ARM: bL_switcher: Basic trace events support
[deliverable/linux.git] / arch / arm / common / bL_switcher.c
1 /*
2 * arch/arm/common/bL_switcher.c -- big.LITTLE cluster switcher core driver
3 *
4 * Created by: Nicolas Pitre, March 2012
5 * Copyright: (C) 2012-2013 Linaro Limited
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #include <linux/atomic.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/sched.h>
17 #include <linux/interrupt.h>
18 #include <linux/cpu_pm.h>
19 #include <linux/cpu.h>
20 #include <linux/cpumask.h>
21 #include <linux/kthread.h>
22 #include <linux/wait.h>
23 #include <linux/time.h>
24 #include <linux/clockchips.h>
25 #include <linux/hrtimer.h>
26 #include <linux/tick.h>
27 #include <linux/notifier.h>
28 #include <linux/mm.h>
29 #include <linux/mutex.h>
30 #include <linux/spinlock.h>
31 #include <linux/string.h>
32 #include <linux/sysfs.h>
33 #include <linux/irqchip/arm-gic.h>
34 #include <linux/moduleparam.h>
35
36 #include <asm/smp_plat.h>
37 #include <asm/cputype.h>
38 #include <asm/suspend.h>
39 #include <asm/mcpm.h>
40 #include <asm/bL_switcher.h>
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/power_cpu_migrate.h>
44
45
46 /*
47 * Use our own MPIDR accessors as the generic ones in asm/cputype.h have
48 * __attribute_const__ and we don't want the compiler to assume any
49 * constness here as the value _does_ change along some code paths.
50 */
51
52 static int read_mpidr(void)
53 {
54 unsigned int id;
55 asm volatile ("mrc p15, 0, %0, c0, c0, 5" : "=r" (id));
56 return id & MPIDR_HWID_BITMASK;
57 }
58
59 /*
60 * Get a global nanosecond time stamp for tracing.
61 */
62 static s64 get_ns(void)
63 {
64 struct timespec ts;
65 getnstimeofday(&ts);
66 return timespec_to_ns(&ts);
67 }
68
69 /*
70 * bL switcher core code.
71 */
72
73 static void bL_do_switch(void *_arg)
74 {
75 unsigned ib_mpidr, ib_cpu, ib_cluster;
76 long volatile handshake, **handshake_ptr = _arg;
77
78 pr_debug("%s\n", __func__);
79
80 ib_mpidr = cpu_logical_map(smp_processor_id());
81 ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0);
82 ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1);
83
84 /* Advertise our handshake location */
85 if (handshake_ptr) {
86 handshake = 0;
87 *handshake_ptr = &handshake;
88 } else
89 handshake = -1;
90
91 /*
92 * Our state has been saved at this point. Let's release our
93 * inbound CPU.
94 */
95 mcpm_set_entry_vector(ib_cpu, ib_cluster, cpu_resume);
96 sev();
97
98 /*
99 * From this point, we must assume that our counterpart CPU might
100 * have taken over in its parallel world already, as if execution
101 * just returned from cpu_suspend(). It is therefore important to
102 * be very careful not to make any change the other guy is not
103 * expecting. This is why we need stack isolation.
104 *
105 * Fancy under cover tasks could be performed here. For now
106 * we have none.
107 */
108
109 /*
110 * Let's wait until our inbound is alive.
111 */
112 while (!handshake) {
113 wfe();
114 smp_mb();
115 }
116
117 /* Let's put ourself down. */
118 mcpm_cpu_power_down();
119
120 /* should never get here */
121 BUG();
122 }
123
124 /*
125 * Stack isolation. To ensure 'current' remains valid, we just use another
126 * piece of our thread's stack space which should be fairly lightly used.
127 * The selected area starts just above the thread_info structure located
128 * at the very bottom of the stack, aligned to a cache line, and indexed
129 * with the cluster number.
130 */
131 #define STACK_SIZE 512
132 extern void call_with_stack(void (*fn)(void *), void *arg, void *sp);
133 static int bL_switchpoint(unsigned long _arg)
134 {
135 unsigned int mpidr = read_mpidr();
136 unsigned int clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1);
137 void *stack = current_thread_info() + 1;
138 stack = PTR_ALIGN(stack, L1_CACHE_BYTES);
139 stack += clusterid * STACK_SIZE + STACK_SIZE;
140 call_with_stack(bL_do_switch, (void *)_arg, stack);
141 BUG();
142 }
143
144 /*
145 * Generic switcher interface
146 */
147
148 static unsigned int bL_gic_id[MAX_CPUS_PER_CLUSTER][MAX_NR_CLUSTERS];
149 static int bL_switcher_cpu_pairing[NR_CPUS];
150
151 /*
152 * bL_switch_to - Switch to a specific cluster for the current CPU
153 * @new_cluster_id: the ID of the cluster to switch to.
