Merge tag 'stable/for-linus-3.14-rc2-tag' of git://git.kernel.org/pub/scm/linux/kerne...
[deliverable/linux.git] / arch / arm / kernel / perf_event.c
1 #undef DEBUG
2
3 /*
4 * ARM performance counter support.
5 *
6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
8 *
9 * This code is based on the sparc64 perf event code, which is in turn based
10 * on the x86 code. Callchain code is based on the ARM OProfile backtrace
11 * code.
12 */
13 #define pr_fmt(fmt) "hw perfevents: " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/uaccess.h>
19
20 #include <asm/irq_regs.h>
21 #include <asm/pmu.h>
22 #include <asm/stacktrace.h>
23
24 static int
25 armpmu_map_cache_event(const unsigned (*cache_map)
26 [PERF_COUNT_HW_CACHE_MAX]
27 [PERF_COUNT_HW_CACHE_OP_MAX]
28 [PERF_COUNT_HW_CACHE_RESULT_MAX],
29 u64 config)
30 {
31 unsigned int cache_type, cache_op, cache_result, ret;
32
33 cache_type = (config >> 0) & 0xff;
34 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
35 return -EINVAL;
36
37 cache_op = (config >> 8) & 0xff;
38 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
39 return -EINVAL;
40
41 cache_result = (config >> 16) & 0xff;
42 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
43 return -EINVAL;
44
45 ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
46
47 if (ret == CACHE_OP_UNSUPPORTED)
48 return -ENOENT;
49
50 return ret;
51 }
52
53 static int
54 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
55 {
56 int mapping;
57
58 if (config >= PERF_COUNT_HW_MAX)
59 return -EINVAL;
60
61 mapping = (*event_map)[config];
62 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
63 }
64
65 static int
66 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
67 {
68 return (int)(config & raw_event_mask);
69 }
70
71 int
72 armpmu_map_event(struct perf_event *event,
73 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
74 const unsigned (*cache_map)
75 [PERF_COUNT_HW_CACHE_MAX]
76 [PERF_COUNT_HW_CACHE_OP_MAX]
77 [PERF_COUNT_HW_CACHE_RESULT_MAX],
78 u32 raw_event_mask)
79 {
80 u64 config = event->attr.config;
81
82 switch (event->attr.type) {
83 case PERF_TYPE_HARDWARE:
84 return armpmu_map_hw_event(event_map, config);
85 case PERF_TYPE_HW_CACHE:
86 return armpmu_map_cache_event(cache_map, config);
87 case PERF_TYPE_RAW:
88 return armpmu_map_raw_event(raw_event_mask, config);
89 }
90
91 return -ENOENT;
92 }
93
94 int armpmu_event_set_period(struct perf_event *event)
95 {
96 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
97 struct hw_perf_event *hwc = &event->hw;
98 s64 left = local64_read(&hwc->period_left);
99 s64 period = hwc->sample_period;
100 int ret = 0;
101
102 if (unlikely(left <= -period)) {
103 left = period;
104 local64_set(&hwc->period_left, left);
105 hwc->last_period = period;
106 ret = 1;
107 }
108
109 if (unlikely(left <= 0)) {
110 left += period;
111 local64_set(&hwc->period_left, left);
112 hwc->last_period = period;
113 ret = 1;
114 }
115
116 if (left > (s64)armpmu->max_period)
117 left = armpmu->max_period;
118
119 local64_set(&hwc->prev_count, (u64)-left);
120
121 armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
122
123 perf_event_update_userpage(event);
124
125 return ret;
126 }
127
128 u64 armpmu_event_update(struct perf_event *event)
129 {
130 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
131 struct hw_perf_event *hwc = &event->hw;
132 u64 delta, prev_raw_count, new_raw_count;
133
134 again:
135 prev_raw_count = local64_read(&hwc->prev_count);
136 new_raw_count = armpmu->read_counter(event);
137
138 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
139 new_raw_count) != prev_raw_count)
140 goto again;
141
142 delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
143
144 local64_add(delta, &event->count);
145 local64_sub(delta, &hwc->period_left);
146
147 return new_raw_count;
148 }
149
150 static void
151 armpmu_read(struct perf_event *event)
152 {
153 armpmu_event_update(event);
154 }
155
156 static void
157 armpmu_stop(struct perf_event *event, int flags)
158 {
159 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
160 struct hw_perf_event *hwc = &event->hw;
161
162 /*
163 * ARM pmu always has to update the counter, so ignore
164 * PERF_EF_UPDATE, see comments in armpmu_start().
