ARM: 7075/1: LPAE: Factor out 2-level page table definitions into separate files
[deliverable/linux.git] / arch / arm / include / asm / pgtable.h
1 /*
2 * arch/arm/include/asm/pgtable.h
3 *
4 * Copyright (C) 1995-2002 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #ifndef _ASMARM_PGTABLE_H
11 #define _ASMARM_PGTABLE_H
12
13 #include <linux/const.h>
14 #include <asm-generic/4level-fixup.h>
15 #include <asm/proc-fns.h>
16
17 #ifndef CONFIG_MMU
18
19 #include "pgtable-nommu.h"
20
21 #else
22
23 #include <asm/memory.h>
24 #include <mach/vmalloc.h>
25 #include <asm/pgtable-hwdef.h>
26
27 #include <asm/pgtable-2level.h>
28
29 /*
30 * Just any arbitrary offset to the start of the vmalloc VM area: the
31 * current 8MB value just means that there will be a 8MB "hole" after the
32 * physical memory until the kernel virtual memory starts. That means that
33 * any out-of-bounds memory accesses will hopefully be caught.
34 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
35 * area for the same reason. ;)
36 *
37 * Note that platforms may override VMALLOC_START, but they must provide
38 * VMALLOC_END. VMALLOC_END defines the (exclusive) limit of this space,
39 * which may not overlap IO space.
40 */
41 #ifndef VMALLOC_START
42 #define VMALLOC_OFFSET (8*1024*1024)
43 #define VMALLOC_START (((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
44 #endif
45
46 #define LIBRARY_TEXT_START 0x0c000000
47
48 #ifndef __ASSEMBLY__
49 extern void __pte_error(const char *file, int line, pte_t);
50 extern void __pmd_error(const char *file, int line, pmd_t);
51 extern void __pgd_error(const char *file, int line, pgd_t);
52
53 #define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte)
54 #define pmd_ERROR(pmd) __pmd_error(__FILE__, __LINE__, pmd)
55 #define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd)
56
57 /*
58 * This is the lowest virtual address we can permit any user space
59 * mapping to be mapped at. This is particularly important for
60 * non-high vector CPUs.
61 */
62 #define FIRST_USER_ADDRESS PAGE_SIZE
63
64 /*
65 * The pgprot_* and protection_map entries will be fixed up in runtime
66 * to include the cachable and bufferable bits based on memory policy,
67 * as well as any architecture dependent bits like global/ASID and SMP
68 * shared mapping bits.
69 */
70 #define _L_PTE_DEFAULT L_PTE_PRESENT | L_PTE_YOUNG
71
72 extern pgprot_t pgprot_user;
73 extern pgprot_t pgprot_kernel;
74
75 #define _MOD_PROT(p, b) __pgprot(pgprot_val(p) | (b))
76
77 #define PAGE_NONE _MOD_PROT(pgprot_user, L_PTE_XN | L_PTE_RDONLY)
78 #define PAGE_SHARED _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_XN)
79 #define PAGE_SHARED_EXEC _MOD_PROT(pgprot_user, L_PTE_USER)
80 #define PAGE_COPY _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
81 #define PAGE_COPY_EXEC _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
82 #define PAGE_READONLY _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
83 #define PAGE_READONLY_EXEC _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
84 #define PAGE_KERNEL _MOD_PROT(pgprot_kernel, L_PTE_XN)
85 #define PAGE_KERNEL_EXEC pgprot_kernel
86
87 #define __PAGE_NONE __pgprot(_L_PTE_DEFAULT | L_PTE_RDONLY | L_PTE_XN)
88 #define __PAGE_SHARED __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_XN)
89 #define __PAGE_SHARED_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER)
90 #define __PAGE_COPY __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
91 #define __PAGE_COPY_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
92 #define __PAGE_READONLY __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
93 #define __PAGE_READONLY_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
94
95 #define __pgprot_modify(prot,mask,bits) \
96 __pgprot((pgprot_val(prot) & ~(mask)) | (bits))
97
98 #define pgprot_noncached(prot) \
99 __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
100
101 #define pgprot_writecombine(prot) \
102 __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE)
103
104 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
105 #define pgprot_dmacoherent(prot) \
106 __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE | L_PTE_XN)
107 #define __HAVE_PHYS_MEM_ACCESS_PROT
108 struct file;
109 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
110 unsigned long size, pgprot_t vma_prot);
111 #else
112 #define pgprot_dmacoherent(prot) \
113 __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED | L_PTE_XN)
114 #endif
115
116 #endif /* __ASSEMBLY__ */
117
118 /*
119 * The table below defines the page protection levels that we insert into our
120 * Linux page table version. These get translated into the best that the
121 * architecture can perform. Note that on most ARM hardware:
122 * 1) We cannot do execute protection
123 * 2) If we could do execute protection, then read is implied
124 * 3) write implies read permissions
125 */
126 #define __P000 __PAGE_NONE
127 #define __P001 __PAGE_READONLY
128 #define __P010 __PAGE_COPY
129 #define __P011 __PAGE_COPY
130 #define __P100 __PAGE_READONLY_EXEC
131 #define __P101 __PAGE_READONLY_EXEC
132 #define __P110 __PAGE_COPY_EXEC
133 #define __P111 __PAGE_COPY_EXEC
134
135 #define __S000 __PAGE_NONE
136 #define __S001 __PAGE_READONLY
137 #define __S010 __PAGE_SHARED
138 #define __S011 __PAGE_SHARED
139 #define __S100 __PAGE_READONLY_EXEC
140 #define __S101 __PAGE_READONLY_EXEC
141 #define __S110 __PAGE_SHARED_EXEC
142 #define __S111 __PAGE_SHARED_EXEC
143
144 #ifndef __ASSEMBLY__
145 /*
146 * ZERO_PAGE is a global shared page that is always zero: used
147 * for zero-mapped memory areas etc..
