regulator: da9063: Add missing initialization of da9063_reg_matches
[deliverable/linux.git] / arch / arm / common / edma.c
1 /*
2 * EDMA3 support for DaVinci
3 *
4 * Copyright (C) 2006-2009 Texas Instruments.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20 #include <linux/err.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/platform_device.h>
26 #include <linux/io.h>
27 #include <linux/slab.h>
28 #include <linux/edma.h>
29 #include <linux/of_address.h>
30 #include <linux/of_device.h>
31 #include <linux/of_dma.h>
32 #include <linux/of_irq.h>
33 #include <linux/pm_runtime.h>
34
35 #include <linux/platform_data/edma.h>
36
37 /* Offsets matching "struct edmacc_param" */
38 #define PARM_OPT 0x00
39 #define PARM_SRC 0x04
40 #define PARM_A_B_CNT 0x08
41 #define PARM_DST 0x0c
42 #define PARM_SRC_DST_BIDX 0x10
43 #define PARM_LINK_BCNTRLD 0x14
44 #define PARM_SRC_DST_CIDX 0x18
45 #define PARM_CCNT 0x1c
46
47 #define PARM_SIZE 0x20
48
49 /* Offsets for EDMA CC global channel registers and their shadows */
50 #define SH_ER 0x00 /* 64 bits */
51 #define SH_ECR 0x08 /* 64 bits */
52 #define SH_ESR 0x10 /* 64 bits */
53 #define SH_CER 0x18 /* 64 bits */
54 #define SH_EER 0x20 /* 64 bits */
55 #define SH_EECR 0x28 /* 64 bits */
56 #define SH_EESR 0x30 /* 64 bits */
57 #define SH_SER 0x38 /* 64 bits */
58 #define SH_SECR 0x40 /* 64 bits */
59 #define SH_IER 0x50 /* 64 bits */
60 #define SH_IECR 0x58 /* 64 bits */
61 #define SH_IESR 0x60 /* 64 bits */
62 #define SH_IPR 0x68 /* 64 bits */
63 #define SH_ICR 0x70 /* 64 bits */
64 #define SH_IEVAL 0x78
65 #define SH_QER 0x80
66 #define SH_QEER 0x84
67 #define SH_QEECR 0x88
68 #define SH_QEESR 0x8c
69 #define SH_QSER 0x90
70 #define SH_QSECR 0x94
71 #define SH_SIZE 0x200
72
73 /* Offsets for EDMA CC global registers */
74 #define EDMA_REV 0x0000
75 #define EDMA_CCCFG 0x0004
76 #define EDMA_QCHMAP 0x0200 /* 8 registers */
77 #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
78 #define EDMA_QDMAQNUM 0x0260
79 #define EDMA_QUETCMAP 0x0280
80 #define EDMA_QUEPRI 0x0284
81 #define EDMA_EMR 0x0300 /* 64 bits */
82 #define EDMA_EMCR 0x0308 /* 64 bits */
83 #define EDMA_QEMR 0x0310
84 #define EDMA_QEMCR 0x0314
85 #define EDMA_CCERR 0x0318
86 #define EDMA_CCERRCLR 0x031c
87 #define EDMA_EEVAL 0x0320
88 #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
89 #define EDMA_QRAE 0x0380 /* 4 registers */
90 #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
91 #define EDMA_QSTAT 0x0600 /* 2 registers */
92 #define EDMA_QWMTHRA 0x0620
93 #define EDMA_QWMTHRB 0x0624
94 #define EDMA_CCSTAT 0x0640
95
96 #define EDMA_M 0x1000 /* global channel registers */
97 #define EDMA_ECR 0x1008
98 #define EDMA_ECRH 0x100C
99 #define EDMA_SHADOW0 0x2000 /* 4 regions shadowing global channels */
100 #define EDMA_PARM 0x4000 /* 128 param entries */
101
102 #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
103
104 #define EDMA_DCHMAP 0x0100 /* 64 registers */
105 #define CHMAP_EXIST BIT(24)
106
107 #define EDMA_MAX_DMACH 64
108 #define EDMA_MAX_PARAMENTRY 512
109
110 /*****************************************************************************/
111
112 static void __iomem *edmacc_regs_base[EDMA_MAX_CC];
113
114 static inline unsigned int edma_read(unsigned ctlr, int offset)
115 {
116 return (unsigned int)__raw_readl(edmacc_regs_base[ctlr] + offset);
117 }
118
119 static inline void edma_write(unsigned ctlr, int offset, int val)
120 {
121 __raw_writel(val, edmacc_regs_base[ctlr] + offset);
122 }
123 static inline void edma_modify(unsigned ctlr, int offset, unsigned and,
124 unsigned or)
125 {
126 unsigned val = edma_read(ctlr, offset);
127 val &= and;
128 val |= or;
129 edma_write(ctlr, offset, val);
130 }
131 static inline void edma_and(unsigned ctlr, int offset, unsigned and)
132 {
133 unsigned val = edma_read(ctlr, offset);
134 val &= and;
135 edma_write(ctlr, offset, val);
136 }
137 static inline void edma_or(unsigned ctlr, int offset, unsigned or)
138 {
139 unsigned val = edma_read(ctlr, offset);
140 val |= or;
141 edma_write(ctlr, offset, val);
142 }
143 static inline unsigned int edma_read_array(unsigned ctlr, int offset, int i)
144 {
145 return edma_read(ctlr, offset + (i << 2));
146 }
147 static inline void edma_write_array(unsigned ctlr, int offset, int i,
148 unsigned val)
149 {
150 edma_write(ctlr, offset + (i << 2), val);
151 }
152 static inline void edma_modify_array(unsigned ctlr, int offset, int i,
153 unsigned and, unsigned or)
154 {
155 edma_modify(ctlr, offset + (i << 2), and, or);
156 }
157 static inline void edma_or_array(unsigned ctlr, int offset, int i, unsigned or)
158 {
159 edma_or(ctlr, offset + (i << 2), or);
160 }
161 static inline void edma_or_array2(unsigned ctlr, int offset, int i, int j,
162 unsigned or)
163 {
164 edma_or(ctlr, offset + ((i*2 + j) << 2), or);
165 }
166 static inline void edma_write_array2(unsigned ctlr, int offset, int i, int j,
167 unsigned val)
168 {
169 edma_write(ctlr, offset + ((i*2 + j) << 2), val);
170 }
171 static inline unsigned int edma_shadow0_read(unsigned ctlr, int offset)
172 {
173 return edma_read(ctlr, EDMA_SHADOW0 + offset);
174 }
175 static inline unsigned int edma_shadow0_read_array(unsigned ctlr, int offset,
176 int i)
177 {
178 return edma_read(ctlr, EDMA_SHADOW0 + offset + (i << 2));
179 }
180 static inline void edma_shadow0_write(unsigned ctlr, int offset, unsigned val)
181 {
182 edma_write(ctlr, EDMA_SHADOW0 + offset, val);
183 }
184 static inline void edma_shadow0_write_array(unsigned ctlr, int offset, int i,
185 unsigned val)
186 {
187 edma_write(ctlr, EDMA_SHADOW0 + offset + (i << 2), val);
188 }
189 static inline unsigned int edma_parm_read(unsigned ctlr, int offset,
190 int param_no)
191 {
192 return edma_read(ctlr, EDMA_PARM + offset + (param_no << 5));
193 }
194 static inline void edma_parm_write(unsigned ctlr, int offset, int param_no,
195 unsigned val)
196 {
197 edma_write(ctlr, EDMA_PARM + offset + (param_no << 5), val);
198 }
199 static inline void edma_parm_modify(unsigned ctlr, int offset, int param_no,
200 unsigned and, unsigned or)
201 {
202 edma_modify(ctlr, EDMA_PARM + offset + (param_no << 5), and, or);
203 }
204 static inline void edma_parm_and(unsigned ctlr, int offset, int param_no,
205 unsigned and)
206 {
207 edma_and(ctlr, EDMA_PARM + offset + (param_no << 5), and);
208 }
209 static inline void edma_parm_or(unsigned ctlr, int offset, int param_no,
210 unsigned or)
211 {
212 edma_or(ctlr, EDMA_PARM + offset + (param_no << 5), or);
213 }
214
215 static inline void set_bits(int offset, int len, unsigned long *p)
216 {
217 for (; len > 0; len--)
218 set_bit(offset + (len - 1), p);
219 }
220
221 static inline void clear_bits(int offset, int len, unsigned long *p)
222 {
223 for (; len > 0; len--)
224 clear_bit(offset + (len - 1), p);
225 }
226
227 /*****************************************************************************/
228
229 /* actual number of DMA channels and slots on this silicon */
230 struct edma {
231 /* how many dma resources of each type */
232 unsigned num_channels;
233 unsigned num_region;
234 unsigned num_slots;
235 unsigned num_tc;
236 unsigned num_cc;
237 enum dma_event_q default_queue;
238
239 /* list of channels with no even trigger; terminated by "-1" */
240 const s8 *noevent;
241
242 /* The edma_inuse bit for each PaRAM slot is clear unless the
243 * channel is in use ... by ARM or DSP, for QDMA, or whatever.