154 *
155 * This function must be called on the CPU to be switched.
156 * Returns 0 on success, else a negative status code.
157 */
158 static int bL_switch_to(unsigned int new_cluster_id)
159 {
160 unsigned int mpidr, this_cpu, that_cpu;
161 unsigned int ob_mpidr, ob_cpu, ob_cluster, ib_mpidr, ib_cpu, ib_cluster;
162 struct completion inbound_alive;
163 struct tick_device *tdev;
164 enum clock_event_mode tdev_mode;
165 long volatile *handshake_ptr;
166 int ipi_nr, ret;
167
168 this_cpu = smp_processor_id();
169 ob_mpidr = read_mpidr();
170 ob_cpu = MPIDR_AFFINITY_LEVEL(ob_mpidr, 0);
171 ob_cluster = MPIDR_AFFINITY_LEVEL(ob_mpidr, 1);
172 BUG_ON(cpu_logical_map(this_cpu) != ob_mpidr);
173
174 if (new_cluster_id == ob_cluster)
175 return 0;
176
177 that_cpu = bL_switcher_cpu_pairing[this_cpu];
178 ib_mpidr = cpu_logical_map(that_cpu);
179 ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0);
180 ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1);
181
182 pr_debug("before switch: CPU %d MPIDR %#x -> %#x\n",
183 this_cpu, ob_mpidr, ib_mpidr);
184
185 this_cpu = smp_processor_id();
186
187 /* Close the gate for our entry vectors */
188 mcpm_set_entry_vector(ob_cpu, ob_cluster, NULL);
189 mcpm_set_entry_vector(ib_cpu, ib_cluster, NULL);
190
191 /* Install our "inbound alive" notifier. */
192 init_completion(&inbound_alive);
193 ipi_nr = register_ipi_completion(&inbound_alive, this_cpu);
194 ipi_nr |= ((1 << 16) << bL_gic_id[ob_cpu][ob_cluster]);
195 mcpm_set_early_poke(ib_cpu, ib_cluster, gic_get_sgir_physaddr(), ipi_nr);
196
197 /*
198 * Let's wake up the inbound CPU now in case it requires some delay
199 * to come online, but leave it gated in our entry vector code.
200 */
201 ret = mcpm_cpu_power_up(ib_cpu, ib_cluster);
202 if (ret) {
203 pr_err("%s: mcpm_cpu_power_up() returned %d\n", __func__, ret);
204 return ret;
205 }
206
207 /*
208 * Raise a SGI on the inbound CPU to make sure it doesn't stall
209 * in a possible WFI, such as in bL_power_down().
210 */
211 gic_send_sgi(bL_gic_id[ib_cpu][ib_cluster], 0);
212
213 /*
214 * Wait for the inbound to come up. This allows for other
215 * tasks to be scheduled in the mean time.
216 */
217 wait_for_completion(&inbound_alive);
218 mcpm_set_early_poke(ib_cpu, ib_cluster, 0, 0);
219
220 /*
221 * From this point we are entering the switch critical zone
222 * and can't take any interrupts anymore.
