ARM: bL_switcher: wait until inbound is alive before performing a switch
[deliverable/linux.git] / arch / arm / common / bL_switcher.c
1 /*
2 * arch/arm/common/bL_switcher.c -- big.LITTLE cluster switcher core driver
3 *
4 * Created by: Nicolas Pitre, March 2012
5 * Copyright: (C) 2012-2013 Linaro Limited
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #include <linux/atomic.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/sched.h>
17 #include <linux/interrupt.h>
18 #include <linux/cpu_pm.h>
19 #include <linux/cpu.h>
20 #include <linux/cpumask.h>
21 #include <linux/kthread.h>
22 #include <linux/wait.h>
23 #include <linux/clockchips.h>
24 #include <linux/hrtimer.h>
25 #include <linux/tick.h>
26 #include <linux/notifier.h>
27 #include <linux/mm.h>
28 #include <linux/mutex.h>
29 #include <linux/spinlock.h>
30 #include <linux/string.h>
31 #include <linux/sysfs.h>
32 #include <linux/irqchip/arm-gic.h>
33 #include <linux/moduleparam.h>
34
35 #include <asm/smp_plat.h>
36 #include <asm/suspend.h>
37 #include <asm/mcpm.h>
38 #include <asm/bL_switcher.h>
39
40
41 /*
42 * Use our own MPIDR accessors as the generic ones in asm/cputype.h have
43 * __attribute_const__ and we don't want the compiler to assume any
44 * constness here as the value _does_ change along some code paths.
45 */
46
47 static int read_mpidr(void)
48 {
49 unsigned int id;
50 asm volatile ("mrc p15, 0, %0, c0, c0, 5" : "=r" (id));
51 return id & MPIDR_HWID_BITMASK;
52 }
53
54 /*
55 * bL switcher core code.
56 */
57
58 static void bL_do_switch(void *_arg)
59 {
60 unsigned ib_mpidr, ib_cpu, ib_cluster;
61 long volatile handshake, **handshake_ptr = _arg;
62
63 pr_debug("%s\n", __func__);
64
65 ib_mpidr = cpu_logical_map(smp_processor_id());
66 ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0);
67 ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1);
68
69 /* Advertise our handshake location */
70 if (handshake_ptr) {
71 handshake = 0;
72 *handshake_ptr = &handshake;
73 } else
74 handshake = -1;
75
76 /*
77 * Our state has been saved at this point. Let's release our
78 * inbound CPU.
79 */
80 mcpm_set_entry_vector(ib_cpu, ib_cluster, cpu_resume);
81 sev();
82
83 /*
84 * From this point, we must assume that our counterpart CPU might
85 * have taken over in its parallel world already, as if execution
86 * just returned from cpu_suspend(). It is therefore important to
87 * be very careful not to make any change the other guy is not
88 * expecting. This is why we need stack isolation.
89 *
90 * Fancy under cover tasks could be performed here. For now
91 * we have none.
92 */
93
94 /*
95 * Let's wait until our inbound is alive.
96 */
97 while (!handshake) {
98 wfe();
99 smp_mb();
100 }
101
102 /* Let's put ourself down. */
103 mcpm_cpu_power_down();
104
105 /* should never get here */
106 BUG();
107 }
108
109 /*
110 * Stack isolation. To ensure 'current' remains valid, we just use another
111 * piece of our thread's stack space which should be fairly lightly used.
112 * The selected area starts just above the thread_info structure located
113 * at the very bottom of the stack, aligned to a cache line, and indexed
114 * with the cluster number.
115 */
116 #define STACK_SIZE 512
117 extern void call_with_stack(void (*fn)(void *), void *arg, void *sp);
118 static int bL_switchpoint(unsigned long _arg)
119 {
120 unsigned int mpidr = read_mpidr();
121 unsigned int clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1);
122 void *stack = current_thread_info() + 1;
123 stack = PTR_ALIGN(stack, L1_CACHE_BYTES);
124 stack += clusterid * STACK_SIZE + STACK_SIZE;
125 call_with_stack(bL_do_switch, (void *)_arg, stack);
126 BUG();
127 }
128
129 /*
130 * Generic switcher interface
131 */
132
133 static unsigned int bL_gic_id[MAX_CPUS_PER_CLUSTER][MAX_NR_CLUSTERS];
134 static int bL_switcher_cpu_pairing[NR_CPUS];
135
136 /*
137 * bL_switch_to - Switch to a specific cluster for the current CPU
138 * @new_cluster_id: the ID of the cluster to switch to.