165 */
166 if (!(hwc->state & PERF_HES_STOPPED)) {
167 armpmu->disable(event);
168 armpmu_event_update(event);
169 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
170 }
171 }
172
173 static void armpmu_start(struct perf_event *event, int flags)
174 {
175 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
176 struct hw_perf_event *hwc = &event->hw;
177
178 /*
179 * ARM pmu always has to reprogram the period, so ignore
180 * PERF_EF_RELOAD, see the comment below.
181 */
182 if (flags & PERF_EF_RELOAD)
183 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
184
185 hwc->state = 0;
186 /*
187 * Set the period again. Some counters can't be stopped, so when we
188 * were stopped we simply disabled the IRQ source and the counter
189 * may have been left counting. If we don't do this step then we may
190 * get an interrupt too soon or *way* too late if the overflow has
191 * happened since disabling.
192 */
193 armpmu_event_set_period(event);
194 armpmu->enable(event);
195 }
196
197 static void
198 armpmu_del(struct perf_event *event, int flags)
199 {
200 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
201 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
202 struct hw_perf_event *hwc = &event->hw;
203 int idx = hwc->idx;
204
205 armpmu_stop(event, PERF_EF_UPDATE);
206 hw_events->events[idx] = NULL;
207 clear_bit(idx, hw_events->used_mask);
208
209 perf_event_update_userpage(event);
210 }
211
212 static int
213 armpmu_add(struct perf_event *event, int flags)
214 {
215 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
216 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
217 struct hw_perf_event *hwc = &event->hw;
218 int idx;
219 int err = 0;
220
221 perf_pmu_disable(event->pmu);
222
223 /* If we don't have a space for the counter then finish early. */
224 idx = armpmu->get_event_idx(hw_events, event);
225 if (idx < 0) {
226 err = idx;
227 goto out;
228 }
229
230 /*
231 * If there is an event in the counter we are going to use then make
232 * sure it is disabled.
233 */
234 event->hw.idx = idx;
235 armpmu->disable(event);
236 hw_events->events[idx] = event;
237
238 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
239 if (flags & PERF_EF_START)
240 armpmu_start(event, PERF_EF_RELOAD);
241
242 /* Propagate our changes to the userspace mapping. */
243 perf_event_update_userpage(event);
244
245 out:
246 perf_pmu_enable(event->pmu);
247 return err;
248 }
249
250 static int
251 validate_event(struct pmu_hw_events *hw_events,
252 struct perf_event *event)
253 {
254 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
255
256 if (is_software_event(event))
257 return 1;
258
259 if (event->state < PERF_EVENT_STATE_OFF)
260 return 1;
261
262 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
263 return 1;
264
265 return armpmu->get_event_idx(hw_events, event) >= 0;
266 }
267
268 static int
269 validate_group(struct perf_event *event)
270 {
271 struct perf_event *sibling, *leader = event->group_leader;
272 struct pmu_hw_events fake_pmu;
273 DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS);
274
275 /*
276 * Initialise the fake PMU. We only need to populate the
277 * used_mask for the purposes of validation.
278 */
279 memset(fake_used_mask, 0, sizeof(fake_used_mask));
280 fake_pmu.used_mask = fake_used_mask;
281
282 if (!validate_event(&fake_pmu, leader))
283 return -EINVAL;
284
285 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
286 if (!validate_event(&fake_pmu, sibling))
287 return -EINVAL;
288 }
289
290 if (!validate_event(&fake_pmu, event))
291 return -EINVAL;
292
293 return 0;
294 }
295
296 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
297 {
298 struct arm_pmu *armpmu = (struct arm_pmu *) dev;
299 struct platform_device *plat_device = armpmu->plat_device;
300 struct arm_pmu_platdata *plat = dev_get_platdata(&plat_device->dev);
301
302 if (plat && plat->handle_irq)
303 return plat->handle_irq(irq, dev, armpmu->handle_irq);
304 else
305 return armpmu->handle_irq(irq, dev);
306 }
307
308 static void
309 armpmu_release_hardware(struct arm_pmu *armpmu)
310 {
311 armpmu->free_irq(armpmu);
312 pm_runtime_put_sync(&armpmu->plat_device->dev);
313 }
314
315 static int
316 armpmu_reserve_hardware(struct arm_pmu *armpmu)
317 {
318 int err;
319 struct platform_device *pmu_device = armpmu->plat_device;
320
321 if (!pmu_device)
322 return -ENODEV;
323
324 pm_runtime_get_sync(&pmu_device->dev);
325 err = armpmu->request_irq(armpmu, armpmu_dispatch_irq);
326 if (err) {
327 armpmu_release_hardware(armpmu);
328 return err;
329 }
330
331 return 0;
332 }
333
334 static void
335 hw_perf_event_destroy(struct perf_event *event)
336 {
337 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
338 atomic_t *active_events = &armpmu->active_events;
339 struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
340
341 if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
342 armpmu_release_hardware(armpmu);
343 mutex_unlock(pmu_reserve_mutex);
344 }
345 }
346
347 static int
348 event_requires_mode_exclusion(struct perf_event_attr *attr)
349 {
350 return attr->exclude_idle || attr->exclude_user ||
351 attr->exclude_kernel || attr->exclude_hv;
352 }
353
354 static int
355 __hw_perf_event_init(struct perf_event *event)
356 {
357 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
358 struct hw_perf_event *hwc = &event->hw;
359 int mapping;
360
361 mapping = armpmu->map_event(event);
362
363 if (mapping < 0) {
364 pr_debug("event %x:%llx not supported\n", event->attr.type,
365 event->attr.config);
366 return mapping;
367 }
368
369 /*
370 * We don't assign an index until we actually place the event onto
371 * hardware. Use -1 to signify that we haven't decided where to put it
372 * yet. For SMP systems, each core has it's own PMU so we can't do any
373 * clever allocation or constraints checking at this point.
