ARM: perf: lock PMU registers per-CPU
[deliverable/linux.git] / arch / arm / kernel / perf_event.c
1 #undef DEBUG
2
3 /*
4 * ARM performance counter support.
5 *
6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
8 *
9 * This code is based on the sparc64 perf event code, which is in turn based
10 * on the x86 code. Callchain code is based on the ARM OProfile backtrace
11 * code.
12 */
13 #define pr_fmt(fmt) "hw perfevents: " fmt
14
15 #include <linux/interrupt.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/perf_event.h>
19 #include <linux/platform_device.h>
20 #include <linux/spinlock.h>
21 #include <linux/uaccess.h>
22
23 #include <asm/cputype.h>
24 #include <asm/irq.h>
25 #include <asm/irq_regs.h>
26 #include <asm/pmu.h>
27 #include <asm/stacktrace.h>
28
29 /*
30 * ARMv6 supports a maximum of 3 events, starting from index 0. If we add
31 * another platform that supports more, we need to increase this to be the
32 * largest of all platforms.
33 *
34 * ARMv7 supports up to 32 events:
35 * cycle counter CCNT + 31 events counters CNT0..30.
36 * Cortex-A8 has 1+4 counters, Cortex-A9 has 1+6 counters.
37 */
38 #define ARMPMU_MAX_HWEVENTS 32
39
40 /* The events for a given CPU. */
41 struct cpu_hw_events {
42 /*
43 * The events that are active on the CPU for the given index.
44 */
45 struct perf_event *events[ARMPMU_MAX_HWEVENTS];
46
47 /*
48 * A 1 bit for an index indicates that the counter is being used for
49 * an event. A 0 means that the counter can be used.
50 */
51 unsigned long used_mask[BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)];
52
53 /*
54 * Hardware lock to serialize accesses to PMU registers. Needed for the
55 * read/modify/write sequences.
56 */
57 raw_spinlock_t pmu_lock;
58 };
59 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
60
61 struct arm_pmu {
62 enum arm_perf_pmu_ids id;
63 cpumask_t active_irqs;
64 const char *name;
65 irqreturn_t (*handle_irq)(int irq_num, void *dev);
66 void (*enable)(struct hw_perf_event *evt, int idx);
67 void (*disable)(struct hw_perf_event *evt, int idx);
68 int (*get_event_idx)(struct cpu_hw_events *cpuc,
69 struct hw_perf_event *hwc);
70 int (*set_event_filter)(struct hw_perf_event *evt,
71 struct perf_event_attr *attr);
72 u32 (*read_counter)(int idx);
73 void (*write_counter)(int idx, u32 val);
74 void (*start)(void);
75 void (*stop)(void);
76 void (*reset)(void *);
77 const unsigned (*cache_map)[PERF_COUNT_HW_CACHE_MAX]
78 [PERF_COUNT_HW_CACHE_OP_MAX]
79 [PERF_COUNT_HW_CACHE_RESULT_MAX];
80 const unsigned (*event_map)[PERF_COUNT_HW_MAX];
81 u32 raw_event_mask;
82 int num_events;
83 atomic_t active_events;
84 struct mutex reserve_mutex;
85 u64 max_period;
86 struct platform_device *plat_device;
87 struct cpu_hw_events *(*get_hw_events)(void);
88 };
89
90 /* Set at runtime when we know what CPU type we are. */
91 static struct arm_pmu *armpmu;
92
93 enum arm_perf_pmu_ids
94 armpmu_get_pmu_id(void)
95 {
96 int id = -ENODEV;
97
98 if (armpmu != NULL)
99 id = armpmu->id;
100
101 return id;
102 }
103 EXPORT_SYMBOL_GPL(armpmu_get_pmu_id);
104
105 int
106 armpmu_get_max_events(void)
107 {
108 int max_events = 0;
109
110 if (armpmu != NULL)
111 max_events = armpmu->num_events;
112
113 return max_events;
114 }
115 EXPORT_SYMBOL_GPL(armpmu_get_max_events);
116
117 int perf_num_counters(void)
118 {
119 return armpmu_get_max_events();
120 }
121 EXPORT_SYMBOL_GPL(perf_num_counters);
122
123 #define HW_OP_UNSUPPORTED 0xFFFF
124
125 #define C(_x) \
126 PERF_COUNT_HW_CACHE_##_x
127
128 #define CACHE_OP_UNSUPPORTED 0xFFFF
129
130 static int
131 armpmu_map_cache_event(u64 config)
132 {
133 unsigned int cache_type, cache_op, cache_result, ret;
134
135 cache_type = (config >> 0) & 0xff;