139 *
140 * This function must be called on the CPU to be switched.
141 * Returns 0 on success, else a negative status code.
142 */
143 static int bL_switch_to(unsigned int new_cluster_id)
144 {
145 unsigned int mpidr, this_cpu, that_cpu;
146 unsigned int ob_mpidr, ob_cpu, ob_cluster, ib_mpidr, ib_cpu, ib_cluster;
147 struct completion inbound_alive;
148 struct tick_device *tdev;
149 enum clock_event_mode tdev_mode;
150 long volatile *handshake_ptr;
151 int ipi_nr, ret;
152
153 this_cpu = smp_processor_id();
154 ob_mpidr = read_mpidr();
155 ob_cpu = MPIDR_AFFINITY_LEVEL(ob_mpidr, 0);
156 ob_cluster = MPIDR_AFFINITY_LEVEL(ob_mpidr, 1);
157 BUG_ON(cpu_logical_map(this_cpu) != ob_mpidr);
158
159 if (new_cluster_id == ob_cluster)
160 return 0;
161
162 that_cpu = bL_switcher_cpu_pairing[this_cpu];
163 ib_mpidr = cpu_logical_map(that_cpu);
164 ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0);
165 ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1);
166
167 pr_debug("before switch: CPU %d MPIDR %#x -> %#x\n",
168 this_cpu, ob_mpidr, ib_mpidr);
169
170 this_cpu = smp_processor_id();
171
172 /* Close the gate for our entry vectors */
173 mcpm_set_entry_vector(ob_cpu, ob_cluster, NULL);
174 mcpm_set_entry_vector(ib_cpu, ib_cluster, NULL);
175
176 /* Install our "inbound alive" notifier. */
177 init_completion(&inbound_alive);
178 ipi_nr = register_ipi_completion(&inbound_alive, this_cpu);
179 ipi_nr |= ((1 << 16) << bL_gic_id[ob_cpu][ob_cluster]);
180 mcpm_set_early_poke(ib_cpu, ib_cluster, gic_get_sgir_physaddr(), ipi_nr);
181
182 /*
183 * Let's wake up the inbound CPU now in case it requires some delay
184 * to come online, but leave it gated in our entry vector code.
185 */
186 ret = mcpm_cpu_power_up(ib_cpu, ib_cluster);
187 if (ret) {
188 pr_err("%s: mcpm_cpu_power_up() returned %d\n", __func__, ret);
189 return ret;
190 }
191
192 /*
193 * Raise a SGI on the inbound CPU to make sure it doesn't stall
194 * in a possible WFI, such as in bL_power_down().
195 */
196 gic_send_sgi(bL_gic_id[ib_cpu][ib_cluster], 0);
197
198 /*
199 * Wait for the inbound to come up. This allows for other
200 * tasks to be scheduled in the mean time.
201 */
202 wait_for_completion(&inbound_alive);
203 mcpm_set_early_poke(ib_cpu, ib_cluster, 0, 0);
204
205 /*
206 * From this point we are entering the switch critical zone
207 * and can't take any interrupts anymore.