223 */
224 local_irq_disable();
225 local_fiq_disable();
226 trace_cpu_migrate_begin(get_ns(), ob_mpidr);
227
228 /* redirect GIC's SGIs to our counterpart */
229 gic_migrate_target(bL_gic_id[ib_cpu][ib_cluster]);
230
231 tdev = tick_get_device(this_cpu);
232 if (tdev && !cpumask_equal(tdev->evtdev->cpumask, cpumask_of(this_cpu)))
233 tdev = NULL;
234 if (tdev) {
235 tdev_mode = tdev->evtdev->mode;
236 clockevents_set_mode(tdev->evtdev, CLOCK_EVT_MODE_SHUTDOWN);
237 }
238
239 ret = cpu_pm_enter();
240
241 /* we can not tolerate errors at this point */
242 if (ret)
243 panic("%s: cpu_pm_enter() returned %d\n", __func__, ret);
244
245 /* Swap the physical CPUs in the logical map for this logical CPU. */
246 cpu_logical_map(this_cpu) = ib_mpidr;
247 cpu_logical_map(that_cpu) = ob_mpidr;
248
249 /* Let's do the actual CPU switch. */
250 ret = cpu_suspend((unsigned long)&handshake_ptr, bL_switchpoint);
251 if (ret > 0)
252 panic("%s: cpu_suspend() returned %d\n", __func__, ret);
253
254 /* We are executing on the inbound CPU at this point */
255 mpidr = read_mpidr();
256 pr_debug("after switch: CPU %d MPIDR %#x\n", this_cpu, mpidr);
257 BUG_ON(mpidr != ib_mpidr);
258
259 mcpm_cpu_powered_up();
260
261 ret = cpu_pm_exit();
262
263 if (tdev) {
264 clockevents_set_mode(tdev->evtdev, tdev_mode);
265 clockevents_program_event(tdev->evtdev,
266 tdev->evtdev->next_event, 1);
267 }
268
269 trace_cpu_migrate_finish(get_ns(), ib_mpidr);
270 local_fiq_enable();
271 local_irq_enable();
272
273 *handshake_ptr = 1;
274 dsb_sev();
275
276 if (ret)
277 pr_err("%s exiting with error %d\n", __func__, ret);
278 return ret;
279 }
280
281 struct bL_thread {
282 spinlock_t lock;
283 struct task_struct *task;
284 wait_queue_head_t wq;
285 int wanted_cluster;
286 struct completion started;
287 bL_switch_completion_handler completer;
288 void *completer_cookie;
289 };
290
291 static struct bL_thread bL_threads[NR_CPUS];
292
293 static int bL_switcher_thread(void *arg)
294 {
295 struct bL_thread *t = arg;
296 struct sched_param param = { .sched_priority = 1 };
297 int cluster;
298 bL_switch_completion_handler completer;
299 void *completer_cookie;
300
301 sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
302 complete(&t->started);
303
304 do {
305 if (signal_pending(current))
306 flush_signals(current);
307 wait_event_interruptible(t->wq,
308 t->wanted_cluster != -1 ||
309 kthread_should_stop());
310
311 spin_lock(&t->lock);
312 cluster = t->wanted_cluster;
313 completer = t->completer;
314 completer_cookie = t->completer_cookie;
315 t->wanted_cluster = -1;
316 t->completer = NULL;
317 spin_unlock(&t->lock);
318
319 if (cluster != -1) {
320 bL_switch_to(cluster);
321
322 if (completer)
323 completer(completer_cookie);
324 }
325 } while (!kthread_should_stop());
326
327 return 0;
328 }
329
330 static struct task_struct *bL_switcher_thread_create(int cpu, void *arg)
331 {
332 struct task_struct *task;
333
334 task = kthread_create_on_node(bL_switcher_thread, arg,
335 cpu_to_node(cpu), "kswitcher_%d", cpu);
336 if (!IS_ERR(task)) {
337 kthread_bind(task, cpu);
338 wake_up_process(task);
339 } else
340 pr_err("%s failed for CPU %d\n", __func__, cpu);
341 return task;
342 }
343
344 /*
345 * bL_switch_request_cb - Switch to a specific cluster for the given CPU,
346 * with completion notification via a callback
347 *
348 * @cpu: the CPU to switch
349 * @new_cluster_id: the ID of the cluster to switch to.
350 * @completer: switch completion callback. if non-NULL,
351 * @completer(@completer_cookie) will be called on completion of
352 * the switch, in non-atomic context.
353 * @completer_cookie: opaque context argument for @completer.
354 *
355 * This function causes a cluster switch on the given CPU by waking up
356 * the appropriate switcher thread. This function may or may not return
357 * before the switch has occurred.
358 *
359 * If a @completer callback function is supplied, it will be called when
360 * the switch is complete. This can be used to determine asynchronously
361 * when the switch is complete, regardless of when bL_switch_request()
362 * returns. When @completer is supplied, no new switch request is permitted
363 * for the affected CPU until after the switch is complete, and @completer
364 * has returned.