136 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
137 return -EINVAL;
138
139 cache_op = (config >> 8) & 0xff;
140 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
141 return -EINVAL;
142
143 cache_result = (config >> 16) & 0xff;
144 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
145 return -EINVAL;
146
147 ret = (int)(*armpmu->cache_map)[cache_type][cache_op][cache_result];
148
149 if (ret == CACHE_OP_UNSUPPORTED)
150 return -ENOENT;
151
152 return ret;
153 }
154
155 static int
156 armpmu_map_event(u64 config)
157 {
158 int mapping = (*armpmu->event_map)[config];
159 return mapping == HW_OP_UNSUPPORTED ? -EOPNOTSUPP : mapping;
160 }
161
162 static int
163 armpmu_map_raw_event(u64 config)
164 {
165 return (int)(config & armpmu->raw_event_mask);
166 }
167
168 static int
169 armpmu_event_set_period(struct perf_event *event,
170 struct hw_perf_event *hwc,
171 int idx)
172 {
173 s64 left = local64_read(&hwc->period_left);
174 s64 period = hwc->sample_period;
175 int ret = 0;
176
177 if (unlikely(left <= -period)) {
178 left = period;
179 local64_set(&hwc->period_left, left);
180 hwc->last_period = period;
181 ret = 1;
182 }
183
184 if (unlikely(left <= 0)) {
185 left += period;
186 local64_set(&hwc->period_left, left);
187 hwc->last_period = period;
188 ret = 1;
189 }
190
191 if (left > (s64)armpmu->max_period)
192 left = armpmu->max_period;
193
194 local64_set(&hwc->prev_count, (u64)-left);
195
196 armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
197
198 perf_event_update_userpage(event);
199
200 return ret;
201 }
202
203 static u64
204 armpmu_event_update(struct perf_event *event,
205 struct hw_perf_event *hwc,
206 int idx, int overflow)
207 {
208 u64 delta, prev_raw_count, new_raw_count;
209
210 again:
211 prev_raw_count = local64_read(&hwc->prev_count);
212 new_raw_count = armpmu->read_counter(idx);
213
214 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
215 new_raw_count) != prev_raw_count)
216 goto again;
217
218 new_raw_count &= armpmu->max_period;
219 prev_raw_count &= armpmu->max_period;
220
221 if (overflow)
222 delta = armpmu->max_period - prev_raw_count + new_raw_count + 1;
223 else
224 delta = new_raw_count - prev_raw_count;
225
226 local64_add(delta, &event->count);
227 local64_sub(delta, &hwc->period_left);
228
229 return new_raw_count;
230 }
231
232 static void
233 armpmu_read(struct perf_event *event)
234 {
235 struct hw_perf_event *hwc = &event->hw;
236
237 /* Don't read disabled counters! */
238 if (hwc->idx < 0)
239 return;
240
241 armpmu_event_update(event, hwc, hwc->idx, 0);
242 }
243
244 static void
245 armpmu_stop(struct perf_event *event, int flags)
246 {
247 struct hw_perf_event *hwc = &event->hw;
248
249 /*
250 * ARM pmu always has to update the counter, so ignore
251 * PERF_EF_UPDATE, see comments in armpmu_start().
252 */
253 if (!(hwc->state & PERF_HES_STOPPED)) {
254 armpmu->disable(hwc, hwc->idx);
255 barrier(); /* why? */
256 armpmu_event_update(event, hwc, hwc->idx, 0);
257 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
258 }
259 }
260
261 static void
262 armpmu_start(struct perf_event *event, int flags)
263 {
264 struct hw_perf_event *hwc = &event->hw;
265
266 /*
267 * ARM pmu always has to reprogram the period, so ignore
268 * PERF_EF_RELOAD, see the comment below.
269 */
270 if (flags & PERF_EF_RELOAD)
271 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
272
273 hwc->state = 0;
274 /*
275 * Set the period again. Some counters can't be stopped, so when we
276 * were stopped we simply disabled the IRQ source and the counter
277 * may have been left counting. If we don't do this step then we may
278 * get an interrupt too soon or *way* too late if the overflow has
279 * happened since disabling.
