 30) | ((s_reg << 5) >> 34);
717 }
718
719 /*
720 * Handle user-level unaligned fault. Handling user-level unaligned
721 * faults is *extremely* slow and produces nasty messages. A user
722 * program *should* fix unaligned faults ASAP.
723 *
724 * Notice that we have (almost) the regular kernel stack layout here,
725 * so finding the appropriate registers is a little more difficult
726 * than in the kernel case.
727 *
728 * Finally, we handle regular integer load/stores only. In
729 * particular, load-linked/store-conditionally and floating point
730 * load/stores are not supported. The former make no sense with
731 * unaligned faults (they are guaranteed to fail) and I don't think
732 * the latter will occur in any decent program.
733 *
734 * Sigh. We *do* have to handle some FP operations, because GCC will
735 * uses them as temporary storage for integer memory to memory copies.
736 * However, we need to deal with stt/ldt and sts/lds only.
737 */
738
739 #define OP_INT_MASK ( 1L << 0x28 | 1L << 0x2c /* ldl stl */ \
740 | 1L << 0x29 | 1L << 0x2d /* ldq stq */ \
741 | 1L << 0x0c | 1L << 0x0d /* ldwu stw */ \
742 | 1L << 0x0a | 1L << 0x0e ) /* ldbu stb */
743
744 #define OP_WRITE_MASK ( 1L << 0x26 | 1L << 0x27 /* sts stt */ \
745 | 1L << 0x2c | 1L << 0x2d /* stl stq */ \
746 | 1L << 0x0d | 1L << 0x0e ) /* stw stb */
747
748 #define R(x) ((size_t) &((struct pt_regs *)0)->x)
749
750 static int unauser_reg_offsets[32] = {
751 R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), R(r8),
752 /* r9 ... r15 are stored in front of regs. */
753 -56, -48, -40, -32, -24, -16, -8,
754 R(r16), R(r17), R(r18),
755 R(r19), R(r20), R(r21), R(r22), R(r23), R(r24), R(r25), R(r26),
756 R(r27), R(r28), R(gp),
757 0, 0
758 };
759
760 #undef R
761
762 asmlinkage void
763 do_entUnaUser(void __user * va, unsigned long opcode,
764 unsigned long reg, struct pt_regs *regs)
765 {
766 static DEFINE_RATELIMIT_STATE(ratelimit, 5 * HZ, 5);
767
768 unsigned long tmp1, tmp2, tmp3, tmp4;
769 unsigned long fake_reg, *reg_addr = &fake_reg;
770 siginfo_t info;
771 long error;
772
773 /* Check the UAC bits to decide what the user wants us to do
774 with the unaliged access. */
775
776 if (!(current_thread_info()->status & TS_UAC_NOPRINT)) {
777 if (__ratelimit(&ratelimit)) {
778 printk("%s(%d): unaligned trap at %016lx: %p %lx %ld\n",
779 current->comm, task_pid_nr(current),
780 regs->pc - 4, va, opcode, reg);
781 }
782 }
783 if ((current_thread_info()->status & TS_UAC_SIGBUS))
784 goto give_sigbus;
785 /* Not sure why you'd want to use this, but... */
786 if ((current_thread_info()->status & TS_UAC_NOFIX))
787 return;
788
789 /* Don't bother reading ds in the access check since we already
790 know that this came from the user. Also rely on the fact that
791 the page at TASK_SIZE is unmapped and so can't be touched anyway. */
792 if (!__access_ok((unsigned long)va, 0, USER_DS))
793 goto give_sigsegv;
794
795 ++unaligned[1].count;
796 unaligned[1].va = (unsigned long)va;
797 unaligned[1].pc = regs->pc - 4;
798
799 if ((1L << opcode) & OP_INT_MASK) {
800 /* it's an integer load/store */
801 if (reg < 30) {
802 reg_addr = (unsigned long *)
803 ((char *)regs + unauser_reg_offsets[reg]);
804 } else if (reg == 30) {
805 /* usp in PAL regs */
806 fake_reg = rdusp();
807 } else {
808 /* zero "register" */
809 fake_reg = 0;
810 }
811 }
812
813 /* We don't want to use the generic get/put unaligned macros as