244 */
245 DECLARE_BITMAP(edma_inuse, EDMA_MAX_PARAMENTRY);
246
247 /* The edma_unused bit for each channel is clear unless
248 * it is not being used on this platform. It uses a bit
249 * of SOC-specific initialization code.
250 */
251 DECLARE_BITMAP(edma_unused, EDMA_MAX_DMACH);
252
253 unsigned irq_res_start;
254 unsigned irq_res_end;
255
256 struct dma_interrupt_data {
257 void (*callback)(unsigned channel, unsigned short ch_status,
258 void *data);
259 void *data;
260 } intr_data[EDMA_MAX_DMACH];
261 };
262
263 static struct edma *edma_cc[EDMA_MAX_CC];
264 static int arch_num_cc;
265
266 /* dummy param set used to (re)initialize parameter RAM slots */
267 static const struct edmacc_param dummy_paramset = {
268 .link_bcntrld = 0xffff,
269 .ccnt = 1,
270 };
271
272 /*****************************************************************************/
273
274 static void map_dmach_queue(unsigned ctlr, unsigned ch_no,
275 enum dma_event_q queue_no)
276 {
277 int bit = (ch_no & 0x7) * 4;
278
279 /* default to low priority queue */
280 if (queue_no == EVENTQ_DEFAULT)
281 queue_no = edma_cc[ctlr]->default_queue;
282
283 queue_no &= 7;
284 edma_modify_array(ctlr, EDMA_DMAQNUM, (ch_no >> 3),
285 ~(0x7 << bit), queue_no << bit);
286 }
287
288 static void __init map_queue_tc(unsigned ctlr, int queue_no, int tc_no)
289 {
290 int bit = queue_no * 4;
291 edma_modify(ctlr, EDMA_QUETCMAP, ~(0x7 << bit), ((tc_no & 0x7) << bit));
292 }
293
294 static void __init assign_priority_to_queue(unsigned ctlr, int queue_no,
295 int priority)
296 {
297 int bit = queue_no * 4;
298 edma_modify(ctlr, EDMA_QUEPRI, ~(0x7 << bit),
299 ((priority & 0x7) << bit));
300 }
301
302 /**
303 * map_dmach_param - Maps channel number to param entry number
304 *
305 * This maps the dma channel number to param entry numberter. In
306 * other words using the DMA channel mapping registers a param entry
307 * can be mapped to any channel
308 *
309 * Callers are responsible for ensuring the channel mapping logic is
310 * included in that particular EDMA variant (Eg : dm646x)
311 *
312 */
313 static void __init map_dmach_param(unsigned ctlr)
314 {
315 int i;
316 for (i = 0; i < EDMA_MAX_DMACH; i++)
317 edma_write_array(ctlr, EDMA_DCHMAP , i , (i << 5));
318 }
319
320 static inline void
321 setup_dma_interrupt(unsigned lch,
322 void (*callback)(unsigned channel, u16 ch_status, void *data),
323 void *data)
324 {
325 unsigned ctlr;
326
327 ctlr = EDMA_CTLR(lch);
328 lch = EDMA_CHAN_SLOT(lch);
329
330 if (!callback)
331 edma_shadow0_write_array(ctlr, SH_IECR, lch >> 5,
332 BIT(lch & 0x1f));
333
334 edma_cc[ctlr]->intr_data[lch].callback = callback;
335 edma_cc[ctlr]->intr_data[lch].data = data;
336
337 if (callback) {
338 edma_shadow0_write_array(ctlr, SH_ICR, lch >> 5,
339 BIT(lch & 0x1f));
340 edma_shadow0_write_array(ctlr, SH_IESR, lch >> 5,
341 BIT(lch & 0x1f));
342 }
343 }
344
345 static int irq2ctlr(int irq)
346 {
347 if (irq >= edma_cc[0]->irq_res_start && irq <= edma_cc[0]->irq_res_end)
348 return 0;
349 else if (irq >= edma_cc[1]->irq_res_start &&
350 irq <= edma_cc[1]->irq_res_end)
351 return 1;
352
353 return -1;
354 }
355
356 /******************************************************************************
357 *
358 * DMA interrupt handler
359 *
360 *****************************************************************************/
361 static irqreturn_t dma_irq_handler(int irq, void *data)
362 {
363 int ctlr;
364 u32 sh_ier;
365 u32 sh_ipr;
366 u32 bank;
367
368 ctlr = irq2ctlr(irq);
369 if (ctlr < 0)
370 return IRQ_NONE;
371
372 dev_dbg(data, "dma_irq_handler\n");
373
374 sh_ipr = edma_shadow0_read_array(ctlr, SH_IPR, 0);
375 if (!sh_ipr) {
376 sh_ipr = edma_shadow0_read_array(ctlr, SH_IPR, 1);
377 if (!sh_ipr)
378 return IRQ_NONE;
379 sh_ier = edma_shadow0_read_array(ctlr, SH_IER, 1);
380 bank = 1;
381 } else {
382 sh_ier = edma_shadow0_read_array(ctlr, SH_IER, 0);
383 bank = 0;
384 }
385
386 do {
387 u32 slot;
388 u32 channel;
389
390 dev_dbg(data, "IPR%d %08x\n", bank, sh_ipr);
391
392 slot = __ffs(sh_ipr);
393 sh_ipr &= ~(BIT(slot));
394
395 if (sh_ier & BIT(slot)) {
396 channel = (bank << 5) | slot;
397 /* Clear the corresponding IPR bits */
398 edma_shadow0_write_array(ctlr, SH_ICR, bank,
399 BIT(slot));
400 if (edma_cc[ctlr]->intr_data[channel].callback)
401 edma_cc[ctlr]->intr_data[channel].callback(
402 channel, DMA_COMPLETE,
403 edma_cc[ctlr]->intr_data[channel].data);
404 }
405 } while (sh_ipr);
406
407 edma_shadow0_write(ctlr, SH_IEVAL, 1);
408 return IRQ_HANDLED;
409 }
410
411 /******************************************************************************
412 *
413 * DMA error interrupt handler
414 *
415 *****************************************************************************/
416 static irqreturn_t dma_ccerr_handler(int irq, void *data)
417 {
418 int i;
419 int ctlr;
420 unsigned int cnt = 0;
421
422 ctlr = irq2ctlr(irq);
423 if (ctlr < 0)
424 return IRQ_NONE;
425
426 dev_dbg(data, "dma_ccerr_handler\n");
427
428 if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
429 (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
430 (edma_read(ctlr, EDMA_QEMR) == 0) &&
431 (edma_read(ctlr, EDMA_CCERR) == 0))
432 return IRQ_NONE;
433
434 while (1) {
435 int j = -1;
436 if (edma_read_array(ctlr, EDMA_EMR, 0))
437 j = 0;
438 else if (edma_read_array(ctlr, EDMA_EMR, 1))
439 j = 1;
440 if (j >= 0) {
441 dev_dbg(data, "EMR%d %08x\n", j,
442 edma_read_array(ctlr, EDMA_EMR, j));
443 for (i = 0; i < 32; i++) {
444 int k = (j << 5) + i;
445 if (edma_read_array(ctlr, EDMA_EMR, j) &
446 BIT(i)) {
447 /* Clear the corresponding EMR bits */
448 edma_write_array(ctlr, EDMA_EMCR, j,
449 BIT(i));
450 /* Clear any SER */
451 edma_shadow0_write_array(ctlr, SH_SECR,
452 j, BIT(i));
453 if (edma_cc[ctlr]->intr_data[k].