280 */
281 armpmu_event_set_period(event, hwc, hwc->idx);
282 armpmu->enable(hwc, hwc->idx);
283 }
284
285 static void
286 armpmu_del(struct perf_event *event, int flags)
287 {
288 struct cpu_hw_events *cpuc = armpmu->get_hw_events();
289 struct hw_perf_event *hwc = &event->hw;
290 int idx = hwc->idx;
291
292 WARN_ON(idx < 0);
293
294 armpmu_stop(event, PERF_EF_UPDATE);
295 cpuc->events[idx] = NULL;
296 clear_bit(idx, cpuc->used_mask);
297
298 perf_event_update_userpage(event);
299 }
300
301 static int
302 armpmu_add(struct perf_event *event, int flags)
303 {
304 struct cpu_hw_events *cpuc = armpmu->get_hw_events();
305 struct hw_perf_event *hwc = &event->hw;
306 int idx;
307 int err = 0;
308
309 perf_pmu_disable(event->pmu);
310
311 /* If we don't have a space for the counter then finish early. */
312 idx = armpmu->get_event_idx(cpuc, hwc);
313 if (idx < 0) {
314 err = idx;
315 goto out;
316 }
317
318 /*
319 * If there is an event in the counter we are going to use then make
320 * sure it is disabled.
321 */
322 event->hw.idx = idx;
323 armpmu->disable(hwc, idx);
324 cpuc->events[idx] = event;
325
326 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
327 if (flags & PERF_EF_START)
328 armpmu_start(event, PERF_EF_RELOAD);
329
330 /* Propagate our changes to the userspace mapping. */
331 perf_event_update_userpage(event);
332
333 out:
334 perf_pmu_enable(event->pmu);
335 return err;
336 }
337
338 static struct pmu pmu;
339
340 static int
341 validate_event(struct cpu_hw_events *cpuc,
342 struct perf_event *event)
343 {
344 struct hw_perf_event fake_event = event->hw;
345 struct pmu *leader_pmu = event->group_leader->pmu;
346
347 if (event->pmu != leader_pmu || event->state <= PERF_EVENT_STATE_OFF)
348 return 1;
349
350 return armpmu->get_event_idx(cpuc, &fake_event) >= 0;
351 }
352
353 static int
354 validate_group(struct perf_event *event)
355 {
356 struct perf_event *sibling, *leader = event->group_leader;
357 struct cpu_hw_events fake_pmu;
358
359 memset(&fake_pmu, 0, sizeof(fake_pmu));
360
361 if (!validate_event(&fake_pmu, leader))
362 return -ENOSPC;
363
364 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
365 if (!validate_event(&fake_pmu, sibling))
366 return -ENOSPC;
367 }
368
369 if (!validate_event(&fake_pmu, event))
370 return -ENOSPC;
371
372 return 0;
373 }
374
375 static irqreturn_t armpmu_platform_irq(int irq, void *dev)
376 {
377 struct platform_device *plat_device = armpmu->plat_device;
378 struct arm_pmu_platdata *plat = dev_get_platdata(&plat_device->dev);
379
380 return plat->handle_irq(irq, dev, armpmu->handle_irq);
381 }
382
383 static void
384 armpmu_release_hardware(void)
385 {
386 int i, irq, irqs;
387 struct platform_device *pmu_device = armpmu->plat_device;
388
389 irqs = min(pmu_device->num_resources, num_possible_cpus());
390
391 for (i = 0; i < irqs; ++i) {
392 if (!cpumask_test_and_clear_cpu(i, &armpmu->active_irqs))
393 continue;
394 irq = platform_get_irq(pmu_device, i);
395 if (irq >= 0)
396 free_irq(irq, NULL);
397 }
398
399 release_pmu(ARM_PMU_DEVICE_CPU);
400 }
401
402 static int
403 armpmu_reserve_hardware(void)
404 {
405 struct arm_pmu_platdata *plat;
406 irq_handler_t handle_irq;
407 int i, err, irq, irqs;
408 struct platform_device *pmu_device = armpmu->plat_device;
409
410 err = reserve_pmu(ARM_PMU_DEVICE_CPU);
411 if (err) {
412 pr_warning("unable to reserve pmu\n");
413 return err;
414 }
415
416 plat = dev_get_platdata(&pmu_device->dev);
417 if (plat && plat->handle_irq)
418 handle_irq = armpmu_platform_irq;
419 else
420 handle_irq = armpmu->handle_irq;
421
422 irqs = min(pmu_device->num_resources, num_possible_cpus());
423 if (irqs < 1) {
424 pr_err("no irqs for PMUs defined\n");
425 return -ENODEV;
426 }
427
428 for (i = 0; i < irqs; ++i) {
429 err = 0;
430 irq = platform_get_irq(pmu_device, i);
431 if (irq < 0)
432 continue;
433
434 /*
435 * If we have a single PMU interrupt that we can't shift,
436 * assume that we're running on a uniprocessor machine and
437 * continue. Otherwise, continue without this interrupt.