365 */
366 int bL_switch_request_cb(unsigned int cpu, unsigned int new_cluster_id,
367 bL_switch_completion_handler completer,
368 void *completer_cookie)
369 {
370 struct bL_thread *t;
371
372 if (cpu >= ARRAY_SIZE(bL_threads)) {
373 pr_err("%s: cpu %d out of bounds\n", __func__, cpu);
374 return -EINVAL;
375 }
376
377 t = &bL_threads[cpu];
378
379 if (IS_ERR(t->task))
380 return PTR_ERR(t->task);
381 if (!t->task)
382 return -ESRCH;
383
384 spin_lock(&t->lock);
385 if (t->completer) {
386 spin_unlock(&t->lock);
387 return -EBUSY;
388 }
389 t->completer = completer;
390 t->completer_cookie = completer_cookie;
391 t->wanted_cluster = new_cluster_id;
392 spin_unlock(&t->lock);
393 wake_up(&t->wq);
394 return 0;
395 }
396 EXPORT_SYMBOL_GPL(bL_switch_request_cb);
397
398 /*
399 * Activation and configuration code.
400 */
401
402 static DEFINE_MUTEX(bL_switcher_activation_lock);
403 static BLOCKING_NOTIFIER_HEAD(bL_activation_notifier);
404 static unsigned int bL_switcher_active;
405 static unsigned int bL_switcher_cpu_original_cluster[NR_CPUS];
406 static cpumask_t bL_switcher_removed_logical_cpus;
407
408 int bL_switcher_register_notifier(struct notifier_block *nb)
409 {
410 return blocking_notifier_chain_register(&bL_activation_notifier, nb);
411 }
412 EXPORT_SYMBOL_GPL(bL_switcher_register_notifier);
413
414 int bL_switcher_unregister_notifier(struct notifier_block *nb)
415 {
416 return blocking_notifier_chain_unregister(&bL_activation_notifier, nb);
417 }
418 EXPORT_SYMBOL_GPL(bL_switcher_unregister_notifier);
419
420 static int bL_activation_notify(unsigned long val)
421 {
422 int ret;
423
424 ret = blocking_notifier_call_chain(&bL_activation_notifier, val, NULL);
425 if (ret & NOTIFY_STOP_MASK)
426 pr_err("%s: notifier chain failed with status 0x%x\n",
427 __func__, ret);
428 return notifier_to_errno(ret);
429 }
430
431 static void bL_switcher_restore_cpus(void)
432 {
433 int i;
434
435 for_each_cpu(i, &bL_switcher_removed_logical_cpus)
436 cpu_up(i);
437 }
438
439 static int bL_switcher_halve_cpus(void)
440 {
441 int i, j, cluster_0, gic_id, ret;
442 unsigned int cpu, cluster, mask;
443 cpumask_t available_cpus;
444
445 /* First pass to validate what we have */
446 mask = 0;
447 for_each_online_cpu(i) {
448 cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0);
449 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
450 if (cluster >= 2) {
451 pr_err("%s: only dual cluster systems are supported\n", __func__);
452 return -EINVAL;
453 }
454 if (WARN_ON(cpu >= MAX_CPUS_PER_CLUSTER))
455 return -EINVAL;
456 mask |= (1 << cluster);
457 }
458 if (mask != 3) {
459 pr_err("%s: no CPU pairing possible\n", __func__);
460 return -EINVAL;
461 }
462
463 /*
464 * Now let's do the pairing. We match each CPU with another CPU
465 * from a different cluster. To get a uniform scheduling behavior
466 * without fiddling with CPU topology and compute capacity data,
467 * we'll use logical CPUs initially belonging to the same cluster.
468 */
469 memset(bL_switcher_cpu_pairing, -1, sizeof(bL_switcher_cpu_pairing));
470 cpumask_copy(&available_cpus, cpu_online_mask);
471 cluster_0 = -1;
472 for_each_cpu(i, &available_cpus) {
473 int match = -1;
474 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
475 if (cluster_0 == -1)
476 cluster_0 = cluster;
477 if (cluster != cluster_0)
478 continue;
479 cpumask_clear_cpu(i, &available_cpus);
480 for_each_cpu(j, &available_cpus) {
481 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(j), 1);
482 /*
483 * Let's remember the last match to create "odd"
484 * pairings on purpose in order for other code not
485 * to assume any relation between physical and
486 * logical CPU numbers.
487 */
488 if (cluster != cluster_0)
489 match = j;
490 }
491 if (match != -1) {
492 bL_switcher_cpu_pairing[i] = match;
493 cpumask_clear_cpu(match, &available_cpus);
494 pr_info("CPU%d paired with CPU%d\n", i, match);
495 }
496 }
497
498 /*
499 * Now we disable the unwanted CPUs i.e. everything that has no
500 * pairing information (that includes the pairing counterparts).
