dma: edma: move device registration to platform code
[deliverable/linux.git] / arch / arm / common / edma.c
1 /*
2 * EDMA3 support for DaVinci
3 *
4 * Copyright (C) 2006-2009 Texas Instruments.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20 #include <linux/err.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/platform_device.h>
26 #include <linux/io.h>
27 #include <linux/slab.h>
28 #include <linux/edma.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/of_address.h>
31 #include <linux/of_device.h>
32 #include <linux/of_dma.h>
33 #include <linux/of_irq.h>
34 #include <linux/pm_runtime.h>
35
36 #include <linux/platform_data/edma.h>
37
38 /* Offsets matching "struct edmacc_param" */
39 #define PARM_OPT 0x00
40 #define PARM_SRC 0x04
41 #define PARM_A_B_CNT 0x08
42 #define PARM_DST 0x0c
43 #define PARM_SRC_DST_BIDX 0x10
44 #define PARM_LINK_BCNTRLD 0x14
45 #define PARM_SRC_DST_CIDX 0x18
46 #define PARM_CCNT 0x1c
47
48 #define PARM_SIZE 0x20
49
50 /* Offsets for EDMA CC global channel registers and their shadows */
51 #define SH_ER 0x00 /* 64 bits */
52 #define SH_ECR 0x08 /* 64 bits */
53 #define SH_ESR 0x10 /* 64 bits */
54 #define SH_CER 0x18 /* 64 bits */
55 #define SH_EER 0x20 /* 64 bits */
56 #define SH_EECR 0x28 /* 64 bits */
57 #define SH_EESR 0x30 /* 64 bits */
58 #define SH_SER 0x38 /* 64 bits */
59 #define SH_SECR 0x40 /* 64 bits */
60 #define SH_IER 0x50 /* 64 bits */
61 #define SH_IECR 0x58 /* 64 bits */
62 #define SH_IESR 0x60 /* 64 bits */
63 #define SH_IPR 0x68 /* 64 bits */
64 #define SH_ICR 0x70 /* 64 bits */
65 #define SH_IEVAL 0x78
66 #define SH_QER 0x80
67 #define SH_QEER 0x84
68 #define SH_QEECR 0x88
69 #define SH_QEESR 0x8c
70 #define SH_QSER 0x90
71 #define SH_QSECR 0x94
72 #define SH_SIZE 0x200
73
74 /* Offsets for EDMA CC global registers */
75 #define EDMA_REV 0x0000
76 #define EDMA_CCCFG 0x0004
77 #define EDMA_QCHMAP 0x0200 /* 8 registers */
78 #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
79 #define EDMA_QDMAQNUM 0x0260
80 #define EDMA_QUETCMAP 0x0280
81 #define EDMA_QUEPRI 0x0284
82 #define EDMA_EMR 0x0300 /* 64 bits */
83 #define EDMA_EMCR 0x0308 /* 64 bits */
84 #define EDMA_QEMR 0x0310
85 #define EDMA_QEMCR 0x0314
86 #define EDMA_CCERR 0x0318
87 #define EDMA_CCERRCLR 0x031c
88 #define EDMA_EEVAL 0x0320
89 #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
90 #define EDMA_QRAE 0x0380 /* 4 registers */
91 #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
92 #define EDMA_QSTAT 0x0600 /* 2 registers */
93 #define EDMA_QWMTHRA 0x0620
94 #define EDMA_QWMTHRB 0x0624
95 #define EDMA_CCSTAT 0x0640
96
97 #define EDMA_M 0x1000 /* global channel registers */
98 #define EDMA_ECR 0x1008
99 #define EDMA_ECRH 0x100C
100 #define EDMA_SHADOW0 0x2000 /* 4 regions shadowing global channels */
101 #define EDMA_PARM 0x4000 /* 128 param entries */
102
103 #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
104
105 #define EDMA_DCHMAP 0x0100 /* 64 registers */
106
107 /* CCCFG register */
108 #define GET_NUM_DMACH(x) (x & 0x7) /* bits 0-2 */
109 #define GET_NUM_PAENTRY(x) ((x & 0x7000) >> 12) /* bits 12-14 */
110 #define GET_NUM_EVQUE(x) ((x & 0x70000) >> 16) /* bits 16-18 */
111 #define GET_NUM_REGN(x) ((x & 0x300000) >> 20) /* bits 20-21 */
112 #define CHMAP_EXIST BIT(24)
113
114 #define EDMA_MAX_DMACH 64
115 #define EDMA_MAX_PARAMENTRY 512
116
117 /*****************************************************************************/
118
119 static void __iomem *edmacc_regs_base[EDMA_MAX_CC];
120
121 static inline unsigned int edma_read(unsigned ctlr, int offset)
122 {
123 return (unsigned int)__raw_readl(edmacc_regs_base[ctlr] + offset);
124 }
125
126 static inline void edma_write(unsigned ctlr, int offset, int val)
127 {
128 __raw_writel(val, edmacc_regs_base[ctlr] + offset);
129 }
130 static inline void edma_modify(unsigned ctlr, int offset, unsigned and,
131 unsigned or)
132 {
133 unsigned val = edma_read(ctlr, offset);
134 val &= and;
135 val |= or;
136 edma_write(ctlr, offset, val);
137 }
138 static inline void edma_and(unsigned ctlr, int offset, unsigned and)
139 {
140 unsigned val = edma_read(ctlr, offset);
141 val &= and;
142 edma_write(ctlr, offset, val);
143 }
144 static inline void edma_or(unsigned ctlr, int offset, unsigned or)
145 {
146 unsigned val = edma_read(ctlr, offset);
147 val |= or;
148 edma_write(ctlr, offset, val);
149 }
150 static inline unsigned int edma_read_array(unsigned ctlr, int offset, int i)
151 {
152 return edma_read(ctlr, offset + (i << 2));
153 }
154 static inline void edma_write_array(unsigned ctlr, int offset, int i,
155 unsigned val)
156 {
157 edma_write(ctlr, offset + (i << 2), val);
158 }
159 static inline void edma_modify_array(unsigned ctlr, int offset, int i,
160 unsigned and, unsigned or)
161 {
162 edma_modify(ctlr, offset + (i << 2), and, or);
163 }
164 static inline void edma_or_array(unsigned ctlr, int offset, int i, unsigned or)
165 {
166 edma_or(ctlr, offset + (i << 2), or);
167 }
168 static inline void edma_or_array2(unsigned ctlr, int offset, int i, int j,
169 unsigned or)
170 {
171 edma_or(ctlr, offset + ((i*2 + j) << 2), or);
172 }
173 static inline void edma_write_array2(unsigned ctlr, int offset, int i, int j,
174 unsigned val)
175 {
176 edma_write(ctlr, offset + ((i*2 + j) << 2), val);
177 }
178 static inline unsigned int edma_shadow0_read(unsigned ctlr, int offset)
179 {
180 return edma_read(ctlr, EDMA_SHADOW0 + offset);
181 }
182 static inline unsigned int edma_shadow0_read_array(unsigned ctlr, int offset,
183 int i)
184 {
185 return edma_read(ctlr, EDMA_SHADOW0 + offset + (i << 2));
186 }
187 static inline void edma_shadow0_write(unsigned ctlr, int offset, unsigned val)
188 {
189 edma_write(ctlr, EDMA_SHADOW0 + offset, val);
190 }
191 static inline void edma_shadow0_write_array(unsigned ctlr, int offset, int i,
192 unsigned val)
193 {
194 edma_write(ctlr, EDMA_SHADOW0 + offset + (i << 2), val);
195 }
196 static inline unsigned int edma_parm_read(unsigned ctlr, int offset,
197 int param_no)
198 {
199 return edma_read(ctlr, EDMA_PARM + offset + (param_no << 5));
200 }
201 static inline void edma_parm_write(unsigned ctlr, int offset, int param_no,
202 unsigned val)
203 {
204 edma_write(ctlr, EDMA_PARM + offset + (param_no << 5), val);
205 }
206 static inline void edma_parm_modify(unsigned ctlr, int offset, int param_no,
207 unsigned and, unsigned or)
208 {
209 edma_modify(ctlr, EDMA_PARM + offset + (param_no << 5), and, or);
210 }
211 static inline void edma_parm_and(unsigned ctlr, int offset, int param_no,
212 unsigned and)
213 {
214 edma_and(ctlr, EDMA_PARM + offset + (param_no << 5), and);
215 }
216 static inline void edma_parm_or(unsigned ctlr, int offset, int param_no,
217 unsigned or)
218 {
219 edma_or(ctlr, EDMA_PARM + offset + (param_no << 5), or);
220 }
221
222 static inline void set_bits(int offset, int len, unsigned long *p)
223 {
224 for (; len > 0; len--)
225 set_bit(offset + (len - 1), p);
226 }
227
228 static inline void clear_bits(int offset, int len, unsigned long *p)
229 {
230 for (; len > 0; len--)
231 clear_bit(offset + (len - 1), p);
232 }
233
234 /*****************************************************************************/
235
236 /* actual number of DMA channels and slots on this silicon */
237 struct edma {
238 /* how many dma resources of each type */
239 unsigned num_channels;
240 unsigned num_region;
241 unsigned num_slots;
242 unsigned num_tc;
243 enum dma_event_q default_queue;
244
245 /* list of channels with no even trigger; terminated by "-1" */
246 const s8 *noevent;
247
248 /* The edma_inuse bit for each PaRAM slot is clear unless the
249 * channel is in use ... by ARM or DSP, for QDMA, or whatever.