438 */
439 if (irq_set_affinity(irq, cpumask_of(i)) && irqs > 1) {
440 pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n",
441 irq, i);
442 continue;
443 }
444
445 err = request_irq(irq, handle_irq,
446 IRQF_DISABLED | IRQF_NOBALANCING,
447 "arm-pmu", NULL);
448 if (err) {
449 pr_err("unable to request IRQ%d for ARM PMU counters\n",
450 irq);
451 armpmu_release_hardware();
452 return err;
453 }
454
455 cpumask_set_cpu(i, &armpmu->active_irqs);
456 }
457
458 return 0;
459 }
460
461 static void
462 hw_perf_event_destroy(struct perf_event *event)
463 {
464 atomic_t *active_events = &armpmu->active_events;
465 struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
466
467 if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
468 armpmu_release_hardware();
469 mutex_unlock(pmu_reserve_mutex);
470 }
471 }
472
473 static int
474 event_requires_mode_exclusion(struct perf_event_attr *attr)
475 {
476 return attr->exclude_idle || attr->exclude_user ||
477 attr->exclude_kernel || attr->exclude_hv;
478 }
479
480 static int
481 __hw_perf_event_init(struct perf_event *event)
482 {
483 struct hw_perf_event *hwc = &event->hw;
484 int mapping, err;
485
486 /* Decode the generic type into an ARM event identifier. */
487 if (PERF_TYPE_HARDWARE == event->attr.type) {
488 mapping = armpmu_map_event(event->attr.config);
489 } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
490 mapping = armpmu_map_cache_event(event->attr.config);
491 } else if (PERF_TYPE_RAW == event->attr.type) {
492 mapping = armpmu_map_raw_event(event->attr.config);
493 } else {
494 pr_debug("event type %x not supported\n", event->attr.type);
495 return -EOPNOTSUPP;
496 }
497
498 if (mapping < 0) {
499 pr_debug("event %x:%llx not supported\n", event->attr.type,
500 event->attr.config);
501 return mapping;
502 }
503
504 /*
505 * We don't assign an index until we actually place the event onto
506 * hardware. Use -1 to signify that we haven't decided where to put it
507 * yet. For SMP systems, each core has it's own PMU so we can't do any
508 * clever allocation or constraints checking at this point.
509 */
510 hwc->idx = -1;
511 hwc->config_base = 0;
512 hwc->config = 0;
513 hwc->event_base = 0;
514
515 /*
516 * Check whether we need to exclude the counter from certain modes.
517 */
518 if ((!armpmu->set_event_filter ||
519 armpmu->set_event_filter(hwc, &event->attr)) &&
520 event_requires_mode_exclusion(&event->attr)) {
521 pr_debug("ARM performance counters do not support "
522 "mode exclusion\n");
523 return -EPERM;
524 }
525
526 /*
527 * Store the event encoding into the config_base field.
