ARC: [SMP] unify cpu private IRQ requests (TIMER/IPI)
[deliverable/linux.git] / arch / arc / kernel / time.c
1 /*
2 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * vineetg: Jan 1011
9 * -sched_clock( ) no longer jiffies based. Uses the same clocksource
10 * as gtod
11 *
12 * Rajeshwarr/Vineetg: Mar 2008
13 * -Implemented CONFIG_GENERIC_TIME (rather deleted arch specific code)
14 * for arch independent gettimeofday()
15 * -Implemented CONFIG_GENERIC_CLOCKEVENTS as base for hrtimers
16 *
17 * Vineetg: Mar 2008: Forked off from time.c which now is time-jiff.c
18 */
19
20 /* ARC700 has two 32bit independent prog Timers: TIMER0 and TIMER1
21 * Each can programmed to go from @count to @limit and optionally
22 * interrupt when that happens.
23 * A write to Control Register clears the Interrupt
24 *
25 * We've designated TIMER0 for events (clockevents)
26 * while TIMER1 for free running (clocksource)
27 *
28 * Newer ARC700 cores have 64bit clk fetching RTSC insn, preferred over TIMER1
29 */
30
31 #include <linux/spinlock.h>
32 #include <linux/interrupt.h>
33 #include <linux/module.h>
34 #include <linux/sched.h>
35 #include <linux/kernel.h>
36 #include <linux/time.h>
37 #include <linux/init.h>
38 #include <linux/timex.h>
39 #include <linux/profile.h>
40 #include <linux/clocksource.h>
41 #include <linux/clockchips.h>
42 #include <asm/irq.h>
43 #include <asm/arcregs.h>
44 #include <asm/clk.h>
45 #include <asm/mach_desc.h>
46
47 /* Timer related Aux registers */
48 #define ARC_REG_TIMER0_LIMIT 0x23 /* timer 0 limit */
49 #define ARC_REG_TIMER0_CTRL 0x22 /* timer 0 control */
50 #define ARC_REG_TIMER0_CNT 0x21 /* timer 0 count */
51 #define ARC_REG_TIMER1_LIMIT 0x102 /* timer 1 limit */
52 #define ARC_REG_TIMER1_CTRL 0x101 /* timer 1 control */
53 #define ARC_REG_TIMER1_CNT 0x100 /* timer 1 count */
54
55 #define TIMER_CTRL_IE (1 << 0) /* Interupt when Count reachs limit */
56 #define TIMER_CTRL_NH (1 << 1) /* Count only when CPU NOT halted */
57
58 #define ARC_TIMER_MAX 0xFFFFFFFF
59
60 /********** Clock Source Device *********/
61
62 #ifdef CONFIG_ARC_HAS_RTSC
63
64 int arc_counter_setup(void)
65 {
66 /*
67 * For SMP this needs to be 0. However Kconfig glue doesn't
68 * enable this option for SMP configs
69 */
70 return 1;
71 }
72
73 static cycle_t arc_counter_read(struct clocksource *cs)
74 {
75 unsigned long flags;
76 union {
77 #ifdef CONFIG_CPU_BIG_ENDIAN
78 struct { u32 high, low; };
79 #else
80 struct { u32 low, high; };
81 #endif
82 cycle_t full;
83 } stamp;
84
85 flags = arch_local_irq_save();
86
87 __asm__ __volatile(
88 " .extCoreRegister tsch, 58, r, cannot_shortcut \n"
89 " rtsc %0, 0 \n"
90 " mov %1, 0 \n"
91 : "=r" (stamp.low), "=r" (stamp.high));
92
93 arch_local_irq_restore(flags);
94
95 return stamp.full;
96 }
97
98 static struct clocksource arc_counter = {
99 .name = "ARC RTSC",
100 .rating = 300,
101 .read = arc_counter_read,
102 .mask = CLOCKSOURCE_MASK(32),
103 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
104 };
105
106 #else /* !CONFIG_ARC_HAS_RTSC */
107
108 static bool is_usable_as_clocksource(void)
109 {
110 #ifdef CONFIG_SMP
111 return 0;
112 #else
113 return 1;
114 #endif
115 }
116
117 /*
118 * set 32bit TIMER1 to keep counting monotonically and wraparound
119 */
120 int arc_counter_setup(void)
121 {
122 write_aux_reg(ARC_REG_TIMER1_LIMIT, ARC_TIMER_MAX);
123 write_aux_reg(ARC_REG_TIMER1_CNT, 0);
124 write_aux_reg(ARC_REG_TIMER1_CTRL, TIMER_CTRL_NH);
125
126 return is_usable_as_clocksource();
127 }
128
129 static cycle_t arc_counter_read(struct clocksource *cs)
130 {
131 return (cycle_t) read_aux_reg(ARC_REG_TIMER1_CNT);
132 }
133
134 static struct clocksource arc_counter = {
135 .name = "ARC Timer1",