250 */
251 DECLARE_BITMAP(edma_inuse, EDMA_MAX_PARAMENTRY);
252
253 /* The edma_unused bit for each channel is clear unless
254 * it is not being used on this platform. It uses a bit
255 * of SOC-specific initialization code.
256 */
257 DECLARE_BITMAP(edma_unused, EDMA_MAX_DMACH);
258
259 unsigned irq_res_start;
260 unsigned irq_res_end;
261
262 struct dma_interrupt_data {
263 void (*callback)(unsigned channel, unsigned short ch_status,
264 void *data);
265 void *data;
266 } intr_data[EDMA_MAX_DMACH];
267 };
268
269 static struct edma *edma_cc[EDMA_MAX_CC];
270 static int arch_num_cc;
271
272 /* dummy param set used to (re)initialize parameter RAM slots */
273 static const struct edmacc_param dummy_paramset = {
274 .link_bcntrld = 0xffff,
275 .ccnt = 1,
276 };
277
278 static const struct of_device_id edma_of_ids[] = {
279 { .compatible = "ti,edma3", },
280 {}
281 };
282
283 /*****************************************************************************/
284
285 static void map_dmach_queue(unsigned ctlr, unsigned ch_no,
286 enum dma_event_q queue_no)
287 {
288 int bit = (ch_no & 0x7) * 4;
289
290 /* default to low priority queue */
291 if (queue_no == EVENTQ_DEFAULT)
292 queue_no = edma_cc[ctlr]->default_queue;
293
294 queue_no &= 7;
295 edma_modify_array(ctlr, EDMA_DMAQNUM, (ch_no >> 3),
296 ~(0x7 << bit), queue_no << bit);
297 }
298
299 static void __init assign_priority_to_queue(unsigned ctlr, int queue_no,
300 int priority)
301 {
302 int bit = queue_no * 4;
303 edma_modify(ctlr, EDMA_QUEPRI, ~(0x7 << bit),
304 ((priority & 0x7) << bit));
305 }
306
307 /**
308 * map_dmach_param - Maps channel number to param entry number
309 *
310 * This maps the dma channel number to param entry numberter. In
311 * other words using the DMA channel mapping registers a param entry
312 * can be mapped to any channel
313 *
314 * Callers are responsible for ensuring the channel mapping logic is
315 * included in that particular EDMA variant (Eg : dm646x)
316 *
317 */
318 static void __init map_dmach_param(unsigned ctlr)
319 {
320 int i;
321 for (i = 0; i < EDMA_MAX_DMACH; i++)
322 edma_write_array(ctlr, EDMA_DCHMAP , i , (i << 5));
323 }
324
325 static inline void
326 setup_dma_interrupt(unsigned lch,
327 void (*callback)(unsigned channel, u16 ch_status, void *data),
328 void *data)
329 {
330 unsigned ctlr;
331
332 ctlr = EDMA_CTLR(lch);
333 lch = EDMA_CHAN_SLOT(lch);
334
335 if (!callback)
336 edma_shadow0_write_array(ctlr, SH_IECR, lch >> 5,
337 BIT(lch & 0x1f));
338
339 edma_cc[ctlr]->intr_data[lch].callback = callback;
340 edma_cc[ctlr]->intr_data[lch].data = data;
341
342 if (callback) {
343 edma_shadow0_write_array(ctlr, SH_ICR, lch >> 5,
344 BIT(lch & 0x1f));
345 edma_shadow0_write_array(ctlr, SH_IESR, lch >> 5,
346 BIT(lch & 0x1f));
347 }
348 }
349
350 static int irq2ctlr(int irq)
351 {
352 if (irq >= edma_cc[0]->irq_res_start && irq <= edma_cc[0]->irq_res_end)
353 return 0;
354 else if (irq >= edma_cc[1]->irq_res_start &&
355 irq <= edma_cc[1]->irq_res_end)
356 return 1;
357
358 return -1;
359 }
360
361 /******************************************************************************
362 *
363 * DMA interrupt handler
364 *
365 *****************************************************************************/
366 static irqreturn_t dma_irq_handler(int irq, void *data)
367 {
368 int ctlr;
369 u32 sh_ier;
370 u32 sh_ipr;
371 u32 bank;
372
373 ctlr = irq2ctlr(irq);
374 if (ctlr < 0)
375 return IRQ_NONE;
376
377 dev_dbg(data, "dma_irq_handler\n");
378
379 sh_ipr = edma_shadow0_read_array(ctlr, SH_IPR, 0);
380 if (!sh_ipr) {
381 sh_ipr = edma_shadow0_read_array(ctlr, SH_IPR, 1);
382 if (!sh_ipr)
383 return IRQ_NONE;
384 sh_ier = edma_shadow0_read_array(ctlr, SH_IER, 1);
385 bank = 1;
386 } else {
387 sh_ier = edma_shadow0_read_array(ctlr, SH_IER, 0);
388 bank = 0;
389 }
390
391 do {
392 u32 slot;
393 u32 channel;
394
395 dev_dbg(data, "IPR%d %08x\n", bank, sh_ipr);
396
397 slot = __ffs(sh_ipr);
398 sh_ipr &= ~(BIT(slot));
399
400 if (sh_ier & BIT(slot)) {
401 channel = (bank << 5) | slot;
402 /* Clear the corresponding IPR bits */
403 edma_shadow0_write_array(ctlr, SH_ICR, bank,
404 BIT(slot));
405 if (edma_cc[ctlr]->intr_data[channel].callback)
406 edma_cc[ctlr]->intr_data[channel].callback(
407 channel, EDMA_DMA_COMPLETE,
408 edma_cc[ctlr]->intr_data[channel].data);
409 }
410 } while (sh_ipr);
411
412 edma_shadow0_write(ctlr, SH_IEVAL, 1);
413 return IRQ_HANDLED;
414 }
415
416 /******************************************************************************
417 *
418 * DMA error interrupt handler
419 *
420 *****************************************************************************/
421 static irqreturn_t dma_ccerr_handler(int irq, void *data)
422 {
423 int i;
424 int ctlr;
425 unsigned int cnt = 0;
426
427 ctlr = irq2ctlr(irq);
428 if (ctlr < 0)
429 return IRQ_NONE;
430
431 dev_dbg(data, "dma_ccerr_handler\n");
432
433 if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
434 (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
435 (edma_read(ctlr, EDMA_QEMR) == 0) &&
436 (edma_read(ctlr, EDMA_CCERR) == 0))
437 return IRQ_NONE;
438
439 while (1) {
440 int j = -1;
441 if (edma_read_array(ctlr, EDMA_EMR, 0))
442 j = 0;
443 else if (edma_read_array(ctlr, EDMA_EMR, 1))
444 j = 1;
445 if (j >= 0) {
446 dev_dbg(data, "EMR%d %08x\n", j,
447 edma_read_array(ctlr, EDMA_EMR, j));
448 for (i = 0; i < 32; i++) {
449 int k = (j << 5) + i;
450 if (edma_read_array(ctlr, EDMA_EMR, j) &
451 BIT(i)) {
452 /* Clear the corresponding EMR bits */
453 edma_write_array(ctlr, EDMA_EMCR, j,
454 BIT(i));
455 /* Clear any SER */
456 edma_shadow0_write_array(ctlr, SH_SECR,
457 j, BIT(i));
458 if (edma_cc[ctlr]->intr_data[k].
459 callback) {
460 edma_cc[ctlr]->intr_data[k].