528 */
529 hwc->config_base |= (unsigned long)mapping;
530
531 if (!hwc->sample_period) {
532 hwc->sample_period = armpmu->max_period;
533 hwc->last_period = hwc->sample_period;
534 local64_set(&hwc->period_left, hwc->sample_period);
535 }
536
537 err = 0;
538 if (event->group_leader != event) {
539 err = validate_group(event);
540 if (err)
541 return -EINVAL;
542 }
543
544 return err;
545 }
546
547 static int armpmu_event_init(struct perf_event *event)
548 {
549 int err = 0;
550 atomic_t *active_events = &armpmu->active_events;
551
552 switch (event->attr.type) {
553 case PERF_TYPE_RAW:
554 case PERF_TYPE_HARDWARE:
555 case PERF_TYPE_HW_CACHE:
556 break;
557
558 default:
559 return -ENOENT;
560 }
561
562 event->destroy = hw_perf_event_destroy;
563
564 if (!atomic_inc_not_zero(active_events)) {
565 mutex_lock(&armpmu->reserve_mutex);
566 if (atomic_read(active_events) == 0)
567 err = armpmu_reserve_hardware();
568
569 if (!err)
570 atomic_inc(active_events);
571 mutex_unlock(&armpmu->reserve_mutex);
572 }
573
574 if (err)
575 return err;
576
577 err = __hw_perf_event_init(event);
578 if (err)
579 hw_perf_event_destroy(event);
580
581 return err;
582 }
583
584 static void armpmu_enable(struct pmu *pmu)
585 {
586 /* Enable all of the perf events on hardware. */
587 int idx, enabled = 0;
588 struct cpu_hw_events *cpuc = armpmu->get_hw_events();
589
590 for (idx = 0; idx < armpmu->num_events; ++idx) {
591 struct perf_event *event = cpuc->events[idx];
592
593 if (!event)
594 continue;
595
596 armpmu->enable(&event->hw, idx);
597 enabled = 1;
598 }
599
600 if (enabled)
601 armpmu->start();
602 }
603
604 static void armpmu_disable(struct pmu *pmu)
605 {
606 armpmu->stop();
607 }
608
609 static struct pmu pmu = {
610 .pmu_enable = armpmu_enable,
611 .pmu_disable = armpmu_disable,
612 .event_init = armpmu_event_init,
613 .add = armpmu_add,
614 .del = armpmu_del,
615 .start = armpmu_start,
616 .stop = armpmu_stop,
617 .read = armpmu_read,
618 };
619
620 static void __init armpmu_init(struct arm_pmu *armpmu)
621 {
622 atomic_set(&armpmu->active_events, 0);
623 mutex_init(&armpmu->reserve_mutex);
624 }
625
626 /* Include the PMU-specific implementations. */
627 #include "perf_event_xscale.c"
628 #include "perf_event_v6.c"
629 #include "perf_event_v7.c"
630
631 /*
632 * Ensure the PMU has sane values out of reset.
633 * This requires SMP to be available, so exists as a separate initcall.
634 */
635 static int __init
636 armpmu_reset(void)
637 {
638 if (armpmu && armpmu->reset)
639 return on_each_cpu(armpmu->reset, NULL, 1);
640 return 0;
641 }
642 arch_initcall(armpmu_reset);
643
644 /*
645 * PMU platform driver and devicetree bindings.
646 */
647 static struct of_device_id armpmu_of_device_ids[] = {
648 {.compatible = "arm,cortex-a9-pmu"},
649 {.compatible = "arm,cortex-a8-pmu"},
650 {.compatible = "arm,arm1136-pmu"},
651 {.compatible = "arm,arm1176-pmu"},
652 {},
653 };
654
655 static struct platform_device_id armpmu_plat_device_ids[] = {
656 {.name = "arm-pmu"},
657 {},
658 };
659
660 static int __devinit armpmu_device_probe(struct platform_device *pdev)
661 {
662 armpmu->plat_device = pdev;
663 return 0;
664 }
665
666 static struct platform_driver armpmu_driver = {
667 .driver = {
668 .name = "arm-pmu",
669 .of_match_table = armpmu_of_device_ids,
670 },
671 .probe = armpmu_device_probe,
672 .id_table = armpmu_plat_device_ids,
673 };
674
675 static int __init register_pmu_driver(void)
676 {
677 return platform_driver_register(&armpmu_driver);
678 }
679 device_initcall(register_pmu_driver);
680
681 static struct cpu_hw_events *armpmu_get_cpu_events(void)
682 {
683 return &__get_cpu_var(cpu_hw_events);
684 }
685
686 static void __init cpu_pmu_init(struct arm_pmu *armpmu)
687 {
688 int cpu;
689 for_each_possible_cpu(cpu) {
690 struct cpu_hw_events *events = &per_cpu(cpu_hw_events, cpu);
691 raw_spin_lock_init(&events->pmu_lock);
692 }
693 armpmu->get_hw_events = armpmu_get_cpu_events;
694 }
695
696 /*
697 * CPU PMU identification and registration.