208 */
209 local_irq_disable();
210 local_fiq_disable();
211
212 /* redirect GIC's SGIs to our counterpart */
213 gic_migrate_target(bL_gic_id[ib_cpu][ib_cluster]);
214
215 tdev = tick_get_device(this_cpu);
216 if (tdev && !cpumask_equal(tdev->evtdev->cpumask, cpumask_of(this_cpu)))
217 tdev = NULL;
218 if (tdev) {
219 tdev_mode = tdev->evtdev->mode;
220 clockevents_set_mode(tdev->evtdev, CLOCK_EVT_MODE_SHUTDOWN);
221 }
222
223 ret = cpu_pm_enter();
224
225 /* we can not tolerate errors at this point */
226 if (ret)
227 panic("%s: cpu_pm_enter() returned %d\n", __func__, ret);
228
229 /* Swap the physical CPUs in the logical map for this logical CPU. */
230 cpu_logical_map(this_cpu) = ib_mpidr;
231 cpu_logical_map(that_cpu) = ob_mpidr;
232
233 /* Let's do the actual CPU switch. */
234 ret = cpu_suspend((unsigned long)&handshake_ptr, bL_switchpoint);
235 if (ret > 0)
236 panic("%s: cpu_suspend() returned %d\n", __func__, ret);
237
238 /* We are executing on the inbound CPU at this point */
239 mpidr = read_mpidr();
240 pr_debug("after switch: CPU %d MPIDR %#x\n", this_cpu, mpidr);
241 BUG_ON(mpidr != ib_mpidr);
242
243 mcpm_cpu_powered_up();
244
245 ret = cpu_pm_exit();
246
247 if (tdev) {
248 clockevents_set_mode(tdev->evtdev, tdev_mode);
249 clockevents_program_event(tdev->evtdev,
250 tdev->evtdev->next_event, 1);
251 }
252
253 local_fiq_enable();
254 local_irq_enable();
255
256 *handshake_ptr = 1;
257 dsb_sev();
258
259 if (ret)
260 pr_err("%s exiting with error %d\n", __func__, ret);
261 return ret;
262 }
263
264 struct bL_thread {
265 spinlock_t lock;
266 struct task_struct *task;
267 wait_queue_head_t wq;
268 int wanted_cluster;
269 struct completion started;
270 bL_switch_completion_handler completer;
271 void *completer_cookie;
272 };
273
274 static struct bL_thread bL_threads[NR_CPUS];
275
276 static int bL_switcher_thread(void *arg)
277 {
278 struct bL_thread *t = arg;
279 struct sched_param param = { .sched_priority = 1 };
280 int cluster;
281 bL_switch_completion_handler completer;
282 void *completer_cookie;
283
284 sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
285 complete(&t->started);
286
287 do {
288 if (signal_pending(current))
289 flush_signals(current);
290 wait_event_interruptible(t->wq,
291 t->wanted_cluster != -1 ||
292 kthread_should_stop());
293
294 spin_lock(&t->lock);
295 cluster = t->wanted_cluster;
296 completer = t->completer;
297 completer_cookie = t->completer_cookie;
298 t->wanted_cluster = -1;
299 t->completer = NULL;
300 spin_unlock(&t->lock);
301
302 if (cluster != -1) {
303 bL_switch_to(cluster);
304
305 if (completer)
306 completer(completer_cookie);
307 }
308 } while (!kthread_should_stop());
309
310 return 0;
311 }
312
313 static struct task_struct *bL_switcher_thread_create(int cpu, void *arg)
314 {
315 struct task_struct *task;
316
317 task = kthread_create_on_node(bL_switcher_thread, arg,
318 cpu_to_node(cpu), "kswitcher_%d", cpu);
319 if (!IS_ERR(task)) {
320 kthread_bind(task, cpu);
321 wake_up_process(task);
322 } else
323 pr_err("%s failed for CPU %d\n", __func__, cpu);
324 return task;
325 }
326
327 /*
328 * bL_switch_request_cb - Switch to a specific cluster for the given CPU,
329 * with completion notification via a callback
330 *
331 * @cpu: the CPU to switch
332 * @new_cluster_id: the ID of the cluster to switch to.
333 * @completer: switch completion callback. if non-NULL,
334 * @completer(@completer_cookie) will be called on completion of
335 * the switch, in non-atomic context.
336 * @completer_cookie: opaque context argument for @completer.
337 *
338 * This function causes a cluster switch on the given CPU by waking up
339 * the appropriate switcher thread. This function may or may not return
340 * before the switch has occurred.
341 *
342 * If a @completer callback function is supplied, it will be called when
343 * the switch is complete. This can be used to determine asynchronously
344 * when the switch is complete, regardless of when bL_switch_request()
345 * returns. When @completer is supplied, no new switch request is permitted
346 * for the affected CPU until after the switch is complete, and @completer
347 * has returned.
348 */
349 int bL_switch_request_cb(unsigned int cpu, unsigned int new_cluster_id,
350 bL_switch_completion_handler completer,
351 void *completer_cookie)
352 {
353 struct bL_thread *t;
354
355 if (cpu >= ARRAY_SIZE(bL_threads)) {
356 pr_err("%s: cpu %d out of bounds\n", __func__, cpu);
357 return -EINVAL;
358 }
359
360 t = &bL_threads[cpu];
361
362 if (IS_ERR(t->task))
363 return PTR_ERR(t->task);
364 if (!t->task)
365 return -ESRCH;
366
367 spin_lock(&t->lock);
368 if (t->completer) {
369 spin_unlock(&t->lock);
370 return -EBUSY;
371 }
372 t->completer = completer;
373 t->completer_cookie = completer_cookie;
374 t->wanted_cluster = new_cluster_id;
375 spin_unlock(&t->lock);
376 wake_up(&t->wq);
377 return 0;
378 }
379 EXPORT_SYMBOL_GPL(bL_switch_request_cb);
380
381 /*
382 * Activation and configuration code.