454 callback) {
455 edma_cc[ctlr]->intr_data[k].
456 callback(k,
457 DMA_CC_ERROR,
458 edma_cc[ctlr]->intr_data
459 [k].data);
460 }
461 }
462 }
463 } else if (edma_read(ctlr, EDMA_QEMR)) {
464 dev_dbg(data, "QEMR %02x\n",
465 edma_read(ctlr, EDMA_QEMR));
466 for (i = 0; i < 8; i++) {
467 if (edma_read(ctlr, EDMA_QEMR) & BIT(i)) {
468 /* Clear the corresponding IPR bits */
469 edma_write(ctlr, EDMA_QEMCR, BIT(i));
470 edma_shadow0_write(ctlr, SH_QSECR,
471 BIT(i));
472
473 /* NOTE: not reported!! */
474 }
475 }
476 } else if (edma_read(ctlr, EDMA_CCERR)) {
477 dev_dbg(data, "CCERR %08x\n",
478 edma_read(ctlr, EDMA_CCERR));
479 /* FIXME: CCERR.BIT(16) ignored! much better
480 * to just write CCERRCLR with CCERR value...
481 */
482 for (i = 0; i < 8; i++) {
483 if (edma_read(ctlr, EDMA_CCERR) & BIT(i)) {
484 /* Clear the corresponding IPR bits */
485 edma_write(ctlr, EDMA_CCERRCLR, BIT(i));
486
487 /* NOTE: not reported!! */
488 }
489 }
490 }
491 if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
492 (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
493 (edma_read(ctlr, EDMA_QEMR) == 0) &&
494 (edma_read(ctlr, EDMA_CCERR) == 0))
495 break;
496 cnt++;
497 if (cnt > 10)
498 break;
499 }
500 edma_write(ctlr, EDMA_EEVAL, 1);
501 return IRQ_HANDLED;
502 }
503
504 static int reserve_contiguous_slots(int ctlr, unsigned int id,
505 unsigned int num_slots,
506 unsigned int start_slot)
507 {
508 int i, j;
509 unsigned int count = num_slots;
510 int stop_slot = start_slot;
511 DECLARE_BITMAP(tmp_inuse, EDMA_MAX_PARAMENTRY);
512
513 for (i = start_slot; i < edma_cc[ctlr]->num_slots; ++i) {
514 j = EDMA_CHAN_SLOT(i);
515 if (!test_and_set_bit(j, edma_cc[ctlr]->edma_inuse)) {
516 /* Record our current beginning slot */
517 if (count == num_slots)
518 stop_slot = i;
519
520 count--;
521 set_bit(j, tmp_inuse);
522
523 if (count == 0)
524 break;
525 } else {
526 clear_bit(j, tmp_inuse);
527
528 if (id == EDMA_CONT_PARAMS_FIXED_EXACT) {
529 stop_slot = i;
530 break;
531 } else {
532 count = num_slots;
533 }
534 }
535 }
536
537 /*
538 * We have to clear any bits that we set
539 * if we run out parameter RAM slots, i.e we do find a set
540 * of contiguous parameter RAM slots but do not find the exact number
541 * requested as we may reach the total number of parameter RAM slots
542 */
543 if (i == edma_cc[ctlr]->num_slots)
544 stop_slot = i;
545
546 j = start_slot;
547 for_each_set_bit_from(j, tmp_inuse, stop_slot)
548 clear_bit(j, edma_cc[ctlr]->edma_inuse);
549
550 if (count)
551 return -EBUSY;
552
553 for (j = i - num_slots + 1; j <= i; ++j)
554 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(j),
555 &dummy_paramset, PARM_SIZE);
556
557 return EDMA_CTLR_CHAN(ctlr, i - num_slots + 1);
558 }
559
560 static int prepare_unused_channel_list(struct device *dev, void *data)
561 {
562 struct platform_device *pdev = to_platform_device(dev);
563 int i, ctlr;
564
565 for (i = 0; i < pdev->num_resources; i++) {
566 if ((pdev->resource[i].flags & IORESOURCE_DMA) &&
567 (int)pdev->resource[i].start >= 0) {
568 ctlr = EDMA_CTLR(pdev->resource[i].start);
569 clear_bit(EDMA_CHAN_SLOT(pdev->resource[i].start),
570 edma_cc[ctlr]->edma_unused);
571 }
572 }
573
574 return 0;
575 }
576
577 /*-----------------------------------------------------------------------*/
578
579 static bool unused_chan_list_done;
580
581 /* Resource alloc/free: dma channels, parameter RAM slots */
582
583 /**
584 * edma_alloc_channel - allocate DMA channel and paired parameter RAM
585 * @channel: specific channel to allocate; negative for "any unmapped channel"
586 * @callback: optional; to be issued on DMA completion or errors
587 * @data: passed to callback
588 * @eventq_no: an EVENTQ_* constant, used to choose which Transfer
589 * Controller (TC) executes requests using this channel. Use
590 * EVENTQ_DEFAULT unless you really need a high priority queue.
591 *
592 * This allocates a DMA channel and its associated parameter RAM slot.
593 * The parameter RAM is initialized to hold a dummy transfer.
594 *
595 * Normal use is to pass a specific channel number as @channel, to make
596 * use of hardware events mapped to that channel. When the channel will
597 * be used only for software triggering or event chaining, channels not
598 * mapped to hardware events (or mapped to unused events) are preferable.
599 *
600 * DMA transfers start from a channel using edma_start(), or by
601 * chaining. When the transfer described in that channel's parameter RAM
602 * slot completes, that slot's data may be reloaded through a link.
603 *
604 * DMA errors are only reported to the @callback associated with the
605 * channel driving that transfer, but transfer completion callbacks can
606 * be sent to another channel under control of the TCC field in
607 * the option word of the transfer's parameter RAM set. Drivers must not
608 * use DMA transfer completion callbacks for channels they did not allocate.
609 * (The same applies to TCC codes used in transfer chaining.)
610 *
611 * Returns the number of the channel, else negative errno.
612 */
613 int edma_alloc_channel(int channel,
614 void (*callback)(unsigned channel, u16 ch_status, void *data),
615 void *data,
616 enum dma_event_q eventq_no)
617 {
618 unsigned i, done = 0, ctlr = 0;
619 int ret = 0;
620
621 if (!unused_chan_list_done) {
622 /*
623 * Scan all the platform devices to find out the EDMA channels
624 * used and clear them in the unused list, making the rest
625 * available for ARM usage.
626 */
627 ret = bus_for_each_dev(&platform_bus_type, NULL, NULL,
628 prepare_unused_channel_list);
629 if (ret < 0)
630 return ret;
631
632 unused_chan_list_done = true;
633 }
634
635 if (channel >= 0) {
636 ctlr = EDMA_CTLR(channel);
637 channel = EDMA_CHAN_SLOT(channel);
638 }
639
640 if (channel < 0) {
641 for (i = 0; i < arch_num_cc; i++) {
642 channel = 0;
643 for (;;) {
644 channel = find_next_bit(edma_cc[i]->edma_unused,
645 edma_cc[i]->num_channels,
646 channel);
647 if (channel == edma_cc[i]->num_channels)
648 break;
649 if (!test_and_set_bit(channel,
650 edma_cc[i]->edma_inuse)) {
651 done = 1;
652 ctlr = i;
653 break;
654 }
655 channel++;
656 }
657 if (done)
658 break;
659 }
660 if (!done)
661 return -ENOMEM;
662 } else if (channel >= edma_cc[ctlr]->num_channels) {
663 return -EINVAL;
664 } else if (test_and_set_bit(channel, edma_cc[ctlr]->edma_inuse)) {
665 return -EBUSY;
666 }
667
668 /* ensure access through shadow region 0 */
669 edma_or_array2(ctlr, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
670
671 /* ensure no events are pending */
672 edma_stop(EDMA_CTLR_CHAN(ctlr, channel));
673 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
674 &dummy_paramset, PARM_SIZE);
675
676 if (callback)
677 setup_dma_interrupt(EDMA_CTLR_CHAN(ctlr, channel),
678 callback, data);
679
680 map_dmach_queue(ctlr, channel, eventq_no);
681
682 return EDMA_CTLR_CHAN(ctlr, channel);
683 }
684 EXPORT_SYMBOL(edma_alloc_channel);
685
686
687 /**
688 * edma_free_channel - deallocate DMA channel
689 * @channel: dma channel returned from edma_alloc_channel()
690 *
691 * This deallocates the DMA channel and associated parameter RAM slot
692 * allocated by edma_alloc_channel().