814 we want to trap exceptions. Only if we actually get an
815 exception will we decide whether we should have caught it. */
816
817 switch (opcode) {
818 case 0x0c: /* ldwu */
819 __asm__ __volatile__(
820 "1: ldq_u %1,0(%3)\n"
821 "2: ldq_u %2,1(%3)\n"
822 " extwl %1,%3,%1\n"
823 " extwh %2,%3,%2\n"
824 "3:\n"
825 ".section __ex_table,\"a\"\n"
826 " .long 1b - .\n"
827 " lda %1,3b-1b(%0)\n"
828 " .long 2b - .\n"
829 " lda %2,3b-2b(%0)\n"
830 ".previous"
831 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
832 : "r"(va), "0"(0));
833 if (error)
834 goto give_sigsegv;
835 *reg_addr = tmp1|tmp2;
836 break;
837
838 case 0x22: /* lds */
839 __asm__ __volatile__(
840 "1: ldq_u %1,0(%3)\n"
841 "2: ldq_u %2,3(%3)\n"
842 " extll %1,%3,%1\n"
843 " extlh %2,%3,%2\n"
844 "3:\n"
845 ".section __ex_table,\"a\"\n"
846 " .long 1b - .\n"
847 " lda %1,3b-1b(%0)\n"
848 " .long 2b - .\n"
849 " lda %2,3b-2b(%0)\n"
850 ".previous"
851 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
852 : "r"(va), "0"(0));
853 if (error)
854 goto give_sigsegv;
855 alpha_write_fp_reg(reg, s_mem_to_reg((int)(tmp1|tmp2)));
856 return;
857
858 case 0x23: /* ldt */
859 __asm__ __volatile__(
860 "1: ldq_u %1,0(%3)\n"
861 "2: ldq_u %2,7(%3)\n"
862 " extql %1,%3,%1\n"
863 " extqh %2,%3,%2\n"
864 "3:\n"
865 ".section __ex_table,\"a\"\n"
866 " .long 1b - .\n"
867 " lda %1,3b-1b(%0)\n"
868 " .long 2b - .\n"
869 " lda %2,3b-2b(%0)\n"
870 ".previous"
871 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
872 : "r"(va), "0"(0));
873 if (error)
874 goto give_sigsegv;
875 alpha_write_fp_reg(reg, tmp1|tmp2);
876 return;
877
878 case 0x28: /* ldl */
879 __asm__ __volatile__(
880 "1: ldq_u %1,0(%3)\n"
881 "2: ldq_u %2,3(%3)\n"
882 " extll %1,%3,%1\n"
883 " extlh %2,%3,%2\n"
884 "3:\n"
885 ".section __ex_table,\"a\"\n"
886 " .long 1b - .\n"
887 " lda %1,3b-1b(%0)\n"
888 " .long 2b - .\n"
889 " lda %2,3b-2b(%0)\n"
890 ".previous"
891 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
892 : "r"(va), "0"(0));
893 if (error)
894 goto give_sigsegv;
895 *reg_addr = (int)(tmp1|tmp2);
896 break;
897
898 case 0x29: /* ldq */
899 __asm__ __volatile__(
900 "1: ldq_u %1,0(%3)\n"
901 "2: ldq_u %2,7(%3)\n"
902 " extql %1,%3,%1\n"
903 " extqh %2,%3,%2\n"
904 "3:\n"
905 ".section __ex_table,\"a\"\n"
906 " .long 1b - .\n"
907 " lda %1,3b-1b(%0)\n"
908 " .long 2b - .\n"
909 " lda %2,3b-2b(%0)\n"
910 ".previous"
911 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
912 : "r"(va), "0"(0));
913 if (error)
914 goto give_sigsegv;
915 *reg_addr = tmp1|tmp2;
916 break;
917
918 /* Note that the store sequences do not indicate that they change
919 memory because it _should_ be affecting nothing in this context.
920 (Otherwise we have other, much larger, problems.) */
921 case 0x0d: /* stw */
922 __asm__ __volatile__(
923 "1: ldq_u %2,1(%5)\n"
924 "2: ldq_u %1,0(%5)\n"
925 " inswh %6,%5,%4\n"
926 " inswl %6,%5,%3\n"
927 " mskwh %2,%5,%2\n"
928 " mskwl %1,%5,%1\n"
929 " or %2,%4,%2\n"
930 " or %1,%3,%1\n"
931 "3: stq_u %2,1(%5)\n"
932 "4: stq_u %1,0(%5)\n"
933 "5:\n"
934 ".section __ex_table,\"a\"\n"
935 " .long 1b - .\n"
936 " lda %2,5b-1b(%0)\n"
937 " .long 2b - .\n"
938 " lda %1,5b-2b(%0)\n"
939 " .long 3b - .\n"
940 " lda $31,5b-3b(%0)\n"
941 " .long 4b - .\n"
942 " lda $31,5b-4b(%0)\n"
943 ".previous"
944 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
945 "=&r"(tmp3), "=&r"(tmp4)
946 : "r"(va), "r"(*reg_addr), "0"(0));
947 if (error)
948 goto give_sigsegv;