136 .rating = 300,
137 .read = arc_counter_read,
138 .mask = CLOCKSOURCE_MASK(32),
139 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
140 };
141
142 #endif
143
144 /********** Clock Event Device *********/
145
146 /*
147 * Arm the timer to interrupt after @limit cycles
148 * The distinction for oneshot/periodic is done in arc_event_timer_ack() below
149 */
150 static void arc_timer_event_setup(unsigned int limit)
151 {
152 write_aux_reg(ARC_REG_TIMER0_LIMIT, limit);
153 write_aux_reg(ARC_REG_TIMER0_CNT, 0); /* start from 0 */
154
155 write_aux_reg(ARC_REG_TIMER0_CTRL, TIMER_CTRL_IE | TIMER_CTRL_NH);
156 }
157
158
159 static int arc_clkevent_set_next_event(unsigned long delta,
160 struct clock_event_device *dev)
161 {
162 arc_timer_event_setup(delta);
163 return 0;
164 }
165
166 static void arc_clkevent_set_mode(enum clock_event_mode mode,
167 struct clock_event_device *dev)
168 {
169 switch (mode) {
170 case CLOCK_EVT_MODE_PERIODIC:
171 arc_timer_event_setup(arc_get_core_freq() / HZ);
172 break;
173 case CLOCK_EVT_MODE_ONESHOT:
174 break;
175 default:
176 break;
177 }
178
179 return;
180 }
181
182 static DEFINE_PER_CPU(struct clock_event_device, arc_clockevent_device) = {
183 .name = "ARC Timer0",
184 .features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC,
185 .mode = CLOCK_EVT_MODE_UNUSED,
186 .rating = 300,
187 .irq = TIMER0_IRQ, /* hardwired, no need for resources */
188 .set_next_event = arc_clkevent_set_next_event,
189 .set_mode = arc_clkevent_set_mode,
190 };
191
192 static irqreturn_t timer_irq_handler(int irq, void *dev_id)
193 {
194 /*
195 * Note that generic IRQ core could have passed @evt for @dev_id if
196 * irq_set_chip_and_handler() asked for handle_percpu_devid_irq()
197 */
198 struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
199 int irq_reenable = evt->mode == CLOCK_EVT_MODE_PERIODIC;
200
201 /*
202 * Any write to CTRL reg ACks the interrupt, we rewrite the
203 * Count when [N]ot [H]alted bit.
204 * And re-arm it if perioid by [I]nterrupt [E]nable bit
205 */
206 write_aux_reg(ARC_REG_TIMER0_CTRL, irq_reenable | TIMER_CTRL_NH);
207
208 evt->event_handler(evt);
209
210 return IRQ_HANDLED;
211 }
212
213 /*
214 * Setup the local event timer for @cpu
215 */
216 void arc_local_timer_setup()
217 {
218 struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
219 int cpu = smp_processor_id();
220
221 evt->cpumask = cpumask_of(cpu);
222 clockevents_config_and_register(evt, arc_get_core_freq(),
223 0, ARC_TIMER_MAX);
224
225 /* setup the per-cpu timer IRQ handler - for all cpus */
226 arc_request_percpu_irq(TIMER0_IRQ, cpu, timer_irq_handler,
227 "Timer0 (per-cpu-tick)", evt);
228 }
229
230 /*
231 * Called from start_kernel() - boot CPU only
232 *
233 * -Sets up h/w timers as applicable on boot cpu
234 * -Also sets up any global state needed for timer subsystem:
235 * - for "counting" timer, registers a clocksource, usable across CPUs
236 * (provided that underlying counter h/w is synchronized across cores)
237 * - for "event" timer, sets up TIMER0 IRQ (as that is platform agnostic)
238 */
239 void __init time_init(void)
240 {
241 /*
242 * sets up the timekeeping free-flowing counter which also returns
243 * whether the counter is usable as clocksource
244 */
245 if (arc_counter_setup())
246 /*
247 * CLK upto 4.29 GHz can be safely represented in 32 bits
248 * because Max 32 bit number is 4,294,967,295
249 */
250 clocksource_register_hz(&arc_counter, arc_get_core_freq());
251
252 /* sets up the periodic event timer */
253 arc_local_timer_setup();
254
255 if (machine_desc->init_time)
256 machine_desc->init_time();
257 }
This page took 0.036047 seconds and 5 git commands to generate.