501 */
502 cpumask_clear(&bL_switcher_removed_logical_cpus);
503 for_each_online_cpu(i) {
504 cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0);
505 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
506
507 /* Let's take note of the GIC ID for this CPU */
508 gic_id = gic_get_cpu_id(i);
509 if (gic_id < 0) {
510 pr_err("%s: bad GIC ID for CPU %d\n", __func__, i);
511 bL_switcher_restore_cpus();
512 return -EINVAL;
513 }
514 bL_gic_id[cpu][cluster] = gic_id;
515 pr_info("GIC ID for CPU %u cluster %u is %u\n",
516 cpu, cluster, gic_id);
517
518 if (bL_switcher_cpu_pairing[i] != -1) {
519 bL_switcher_cpu_original_cluster[i] = cluster;
520 continue;
521 }
522
523 ret = cpu_down(i);
524 if (ret) {
525 bL_switcher_restore_cpus();
526 return ret;
527 }
528 cpumask_set_cpu(i, &bL_switcher_removed_logical_cpus);
529 }
530
531 return 0;
532 }
533
534 static int bL_switcher_enable(void)
535 {
536 int cpu, ret;
537
538 mutex_lock(&bL_switcher_activation_lock);
539 cpu_hotplug_driver_lock();
540 if (bL_switcher_active) {
541 cpu_hotplug_driver_unlock();
542 mutex_unlock(&bL_switcher_activation_lock);
543 return 0;
544 }
545
546 pr_info("big.LITTLE switcher initializing\n");
547
548 ret = bL_activation_notify(BL_NOTIFY_PRE_ENABLE);
549 if (ret)
550 goto error;
551
552 ret = bL_switcher_halve_cpus();
553 if (ret)
554 goto error;
555
556 for_each_online_cpu(cpu) {
557 struct bL_thread *t = &bL_threads[cpu];
558 spin_lock_init(&t->lock);
559 init_waitqueue_head(&t->wq);
560 init_completion(&t->started);
561 t->wanted_cluster = -1;
562 t->task = bL_switcher_thread_create(cpu, t);
563 }
564
565 bL_switcher_active = 1;
566 bL_activation_notify(BL_NOTIFY_POST_ENABLE);
567 pr_info("big.LITTLE switcher initialized\n");
568 goto out;
569
570 error:
571 pr_warn("big.LITTLE switcher initialization failed\n");
572 bL_activation_notify(BL_NOTIFY_POST_DISABLE);
573
574 out:
575 cpu_hotplug_driver_unlock();
576 mutex_unlock(&bL_switcher_activation_lock);
577 return ret;
578 }
579
580 #ifdef CONFIG_SYSFS
581
582 static void bL_switcher_disable(void)
583 {
584 unsigned int cpu, cluster;
585 struct bL_thread *t;
586 struct task_struct *task;
587
588 mutex_lock(&bL_switcher_activation_lock);
589 cpu_hotplug_driver_lock();
590
591 if (!bL_switcher_active)
592 goto out;
593
594 if (bL_activation_notify(BL_NOTIFY_PRE_DISABLE) != 0) {
595 bL_activation_notify(BL_NOTIFY_POST_ENABLE);
596 goto out;
597 }
598
599 bL_switcher_active = 0;
600
601 /*
602 * To deactivate the switcher, we must shut down the switcher
603 * threads to prevent any other requests from being accepted.
604 * Then, if the final cluster for given logical CPU is not the
605 * same as the original one, we'll recreate a switcher thread
606 * just for the purpose of switching the CPU back without any
607 * possibility for interference from external requests.