693 *
694 * Callers are responsible for ensuring the channel is inactive, and
695 * will not be reactivated by linking, chaining, or software calls to
696 * edma_start().
697 */
698 void edma_free_channel(unsigned channel)
699 {
700 unsigned ctlr;
701
702 ctlr = EDMA_CTLR(channel);
703 channel = EDMA_CHAN_SLOT(channel);
704
705 if (channel >= edma_cc[ctlr]->num_channels)
706 return;
707
708 setup_dma_interrupt(channel, NULL, NULL);
709 /* REVISIT should probably take out of shadow region 0 */
710
711 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
712 &dummy_paramset, PARM_SIZE);
713 clear_bit(channel, edma_cc[ctlr]->edma_inuse);
714 }
715 EXPORT_SYMBOL(edma_free_channel);
716
717 /**
718 * edma_alloc_slot - allocate DMA parameter RAM
719 * @slot: specific slot to allocate; negative for "any unused slot"
720 *
721 * This allocates a parameter RAM slot, initializing it to hold a
722 * dummy transfer. Slots allocated using this routine have not been
723 * mapped to a hardware DMA channel, and will normally be used by
724 * linking to them from a slot associated with a DMA channel.
725 *
726 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
727 * slots may be allocated on behalf of DSP firmware.
728 *
729 * Returns the number of the slot, else negative errno.
730 */
731 int edma_alloc_slot(unsigned ctlr, int slot)
732 {
733 if (!edma_cc[ctlr])
734 return -EINVAL;
735
736 if (slot >= 0)
737 slot = EDMA_CHAN_SLOT(slot);
738
739 if (slot < 0) {
740 slot = edma_cc[ctlr]->num_channels;
741 for (;;) {
742 slot = find_next_zero_bit(edma_cc[ctlr]->edma_inuse,
743 edma_cc[ctlr]->num_slots, slot);
744 if (slot == edma_cc[ctlr]->num_slots)
745 return -ENOMEM;
746 if (!test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse))
747 break;
748 }
749 } else if (slot < edma_cc[ctlr]->num_channels ||
750 slot >= edma_cc[ctlr]->num_slots) {
751 return -EINVAL;
752 } else if (test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse)) {
753 return -EBUSY;
754 }
755
756 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
757 &dummy_paramset, PARM_SIZE);
758
759 return EDMA_CTLR_CHAN(ctlr, slot);
760 }
761 EXPORT_SYMBOL(edma_alloc_slot);
762
763 /**
764 * edma_free_slot - deallocate DMA parameter RAM
765 * @slot: parameter RAM slot returned from edma_alloc_slot()
766 *
767 * This deallocates the parameter RAM slot allocated by edma_alloc_slot().
768 * Callers are responsible for ensuring the slot is inactive, and will
769 * not be activated.
770 */
771 void edma_free_slot(unsigned slot)
772 {
773 unsigned ctlr;
774
775 ctlr = EDMA_CTLR(slot);
776 slot = EDMA_CHAN_SLOT(slot);
777
778 if (slot < edma_cc[ctlr]->num_channels ||
779 slot >= edma_cc[ctlr]->num_slots)
780 return;
781
782 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
783 &dummy_paramset, PARM_SIZE);
784 clear_bit(slot, edma_cc[ctlr]->edma_inuse);
785 }
786 EXPORT_SYMBOL(edma_free_slot);
787
788
789 /**
790 * edma_alloc_cont_slots- alloc contiguous parameter RAM slots
791 * The API will return the starting point of a set of
792 * contiguous parameter RAM slots that have been requested
793 *
794 * @id: can only be EDMA_CONT_PARAMS_ANY or EDMA_CONT_PARAMS_FIXED_EXACT
795 * or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
796 * @count: number of contiguous Paramter RAM slots
797 * @slot - the start value of Parameter RAM slot that should be passed if id
798 * is EDMA_CONT_PARAMS_FIXED_EXACT or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
799 *
800 * If id is EDMA_CONT_PARAMS_ANY then the API starts looking for a set of
801 * contiguous Parameter RAM slots from parameter RAM 64 in the case of
802 * DaVinci SOCs and 32 in the case of DA8xx SOCs.
803 *
804 * If id is EDMA_CONT_PARAMS_FIXED_EXACT then the API starts looking for a
805 * set of contiguous parameter RAM slots from the "slot" that is passed as an
806 * argument to the API.
807 *
808 * If id is EDMA_CONT_PARAMS_FIXED_NOT_EXACT then the API initially tries
809 * starts looking for a set of contiguous parameter RAMs from the "slot"
810 * that is passed as an argument to the API. On failure the API will try to
811 * find a set of contiguous Parameter RAM slots from the remaining Parameter
812 * RAM slots
813 */
814 int edma_alloc_cont_slots(unsigned ctlr, unsigned int id, int slot, int count)
815 {
816 /*
817 * The start slot requested should be greater than
818 * the number of channels and lesser than the total number
819 * of slots
820 */
821 if ((id != EDMA_CONT_PARAMS_ANY) &&
822 (slot < edma_cc[ctlr]->num_channels ||
823 slot >= edma_cc[ctlr]->num_slots))
824 return -EINVAL;
825
826 /*
827 * The number of parameter RAM slots requested cannot be less than 1
828 * and cannot be more than the number of slots minus the number of
829 * channels
830 */
831 if (count < 1 || count >
832 (edma_cc[ctlr]->num_slots - edma_cc[ctlr]->num_channels))
833 return -EINVAL;
834
835 switch (id) {
836 case EDMA_CONT_PARAMS_ANY:
837 return reserve_contiguous_slots(ctlr, id, count,
838 edma_cc[ctlr]->num_channels);
839 case EDMA_CONT_PARAMS_FIXED_EXACT:
840 case EDMA_CONT_PARAMS_FIXED_NOT_EXACT:
841 return reserve_contiguous_slots(ctlr, id, count, slot);
842 default:
843 return -EINVAL;
844 }
845
846 }
847 EXPORT_SYMBOL(edma_alloc_cont_slots);
848
849 /**
850 * edma_free_cont_slots - deallocate DMA parameter RAM slots
851 * @slot: first parameter RAM of a set of parameter RAM slots to be freed
852 * @count: the number of contiguous parameter RAM slots to be freed
853 *
854 * This deallocates the parameter RAM slots allocated by
855 * edma_alloc_cont_slots.
856 * Callers/applications need to keep track of sets of contiguous
857 * parameter RAM slots that have been allocated using the edma_alloc_cont_slots
858 * API.
859 * Callers are responsible for ensuring the slots are inactive, and will
860 * not be activated.
861 */
862 int edma_free_cont_slots(unsigned slot, int count)
863 {
864 unsigned ctlr, slot_to_free;
865 int i;
866
867 ctlr = EDMA_CTLR(slot);
868 slot = EDMA_CHAN_SLOT(slot);
869
870 if (slot < edma_cc[ctlr]->num_channels ||
871 slot >= edma_cc[ctlr]->num_slots ||
872 count < 1)
873 return -EINVAL;
874
875 for (i = slot; i < slot + count; ++i) {
876 ctlr = EDMA_CTLR(i);
877 slot_to_free = EDMA_CHAN_SLOT(i);
878
879 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot_to_free),
880 &dummy_paramset, PARM_SIZE);
881 clear_bit(slot_to_free, edma_cc[ctlr]->edma_inuse);
882 }
883
884 return 0;
885 }
886 EXPORT_SYMBOL(edma_free_cont_slots);
887
888 /*-----------------------------------------------------------------------*/
889
890 /* Parameter RAM operations (i) -- read/write partial slots */
891
892 /**
893 * edma_set_src - set initial DMA source address in parameter RAM slot
894 * @slot: parameter RAM slot being configured
895 * @src_port: physical address of source (memory, controller FIFO, etc)
896 * @addressMode: INCR, except in very rare cases
897 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
898 * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
899 *
900 * Note that the source address is modified during the DMA transfer
901 * according to edma_set_src_index().