949 return;
950
951 case 0x26: /* sts */
952 fake_reg = s_reg_to_mem(alpha_read_fp_reg(reg));
953 /* FALLTHRU */
954
955 case 0x2c: /* stl */
956 __asm__ __volatile__(
957 "1: ldq_u %2,3(%5)\n"
958 "2: ldq_u %1,0(%5)\n"
959 " inslh %6,%5,%4\n"
960 " insll %6,%5,%3\n"
961 " msklh %2,%5,%2\n"
962 " mskll %1,%5,%1\n"
963 " or %2,%4,%2\n"
964 " or %1,%3,%1\n"
965 "3: stq_u %2,3(%5)\n"
966 "4: stq_u %1,0(%5)\n"
967 "5:\n"
968 ".section __ex_table,\"a\"\n"
969 " .long 1b - .\n"
970 " lda %2,5b-1b(%0)\n"
971 " .long 2b - .\n"
972 " lda %1,5b-2b(%0)\n"
973 " .long 3b - .\n"
974 " lda $31,5b-3b(%0)\n"
975 " .long 4b - .\n"
976 " lda $31,5b-4b(%0)\n"
977 ".previous"
978 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
979 "=&r"(tmp3), "=&r"(tmp4)
980 : "r"(va), "r"(*reg_addr), "0"(0));
981 if (error)
982 goto give_sigsegv;
983 return;
984
985 case 0x27: /* stt */
986 fake_reg = alpha_read_fp_reg(reg);
987 /* FALLTHRU */
988
989 case 0x2d: /* stq */
990 __asm__ __volatile__(
991 "1: ldq_u %2,7(%5)\n"
992 "2: ldq_u %1,0(%5)\n"
993 " insqh %6,%5,%4\n"
994 " insql %6,%5,%3\n"
995 " mskqh %2,%5,%2\n"
996 " mskql %1,%5,%1\n"
997 " or %2,%4,%2\n"
998 " or %1,%3,%1\n"
999 "3: stq_u %2,7(%5)\n"
1000 "4: stq_u %1,0(%5)\n"
1001 "5:\n"
1002 ".section __ex_table,\"a\"\n\t"
1003 " .long 1b - .\n"
1004 " lda %2,5b-1b(%0)\n"
1005 " .long 2b - .\n"
1006 " lda %1,5b-2b(%0)\n"
1007 " .long 3b - .\n"
1008 " lda $31,5b-3b(%0)\n"
1009 " .long 4b - .\n"
1010 " lda $31,5b-4b(%0)\n"
1011 ".previous"
1012 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
1013 "=&r"(tmp3), "=&r"(tmp4)
1014 : "r"(va), "r"(*reg_addr), "0"(0));
1015 if (error)
1016 goto give_sigsegv;
1017 return;
1018
1019 default:
1020 /* What instruction were you trying to use, exactly? */
1021 goto give_sigbus;
1022 }
1023
1024 /* Only integer loads should get here; everyone else returns early. */
1025 if (reg == 30)
1026 wrusp(fake_reg);
1027 return;
1028
1029 give_sigsegv:
1030 regs->pc -= 4; /* make pc point to faulting insn */
1031 info.si_signo = SIGSEGV;
1032 info.si_errno = 0;
1033
1034 /* We need to replicate some of the logic in mm/fault.c,
1035 since we don't have access to the fault code in the
1036 exception handling return path. */
1037 if (!__access_ok((unsigned long)va, 0, USER_DS))
1038 info.si_code = SEGV_ACCERR;
1039 else {
1040 struct mm_struct *mm = current->mm;
1041 down_read(&mm->mmap_sem);
1042 if (find_vma(mm, (unsigned long)va))
1043 info.si_code = SEGV_ACCERR;
1044 else
1045 info.si_code = SEGV_MAPERR;
1046 up_read(&mm->mmap_sem);
1047 }
1048 info.si_addr = va;
1049 send_sig_info(SIGSEGV, &info, current);
1050 return;
1051
1052 give_sigbus:
1053 regs->pc -= 4;
1054 info.si_signo = SIGBUS;
1055 info.si_errno = 0;
1056 info.si_code = BUS_ADRALN;
1057 info.si_addr = va;
1058 send_sig_info(SIGBUS, &info, current);
1059 return;
1060 }
1061
1062 void
1063 trap_init(void)
1064 {
1065 /* Tell PAL-code what global pointer we want in the kernel. */
1066 register unsigned long gptr __asm__("$29");
1067 wrkgp(gptr);
1068
1069 /* Hack for Multia (UDB) and JENSEN: some of their SRMs have
1070 a bug in the handling of the opDEC fault. Fix it up if so. */
1071 if (implver() == IMPLVER_EV4)
1072 opDEC_check();
1073
1074 wrent(entArith, 1);
1075 wrent(entMM, 2);
1076 wrent(entIF, 3);
1077 wrent(entUna, 4);
1078 wrent(entSys, 5);
1079 wrent(entDbg, 6);
1080 }
This page took 0.053296 seconds and 4 git commands to generate.