608 */
609 for_each_online_cpu(cpu) {
610 t = &bL_threads[cpu];
611 task = t->task;
612 t->task = NULL;
613 if (!task || IS_ERR(task))
614 continue;
615 kthread_stop(task);
616 /* no more switch may happen on this CPU at this point */
617 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1);
618 if (cluster == bL_switcher_cpu_original_cluster[cpu])
619 continue;
620 init_completion(&t->started);
621 t->wanted_cluster = bL_switcher_cpu_original_cluster[cpu];
622 task = bL_switcher_thread_create(cpu, t);
623 if (!IS_ERR(task)) {
624 wait_for_completion(&t->started);
625 kthread_stop(task);
626 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1);
627 if (cluster == bL_switcher_cpu_original_cluster[cpu])
628 continue;
629 }
630 /* If execution gets here, we're in trouble. */
631 pr_crit("%s: unable to restore original cluster for CPU %d\n",
632 __func__, cpu);
633 pr_crit("%s: CPU %d can't be restored\n",
634 __func__, bL_switcher_cpu_pairing[cpu]);
635 cpumask_clear_cpu(bL_switcher_cpu_pairing[cpu],
636 &bL_switcher_removed_logical_cpus);
637 }
638
639 bL_switcher_restore_cpus();
640 bL_activation_notify(BL_NOTIFY_POST_DISABLE);
641
642 out:
643 cpu_hotplug_driver_unlock();
644 mutex_unlock(&bL_switcher_activation_lock);
645 }
646
647 static ssize_t bL_switcher_active_show(struct kobject *kobj,
648 struct kobj_attribute *attr, char *buf)
649 {
650 return sprintf(buf, "%u\n", bL_switcher_active);
651 }
652
653 static ssize_t bL_switcher_active_store(struct kobject *kobj,
654 struct kobj_attribute *attr, const char *buf, size_t count)
655 {
656 int ret;
657
658 switch (buf[0]) {
659 case '0':
660 bL_switcher_disable();
661 ret = 0;
662 break;
663 case '1':
664 ret = bL_switcher_enable();
665 break;
666 default:
667 ret = -EINVAL;
668 }
669
670 return (ret >= 0) ? count : ret;
671 }
672
673 static struct kobj_attribute bL_switcher_active_attr =
674 __ATTR(active, 0644, bL_switcher_active_show, bL_switcher_active_store);
675
676 static struct attribute *bL_switcher_attrs[] = {
677 &bL_switcher_active_attr.attr,
678 NULL,
679 };
680
681 static struct attribute_group bL_switcher_attr_group = {
682 .attrs = bL_switcher_attrs,
683 };
684
685 static struct kobject *bL_switcher_kobj;
686
687 static int __init bL_switcher_sysfs_init(void)
688 {
689 int ret;
690
691 bL_switcher_kobj = kobject_create_and_add("bL_switcher", kernel_kobj);
692 if (!bL_switcher_kobj)
693 return -ENOMEM;
694 ret = sysfs_create_group(bL_switcher_kobj, &bL_switcher_attr_group);
695 if (ret)
696 kobject_put(bL_switcher_kobj);
697 return ret;
698 }
699
700 #endif /* CONFIG_SYSFS */
701
702 bool bL_switcher_get_enabled(void)
703 {
704 mutex_lock(&bL_switcher_activation_lock);
705
706 return bL_switcher_active;
707 }
708 EXPORT_SYMBOL_GPL(bL_switcher_get_enabled);
709
710 void bL_switcher_put_enabled(void)
711 {
712 mutex_unlock(&bL_switcher_activation_lock);
713 }
714 EXPORT_SYMBOL_GPL(bL_switcher_put_enabled);
715
716 /*
717 * Veto any CPU hotplug operation on those CPUs we've removed
718 * while the switcher is active.
719 * We're just not ready to deal with that given the trickery involved.
720 */
721 static int bL_switcher_hotplug_callback(struct notifier_block *nfb,
722 unsigned long action, void *hcpu)
723 {
724 if (bL_switcher_active) {
725 int pairing = bL_switcher_cpu_pairing[(unsigned long)hcpu];
726 switch (action & 0xf) {
727 case CPU_UP_PREPARE:
728 case CPU_DOWN_PREPARE:
729 if (pairing == -1)
730 return NOTIFY_BAD;
731 }
732 }
733 return NOTIFY_DONE;
734 }
735
736 static bool no_bL_switcher;
737 core_param(no_bL_switcher, no_bL_switcher, bool, 0644);
738
739 static int __init bL_switcher_init(void)
740 {
741 int ret;
742
743 if (MAX_NR_CLUSTERS != 2) {
744 pr_err("%s: only dual cluster systems are supported\n", __func__);
745 return -EINVAL;
746 }
747
748 cpu_notifier(bL_switcher_hotplug_callback, 0);
749
750 if (!no_bL_switcher) {
751 ret = bL_switcher_enable();
752 if (ret)
753 return ret;
754 }
755
756 #ifdef CONFIG_SYSFS
757 ret = bL_switcher_sysfs_init();
758 if (ret)
759 pr_err("%s: unable to create sysfs entry\n", __func__);
760 #endif
761
762 return 0;
763 }
764
765 late_initcall(bL_switcher_init);
This page took 0.047007 seconds and 5 git commands to generate.