902 */
903 void edma_set_src(unsigned slot, dma_addr_t src_port,
904 enum address_mode mode, enum fifo_width width)
905 {
906 unsigned ctlr;
907
908 ctlr = EDMA_CTLR(slot);
909 slot = EDMA_CHAN_SLOT(slot);
910
911 if (slot < edma_cc[ctlr]->num_slots) {
912 unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
913
914 if (mode) {
915 /* set SAM and program FWID */
916 i = (i & ~(EDMA_FWID)) | (SAM | ((width & 0x7) << 8));
917 } else {
918 /* clear SAM */
919 i &= ~SAM;
920 }
921 edma_parm_write(ctlr, PARM_OPT, slot, i);
922
923 /* set the source port address
924 in source register of param structure */
925 edma_parm_write(ctlr, PARM_SRC, slot, src_port);
926 }
927 }
928 EXPORT_SYMBOL(edma_set_src);
929
930 /**
931 * edma_set_dest - set initial DMA destination address in parameter RAM slot
932 * @slot: parameter RAM slot being configured
933 * @dest_port: physical address of destination (memory, controller FIFO, etc)
934 * @addressMode: INCR, except in very rare cases
935 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
936 * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
937 *
938 * Note that the destination address is modified during the DMA transfer
939 * according to edma_set_dest_index().
940 */
941 void edma_set_dest(unsigned slot, dma_addr_t dest_port,
942 enum address_mode mode, enum fifo_width width)
943 {
944 unsigned ctlr;
945
946 ctlr = EDMA_CTLR(slot);
947 slot = EDMA_CHAN_SLOT(slot);
948
949 if (slot < edma_cc[ctlr]->num_slots) {
950 unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
951
952 if (mode) {
953 /* set DAM and program FWID */
954 i = (i & ~(EDMA_FWID)) | (DAM | ((width & 0x7) << 8));
955 } else {
956 /* clear DAM */
957 i &= ~DAM;
958 }
959 edma_parm_write(ctlr, PARM_OPT, slot, i);
960 /* set the destination port address
961 in dest register of param structure */
962 edma_parm_write(ctlr, PARM_DST, slot, dest_port);
963 }
964 }
965 EXPORT_SYMBOL(edma_set_dest);
966
967 /**
968 * edma_get_position - returns the current transfer points
969 * @slot: parameter RAM slot being examined
970 * @src: pointer to source port position
971 * @dst: pointer to destination port position
972 *
973 * Returns current source and destination addresses for a particular
974 * parameter RAM slot. Its channel should not be active when this is called.
975 */
976 void edma_get_position(unsigned slot, dma_addr_t *src, dma_addr_t *dst)
977 {
978 struct edmacc_param temp;
979 unsigned ctlr;
980
981 ctlr = EDMA_CTLR(slot);
982 slot = EDMA_CHAN_SLOT(slot);
983
984 edma_read_slot(EDMA_CTLR_CHAN(ctlr, slot), &temp);
985 if (src != NULL)
986 *src = temp.src;
987 if (dst != NULL)
988 *dst = temp.dst;
989 }
990 EXPORT_SYMBOL(edma_get_position);
991
992 /**
993 * edma_set_src_index - configure DMA source address indexing
994 * @slot: parameter RAM slot being configured
995 * @src_bidx: byte offset between source arrays in a frame
996 * @src_cidx: byte offset between source frames in a block
997 *
998 * Offsets are specified to support either contiguous or discontiguous
999 * memory transfers, or repeated access to a hardware register, as needed.
1000 * When accessing hardware registers, both offsets are normally zero.
1001 */
1002 void edma_set_src_index(unsigned slot, s16 src_bidx, s16 src_cidx)
1003 {
1004 unsigned ctlr;
1005
1006 ctlr = EDMA_CTLR(slot);
1007 slot = EDMA_CHAN_SLOT(slot);
1008
1009 if (slot < edma_cc[ctlr]->num_slots) {
1010 edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
1011 0xffff0000, src_bidx);
1012 edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
1013 0xffff0000, src_cidx);
1014 }
1015 }
1016 EXPORT_SYMBOL(edma_set_src_index);
1017
1018 /**
1019 * edma_set_dest_index - configure DMA destination address indexing
1020 * @slot: parameter RAM slot being configured
1021 * @dest_bidx: byte offset between destination arrays in a frame
1022 * @dest_cidx: byte offset between destination frames in a block
1023 *
1024 * Offsets are specified to support either contiguous or discontiguous
1025 * memory transfers, or repeated access to a hardware register, as needed.
1026 * When accessing hardware registers, both offsets are normally zero.
1027 */
1028 void edma_set_dest_index(unsigned slot, s16 dest_bidx, s16 dest_cidx)
1029 {
1030 unsigned ctlr;
1031
1032 ctlr = EDMA_CTLR(slot);
1033 slot = EDMA_CHAN_SLOT(slot);
1034
1035 if (slot < edma_cc[ctlr]->num_slots) {
1036 edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
1037 0x0000ffff, dest_bidx << 16);
1038 edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
1039 0x0000ffff, dest_cidx << 16);
1040 }
1041 }
1042 EXPORT_SYMBOL(edma_set_dest_index);
1043
1044 /**
1045 * edma_set_transfer_params - configure DMA transfer parameters
1046 * @slot: parameter RAM slot being configured
1047 * @acnt: how many bytes per array (at least one)
1048 * @bcnt: how many arrays per frame (at least one)
1049 * @ccnt: how many frames per block (at least one)
1050 * @bcnt_rld: used only for A-Synchronized transfers; this specifies
1051 * the value to reload into bcnt when it decrements to zero
1052 * @sync_mode: ASYNC or ABSYNC
1053 *
1054 * See the EDMA3 documentation to understand how to configure and link
1055 * transfers using the fields in PaRAM slots. If you are not doing it
1056 * all at once with edma_write_slot(), you will use this routine
1057 * plus two calls each for source and destination, setting the initial
1058 * address and saying how to index that address.
1059 *
1060 * An example of an A-Synchronized transfer is a serial link using a
1061 * single word shift register. In that case, @acnt would be equal to
1062 * that word size; the serial controller issues a DMA synchronization
1063 * event to transfer each word, and memory access by the DMA transfer
1064 * controller will be word-at-a-time.
1065 *
1066 * An example of an AB-Synchronized transfer is a device using a FIFO.
1067 * In that case, @acnt equals the FIFO width and @bcnt equals its depth.
1068 * The controller with the FIFO issues DMA synchronization events when
1069 * the FIFO threshold is reached, and the DMA transfer controller will
1070 * transfer one frame to (or from) the FIFO. It will probably use
1071 * efficient burst modes to access memory.
1072 */
1073 void edma_set_transfer_params(unsigned slot,
1074 u16 acnt, u16 bcnt, u16 ccnt,
1075 u16 bcnt_rld, enum sync_dimension sync_mode)
1076 {
1077 unsigned ctlr;
1078
1079 ctlr = EDMA_CTLR(slot);
1080 slot = EDMA_CHAN_SLOT(slot);
1081
1082 if (slot < edma_cc[ctlr]->num_slots) {
1083 edma_parm_modify(ctlr, PARM_LINK_BCNTRLD, slot,
1084 0x0000ffff, bcnt_rld << 16);
1085 if (sync_mode == ASYNC)
1086 edma_parm_and(ctlr, PARM_OPT, slot, ~SYNCDIM);
1087 else
1088 edma_parm_or(ctlr, PARM_OPT, slot, SYNCDIM);
1089 /* Set the acount, bcount, ccount registers */
1090 edma_parm_write(ctlr, PARM_A_B_CNT, slot, (bcnt << 16) | acnt);
1091 edma_parm_write(ctlr, PARM_CCNT, slot, ccnt);
1092 }
1093 }
1094 EXPORT_SYMBOL(edma_set_transfer_params);
1095
1096 /**
1097 * edma_link - link one parameter RAM slot to another
1098 * @from: parameter RAM slot originating the link
1099 * @to: parameter RAM slot which is the link target
1100 *
1101 * The originating slot should not be part of any active DMA transfer.