383 */
384
385 static DEFINE_MUTEX(bL_switcher_activation_lock);
386 static BLOCKING_NOTIFIER_HEAD(bL_activation_notifier);
387 static unsigned int bL_switcher_active;
388 static unsigned int bL_switcher_cpu_original_cluster[NR_CPUS];
389 static cpumask_t bL_switcher_removed_logical_cpus;
390
391 int bL_switcher_register_notifier(struct notifier_block *nb)
392 {
393 return blocking_notifier_chain_register(&bL_activation_notifier, nb);
394 }
395 EXPORT_SYMBOL_GPL(bL_switcher_register_notifier);
396
397 int bL_switcher_unregister_notifier(struct notifier_block *nb)
398 {
399 return blocking_notifier_chain_unregister(&bL_activation_notifier, nb);
400 }
401 EXPORT_SYMBOL_GPL(bL_switcher_unregister_notifier);
402
403 static int bL_activation_notify(unsigned long val)
404 {
405 int ret;
406
407 ret = blocking_notifier_call_chain(&bL_activation_notifier, val, NULL);
408 if (ret & NOTIFY_STOP_MASK)
409 pr_err("%s: notifier chain failed with status 0x%x\n",
410 __func__, ret);
411 return notifier_to_errno(ret);
412 }
413
414 static void bL_switcher_restore_cpus(void)
415 {
416 int i;
417
418 for_each_cpu(i, &bL_switcher_removed_logical_cpus)
419 cpu_up(i);
420 }
421
422 static int bL_switcher_halve_cpus(void)
423 {
424 int i, j, cluster_0, gic_id, ret;
425 unsigned int cpu, cluster, mask;
426 cpumask_t available_cpus;
427
428 /* First pass to validate what we have */
429 mask = 0;
430 for_each_online_cpu(i) {
431 cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0);
432 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
433 if (cluster >= 2) {
434 pr_err("%s: only dual cluster systems are supported\n", __func__);
435 return -EINVAL;
436 }
437 if (WARN_ON(cpu >= MAX_CPUS_PER_CLUSTER))
438 return -EINVAL;
439 mask |= (1 << cluster);
440 }
441 if (mask != 3) {
442 pr_err("%s: no CPU pairing possible\n", __func__);
443 return -EINVAL;
444 }
445
446 /*
447 * Now let's do the pairing. We match each CPU with another CPU
448 * from a different cluster. To get a uniform scheduling behavior
449 * without fiddling with CPU topology and compute capacity data,
450 * we'll use logical CPUs initially belonging to the same cluster.
451 */
452 memset(bL_switcher_cpu_pairing, -1, sizeof(bL_switcher_cpu_pairing));
453 cpumask_copy(&available_cpus, cpu_online_mask);
454 cluster_0 = -1;
455 for_each_cpu(i, &available_cpus) {
456 int match = -1;
457 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
458 if (cluster_0 == -1)
459 cluster_0 = cluster;
460 if (cluster != cluster_0)
461 continue;
462 cpumask_clear_cpu(i, &available_cpus);
463 for_each_cpu(j, &available_cpus) {
464 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(j), 1);
465 /*
466 * Let's remember the last match to create "odd"
467 * pairings on purpose in order for other code not
468 * to assume any relation between physical and
469 * logical CPU numbers.
470 */
471 if (cluster != cluster_0)
472 match = j;
473 }
474 if (match != -1) {
475 bL_switcher_cpu_pairing[i] = match;
476 cpumask_clear_cpu(match, &available_cpus);
477 pr_info("CPU%d paired with CPU%d\n", i, match);
478 }
479 }
480
481 /*
482 * Now we disable the unwanted CPUs i.e. everything that has no
483 * pairing information (that includes the pairing counterparts).