148 */
149 extern struct page *empty_zero_page;
150 #define ZERO_PAGE(vaddr) (empty_zero_page)
151
152
153 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
154
155 /* to find an entry in a page-table-directory */
156 #define pgd_index(addr) ((addr) >> PGDIR_SHIFT)
157
158 #define pgd_offset(mm, addr) ((mm)->pgd + pgd_index(addr))
159
160 /* to find an entry in a kernel page-table-directory */
161 #define pgd_offset_k(addr) pgd_offset(&init_mm, addr)
162
163 /*
164 * The "pgd_xxx()" functions here are trivial for a folded two-level
165 * setup: the pgd is never bad, and a pmd always exists (as it's folded
166 * into the pgd entry)
167 */
168 #define pgd_none(pgd) (0)
169 #define pgd_bad(pgd) (0)
170 #define pgd_present(pgd) (1)
171 #define pgd_clear(pgdp) do { } while (0)
172 #define set_pgd(pgd,pgdp) do { } while (0)
173 #define set_pud(pud,pudp) do { } while (0)
174
175
176 /* Find an entry in the second-level page table.. */
177 #define pmd_offset(dir, addr) ((pmd_t *)(dir))
178
179 #define pmd_none(pmd) (!pmd_val(pmd))
180 #define pmd_present(pmd) (pmd_val(pmd))
181 #define pmd_bad(pmd) (pmd_val(pmd) & 2)
182
183 #define copy_pmd(pmdpd,pmdps) \
184 do { \
185 pmdpd[0] = pmdps[0]; \
186 pmdpd[1] = pmdps[1]; \
187 flush_pmd_entry(pmdpd); \
188 } while (0)
189
190 #define pmd_clear(pmdp) \
191 do { \
192 pmdp[0] = __pmd(0); \
193 pmdp[1] = __pmd(0); \
194 clean_pmd_entry(pmdp); \
195 } while (0)
196
197 static inline pte_t *pmd_page_vaddr(pmd_t pmd)
198 {
199 return __va(pmd_val(pmd) & PAGE_MASK);
200 }
201
202 #define pmd_page(pmd) pfn_to_page(__phys_to_pfn(pmd_val(pmd)))
203
204 /* we don't need complex calculations here as the pmd is folded into the pgd */
205 #define pmd_addr_end(addr,end) (end)
206
207
208 #ifndef CONFIG_HIGHPTE
209 #define __pte_map(pmd) pmd_page_vaddr(*(pmd))
210 #define __pte_unmap(pte) do { } while (0)
211 #else
212 #define __pte_map(pmd) (pte_t *)kmap_atomic(pmd_page(*(pmd)))
213 #define __pte_unmap(pte) kunmap_atomic(pte)
214 #endif
215
216 #define pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
217
218 #define pte_offset_kernel(pmd,addr) (pmd_page_vaddr(*(pmd)) + pte_index(addr))
219
220 #define pte_offset_map(pmd,addr) (__pte_map(pmd) + pte_index(addr))
221 #define pte_unmap(pte) __pte_unmap(pte)
222
223 #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
224 #define pfn_pte(pfn,prot) __pte(__pfn_to_phys(pfn) | pgprot_val(prot))
225
226 #define pte_page(pte) pfn_to_page(pte_pfn(pte))
227 #define mk_pte(page,prot) pfn_pte(page_to_pfn(page), prot)
228
229 #define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,pte,ext)
230 #define pte_clear(mm,addr,ptep) set_pte_ext(ptep, __pte(0), 0)
231
232 #if __LINUX_ARM_ARCH__ < 6
233 static inline void __sync_icache_dcache(pte_t pteval)
234 {
235 }
236 #else
237 extern void __sync_icache_dcache(pte_t pteval);
238 #endif
239
240 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
241 pte_t *ptep, pte_t pteval)
242 {
243 if (addr >= TASK_SIZE)
244 set_pte_ext(ptep, pteval, 0);
245 else {
246 __sync_icache_dcache(pteval);
247 set_pte_ext(ptep, pteval, PTE_EXT_NG);
248 }
249 }
250
251 #define pte_none(pte) (!pte_val(pte))
252 #define pte_present(pte) (pte_val(pte) & L_PTE_PRESENT)
253 #define pte_write(pte) (!(pte_val(pte) & L_PTE_RDONLY))
254 #define pte_dirty(pte) (pte_val(pte) & L_PTE_DIRTY)
255 #define pte_young(pte) (pte_val(pte) & L_PTE_YOUNG)
256 #define pte_exec(pte) (!(pte_val(pte) & L_PTE_XN))