1102 */
1103 void edma_link(unsigned from, unsigned to)
1104 {
1105 unsigned ctlr_from, ctlr_to;
1106
1107 ctlr_from = EDMA_CTLR(from);
1108 from = EDMA_CHAN_SLOT(from);
1109 ctlr_to = EDMA_CTLR(to);
1110 to = EDMA_CHAN_SLOT(to);
1111
1112 if (from >= edma_cc[ctlr_from]->num_slots)
1113 return;
1114 if (to >= edma_cc[ctlr_to]->num_slots)
1115 return;
1116 edma_parm_modify(ctlr_from, PARM_LINK_BCNTRLD, from, 0xffff0000,
1117 PARM_OFFSET(to));
1118 }
1119 EXPORT_SYMBOL(edma_link);
1120
1121 /**
1122 * edma_unlink - cut link from one parameter RAM slot
1123 * @from: parameter RAM slot originating the link
1124 *
1125 * The originating slot should not be part of any active DMA transfer.
1126 * Its link is set to 0xffff.
1127 */
1128 void edma_unlink(unsigned from)
1129 {
1130 unsigned ctlr;
1131
1132 ctlr = EDMA_CTLR(from);
1133 from = EDMA_CHAN_SLOT(from);
1134
1135 if (from >= edma_cc[ctlr]->num_slots)
1136 return;
1137 edma_parm_or(ctlr, PARM_LINK_BCNTRLD, from, 0xffff);
1138 }
1139 EXPORT_SYMBOL(edma_unlink);
1140
1141 /*-----------------------------------------------------------------------*/
1142
1143 /* Parameter RAM operations (ii) -- read/write whole parameter sets */
1144
1145 /**
1146 * edma_write_slot - write parameter RAM data for slot
1147 * @slot: number of parameter RAM slot being modified
1148 * @param: data to be written into parameter RAM slot
1149 *
1150 * Use this to assign all parameters of a transfer at once. This
1151 * allows more efficient setup of transfers than issuing multiple
1152 * calls to set up those parameters in small pieces, and provides
1153 * complete control over all transfer options.
1154 */
1155 void edma_write_slot(unsigned slot, const struct edmacc_param *param)
1156 {
1157 unsigned ctlr;
1158
1159 ctlr = EDMA_CTLR(slot);
1160 slot = EDMA_CHAN_SLOT(slot);
1161
1162 if (slot >= edma_cc[ctlr]->num_slots)
1163 return;
1164 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot), param,
1165 PARM_SIZE);
1166 }
1167 EXPORT_SYMBOL(edma_write_slot);
1168
1169 /**
1170 * edma_read_slot - read parameter RAM data from slot
1171 * @slot: number of parameter RAM slot being copied
1172 * @param: where to store copy of parameter RAM data
1173 *
1174 * Use this to read data from a parameter RAM slot, perhaps to
1175 * save them as a template for later reuse.
1176 */
1177 void edma_read_slot(unsigned slot, struct edmacc_param *param)
1178 {
1179 unsigned ctlr;
1180
1181 ctlr = EDMA_CTLR(slot);
1182 slot = EDMA_CHAN_SLOT(slot);
1183
1184 if (slot >= edma_cc[ctlr]->num_slots)
1185 return;
1186 memcpy_fromio(param, edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
1187 PARM_SIZE);
1188 }
1189 EXPORT_SYMBOL(edma_read_slot);
1190
1191 /*-----------------------------------------------------------------------*/
1192
1193 /* Various EDMA channel control operations */
1194
1195 /**
1196 * edma_pause - pause dma on a channel
1197 * @channel: on which edma_start() has been called
1198 *
1199 * This temporarily disables EDMA hardware events on the specified channel,
1200 * preventing them from triggering new transfers on its behalf
1201 */
1202 void edma_pause(unsigned channel)
1203 {
1204 unsigned ctlr;
1205
1206 ctlr = EDMA_CTLR(channel);
1207 channel = EDMA_CHAN_SLOT(channel);
1208
1209 if (channel < edma_cc[ctlr]->num_channels) {
1210 unsigned int mask = BIT(channel & 0x1f);
1211
1212 edma_shadow0_write_array(ctlr, SH_EECR, channel >> 5, mask);
1213 }
1214 }
1215 EXPORT_SYMBOL(edma_pause);
1216
1217 /**
1218 * edma_resume - resumes dma on a paused channel
1219 * @channel: on which edma_pause() has been called
1220 *
1221 * This re-enables EDMA hardware events on the specified channel.
1222 */
1223 void edma_resume(unsigned channel)
1224 {
1225 unsigned ctlr;
1226
1227 ctlr = EDMA_CTLR(channel);
1228 channel = EDMA_CHAN_SLOT(channel);
1229
1230 if (channel < edma_cc[ctlr]->num_channels) {
1231 unsigned int mask = BIT(channel & 0x1f);
1232
1233 edma_shadow0_write_array(ctlr, SH_EESR, channel >> 5, mask);
1234 }
1235 }
1236 EXPORT_SYMBOL(edma_resume);
1237
1238 int edma_trigger_channel(unsigned channel)
1239 {
1240 unsigned ctlr;
1241 unsigned int mask;
1242
1243 ctlr = EDMA_CTLR(channel);
1244 channel = EDMA_CHAN_SLOT(channel);
1245 mask = BIT(channel & 0x1f);
1246
1247 edma_shadow0_write_array(ctlr, SH_ESR, (channel >> 5), mask);
1248
1249 pr_debug("EDMA: ESR%d %08x\n", (channel >> 5),
1250 edma_shadow0_read_array(ctlr, SH_ESR, (channel >> 5)));
1251 return 0;
1252 }
1253 EXPORT_SYMBOL(edma_trigger_channel);
1254
1255 /**
1256 * edma_start - start dma on a channel
1257 * @channel: channel being activated
1258 *
1259 * Channels with event associations will be triggered by their hardware
1260 * events, and channels without such associations will be triggered by
1261 * software. (At this writing there is no interface for using software
1262 * triggers except with channels that don't support hardware triggers.)
1263 *
1264 * Returns zero on success, else negative errno.
1265 */
1266 int edma_start(unsigned channel)
1267 {
1268 unsigned ctlr;
1269
1270 ctlr = EDMA_CTLR(channel);
1271 channel = EDMA_CHAN_SLOT(channel);
1272
1273 if (channel < edma_cc[ctlr]->num_channels) {
1274 int j = channel >> 5;
1275 unsigned int mask = BIT(channel & 0x1f);
1276
1277 /* EDMA channels without event association */
1278 if (test_bit(channel, edma_cc[ctlr]->edma_unused)) {
1279 pr_debug("EDMA: ESR%d %08x\n", j,
1280 edma_shadow0_read_array(ctlr, SH_ESR, j));
1281 edma_shadow0_write_array(ctlr, SH_ESR, j, mask);
1282 return 0;
1283 }
1284
1285 /* EDMA channel with event association */
1286 pr_debug("EDMA: ER%d %08x\n", j,
1287 edma_shadow0_read_array(ctlr, SH_ER, j));
1288 /* Clear any pending event or error */
1289 edma_write_array(ctlr, EDMA_ECR, j, mask);
1290 edma_write_array(ctlr, EDMA_EMCR, j, mask);
1291 /* Clear any SER */
1292 edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1293 edma_shadow0_write_array(ctlr, SH_EESR, j, mask);
1294 pr_debug("EDMA: EER%d %08x\n", j,
1295 edma_shadow0_read_array(ctlr, SH_EER, j));
1296 return 0;
1297 }
1298
1299 return -EINVAL;
1300 }
1301 EXPORT_SYMBOL(edma_start);
1302
1303 /**
1304 * edma_stop - stops dma on the channel passed
1305 * @channel: channel being deactivated
1306 *
1307 * When @lch is a channel, any active transfer is paused and
1308 * all pending hardware events are cleared. The current transfer
1309 * may not be resumed, and the channel's Parameter RAM should be
1310 * reinitialized before being reused.
1311 */
1312 void edma_stop(unsigned channel)
1313 {
1314 unsigned ctlr;
1315
1316 ctlr = EDMA_CTLR(channel);
1317 channel = EDMA_CHAN_SLOT(channel);
1318
1319 if (channel < edma_cc[ctlr]->num_channels) {
1320 int j = channel >> 5;
1321 unsigned int mask = BIT(channel & 0x1f);
1322
1323 edma_shadow0_write_array(ctlr, SH_EECR, j, mask);
1324 edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
1325 edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1326 edma_write_array(ctlr, EDMA_EMCR, j, mask);
1327
1328 pr_debug("EDMA: EER%d %08x\n", j,
1329 edma_shadow0_read_array(ctlr, SH_EER, j));
1330
1331 /* REVISIT: consider guarding against inappropriate event
1332 * chaining by overwriting with dummy_paramset.