484 */
485 cpumask_clear(&bL_switcher_removed_logical_cpus);
486 for_each_online_cpu(i) {
487 cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0);
488 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
489
490 /* Let's take note of the GIC ID for this CPU */
491 gic_id = gic_get_cpu_id(i);
492 if (gic_id < 0) {
493 pr_err("%s: bad GIC ID for CPU %d\n", __func__, i);
494 bL_switcher_restore_cpus();
495 return -EINVAL;
496 }
497 bL_gic_id[cpu][cluster] = gic_id;
498 pr_info("GIC ID for CPU %u cluster %u is %u\n",
499 cpu, cluster, gic_id);
500
501 if (bL_switcher_cpu_pairing[i] != -1) {
502 bL_switcher_cpu_original_cluster[i] = cluster;
503 continue;
504 }
505
506 ret = cpu_down(i);
507 if (ret) {
508 bL_switcher_restore_cpus();
509 return ret;
510 }
511 cpumask_set_cpu(i, &bL_switcher_removed_logical_cpus);
512 }
513
514 return 0;
515 }
516
517 static int bL_switcher_enable(void)
518 {
519 int cpu, ret;
520
521 mutex_lock(&bL_switcher_activation_lock);
522 cpu_hotplug_driver_lock();
523 if (bL_switcher_active) {
524 cpu_hotplug_driver_unlock();
525 mutex_unlock(&bL_switcher_activation_lock);
526 return 0;
527 }
528
529 pr_info("big.LITTLE switcher initializing\n");
530
531 ret = bL_activation_notify(BL_NOTIFY_PRE_ENABLE);
532 if (ret)
533 goto error;
534
535 ret = bL_switcher_halve_cpus();
536 if (ret)
537 goto error;
538
539 for_each_online_cpu(cpu) {
540 struct bL_thread *t = &bL_threads[cpu];
541 spin_lock_init(&t->lock);
542 init_waitqueue_head(&t->wq);
543 init_completion(&t->started);
544 t->wanted_cluster = -1;
545 t->task = bL_switcher_thread_create(cpu, t);
546 }
547
548 bL_switcher_active = 1;
549 bL_activation_notify(BL_NOTIFY_POST_ENABLE);
550 pr_info("big.LITTLE switcher initialized\n");
551 goto out;
552
553 error:
554 pr_warn("big.LITTLE switcher initialization failed\n");
555 bL_activation_notify(BL_NOTIFY_POST_DISABLE);
556
557 out:
558 cpu_hotplug_driver_unlock();
559 mutex_unlock(&bL_switcher_activation_lock);
560 return ret;
561 }
562
563 #ifdef CONFIG_SYSFS
564
565 static void bL_switcher_disable(void)
566 {
567 unsigned int cpu, cluster;
568 struct bL_thread *t;
569 struct task_struct *task;
570
571 mutex_lock(&bL_switcher_activation_lock);
572 cpu_hotplug_driver_lock();
573
574 if (!bL_switcher_active)
575 goto out;
576
577 if (bL_activation_notify(BL_NOTIFY_PRE_DISABLE) != 0) {
578 bL_activation_notify(BL_NOTIFY_POST_ENABLE);
579 goto out;
580 }
581
582 bL_switcher_active = 0;
583
584 /*
585 * To deactivate the switcher, we must shut down the switcher
586 * threads to prevent any other requests from being accepted.
587 * Then, if the final cluster for given logical CPU is not the
588 * same as the original one, we'll recreate a switcher thread
589 * just for the purpose of switching the CPU back without any
590 * possibility for interference from external requests.