698 */
699 static int __init
700 init_hw_perf_events(void)
701 {
702 unsigned long cpuid = read_cpuid_id();
703 unsigned long implementor = (cpuid & 0xFF000000) >> 24;
704 unsigned long part_number = (cpuid & 0xFFF0);
705
706 /* ARM Ltd CPUs. */
707 if (0x41 == implementor) {
708 switch (part_number) {
709 case 0xB360: /* ARM1136 */
710 case 0xB560: /* ARM1156 */
711 case 0xB760: /* ARM1176 */
712 armpmu = armv6pmu_init();
713 break;
714 case 0xB020: /* ARM11mpcore */
715 armpmu = armv6mpcore_pmu_init();
716 break;
717 case 0xC080: /* Cortex-A8 */
718 armpmu = armv7_a8_pmu_init();
719 break;
720 case 0xC090: /* Cortex-A9 */
721 armpmu = armv7_a9_pmu_init();
722 break;
723 case 0xC050: /* Cortex-A5 */
724 armpmu = armv7_a5_pmu_init();
725 break;
726 case 0xC0F0: /* Cortex-A15 */
727 armpmu = armv7_a15_pmu_init();
728 break;
729 }
730 /* Intel CPUs [xscale]. */
731 } else if (0x69 == implementor) {
732 part_number = (cpuid >> 13) & 0x7;
733 switch (part_number) {
734 case 1:
735 armpmu = xscale1pmu_init();
736 break;
737 case 2:
738 armpmu = xscale2pmu_init();
739 break;
740 }
741 }
742
743 if (armpmu) {
744 pr_info("enabled with %s PMU driver, %d counters available\n",
745 armpmu->name, armpmu->num_events);
746 cpu_pmu_init(armpmu);
747 armpmu_init(armpmu);
748 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
749 } else {
750 pr_info("no hardware support available\n");
751 }
752
753 return 0;
754 }
755 early_initcall(init_hw_perf_events);
756
757 /*
758 * Callchain handling code.
759 */
760
761 /*
762 * The registers we're interested in are at the end of the variable
763 * length saved register structure. The fp points at the end of this
764 * structure so the address of this struct is:
765 * (struct frame_tail *)(xxx->fp)-1
766 *
767 * This code has been adapted from the ARM OProfile support.
768 */
769 struct frame_tail {
770 struct frame_tail __user *fp;
771 unsigned long sp;
772 unsigned long lr;
773 } __attribute__((packed));
774
775 /*
776 * Get the return address for a single stackframe and return a pointer to the
777 * next frame tail.
778 */
779 static struct frame_tail __user *
780 user_backtrace(struct frame_tail __user *tail,
781 struct perf_callchain_entry *entry)
782 {
783 struct frame_tail buftail;
784
785 /* Also check accessibility of one struct frame_tail beyond */
786 if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
787 return NULL;
788 if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
789 return NULL;
790
791 perf_callchain_store(entry, buftail.lr);
792
793 /*
794 * Frame pointers should strictly progress back up the stack
795 * (towards higher addresses).
796 */
797 if (tail + 1 >= buftail.fp)
798 return NULL;
799
800 return buftail.fp - 1;
801 }
802
803 void
804 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
805 {
806 struct frame_tail __user *tail;
807
808
809 tail = (struct frame_tail __user *)regs->ARM_fp - 1;
810
811 while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
812 tail && !((unsigned long)tail & 0x3))
813 tail = user_backtrace(tail, entry);
814 }
815
816 /*
817 * Gets called by walk_stackframe() for every stackframe. This will be called
818 * whist unwinding the stackframe and is like a subroutine return so we use
819 * the PC.
820 */
821 static int
822 callchain_trace(struct stackframe *fr,
823 void *data)
824 {
825 struct perf_callchain_entry *entry = data;
826 perf_callchain_store(entry, fr->pc);
827 return 0;
828 }
829
830 void
831 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
832 {
833 struct stackframe fr;
834
835 fr.fp = regs->ARM_fp;
836 fr.sp = regs->ARM_sp;
837 fr.lr = regs->ARM_lr;
838 fr.pc = regs->ARM_pc;
839 walk_stackframe(&fr, callchain_trace, entry);
840 }
This page took 0.071712 seconds and 5 git commands to generate.