374 */
375 hwc->idx = -1;
376 hwc->config_base = 0;
377 hwc->config = 0;
378 hwc->event_base = 0;
379
380 /*
381 * Check whether we need to exclude the counter from certain modes.
382 */
383 if ((!armpmu->set_event_filter ||
384 armpmu->set_event_filter(hwc, &event->attr)) &&
385 event_requires_mode_exclusion(&event->attr)) {
386 pr_debug("ARM performance counters do not support "
387 "mode exclusion\n");
388 return -EOPNOTSUPP;
389 }
390
391 /*
392 * Store the event encoding into the config_base field.
393 */
394 hwc->config_base |= (unsigned long)mapping;
395
396 if (!hwc->sample_period) {
397 /*
398 * For non-sampling runs, limit the sample_period to half
399 * of the counter width. That way, the new counter value
400 * is far less likely to overtake the previous one unless
401 * you have some serious IRQ latency issues.
402 */
403 hwc->sample_period = armpmu->max_period >> 1;
404 hwc->last_period = hwc->sample_period;
405 local64_set(&hwc->period_left, hwc->sample_period);
406 }
407
408 if (event->group_leader != event) {
409 if (validate_group(event) != 0)
410 return -EINVAL;
411 }
412
413 return 0;
414 }
415
416 static int armpmu_event_init(struct perf_event *event)
417 {
418 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
419 int err = 0;
420 atomic_t *active_events = &armpmu->active_events;
421
422 /* does not support taken branch sampling */
423 if (has_branch_stack(event))
424 return -EOPNOTSUPP;
425
426 if (armpmu->map_event(event) == -ENOENT)
427 return -ENOENT;
428
429 event->destroy = hw_perf_event_destroy;
430
431 if (!atomic_inc_not_zero(active_events)) {
432 mutex_lock(&armpmu->reserve_mutex);
433 if (atomic_read(active_events) == 0)
434 err = armpmu_reserve_hardware(armpmu);
435
436 if (!err)
437 atomic_inc(active_events);
438 mutex_unlock(&armpmu->reserve_mutex);
439 }
440
441 if (err)
442 return err;
443
444 err = __hw_perf_event_init(event);
445 if (err)
446 hw_perf_event_destroy(event);
447
448 return err;
449 }
450
451 static void armpmu_enable(struct pmu *pmu)
452 {
453 struct arm_pmu *armpmu = to_arm_pmu(pmu);
454 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
455 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
456
457 if (enabled)
458 armpmu->start(armpmu);
459 }
460
461 static void armpmu_disable(struct pmu *pmu)
462 {
463 struct arm_pmu *armpmu = to_arm_pmu(pmu);
464 armpmu->stop(armpmu);
465 }
466
467 #ifdef CONFIG_PM_RUNTIME
468 static int armpmu_runtime_resume(struct device *dev)
469 {
470 struct arm_pmu_platdata *plat = dev_get_platdata(dev);
471
472 if (plat && plat->runtime_resume)
473 return plat->runtime_resume(dev);
474
475 return 0;
476 }
477
478 static int armpmu_runtime_suspend(struct device *dev)
479 {
480 struct arm_pmu_platdata *plat = dev_get_platdata(dev);
481
482 if (plat && plat->runtime_suspend)
483 return plat->runtime_suspend(dev);
484
485 return 0;
486 }
487 #endif
488
489 const struct dev_pm_ops armpmu_dev_pm_ops = {
490 SET_RUNTIME_PM_OPS(armpmu_runtime_suspend, armpmu_runtime_resume, NULL)
491 };
492
493 static void armpmu_init(struct arm_pmu *armpmu)
494 {
495 atomic_set(&armpmu->active_events, 0);
496 mutex_init(&armpmu->reserve_mutex);
497
498 armpmu->pmu = (struct pmu) {
499 .pmu_enable = armpmu_enable,
500 .pmu_disable = armpmu_disable,
501 .event_init = armpmu_event_init,
502 .add = armpmu_add,
503 .del = armpmu_del,
504 .start = armpmu_start,
505 .stop = armpmu_stop,
506 .read = armpmu_read,
507 };
508 }
509
510 int armpmu_register(struct arm_pmu *armpmu, int type)
511 {
512 armpmu_init(armpmu);
513 pm_runtime_enable(&armpmu->plat_device->dev);
514 pr_info("enabled with %s PMU driver, %d counters available\n",
515 armpmu->name, armpmu->num_events);
516 return perf_pmu_register(&armpmu->pmu, armpmu->name, type);
517 }
518
519 /*
520 * Callchain handling code.