591 */
592 for_each_online_cpu(cpu) {
593 t = &bL_threads[cpu];
594 task = t->task;
595 t->task = NULL;
596 if (!task || IS_ERR(task))
597 continue;
598 kthread_stop(task);
599 /* no more switch may happen on this CPU at this point */
600 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1);
601 if (cluster == bL_switcher_cpu_original_cluster[cpu])
602 continue;
603 init_completion(&t->started);
604 t->wanted_cluster = bL_switcher_cpu_original_cluster[cpu];
605 task = bL_switcher_thread_create(cpu, t);
606 if (!IS_ERR(task)) {
607 wait_for_completion(&t->started);
608 kthread_stop(task);
609 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1);
610 if (cluster == bL_switcher_cpu_original_cluster[cpu])
611 continue;
612 }
613 /* If execution gets here, we're in trouble. */
614 pr_crit("%s: unable to restore original cluster for CPU %d\n",
615 __func__, cpu);
616 pr_crit("%s: CPU %d can't be restored\n",
617 __func__, bL_switcher_cpu_pairing[cpu]);
618 cpumask_clear_cpu(bL_switcher_cpu_pairing[cpu],
619 &bL_switcher_removed_logical_cpus);
620 }
621
622 bL_switcher_restore_cpus();
623 bL_activation_notify(BL_NOTIFY_POST_DISABLE);
624
625 out:
626 cpu_hotplug_driver_unlock();
627 mutex_unlock(&bL_switcher_activation_lock);
628 }
629
630 static ssize_t bL_switcher_active_show(struct kobject *kobj,
631 struct kobj_attribute *attr, char *buf)
632 {
633 return sprintf(buf, "%u\n", bL_switcher_active);
634 }
635
636 static ssize_t bL_switcher_active_store(struct kobject *kobj,
637 struct kobj_attribute *attr, const char *buf, size_t count)
638 {
639 int ret;
640
641 switch (buf[0]) {
642 case '0':
643 bL_switcher_disable();
644 ret = 0;
645 break;
646 case '1':
647 ret = bL_switcher_enable();
648 break;
649 default:
650 ret = -EINVAL;
651 }
652
653 return (ret >= 0) ? count : ret;
654 }
655
656 static struct kobj_attribute bL_switcher_active_attr =
657 __ATTR(active, 0644, bL_switcher_active_show, bL_switcher_active_store);
658
659 static struct attribute *bL_switcher_attrs[] = {
660 &bL_switcher_active_attr.attr,
661 NULL,
662 };
663
664 static struct attribute_group bL_switcher_attr_group = {
665 .attrs = bL_switcher_attrs,
666 };
667
668 static struct kobject *bL_switcher_kobj;
669
670 static int __init bL_switcher_sysfs_init(void)
671 {
672 int ret;
673
674 bL_switcher_kobj = kobject_create_and_add("bL_switcher", kernel_kobj);
675 if (!bL_switcher_kobj)
676 return -ENOMEM;
677 ret = sysfs_create_group(bL_switcher_kobj, &bL_switcher_attr_group);
678 if (ret)
679 kobject_put(bL_switcher_kobj);
680 return ret;
681 }
682
683 #endif /* CONFIG_SYSFS */
684
685 bool bL_switcher_get_enabled(void)
686 {
687 mutex_lock(&bL_switcher_activation_lock);
688
689 return bL_switcher_active;
690 }
691 EXPORT_SYMBOL_GPL(bL_switcher_get_enabled);
692
693 void bL_switcher_put_enabled(void)
694 {
695 mutex_unlock(&bL_switcher_activation_lock);
696 }
697 EXPORT_SYMBOL_GPL(bL_switcher_put_enabled);
698
699 /*
700 * Veto any CPU hotplug operation on those CPUs we've removed
701 * while the switcher is active.
702 * We're just not ready to deal with that given the trickery involved.
703 */
704 static int bL_switcher_hotplug_callback(struct notifier_block *nfb,
705 unsigned long action, void *hcpu)
706 {
707 if (bL_switcher_active) {
708 int pairing = bL_switcher_cpu_pairing[(unsigned long)hcpu];
709 switch (action & 0xf) {
710 case CPU_UP_PREPARE:
711 case CPU_DOWN_PREPARE:
712 if (pairing == -1)
713 return NOTIFY_BAD;
714 }
715 }
716 return NOTIFY_DONE;
717 }
718
719 static bool no_bL_switcher;
720 core_param(no_bL_switcher, no_bL_switcher, bool, 0644);
721
722 static int __init bL_switcher_init(void)
723 {
724 int ret;
725
726 if (MAX_NR_CLUSTERS != 2) {
727 pr_err("%s: only dual cluster systems are supported\n", __func__);
728 return -EINVAL;
729 }
730
731 cpu_notifier(bL_switcher_hotplug_callback, 0);
732
733 if (!no_bL_switcher) {
734 ret = bL_switcher_enable();
735 if (ret)
736 return ret;
737 }
738
739 #ifdef CONFIG_SYSFS
740 ret = bL_switcher_sysfs_init();
741 if (ret)
742 pr_err("%s: unable to create sysfs entry\n", __func__);
743 #endif
744
745 return 0;
746 }
747
748 late_initcall(bL_switcher_init);
This page took 0.075075 seconds and 6 git commands to generate.