257 #define pte_special(pte) (0)
258
259 #define pte_present_user(pte) \
260 ((pte_val(pte) & (L_PTE_PRESENT | L_PTE_USER)) == \
261 (L_PTE_PRESENT | L_PTE_USER))
262
263 #define PTE_BIT_FUNC(fn,op) \
264 static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; }
265
266 PTE_BIT_FUNC(wrprotect, |= L_PTE_RDONLY);
267 PTE_BIT_FUNC(mkwrite, &= ~L_PTE_RDONLY);
268 PTE_BIT_FUNC(mkclean, &= ~L_PTE_DIRTY);
269 PTE_BIT_FUNC(mkdirty, |= L_PTE_DIRTY);
270 PTE_BIT_FUNC(mkold, &= ~L_PTE_YOUNG);
271 PTE_BIT_FUNC(mkyoung, |= L_PTE_YOUNG);
272
273 static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
274
275 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
276 {
277 const pteval_t mask = L_PTE_XN | L_PTE_RDONLY | L_PTE_USER;
278 pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
279 return pte;
280 }
281
282 /*
283 * Encode and decode a swap entry. Swap entries are stored in the Linux
284 * page tables as follows:
285 *
286 * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
287 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
288 * <--------------- offset --------------------> <- type --> 0 0 0
289 *
290 * This gives us up to 63 swap files and 32GB per swap file. Note that
291 * the offset field is always non-zero.
292 */
293 #define __SWP_TYPE_SHIFT 3
294 #define __SWP_TYPE_BITS 6
295 #define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1)
296 #define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
297
298 #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
299 #define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT)
300 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
301
302 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
303 #define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
304
305 /*
306 * It is an error for the kernel to have more swap files than we can
307 * encode in the PTEs. This ensures that we know when MAX_SWAPFILES
308 * is increased beyond what we presently support.
309 */
310 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
311
312 /*
313 * Encode and decode a file entry. File entries are stored in the Linux
314 * page tables as follows:
315 *
316 * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
317 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
318 * <----------------------- offset ------------------------> 1 0 0
319 */
320 #define pte_file(pte) (pte_val(pte) & L_PTE_FILE)
321 #define pte_to_pgoff(x) (pte_val(x) >> 3)
322 #define pgoff_to_pte(x) __pte(((x) << 3) | L_PTE_FILE)
323
324 #define PTE_FILE_MAX_BITS 29
325
326 /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
327 /* FIXME: this is not correct */
328 #define kern_addr_valid(addr) (1)
329
330 #include <asm-generic/pgtable.h>
331
332 /*
333 * We provide our own arch_get_unmapped_area to cope with VIPT caches.
334 */
335 #define HAVE_ARCH_UNMAPPED_AREA
336
337 /*
338 * remap a physical page `pfn' of size `size' with page protection `prot'
339 * into virtual address `from'
340 */
341 #define io_remap_pfn_range(vma,from,pfn,size,prot) \
342 remap_pfn_range(vma, from, pfn, size, prot)
343
344 #define pgtable_cache_init() do { } while (0)
345
346 void identity_mapping_add(pgd_t *, unsigned long, unsigned long);
347 void identity_mapping_del(pgd_t *, unsigned long, unsigned long);
348
349 #endif /* !__ASSEMBLY__ */
350
351 #endif /* CONFIG_MMU */
352
353 #endif /* _ASMARM_PGTABLE_H */
This page took 0.198899 seconds and 5 git commands to generate.