521 */
522
523 /*
524 * The registers we're interested in are at the end of the variable
525 * length saved register structure. The fp points at the end of this
526 * structure so the address of this struct is:
527 * (struct frame_tail *)(xxx->fp)-1
528 *
529 * This code has been adapted from the ARM OProfile support.
530 */
531 struct frame_tail {
532 struct frame_tail __user *fp;
533 unsigned long sp;
534 unsigned long lr;
535 } __attribute__((packed));
536
537 /*
538 * Get the return address for a single stackframe and return a pointer to the
539 * next frame tail.
540 */
541 static struct frame_tail __user *
542 user_backtrace(struct frame_tail __user *tail,
543 struct perf_callchain_entry *entry)
544 {
545 struct frame_tail buftail;
546
547 /* Also check accessibility of one struct frame_tail beyond */
548 if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
549 return NULL;
550 if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
551 return NULL;
552
553 perf_callchain_store(entry, buftail.lr);
554
555 /*
556 * Frame pointers should strictly progress back up the stack
557 * (towards higher addresses).
558 */
559 if (tail + 1 >= buftail.fp)
560 return NULL;
561
562 return buftail.fp - 1;
563 }
564
565 void
566 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
567 {
568 struct frame_tail __user *tail;
569
570 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
571 /* We don't support guest os callchain now */
572 return;
573 }
574
575 perf_callchain_store(entry, regs->ARM_pc);
576 tail = (struct frame_tail __user *)regs->ARM_fp - 1;
577
578 while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
579 tail && !((unsigned long)tail & 0x3))
580 tail = user_backtrace(tail, entry);
581 }
582
583 /*
584 * Gets called by walk_stackframe() for every stackframe. This will be called
585 * whist unwinding the stackframe and is like a subroutine return so we use
586 * the PC.
587 */
588 static int
589 callchain_trace(struct stackframe *fr,
590 void *data)
591 {
592 struct perf_callchain_entry *entry = data;
593 perf_callchain_store(entry, fr->pc);
594 return 0;
595 }
596
597 void
598 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
599 {
600 struct stackframe fr;
601
602 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
603 /* We don't support guest os callchain now */
604 return;
605 }
606
607 fr.fp = regs->ARM_fp;
608 fr.sp = regs->ARM_sp;
609 fr.lr = regs->ARM_lr;
610 fr.pc = regs->ARM_pc;
611 walk_stackframe(&fr, callchain_trace, entry);
612 }
613
614 unsigned long perf_instruction_pointer(struct pt_regs *regs)
615 {
616 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
617 return perf_guest_cbs->get_guest_ip();
618
619 return instruction_pointer(regs);
620 }
621
622 unsigned long perf_misc_flags(struct pt_regs *regs)
623 {
624 int misc = 0;
625
626 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
627 if (perf_guest_cbs->is_user_mode())
628 misc |= PERF_RECORD_MISC_GUEST_USER;
629 else
630 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
631 } else {
632 if (user_mode(regs))
633 misc |= PERF_RECORD_MISC_USER;
634 else
635 misc |= PERF_RECORD_MISC_KERNEL;
636 }
637
638 return misc;
639 }
This page took 0.059977 seconds and 5 git commands to generate.