1333 */
1334 }
1335 }
1336 EXPORT_SYMBOL(edma_stop);
1337
1338 /******************************************************************************
1339 *
1340 * It cleans ParamEntry qand bring back EDMA to initial state if media has
1341 * been removed before EDMA has finished.It is usedful for removable media.
1342 * Arguments:
1343 * ch_no - channel no
1344 *
1345 * Return: zero on success, or corresponding error no on failure
1346 *
1347 * FIXME this should not be needed ... edma_stop() should suffice.
1348 *
1349 *****************************************************************************/
1350
1351 void edma_clean_channel(unsigned channel)
1352 {
1353 unsigned ctlr;
1354
1355 ctlr = EDMA_CTLR(channel);
1356 channel = EDMA_CHAN_SLOT(channel);
1357
1358 if (channel < edma_cc[ctlr]->num_channels) {
1359 int j = (channel >> 5);
1360 unsigned int mask = BIT(channel & 0x1f);
1361
1362 pr_debug("EDMA: EMR%d %08x\n", j,
1363 edma_read_array(ctlr, EDMA_EMR, j));
1364 edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
1365 /* Clear the corresponding EMR bits */
1366 edma_write_array(ctlr, EDMA_EMCR, j, mask);
1367 /* Clear any SER */
1368 edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1369 edma_write(ctlr, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
1370 }
1371 }
1372 EXPORT_SYMBOL(edma_clean_channel);
1373
1374 /*
1375 * edma_clear_event - clear an outstanding event on the DMA channel
1376 * Arguments:
1377 * channel - channel number
1378 */
1379 void edma_clear_event(unsigned channel)
1380 {
1381 unsigned ctlr;
1382
1383 ctlr = EDMA_CTLR(channel);
1384 channel = EDMA_CHAN_SLOT(channel);
1385
1386 if (channel >= edma_cc[ctlr]->num_channels)
1387 return;
1388 if (channel < 32)
1389 edma_write(ctlr, EDMA_ECR, BIT(channel));
1390 else
1391 edma_write(ctlr, EDMA_ECRH, BIT(channel - 32));
1392 }
1393 EXPORT_SYMBOL(edma_clear_event);
1394
1395 #if IS_ENABLED(CONFIG_OF) && IS_ENABLED(CONFIG_DMADEVICES)
1396
1397 static int edma_of_read_u32_to_s16_array(const struct device_node *np,
1398 const char *propname, s16 *out_values,
1399 size_t sz)
1400 {
1401 int ret;
1402
1403 ret = of_property_read_u16_array(np, propname, out_values, sz);
1404 if (ret)
1405 return ret;
1406
1407 /* Terminate it */
1408 *out_values++ = -1;
1409 *out_values++ = -1;
1410
1411 return 0;
1412 }
1413
1414 static int edma_xbar_event_map(struct device *dev,
1415 struct device_node *node,
1416 struct edma_soc_info *pdata, int len)
1417 {
1418 int ret, i;
1419 struct resource res;
1420 void __iomem *xbar;
1421 const s16 (*xbar_chans)[2];
1422 u32 shift, offset, mux;
1423
1424 xbar_chans = devm_kzalloc(dev,
1425 len/sizeof(s16) + 2*sizeof(s16),
1426 GFP_KERNEL);
1427 if (!xbar_chans)
1428 return -ENOMEM;
1429
1430 ret = of_address_to_resource(node, 1, &res);
1431 if (ret)
1432 return -EIO;
1433
1434 xbar = devm_ioremap(dev, res.start, resource_size(&res));
1435 if (!xbar)
1436 return -ENOMEM;
1437
1438 ret = edma_of_read_u32_to_s16_array(node,
1439 "ti,edma-xbar-event-map",
1440 (s16 *)xbar_chans,
1441 len/sizeof(u32));
1442 if (ret)
1443 return -EIO;
1444
1445 for (i = 0; xbar_chans[i][0] != -1; i++) {
1446 shift = (xbar_chans[i][1] & 0x03) << 3;
1447 offset = xbar_chans[i][1] & 0xfffffffc;
1448 mux = readl(xbar + offset);
1449 mux &= ~(0xff << shift);
1450 mux |= xbar_chans[i][0] << shift;
1451 writel(mux, (xbar + offset));
1452 }
1453
1454 pdata->xbar_chans = xbar_chans;
1455
1456 return 0;
1457 }
1458
1459 static int edma_of_parse_dt(struct device *dev,
1460 struct device_node *node,
1461 struct edma_soc_info *pdata)
1462 {
1463 int ret = 0, i;
1464 u32 value;
1465 struct property *prop;
1466 size_t sz;
1467 struct edma_rsv_info *rsv_info;
1468 s8 (*queue_tc_map)[2], (*queue_priority_map)[2];
1469
1470 memset(pdata, 0, sizeof(struct edma_soc_info));
1471
1472 ret = of_property_read_u32(node, "dma-channels", &value);
1473 if (ret < 0)
1474 return ret;
1475 pdata->n_channel = value;
1476
1477 ret = of_property_read_u32(node, "ti,edma-regions", &value);
1478 if (ret < 0)
1479 return ret;
1480 pdata->n_region = value;
1481
1482 ret = of_property_read_u32(node, "ti,edma-slots", &value);
1483 if (ret < 0)
1484 return ret;
1485 pdata->n_slot = value;
1486
1487 pdata->n_cc = 1;
1488
1489 rsv_info = devm_kzalloc(dev, sizeof(struct edma_rsv_info), GFP_KERNEL);
1490 if (!rsv_info)
1491 return -ENOMEM;
1492 pdata->rsv = rsv_info;
1493
1494 queue_tc_map = devm_kzalloc(dev, 8*sizeof(s8), GFP_KERNEL);
1495 if (!queue_tc_map)
1496 return -ENOMEM;
1497
1498 for (i = 0; i < 3; i++) {
1499 queue_tc_map[i][0] = i;
1500 queue_tc_map[i][1] = i;
1501 }
1502 queue_tc_map[i][0] = -1;
1503 queue_tc_map[i][1] = -1;
1504
1505 pdata->queue_tc_mapping = queue_tc_map;
1506
1507 queue_priority_map = devm_kzalloc(dev, 8*sizeof(s8), GFP_KERNEL);
1508 if (!queue_priority_map)
1509 return -ENOMEM;
1510
1511 for (i = 0; i < 3; i++) {
1512 queue_priority_map[i][0] = i;
1513 queue_priority_map[i][1] = i;
1514 }
1515 queue_priority_map[i][0] = -1;
1516 queue_priority_map[i][1] = -1;
1517
1518 pdata->queue_priority_mapping = queue_priority_map;
1519
1520 pdata->default_queue = 0;
1521
1522 prop = of_find_property(node, "ti,edma-xbar-event-map", &sz);
1523 if (prop)
1524 ret = edma_xbar_event_map(dev, node, pdata, sz);
1525
1526 return ret;
1527 }
1528
1529 static struct of_dma_filter_info edma_filter_info = {
1530 .filter_fn = edma_filter_fn,
1531 };
1532
1533 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
1534 struct device_node *node)
1535 {
1536 struct edma_soc_info *info;
1537 int ret;
1538
1539 info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
1540 if (!info)
1541 return ERR_PTR(-ENOMEM);
1542
1543 ret = edma_of_parse_dt(dev, node, info);
1544 if (ret)
1545 return ERR_PTR(ret);
1546
1547 dma_cap_set(DMA_SLAVE, edma_filter_info.dma_cap);
1548 of_dma_controller_register(dev->of_node, of_dma_simple_xlate,
1549 &edma_filter_info);
1550
1551 return info;
1552 }
1553 #else
1554 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
1555 struct device_node *node)
1556 {
1557 return ERR_PTR(-ENOSYS);
1558 }
1559 #endif
1560