461 callback(k,
462 EDMA_DMA_CC_ERROR,
463 edma_cc[ctlr]->intr_data
464 [k].data);
465 }
466 }
467 }
468 } else if (edma_read(ctlr, EDMA_QEMR)) {
469 dev_dbg(data, "QEMR %02x\n",
470 edma_read(ctlr, EDMA_QEMR));
471 for (i = 0; i < 8; i++) {
472 if (edma_read(ctlr, EDMA_QEMR) & BIT(i)) {
473 /* Clear the corresponding IPR bits */
474 edma_write(ctlr, EDMA_QEMCR, BIT(i));
475 edma_shadow0_write(ctlr, SH_QSECR,
476 BIT(i));
477
478 /* NOTE: not reported!! */
479 }
480 }
481 } else if (edma_read(ctlr, EDMA_CCERR)) {
482 dev_dbg(data, "CCERR %08x\n",
483 edma_read(ctlr, EDMA_CCERR));
484 /* FIXME: CCERR.BIT(16) ignored! much better
485 * to just write CCERRCLR with CCERR value...
486 */
487 for (i = 0; i < 8; i++) {
488 if (edma_read(ctlr, EDMA_CCERR) & BIT(i)) {
489 /* Clear the corresponding IPR bits */
490 edma_write(ctlr, EDMA_CCERRCLR, BIT(i));
491
492 /* NOTE: not reported!! */
493 }
494 }
495 }
496 if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
497 (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
498 (edma_read(ctlr, EDMA_QEMR) == 0) &&
499 (edma_read(ctlr, EDMA_CCERR) == 0))
500 break;
501 cnt++;
502 if (cnt > 10)
503 break;
504 }
505 edma_write(ctlr, EDMA_EEVAL, 1);
506 return IRQ_HANDLED;
507 }
508
509 static int reserve_contiguous_slots(int ctlr, unsigned int id,
510 unsigned int num_slots,
511 unsigned int start_slot)
512 {
513 int i, j;
514 unsigned int count = num_slots;
515 int stop_slot = start_slot;
516 DECLARE_BITMAP(tmp_inuse, EDMA_MAX_PARAMENTRY);
517
518 for (i = start_slot; i < edma_cc[ctlr]->num_slots; ++i) {
519 j = EDMA_CHAN_SLOT(i);
520 if (!test_and_set_bit(j, edma_cc[ctlr]->edma_inuse)) {
521 /* Record our current beginning slot */
522 if (count == num_slots)
523 stop_slot = i;
524
525 count--;
526 set_bit(j, tmp_inuse);
527
528 if (count == 0)
529 break;
530 } else {
531 clear_bit(j, tmp_inuse);
532
533 if (id == EDMA_CONT_PARAMS_FIXED_EXACT) {
534 stop_slot = i;
535 break;
536 } else {
537 count = num_slots;
538 }
539 }
540 }
541
542 /*
543 * We have to clear any bits that we set
544 * if we run out parameter RAM slots, i.e we do find a set
545 * of contiguous parameter RAM slots but do not find the exact number
546 * requested as we may reach the total number of parameter RAM slots
547 */
548 if (i == edma_cc[ctlr]->num_slots)
549 stop_slot = i;
550
551 j = start_slot;
552 for_each_set_bit_from(j, tmp_inuse, stop_slot)
553 clear_bit(j, edma_cc[ctlr]->edma_inuse);
554
555 if (count)
556 return -EBUSY;
557
558 for (j = i - num_slots + 1; j <= i; ++j)
559 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(j),
560 &dummy_paramset, PARM_SIZE);
561
562 return EDMA_CTLR_CHAN(ctlr, i - num_slots + 1);
563 }
564
565 static int prepare_unused_channel_list(struct device *dev, void *data)
566 {
567 struct platform_device *pdev = to_platform_device(dev);
568 int i, count, ctlr;
569 struct of_phandle_args dma_spec;
570
571 if (dev->of_node) {
572 count = of_property_count_strings(dev->of_node, "dma-names");
573 if (count < 0)
574 return 0;
575 for (i = 0; i < count; i++) {
576 if (of_parse_phandle_with_args(dev->of_node, "dmas",
577 "#dma-cells", i,
578 &dma_spec))
579 continue;
580
581 if (!of_match_node(edma_of_ids, dma_spec.np)) {
582 of_node_put(dma_spec.np);
583 continue;
584 }
585
586 clear_bit(EDMA_CHAN_SLOT(dma_spec.args[0]),
587 edma_cc[0]->edma_unused);
588 of_node_put(dma_spec.np);
589 }
590 return 0;
591 }
592
593 /* For non-OF case */
594 for (i = 0; i < pdev->num_resources; i++) {
595 if ((pdev->resource[i].flags & IORESOURCE_DMA) &&
596 (int)pdev->resource[i].start >= 0) {
597 ctlr = EDMA_CTLR(pdev->resource[i].start);
598 clear_bit(EDMA_CHAN_SLOT(pdev->resource[i].start),
599 edma_cc[ctlr]->edma_unused);
600 }
601 }
602
603 return 0;
604 }
605
606 /*-----------------------------------------------------------------------*/
607
608 static bool unused_chan_list_done;
609
610 /* Resource alloc/free: dma channels, parameter RAM slots */
611
612 /**
613 * edma_alloc_channel - allocate DMA channel and paired parameter RAM
614 * @channel: specific channel to allocate; negative for "any unmapped channel"
615 * @callback: optional; to be issued on DMA completion or errors
616 * @data: passed to callback
617 * @eventq_no: an EVENTQ_* constant, used to choose which Transfer
618 * Controller (TC) executes requests using this channel. Use
619 * EVENTQ_DEFAULT unless you really need a high priority queue.
620 *
621 * This allocates a DMA channel and its associated parameter RAM slot.
622 * The parameter RAM is initialized to hold a dummy transfer.
623 *
624 * Normal use is to pass a specific channel number as @channel, to make
625 * use of hardware events mapped to that channel. When the channel will
626 * be used only for software triggering or event chaining, channels not
627 * mapped to hardware events (or mapped to unused events) are preferable.
628 *
629 * DMA transfers start from a channel using edma_start(), or by
630 * chaining. When the transfer described in that channel's parameter RAM
631 * slot completes, that slot's data may be reloaded through a link.
632 *
633 * DMA errors are only reported to the @callback associated with the
634 * channel driving that transfer, but transfer completion callbacks can
635 * be sent to another channel under control of the TCC field in
636 * the option word of the transfer's parameter RAM set. Drivers must not
637 * use DMA transfer completion callbacks for channels they did not allocate.
638 * (The same applies to TCC codes used in transfer chaining.)
639 *
640 * Returns the number of the channel, else negative errno.
641 */
642 int edma_alloc_channel(int channel,
643 void (*callback)(unsigned channel, u16 ch_status, void *data),
644 void *data,
645 enum dma_event_q eventq_no)
646 {
647 unsigned i, done = 0, ctlr = 0;
648 int ret = 0;
649
650 if (!unused_chan_list_done) {
651 /*
652 * Scan all the platform devices to find out the EDMA channels
653 * used and clear them in the unused list, making the rest
654 * available for ARM usage.
655 */
656 ret = bus_for_each_dev(&platform_bus_type, NULL, NULL,
657 prepare_unused_channel_list);
658 if (ret < 0)
659 return ret;
660
661 unused_chan_list_done = true;
662 }
663
664 if (channel >= 0) {
665 ctlr = EDMA_CTLR(channel);
666 channel = EDMA_CHAN_SLOT(channel);
667 }
668
669 if (channel < 0) {
670 for (i = 0; i < arch_num_cc; i++) {
671 channel = 0;
672 for (;;) {
673 channel = find_next_bit(edma_cc[i]->edma_unused,
674 edma_cc[i]->num_channels,
675 channel);
676 if (channel == edma_cc[i]->num_channels)
677 break;
678 if (!test_and_set_bit(channel,
679 edma_cc[i]->edma_inuse)) {
680 done = 1;
681 ctlr = i;
682 break;
683 }
684 channel++;
685 }
686 if (done)
687 break;
688 }
689 if (!done)
690 return -ENOMEM;
691 } else if (channel >= edma_cc[ctlr]->num_channels) {
692 return -EINVAL;
693 } else if (test_and_set_bit(channel, edma_cc[ctlr]->edma_inuse)) {
694 return -EBUSY;
695 }
696
697 /* ensure access through shadow region 0 */
698 edma_or_array2(ctlr, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
699
700 /* ensure no events are pending */
701 edma_stop(EDMA_CTLR_CHAN(ctlr, channel));
702 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
703 &dummy_paramset, PARM_SIZE);
704
705 if (callback)
706 setup_dma_interrupt(EDMA_CTLR_CHAN(ctlr, channel),
707 callback, data);
708
709 map_dmach_queue(ctlr, channel, eventq_no);
710
711 return EDMA_CTLR_CHAN(ctlr, channel);
712 }
713 EXPORT_SYMBOL(edma_alloc_channel);
714
715
716 /**
717 * edma_free_channel - deallocate DMA channel
718 * @channel: dma channel returned from edma_alloc_channel()
719 *
720 * This deallocates the DMA channel and associated parameter RAM slot
721 * allocated by edma_alloc_channel().
722 *
723 * Callers are responsible for ensuring the channel is inactive, and
724 * will not be reactivated by linking, chaining, or software calls to
725 * edma_start().
726 */
727 void edma_free_channel(unsigned channel)
728 {
729 unsigned ctlr;
730
731 ctlr = EDMA_CTLR(channel);
732 channel = EDMA_CHAN_SLOT(channel);
733
734 if (channel >= edma_cc[ctlr]->num_channels)
735 return;
736
737 setup_dma_interrupt(channel, NULL, NULL);
738 /* REVISIT should probably take out of shadow region 0 */
739
740 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
741 &dummy_paramset, PARM_SIZE);
742 clear_bit(channel, edma_cc[ctlr]->edma_inuse);
743 }
744 EXPORT_SYMBOL(edma_free_channel);
745
746 /**
747 * edma_alloc_slot - allocate DMA parameter RAM
748 * @slot: specific slot to allocate; negative for "any unused slot"
749 *
750 * This allocates a parameter RAM slot, initializing it to hold a
751 * dummy transfer. Slots allocated using this routine have not been
752 * mapped to a hardware DMA channel, and will normally be used by
753 * linking to them from a slot associated with a DMA channel.
754 *
755 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
756 * slots may be allocated on behalf of DSP firmware.
757 *
758 * Returns the number of the slot, else negative errno.
759 */
760 int edma_alloc_slot(unsigned ctlr, int slot)
761 {
762 if (!edma_cc[ctlr])
763 return -EINVAL;
764
765 if (slot >= 0)
766 slot = EDMA_CHAN_SLOT(slot);
767
768 if (slot < 0) {
769 slot = edma_cc[ctlr]->num_channels;
770 for (;;) {
771 slot = find_next_zero_bit(edma_cc[ctlr]->edma_inuse,
772 edma_cc[ctlr]->num_slots, slot);
773 if (slot == edma_cc[ctlr]->num_slots)
774 return -ENOMEM;
775 if (!test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse))
776 break;
777 }
778 } else if (slot < edma_cc[ctlr]->num_channels ||
779 slot >= edma_cc[ctlr]->num_slots) {
780 return -EINVAL;
781 } else if (test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse)) {
782 return -EBUSY;
783 }
784
785 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
786 &dummy_paramset, PARM_SIZE);
787
788 return EDMA_CTLR_CHAN(ctlr, slot);
789 }
790 EXPORT_SYMBOL(edma_alloc_slot);
791
792 /**
793 * edma_free_slot - deallocate DMA parameter RAM
794 * @slot: parameter RAM slot returned from edma_alloc_slot()
795 *
796 * This deallocates the parameter RAM slot allocated by edma_alloc_slot().
797 * Callers are responsible for ensuring the slot is inactive, and will
798 * not be activated.
799 */
800 void edma_free_slot(unsigned slot)
801 {
802 unsigned ctlr;
803
804 ctlr = EDMA_CTLR(slot);
805 slot = EDMA_CHAN_SLOT(slot);
806
807 if (slot < edma_cc[ctlr]->num_channels ||
808 slot >= edma_cc[ctlr]->num_slots)
809 return;
810
811 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
812 &dummy_paramset, PARM_SIZE);
813 clear_bit(slot, edma_cc[ctlr]->edma_inuse);
814 }
815 EXPORT_SYMBOL(edma_free_slot);
816
817
818 /**
819 * edma_alloc_cont_slots- alloc contiguous parameter RAM slots
820 * The API will return the starting point of a set of
821 * contiguous parameter RAM slots that have been requested
822 *
823 * @id: can only be EDMA_CONT_PARAMS_ANY or EDMA_CONT_PARAMS_FIXED_EXACT
824 * or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
825 * @count: number of contiguous Paramter RAM slots
826 * @slot - the start value of Parameter RAM slot that should be passed if id
827 * is EDMA_CONT_PARAMS_FIXED_EXACT or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
828 *
829 * If id is EDMA_CONT_PARAMS_ANY then the API starts looking for a set of
830 * contiguous Parameter RAM slots from parameter RAM 64 in the case of
831 * DaVinci SOCs and 32 in the case of DA8xx SOCs.
832 *
833 * If id is EDMA_CONT_PARAMS_FIXED_EXACT then the API starts looking for a
834 * set of contiguous parameter RAM slots from the "slot" that is passed as an
835 * argument to the API.
836 *
837 * If id is EDMA_CONT_PARAMS_FIXED_NOT_EXACT then the API initially tries
838 * starts looking for a set of contiguous parameter RAMs from the "slot"
839 * that is passed as an argument to the API. On failure the API will try to
840 * find a set of contiguous Parameter RAM slots from the remaining Parameter
841 * RAM slots
842 */
843 int edma_alloc_cont_slots(unsigned ctlr, unsigned int id, int slot, int count)
844 {
845 /*
846 * The start slot requested should be greater than
847 * the number of channels and lesser than the total number
848 * of slots
849 */
850 if ((id != EDMA_CONT_PARAMS_ANY) &&
851 (slot < edma_cc[ctlr]->num_channels ||
852 slot >= edma_cc[ctlr]->num_slots))
853 return -EINVAL;
854
855 /*
856 * The number of parameter RAM slots requested cannot be less than 1
857 * and cannot be more than the number of slots minus the number of
858 * channels
859 */
860 if (count < 1 || count >
861 (edma_cc[ctlr]->num_slots - edma_cc[ctlr]->num_channels))
862 return -EINVAL;
863
864 switch (id) {
865 case EDMA_CONT_PARAMS_ANY:
866 return reserve_contiguous_slots(ctlr, id, count,
867 edma_cc[ctlr]->num_channels);
868 case EDMA_CONT_PARAMS_FIXED_EXACT:
869 case EDMA_CONT_PARAMS_FIXED_NOT_EXACT:
870 return reserve_contiguous_slots(ctlr, id, count, slot);
871 default:
872 return -EINVAL;
873 }
874
875 }
876 EXPORT_SYMBOL(edma_alloc_cont_slots);
877
878 /**
879 * edma_free_cont_slots - deallocate DMA parameter RAM slots
880 * @slot: first parameter RAM of a set of parameter RAM slots to be freed
881 * @count: the number of contiguous parameter RAM slots to be freed
882 *
883 * This deallocates the parameter RAM slots allocated by
884 * edma_alloc_cont_slots.
885 * Callers/applications need to keep track of sets of contiguous
886 * parameter RAM slots that have been allocated using the edma_alloc_cont_slots
887 * API.
888 * Callers are responsible for ensuring the slots are inactive, and will
889 * not be activated.
890 */
891 int edma_free_cont_slots(unsigned slot, int count)
892 {
893 unsigned ctlr, slot_to_free;
894 int i;
895
896 ctlr = EDMA_CTLR(slot);
897 slot = EDMA_CHAN_SLOT(slot);
898
899 if (slot < edma_cc[ctlr]->num_channels ||
900 slot >= edma_cc[ctlr]->num_slots ||
901 count < 1)
902 return -EINVAL;
903
904 for (i = slot; i < slot + count; ++i) {
905 ctlr = EDMA_CTLR(i);
906 slot_to_free = EDMA_CHAN_SLOT(i);
907
908 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot_to_free),
909 &dummy_paramset, PARM_SIZE);
910 clear_bit(slot_to_free, edma_cc[ctlr]->edma_inuse);
911 }
912
913 return 0;
914 }
915 EXPORT_SYMBOL(edma_free_cont_slots);
916
917 /*-----------------------------------------------------------------------*/
918
919 /* Parameter RAM operations (i) -- read/write partial slots */
920
921 /**
922 * edma_set_src - set initial DMA source address in parameter RAM slot
923 * @slot: parameter RAM slot being configured
924 * @src_port: physical address of source (memory, controller FIFO, etc)
925 * @addressMode: INCR, except in very rare cases
926 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
927 * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
928 *
929 * Note that the source address is modified during the DMA transfer
930 * according to edma_set_src_index().