1561 static int edma_probe(struct platform_device *pdev)
1562 {
1563 struct edma_soc_info **info = pdev->dev.platform_data;
1564 struct edma_soc_info *ninfo[EDMA_MAX_CC] = {NULL};
1565 s8 (*queue_priority_mapping)[2];
1566 s8 (*queue_tc_mapping)[2];
1567 int i, j, off, ln, found = 0;
1568 int status = -1;
1569 const s16 (*rsv_chans)[2];
1570 const s16 (*rsv_slots)[2];
1571 const s16 (*xbar_chans)[2];
1572 int irq[EDMA_MAX_CC] = {0, 0};
1573 int err_irq[EDMA_MAX_CC] = {0, 0};
1574 struct resource *r[EDMA_MAX_CC] = {NULL};
1575 struct resource res[EDMA_MAX_CC];
1576 char res_name[10];
1577 char irq_name[10];
1578 struct device_node *node = pdev->dev.of_node;
1579 struct device *dev = &pdev->dev;
1580 int ret;
1581
1582 if (node) {
1583 /* Check if this is a second instance registered */
1584 if (arch_num_cc) {
1585 dev_err(dev, "only one EDMA instance is supported via DT\n");
1586 return -ENODEV;
1587 }
1588
1589 ninfo[0] = edma_setup_info_from_dt(dev, node);
1590 if (IS_ERR(ninfo[0])) {
1591 dev_err(dev, "failed to get DT data\n");
1592 return PTR_ERR(ninfo[0]);
1593 }
1594
1595 info = ninfo;
1596 }
1597
1598 if (!info)
1599 return -ENODEV;
1600
1601 pm_runtime_enable(dev);
1602 ret = pm_runtime_get_sync(dev);
1603 if (ret < 0) {
1604 dev_err(dev, "pm_runtime_get_sync() failed\n");
1605 return ret;
1606 }
1607
1608 for (j = 0; j < EDMA_MAX_CC; j++) {
1609 if (!info[j]) {
1610 if (!found)
1611 return -ENODEV;
1612 break;
1613 }
1614 if (node) {
1615 ret = of_address_to_resource(node, j, &res[j]);
1616 if (!ret)
1617 r[j] = &res[j];
1618 } else {
1619 sprintf(res_name, "edma_cc%d", j);
1620 r[j] = platform_get_resource_byname(pdev,
1621 IORESOURCE_MEM,
1622 res_name);
1623 }
1624 if (!r[j]) {
1625 if (found)
1626 break;
1627 else
1628 return -ENODEV;
1629 } else {
1630 found = 1;
1631 }
1632
1633 edmacc_regs_base[j] = devm_ioremap_resource(&pdev->dev, r[j]);
1634 if (IS_ERR(edmacc_regs_base[j]))
1635 return PTR_ERR(edmacc_regs_base[j]);
1636
1637 edma_cc[j] = devm_kzalloc(&pdev->dev, sizeof(struct edma),
1638 GFP_KERNEL);
1639 if (!edma_cc[j])
1640 return -ENOMEM;
1641
1642 edma_cc[j]->num_channels = min_t(unsigned, info[j]->n_channel,
1643 EDMA_MAX_DMACH);
1644 edma_cc[j]->num_slots = min_t(unsigned, info[j]->n_slot,
1645 EDMA_MAX_PARAMENTRY);
1646 edma_cc[j]->num_cc = min_t(unsigned, info[j]->n_cc,
1647 EDMA_MAX_CC);
1648
1649 edma_cc[j]->default_queue = info[j]->default_queue;
1650
1651 dev_dbg(&pdev->dev, "DMA REG BASE ADDR=%p\n",
1652 edmacc_regs_base[j]);
1653
1654 for (i = 0; i < edma_cc[j]->num_slots; i++)
1655 memcpy_toio(edmacc_regs_base[j] + PARM_OFFSET(i),
1656 &dummy_paramset, PARM_SIZE);
1657
1658 /* Mark all channels as unused */
1659 memset(edma_cc[j]->edma_unused, 0xff,
1660 sizeof(edma_cc[j]->edma_unused));
1661
1662 if (info[j]->rsv) {
1663
1664 /* Clear the reserved channels in unused list */
1665 rsv_chans = info[j]->rsv->rsv_chans;
1666 if (rsv_chans) {
1667 for (i = 0; rsv_chans[i][0] != -1; i++) {
1668 off = rsv_chans[i][0];
1669 ln = rsv_chans[i][1];
1670 clear_bits(off, ln,
1671 edma_cc[j]->edma_unused);
1672 }
1673 }
1674
1675 /* Set the reserved slots in inuse list */
1676 rsv_slots = info[j]->rsv->rsv_slots;
1677 if (rsv_slots) {
1678 for (i = 0; rsv_slots[i][0] != -1; i++) {
1679 off = rsv_slots[i][0];
1680 ln = rsv_slots[i][1];
1681 set_bits(off, ln,
1682 edma_cc[j]->edma_inuse);
1683 }
1684 }
1685 }
1686
1687 /* Clear the xbar mapped channels in unused list */
1688 xbar_chans = info[j]->xbar_chans;
1689 if (xbar_chans) {
1690 for (i = 0; xbar_chans[i][1] != -1; i++) {
1691 off = xbar_chans[i][1];
1692 clear_bits(off, 1,
1693 edma_cc[j]->edma_unused);
1694 }
1695 }
1696
1697 if (node) {
1698 irq[j] = irq_of_parse_and_map(node, 0);
1699 } else {
1700 sprintf(irq_name, "edma%d", j);
1701 irq[j] = platform_get_irq_byname(pdev, irq_name);
1702 }
1703 edma_cc[j]->irq_res_start = irq[j];
1704 status = devm_request_irq(&pdev->dev, irq[j],
1705 dma_irq_handler, 0, "edma",
1706 &pdev->dev);
1707 if (status < 0) {
1708 dev_dbg(&pdev->dev,
1709 "devm_request_irq %d failed --> %d\n",
1710 irq[j], status);
1711 return status;
1712 }
1713
1714 if (node) {
1715 err_irq[j] = irq_of_parse_and_map(node, 2);
1716 } else {
1717 sprintf(irq_name, "edma%d_err", j);
1718 err_irq[j] = platform_get_irq_byname(pdev, irq_name);
1719 }
1720 edma_cc[j]->irq_res_end = err_irq[j];
1721 status = devm_request_irq(&pdev->dev, err_irq[j],
1722 dma_ccerr_handler, 0,
1723 "edma_error", &pdev->dev);
1724 if (status < 0) {
1725 dev_dbg(&pdev->dev,
1726 "devm_request_irq %d failed --> %d\n",
1727 err_irq[j], status);
1728 return status;
1729 }
1730
1731 for (i = 0; i < edma_cc[j]->num_channels; i++)
1732 map_dmach_queue(j, i, info[j]->default_queue);
1733
1734 queue_tc_mapping = info[j]->queue_tc_mapping;
1735 queue_priority_mapping = info[j]->queue_priority_mapping;
1736
1737 /* Event queue to TC mapping */
1738 for (i = 0; queue_tc_mapping[i][0] != -1; i++)
1739 map_queue_tc(j, queue_tc_mapping[i][0],
1740 queue_tc_mapping[i][1]);
1741
1742 /* Event queue priority mapping */
1743 for (i = 0; queue_priority_mapping[i][0] != -1; i++)
1744 assign_priority_to_queue(j,
1745 queue_priority_mapping[i][0],
1746 queue_priority_mapping[i][1]);
1747
1748 /* Map the channel to param entry if channel mapping logic
1749 * exist
1750 */
1751 if (edma_read(j, EDMA_CCCFG) & CHMAP_EXIST)
1752 map_dmach_param(j);
1753
1754 for (i = 0; i < info[j]->n_region; i++) {
1755 edma_write_array2(j, EDMA_DRAE, i, 0, 0x0);
1756 edma_write_array2(j, EDMA_DRAE, i, 1, 0x0);
1757 edma_write_array(j, EDMA_QRAE, i, 0x0);
1758 }
1759 arch_num_cc++;
1760 }
1761
1762 return 0;
1763 }
1764
1765 static const struct of_device_id edma_of_ids[] = {
1766 { .compatible = "ti,edma3", },
1767 {}
1768 };
1769
1770 static struct platform_driver edma_driver = {
1771 .driver = {
1772 .name = "edma",
1773 .of_match_table = edma_of_ids,
1774 },
1775 .probe = edma_probe,
1776 };
1777
1778 static int __init edma_init(void)
1779 {
1780 return platform_driver_probe(&edma_driver, edma_probe);
1781 }
1782 arch_initcall(edma_init);
1783
This page took 0.069285 seconds and 5 git commands to generate.