931 */
932 void edma_set_src(unsigned slot, dma_addr_t src_port,
933 enum address_mode mode, enum fifo_width width)
934 {
935 unsigned ctlr;
936
937 ctlr = EDMA_CTLR(slot);
938 slot = EDMA_CHAN_SLOT(slot);
939
940 if (slot < edma_cc[ctlr]->num_slots) {
941 unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
942
943 if (mode) {
944 /* set SAM and program FWID */
945 i = (i & ~(EDMA_FWID)) | (SAM | ((width & 0x7) << 8));
946 } else {
947 /* clear SAM */
948 i &= ~SAM;
949 }
950 edma_parm_write(ctlr, PARM_OPT, slot, i);
951
952 /* set the source port address
953 in source register of param structure */
954 edma_parm_write(ctlr, PARM_SRC, slot, src_port);
955 }
956 }
957 EXPORT_SYMBOL(edma_set_src);
958
959 /**
960 * edma_set_dest - set initial DMA destination address in parameter RAM slot
961 * @slot: parameter RAM slot being configured
962 * @dest_port: physical address of destination (memory, controller FIFO, etc)
963 * @addressMode: INCR, except in very rare cases
964 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
965 * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
966 *
967 * Note that the destination address is modified during the DMA transfer
968 * according to edma_set_dest_index().
969 */
970 void edma_set_dest(unsigned slot, dma_addr_t dest_port,
971 enum address_mode mode, enum fifo_width width)
972 {
973 unsigned ctlr;
974
975 ctlr = EDMA_CTLR(slot);
976 slot = EDMA_CHAN_SLOT(slot);
977
978 if (slot < edma_cc[ctlr]->num_slots) {
979 unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
980
981 if (mode) {
982 /* set DAM and program FWID */
983 i = (i & ~(EDMA_FWID)) | (DAM | ((width & 0x7) << 8));
984 } else {
985 /* clear DAM */
986 i &= ~DAM;
987 }
988 edma_parm_write(ctlr, PARM_OPT, slot, i);
989 /* set the destination port address
990 in dest register of param structure */
991 edma_parm_write(ctlr, PARM_DST, slot, dest_port);
992 }
993 }
994 EXPORT_SYMBOL(edma_set_dest);
995
996 /**
997 * edma_get_position - returns the current transfer point
998 * @slot: parameter RAM slot being examined
999 * @dst: true selects the dest position, false the source
1000 *
1001 * Returns the position of the current active slot
1002 */
1003 dma_addr_t edma_get_position(unsigned slot, bool dst)
1004 {
1005 u32 offs, ctlr = EDMA_CTLR(slot);
1006
1007 slot = EDMA_CHAN_SLOT(slot);
1008
1009 offs = PARM_OFFSET(slot);
1010 offs += dst ? PARM_DST : PARM_SRC;
1011
1012 return edma_read(ctlr, offs);
1013 }
1014
1015 /**
1016 * edma_set_src_index - configure DMA source address indexing
1017 * @slot: parameter RAM slot being configured
1018 * @src_bidx: byte offset between source arrays in a frame
1019 * @src_cidx: byte offset between source frames in a block
1020 *
1021 * Offsets are specified to support either contiguous or discontiguous
1022 * memory transfers, or repeated access to a hardware register, as needed.
1023 * When accessing hardware registers, both offsets are normally zero.
1024 */
1025 void edma_set_src_index(unsigned slot, s16 src_bidx, s16 src_cidx)
1026 {
1027 unsigned ctlr;
1028
1029 ctlr = EDMA_CTLR(slot);
1030 slot = EDMA_CHAN_SLOT(slot);
1031
1032 if (slot < edma_cc[ctlr]->num_slots) {
1033 edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
1034 0xffff0000, src_bidx);
1035 edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
1036 0xffff0000, src_cidx);
1037 }
1038 }
1039 EXPORT_SYMBOL(edma_set_src_index);
1040
1041 /**
1042 * edma_set_dest_index - configure DMA destination address indexing
1043 * @slot: parameter RAM slot being configured
1044 * @dest_bidx: byte offset between destination arrays in a frame
1045 * @dest_cidx: byte offset between destination frames in a block
1046 *
1047 * Offsets are specified to support either contiguous or discontiguous
1048 * memory transfers, or repeated access to a hardware register, as needed.
1049 * When accessing hardware registers, both offsets are normally zero.
1050 */
1051 void edma_set_dest_index(unsigned slot, s16 dest_bidx, s16 dest_cidx)
1052 {
1053 unsigned ctlr;
1054
1055 ctlr = EDMA_CTLR(slot);
1056 slot = EDMA_CHAN_SLOT(slot);
1057
1058 if (slot < edma_cc[ctlr]->num_slots) {
1059 edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
1060 0x0000ffff, dest_bidx << 16);
1061 edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
1062 0x0000ffff, dest_cidx << 16);
1063 }
1064 }
1065 EXPORT_SYMBOL(edma_set_dest_index);
1066
1067 /**
1068 * edma_set_transfer_params - configure DMA transfer parameters
1069 * @slot: parameter RAM slot being configured
1070 * @acnt: how many bytes per array (at least one)
1071 * @bcnt: how many arrays per frame (at least one)
1072 * @ccnt: how many frames per block (at least one)
1073 * @bcnt_rld: used only for A-Synchronized transfers; this specifies
1074 * the value to reload into bcnt when it decrements to zero
1075 * @sync_mode: ASYNC or ABSYNC
1076 *
1077 * See the EDMA3 documentation to understand how to configure and link
1078 * transfers using the fields in PaRAM slots. If you are not doing it
1079 * all at once with edma_write_slot(), you will use this routine
1080 * plus two calls each for source and destination, setting the initial
1081 * address and saying how to index that address.
1082 *
1083 * An example of an A-Synchronized transfer is a serial link using a
1084 * single word shift register. In that case, @acnt would be equal to
1085 * that word size; the serial controller issues a DMA synchronization
1086 * event to transfer each word, and memory access by the DMA transfer
1087 * controller will be word-at-a-time.
1088 *
1089 * An example of an AB-Synchronized transfer is a device using a FIFO.
1090 * In that case, @acnt equals the FIFO width and @bcnt equals its depth.
1091 * The controller with the FIFO issues DMA synchronization events when
1092 * the FIFO threshold is reached, and the DMA transfer controller will
1093 * transfer one frame to (or from) the FIFO. It will probably use
1094 * efficient burst modes to access memory.
1095 */
1096 void edma_set_transfer_params(unsigned slot,
1097 u16 acnt, u16 bcnt, u16 ccnt,
1098 u16 bcnt_rld, enum sync_dimension sync_mode)
1099 {
1100 unsigned ctlr;
1101
1102 ctlr = EDMA_CTLR(slot);
1103 slot = EDMA_CHAN_SLOT(slot);
1104
1105 if (slot < edma_cc[ctlr]->num_slots) {
1106 edma_parm_modify(ctlr, PARM_LINK_BCNTRLD, slot,
1107 0x0000ffff, bcnt_rld << 16);
1108 if (sync_mode == ASYNC)
1109 edma_parm_and(ctlr, PARM_OPT, slot, ~SYNCDIM);
1110 else
1111 edma_parm_or(ctlr, PARM_OPT, slot, SYNCDIM);
1112 /* Set the acount, bcount, ccount registers */
1113 edma_parm_write(ctlr, PARM_A_B_CNT, slot, (bcnt << 16) | acnt);
1114 edma_parm_write(ctlr, PARM_CCNT, slot, ccnt);
1115 }
1116 }
1117 EXPORT_SYMBOL(edma_set_transfer_params);
1118
1119 /**
1120 * edma_link - link one parameter RAM slot to another
1121 * @from: parameter RAM slot originating the link
1122 * @to: parameter RAM slot which is the link target
1123 *
1124 * The originating slot should not be part of any active DMA transfer.
1125 */
1126 void edma_link(unsigned from, unsigned to)
1127 {
1128 unsigned ctlr_from, ctlr_to;
1129
1130 ctlr_from = EDMA_CTLR(from);
1131 from = EDMA_CHAN_SLOT(from);
1132 ctlr_to = EDMA_CTLR(to);
1133 to = EDMA_CHAN_SLOT(to);
1134
1135 if (from >= edma_cc[ctlr_from]->num_slots)
1136 return;
1137 if (to >= edma_cc[ctlr_to]->num_slots)
1138 return;
1139 edma_parm_modify(ctlr_from, PARM_LINK_BCNTRLD, from, 0xffff0000,
1140 PARM_OFFSET(to));
1141 }
1142 EXPORT_SYMBOL(edma_link);
1143
1144 /**
1145 * edma_unlink - cut link from one parameter RAM slot
1146 * @from: parameter RAM slot originating the link
1147 *
1148 * The originating slot should not be part of any active DMA transfer.
1149 * Its link is set to 0xffff.
1150 */
1151 void edma_unlink(unsigned from)
1152 {
1153 unsigned ctlr;
1154
1155 ctlr = EDMA_CTLR(from);
1156 from = EDMA_CHAN_SLOT(from);
1157
1158 if (from >= edma_cc[ctlr]->num_slots)
1159 return;
1160 edma_parm_or(ctlr, PARM_LINK_BCNTRLD, from, 0xffff);
1161 }
1162 EXPORT_SYMBOL(edma_unlink);
1163
1164 /*-----------------------------------------------------------------------*/
1165
1166 /* Parameter RAM operations (ii) -- read/write whole parameter sets */
1167
1168 /**
1169 * edma_write_slot - write parameter RAM data for slot
1170 * @slot: number of parameter RAM slot being modified
1171 * @param: data to be written into parameter RAM slot
1172 *
1173 * Use this to assign all parameters of a transfer at once. This
1174 * allows more efficient setup of transfers than issuing multiple
1175 * calls to set up those parameters in small pieces, and provides
1176 * complete control over all transfer options.
1177 */
1178 void edma_write_slot(unsigned slot, const struct edmacc_param *param)
1179 {
1180 unsigned ctlr;
1181
1182 ctlr = EDMA_CTLR(slot);
1183 slot = EDMA_CHAN_SLOT(slot);
1184
1185 if (slot >= edma_cc[ctlr]->num_slots)
1186 return;
1187 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot), param,
1188 PARM_SIZE);
1189 }
1190 EXPORT_SYMBOL(edma_write_slot);
1191
1192 /**
1193 * edma_read_slot - read parameter RAM data from slot
1194 * @slot: number of parameter RAM slot being copied
1195 * @param: where to store copy of parameter RAM data
1196 *
1197 * Use this to read data from a parameter RAM slot, perhaps to
1198 * save them as a template for later reuse.
1199 */
1200 void edma_read_slot(unsigned slot, struct edmacc_param *param)
1201 {
1202 unsigned ctlr;
1203
1204 ctlr = EDMA_CTLR(slot);
1205 slot = EDMA_CHAN_SLOT(slot);
1206
1207 if (slot >= edma_cc[ctlr]->num_slots)
1208 return;
1209 memcpy_fromio(param, edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
1210 PARM_SIZE);
1211 }
1212 EXPORT_SYMBOL(edma_read_slot);
1213
1214 /*-----------------------------------------------------------------------*/
1215
1216 /* Various EDMA channel control operations */
1217
1218 /**
1219 * edma_pause - pause dma on a channel
1220 * @channel: on which edma_start() has been called
1221 *
1222 * This temporarily disables EDMA hardware events on the specified channel,
1223 * preventing them from triggering new transfers on its behalf
1224 */
1225 void edma_pause(unsigned channel)
1226 {
1227 unsigned ctlr;
1228
1229 ctlr = EDMA_CTLR(channel);
1230 channel = EDMA_CHAN_SLOT(channel);
1231
1232 if (channel < edma_cc[ctlr]->num_channels) {
1233 unsigned int mask = BIT(channel & 0x1f);
1234
1235 edma_shadow0_write_array(ctlr, SH_EECR, channel >> 5, mask);
1236 }
1237 }
1238 EXPORT_SYMBOL(edma_pause);
1239
1240 /**
1241 * edma_resume - resumes dma on a paused channel
1242 * @channel: on which edma_pause() has been called
1243 *
1244 * This re-enables EDMA hardware events on the specified channel.
1245 */
1246 void edma_resume(unsigned channel)
1247 {
1248 unsigned ctlr;
1249
1250 ctlr = EDMA_CTLR(channel);
1251 channel = EDMA_CHAN_SLOT(channel);
1252
1253 if (channel < edma_cc[ctlr]->num_channels) {
1254 unsigned int mask = BIT(channel & 0x1f);
1255
1256 edma_shadow0_write_array(ctlr, SH_EESR, channel >> 5, mask);
1257 }
1258 }
1259 EXPORT_SYMBOL(edma_resume);
1260
1261 int edma_trigger_channel(unsigned channel)
1262 {
1263 unsigned ctlr;
1264 unsigned int mask;
1265
1266 ctlr = EDMA_CTLR(channel);
1267 channel = EDMA_CHAN_SLOT(channel);
1268 mask = BIT(channel & 0x1f);
1269
1270 edma_shadow0_write_array(ctlr, SH_ESR, (channel >> 5), mask);
1271
1272 pr_debug("EDMA: ESR%d %08x\n", (channel >> 5),
1273 edma_shadow0_read_array(ctlr, SH_ESR, (channel >> 5)));
1274 return 0;
1275 }
1276 EXPORT_SYMBOL(edma_trigger_channel);
1277
1278 /**
1279 * edma_start - start dma on a channel
1280 * @channel: channel being activated
1281 *
1282 * Channels with event associations will be triggered by their hardware
1283 * events, and channels without such associations will be triggered by
1284 * software. (At this writing there is no interface for using software
1285 * triggers except with channels that don't support hardware triggers.)
1286 *
1287 * Returns zero on success, else negative errno.
1288 */
1289 int edma_start(unsigned channel)
1290 {
1291 unsigned ctlr;
1292
1293 ctlr = EDMA_CTLR(channel);
1294 channel = EDMA_CHAN_SLOT(channel);
1295
1296 if (channel < edma_cc[ctlr]->num_channels) {
1297 int j = channel >> 5;
1298 unsigned int mask = BIT(channel & 0x1f);
1299
1300 /* EDMA channels without event association */
1301 if (test_bit(channel, edma_cc[ctlr]->edma_unused)) {
1302 pr_debug("EDMA: ESR%d %08x\n", j,
1303 edma_shadow0_read_array(ctlr, SH_ESR, j));
1304 edma_shadow0_write_array(ctlr, SH_ESR, j, mask);
1305 return 0;
1306 }
1307
1308 /* EDMA channel with event association */
1309 pr_debug("EDMA: ER%d %08x\n", j,
1310 edma_shadow0_read_array(ctlr, SH_ER, j));
1311 /* Clear any pending event or error */
1312 edma_write_array(ctlr, EDMA_ECR, j, mask);
1313 edma_write_array(ctlr, EDMA_EMCR, j, mask);
1314 /* Clear any SER */
1315 edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1316 edma_shadow0_write_array(ctlr, SH_EESR, j, mask);
1317 pr_debug("EDMA: EER%d %08x\n", j,
1318 edma_shadow0_read_array(ctlr, SH_EER, j));
1319 return 0;
1320 }
1321
1322 return -EINVAL;
1323 }
1324 EXPORT_SYMBOL(edma_start);
1325
1326 /**
1327 * edma_stop - stops dma on the channel passed
1328 * @channel: channel being deactivated
1329 *
1330 * When @lch is a channel, any active transfer is paused and
1331 * all pending hardware events are cleared. The current transfer
1332 * may not be resumed, and the channel's Parameter RAM should be
1333 * reinitialized before being reused.
1334 */
1335 void edma_stop(unsigned channel)
1336 {
1337 unsigned ctlr;
1338
1339 ctlr = EDMA_CTLR(channel);
1340 channel = EDMA_CHAN_SLOT(channel);
1341
1342 if (channel < edma_cc[ctlr]->num_channels) {
1343 int j = channel >> 5;
1344 unsigned int mask = BIT(channel & 0x1f);
1345
1346 edma_shadow0_write_array(ctlr, SH_EECR, j, mask);
1347 edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
1348 edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1349 edma_write_array(ctlr, EDMA_EMCR, j, mask);
1350
1351 pr_debug("EDMA: EER%d %08x\n", j,
1352 edma_shadow0_read_array(ctlr, SH_EER, j));
1353
1354 /* REVISIT: consider guarding against inappropriate event
1355 * chaining by overwriting with dummy_paramset.
1356 */
1357 }
1358 }
1359 EXPORT_SYMBOL(edma_stop);
1360
1361 /******************************************************************************
1362 *
1363 * It cleans ParamEntry qand bring back EDMA to initial state if media has
1364 * been removed before EDMA has finished.It is usedful for removable media.
1365 * Arguments:
1366 * ch_no - channel no
1367 *
1368 * Return: zero on success, or corresponding error no on failure
1369 *
1370 * FIXME this should not be needed ... edma_stop() should suffice.
1371 *
1372 *****************************************************************************/
1373
1374 void edma_clean_channel(unsigned channel)
1375 {
1376 unsigned ctlr;
1377
1378 ctlr = EDMA_CTLR(channel);
1379 channel = EDMA_CHAN_SLOT(channel);
1380
1381 if (channel < edma_cc[ctlr]->num_channels) {
1382 int j = (channel >> 5);
1383 unsigned int mask = BIT(channel & 0x1f);
1384
1385 pr_debug("EDMA: EMR%d %08x\n", j,
1386 edma_read_array(ctlr, EDMA_EMR, j));
1387 edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
1388 /* Clear the corresponding EMR bits */
1389 edma_write_array(ctlr, EDMA_EMCR, j, mask);
1390 /* Clear any SER */
1391 edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1392 edma_write(ctlr, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
1393 }
1394 }
1395 EXPORT_SYMBOL(edma_clean_channel);
1396
1397 /*
1398 * edma_clear_event - clear an outstanding event on the DMA channel
1399 * Arguments:
1400 * channel - channel number
1401 */
1402 void edma_clear_event(unsigned channel)
1403 {
1404 unsigned ctlr;
1405
1406 ctlr = EDMA_CTLR(channel);
1407 channel = EDMA_CHAN_SLOT(channel);
1408
1409 if (channel >= edma_cc[ctlr]->num_channels)
1410 return;
1411 if (channel < 32)
1412 edma_write(ctlr, EDMA_ECR, BIT(channel));
1413 else
1414 edma_write(ctlr, EDMA_ECRH, BIT(channel - 32));
1415 }
1416 EXPORT_SYMBOL(edma_clear_event);
1417
1418 /*
1419 * edma_assign_channel_eventq - move given channel to desired eventq
1420 * Arguments:
1421 * channel - channel number
1422 * eventq_no - queue to move the channel
1423 *
1424 * Can be used to move a channel to a selected event queue.
1425 */
1426 void edma_assign_channel_eventq(unsigned channel, enum dma_event_q eventq_no)
1427 {
1428 unsigned ctlr;
1429
1430 ctlr = EDMA_CTLR(channel);
1431 channel = EDMA_CHAN_SLOT(channel);
1432
1433 if (channel >= edma_cc[ctlr]->num_channels)
1434 return;
1435
1436 /* default to low priority queue */
1437 if (eventq_no == EVENTQ_DEFAULT)
1438 eventq_no = edma_cc[ctlr]->default_queue;
1439 if (eventq_no >= edma_cc[ctlr]->num_tc)
1440 return;
1441
1442 map_dmach_queue(ctlr, channel, eventq_no);
1443 }
1444 EXPORT_SYMBOL(edma_assign_channel_eventq);
1445
1446 static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
1447 struct edma *edma_cc, int cc_id)
1448 {
1449 int i;
1450 u32 value, cccfg;
1451 s8 (*queue_priority_map)[2];
1452
1453 /* Decode the eDMA3 configuration from CCCFG register */
1454 cccfg = edma_read(cc_id, EDMA_CCCFG);
1455
1456 value = GET_NUM_REGN(cccfg);
1457 edma_cc->num_region = BIT(value);
1458
1459 value = GET_NUM_DMACH(cccfg);
1460 edma_cc->num_channels = BIT(value + 1);
1461
1462 value = GET_NUM_PAENTRY(cccfg);
1463 edma_cc->num_slots = BIT(value + 4);
1464
1465 value = GET_NUM_EVQUE(cccfg);
1466 edma_cc->num_tc = value + 1;
1467
1468 dev_dbg(dev, "eDMA3 CC%d HW configuration (cccfg: 0x%08x):\n", cc_id,
1469 cccfg);
1470 dev_dbg(dev, "num_region: %u\n", edma_cc->num_region);
1471 dev_dbg(dev, "num_channel: %u\n", edma_cc->num_channels);
1472 dev_dbg(dev, "num_slot: %u\n", edma_cc->num_slots);
1473 dev_dbg(dev, "num_tc: %u\n", edma_cc->num_tc);
1474
1475 /* Nothing need to be done if queue priority is provided */
1476 if (pdata->queue_priority_mapping)
1477 return 0;
1478
1479 /*
1480 * Configure TC/queue priority as follows:
1481 * Q0 - priority 0
1482 * Q1 - priority 1
1483 * Q2 - priority 2
1484 * ...
1485 * The meaning of priority numbers: 0 highest priority, 7 lowest
1486 * priority. So Q0 is the highest priority queue and the last queue has
1487 * the lowest priority.
1488 */
1489 queue_priority_map = devm_kzalloc(dev,
1490 (edma_cc->num_tc + 1) * sizeof(s8),
1491 GFP_KERNEL);
1492 if (!queue_priority_map)
1493 return -ENOMEM;
1494
1495 for (i = 0; i < edma_cc->num_tc; i++) {
1496 queue_priority_map[i][0] = i;
1497 queue_priority_map[i][1] = i;
1498 }
1499 queue_priority_map[i][0] = -1;
1500 queue_priority_map[i][1] = -1;
1501
1502 pdata->queue_priority_mapping = queue_priority_map;
1503 /* Default queue has the lowest priority */
1504 pdata->default_queue = i - 1;
1505
1506 return 0;
1507 }
1508
1509 #if IS_ENABLED(CONFIG_OF) && IS_ENABLED(CONFIG_DMADEVICES)
1510
1511 static int edma_xbar_event_map(struct device *dev, struct device_node *node,
1512 struct edma_soc_info *pdata, size_t sz)
1513 {
1514 const char pname[] = "ti,edma-xbar-event-map";
1515 struct resource res;
1516 void __iomem *xbar;
1517 s16 (*xbar_chans)[2];
1518 size_t nelm = sz / sizeof(s16);
1519 u32 shift, offset, mux;
1520 int ret, i;
1521
1522 xbar_chans = devm_kzalloc(dev, (nelm + 2) * sizeof(s16), GFP_KERNEL);
1523 if (!xbar_chans)
1524 return -ENOMEM;
1525
1526 ret = of_address_to_resource(node, 1, &res);
1527 if (ret)
1528 return -ENOMEM;
1529
1530 xbar = devm_ioremap(dev, res.start, resource_size(&res));
1531 if (!xbar)
1532 return -ENOMEM;
1533
1534 ret = of_property_read_u16_array(node, pname, (u16 *)xbar_chans, nelm);
1535 if (ret)
1536 return -EIO;
1537
1538 /* Invalidate last entry for the other user of this mess */
1539 nelm >>= 1;
1540 xbar_chans[nelm][0] = xbar_chans[nelm][1] = -1;
1541
1542 for (i = 0; i < nelm; i++) {
1543 shift = (xbar_chans[i][1] & 0x03) << 3;
1544 offset = xbar_chans[i][1] & 0xfffffffc;
1545 mux = readl(xbar + offset);
1546 mux &= ~(0xff << shift);
1547 mux |= xbar_chans[i][0] << shift;
1548 writel(mux, (xbar + offset));
1549 }
1550
1551 pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
1552 return 0;
1553 }
1554
1555 static int edma_of_parse_dt(struct device *dev,
1556 struct device_node *node,
1557 struct edma_soc_info *pdata)
1558 {
1559 int ret = 0;
1560 struct property *prop;
1561 size_t sz;
1562 struct edma_rsv_info *rsv_info;
1563
1564 rsv_info = devm_kzalloc(dev, sizeof(struct edma_rsv_info), GFP_KERNEL);
1565 if (!rsv_info)
1566 return -ENOMEM;
1567 pdata->rsv = rsv_info;
1568
1569 prop = of_find_property(node, "ti,edma-xbar-event-map", &sz);
1570 if (prop)
1571 ret = edma_xbar_event_map(dev, node, pdata, sz);
1572
1573 return ret;
1574 }
1575
1576 static struct of_dma_filter_info edma_filter_info = {
1577 .filter_fn = edma_filter_fn,
1578 };
1579
1580 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
1581 struct device_node *node)
1582 {
1583 struct edma_soc_info *info;
1584 int ret;
1585
1586 info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
1587 if (!info)
1588 return ERR_PTR(-ENOMEM);
1589
1590 ret = edma_of_parse_dt(dev, node, info);
1591 if (ret)
1592 return ERR_PTR(ret);
1593
1594 dma_cap_set(DMA_SLAVE, edma_filter_info.dma_cap);
1595 dma_cap_set(DMA_CYCLIC, edma_filter_info.dma_cap);
1596 of_dma_controller_register(dev->of_node, of_dma_simple_xlate,
1597 &edma_filter_info);
1598
1599 return info;
1600 }
1601 #else
1602 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
1603 struct device_node *node)
1604 {
1605 return ERR_PTR(-ENOSYS);
1606 }
1607 #endif
1608
1609 static int edma_probe(struct platform_device *pdev)
1610 {
1611 struct edma_soc_info **info = pdev->dev.platform_data;
1612 struct edma_soc_info *ninfo[EDMA_MAX_CC] = {NULL};
1613 s8 (*queue_priority_mapping)[2];
1614 int i, j, off, ln, found = 0;
1615 int status = -1;
1616 const s16 (*rsv_chans)[2];
1617 const s16 (*rsv_slots)[2];
1618 const s16 (*xbar_chans)[2];
1619 int irq[EDMA_MAX_CC] = {0, 0};
1620 int err_irq[EDMA_MAX_CC] = {0, 0};
1621 struct resource *r[EDMA_MAX_CC] = {NULL};
1622 struct resource res[EDMA_MAX_CC];
1623 char res_name[10];
1624 struct device_node *node = pdev->dev.of_node;
1625 struct device *dev = &pdev->dev;
1626 int ret;
1627 struct platform_device_info edma_dev_info = {
1628 .name = "edma-dma-engine",
1629 .dma_mask = DMA_BIT_MASK(32),
1630 .parent = &pdev->dev,
1631 };
1632
1633 if (node) {
1634 /* Check if this is a second instance registered */
1635 if (arch_num_cc) {
1636 dev_err(dev, "only one EDMA instance is supported via DT\n");
1637 return -ENODEV;
1638 }
1639
1640 ninfo[0] = edma_setup_info_from_dt(dev, node);
1641 if (IS_ERR(ninfo[0])) {
1642 dev_err(dev, "failed to get DT data\n");
1643 return PTR_ERR(ninfo[0]);
1644 }
1645
1646 info = ninfo;
1647 }
1648
1649 if (!info)
1650 return -ENODEV;
1651
1652 pm_runtime_enable(dev);
1653 ret = pm_runtime_get_sync(dev);
1654 if (ret < 0) {
1655 dev_err(dev, "pm_runtime_get_sync() failed\n");
1656 return ret;
1657 }
1658
1659 for (j = 0; j < EDMA_MAX_CC; j++) {
1660 if (!info[j]) {
1661 if (!found)
1662 return -ENODEV;
1663 break;
1664 }
1665 if (node) {
1666 ret = of_address_to_resource(node, j, &res[j]);
1667 if (!ret)
1668 r[j] = &res[j];
1669 } else {
1670 sprintf(res_name, "edma_cc%d", j);
1671 r[j] = platform_get_resource_byname(pdev,
1672 IORESOURCE_MEM,
1673 res_name);
1674 }
1675 if (!r[j]) {
1676 if (found)
1677 break;
1678 else
1679 return -ENODEV;
1680 } else {
1681 found = 1;
1682 }
1683
1684 edmacc_regs_base[j] = devm_ioremap_resource(&pdev->dev, r[j]);
1685 if (IS_ERR(edmacc_regs_base[j]))
1686 return PTR_ERR(edmacc_regs_base[j]);
1687
1688 edma_cc[j] = devm_kzalloc(&pdev->dev, sizeof(struct edma),
1689 GFP_KERNEL);
1690 if (!edma_cc[j])
1691 return -ENOMEM;
1692
1693 /* Get eDMA3 configuration from IP */
1694 ret = edma_setup_from_hw(dev, info[j], edma_cc[j], j);
1695 if (ret)
1696 return ret;
1697
1698 edma_cc[j]->default_queue = info[j]->default_queue;
1699
1700 dev_dbg(&pdev->dev, "DMA REG BASE ADDR=%p\n",
1701 edmacc_regs_base[j]);
1702
1703 for (i = 0; i < edma_cc[j]->num_slots; i++)
1704 memcpy_toio(edmacc_regs_base[j] + PARM_OFFSET(i),
1705 &dummy_paramset, PARM_SIZE);
1706
1707 /* Mark all channels as unused */
1708 memset(edma_cc[j]->edma_unused, 0xff,
1709 sizeof(edma_cc[j]->edma_unused));
1710
1711 if (info[j]->rsv) {
1712
1713 /* Clear the reserved channels in unused list */
1714 rsv_chans = info[j]->rsv->rsv_chans;
1715 if (rsv_chans) {
1716 for (i = 0; rsv_chans[i][0] != -1; i++) {
1717 off = rsv_chans[i][0];
1718 ln = rsv_chans[i][1];
1719 clear_bits(off, ln,
1720 edma_cc[j]->edma_unused);
1721 }
1722 }
1723
1724 /* Set the reserved slots in inuse list */
1725 rsv_slots = info[j]->rsv->rsv_slots;
1726 if (rsv_slots) {
1727 for (i = 0; rsv_slots[i][0] != -1; i++) {
1728 off = rsv_slots[i][0];
1729 ln = rsv_slots[i][1];
1730 set_bits(off, ln,
1731 edma_cc[j]->edma_inuse);
1732 }
1733 }
1734 }
1735
1736 /* Clear the xbar mapped channels in unused list */
1737 xbar_chans = info[j]->xbar_chans;
1738 if (xbar_chans) {
1739 for (i = 0; xbar_chans[i][1] != -1; i++) {
1740 off = xbar_chans[i][1];
1741 clear_bits(off, 1,
1742 edma_cc[j]->edma_unused);
1743 }
1744 }
1745
1746 if (node) {
1747 irq[j] = irq_of_parse_and_map(node, 0);
1748 err_irq[j] = irq_of_parse_and_map(node, 2);
1749 } else {
1750 char irq_name[10];
1751
1752 sprintf(irq_name, "edma%d", j);
1753 irq[j] = platform_get_irq_byname(pdev, irq_name);
1754
1755 sprintf(irq_name, "edma%d_err", j);
1756 err_irq[j] = platform_get_irq_byname(pdev, irq_name);
1757 }
1758 edma_cc[j]->irq_res_start = irq[j];
1759 edma_cc[j]->irq_res_end = err_irq[j];
1760
1761 status = devm_request_irq(dev, irq[j], dma_irq_handler, 0,
1762 "edma", dev);
1763 if (status < 0) {
1764 dev_dbg(&pdev->dev,
1765 "devm_request_irq %d failed --> %d\n",
1766 irq[j], status);
1767 return status;
1768 }
1769
1770 status = devm_request_irq(dev, err_irq[j], dma_ccerr_handler, 0,
1771 "edma_error", dev);
1772 if (status < 0) {
1773 dev_dbg(&pdev->dev,
1774 "devm_request_irq %d failed --> %d\n",
1775 err_irq[j], status);
1776 return status;
1777 }
1778
1779 for (i = 0; i < edma_cc[j]->num_channels; i++)
1780 map_dmach_queue(j, i, info[j]->default_queue);
1781
1782 queue_priority_mapping = info[j]->queue_priority_mapping;
1783
1784 /* Event queue priority mapping */
1785 for (i = 0; queue_priority_mapping[i][0] != -1; i++)
1786 assign_priority_to_queue(j,
1787 queue_priority_mapping[i][0],
1788 queue_priority_mapping[i][1]);
1789
1790 /* Map the channel to param entry if channel mapping logic
1791 * exist
1792 */
1793 if (edma_read(j, EDMA_CCCFG) & CHMAP_EXIST)
1794 map_dmach_param(j);
1795
1796 for (i = 0; i < edma_cc[j]->num_region; i++) {
1797 edma_write_array2(j, EDMA_DRAE, i, 0, 0x0);
1798 edma_write_array2(j, EDMA_DRAE, i, 1, 0x0);
1799 edma_write_array(j, EDMA_QRAE, i, 0x0);
1800 }
1801 arch_num_cc++;
1802
1803 edma_dev_info.id = j;
1804 platform_device_register_full(&edma_dev_info);
1805 }
1806
1807 return 0;
1808 }
1809
1810 static struct platform_driver edma_driver = {
1811 .driver = {
1812 .name = "edma",
1813 .of_match_table = edma_of_ids,
1814 },
1815 .probe = edma_probe,
1816 };
1817
1818 static int __init edma_init(void)
1819 {
1820 return platform_driver_probe(&edma_driver, edma_probe);
1821 }
1822 arch_initcall(edma_init);
1823
This page took 0.071152 seconds and 5 git commands to generate.