Merge branch 'kirkwood/boards' of git://git.infradead.org/users/jcooper/linux into...
[deliverable/linux.git] / arch / arm / kernel / perf_event.c
1 #undef DEBUG
2
3 /*
4 * ARM performance counter support.
5 *
6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
8 *
9 * This code is based on the sparc64 perf event code, which is in turn based
10 * on the x86 code. Callchain code is based on the ARM OProfile backtrace
11 * code.
12 */
13 #define pr_fmt(fmt) "hw perfevents: " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/uaccess.h>
19
20 #include <asm/irq_regs.h>
21 #include <asm/pmu.h>
22 #include <asm/stacktrace.h>
23
24 static int
25 armpmu_map_cache_event(const unsigned (*cache_map)
26 [PERF_COUNT_HW_CACHE_MAX]
27 [PERF_COUNT_HW_CACHE_OP_MAX]
28 [PERF_COUNT_HW_CACHE_RESULT_MAX],
29 u64 config)
30 {
31 unsigned int cache_type, cache_op, cache_result, ret;
32
33 cache_type = (config >> 0) & 0xff;
34 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
35 return -EINVAL;
36
37 cache_op = (config >> 8) & 0xff;
38 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
39 return -EINVAL;
40
41 cache_result = (config >> 16) & 0xff;
42 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
43 return -EINVAL;
44
45 ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
46
47 if (ret == CACHE_OP_UNSUPPORTED)
48 return -ENOENT;
49
50 return ret;
51 }
52
53 static int
54 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
55 {
56 int mapping = (*event_map)[config];
57 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
58 }
59
60 static int
61 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
62 {
63 return (int)(config & raw_event_mask);
64 }
65
66 int
67 armpmu_map_event(struct perf_event *event,
68 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
69 const unsigned (*cache_map)
70 [PERF_COUNT_HW_CACHE_MAX]
71 [PERF_COUNT_HW_CACHE_OP_MAX]
72 [PERF_COUNT_HW_CACHE_RESULT_MAX],
73 u32 raw_event_mask)
74 {
75 u64 config = event->attr.config;
76
77 switch (event->attr.type) {
78 case PERF_TYPE_HARDWARE:
79 return armpmu_map_hw_event(event_map, config);
80 case PERF_TYPE_HW_CACHE:
81 return armpmu_map_cache_event(cache_map, config);
82 case PERF_TYPE_RAW:
83 return armpmu_map_raw_event(raw_event_mask, config);
84 }
85
86 return -ENOENT;
87 }
88
89 int
90 armpmu_event_set_period(struct perf_event *event,
91 struct hw_perf_event *hwc,
92 int idx)
93 {
94 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
95 s64 left = local64_read(&hwc->period_left);
96 s64 period = hwc->sample_period;
97 int ret = 0;
98
99 if (unlikely(left <= -period)) {
100 left = period;
101 local64_set(&hwc->period_left, left);
102 hwc->last_period = period;
103 ret = 1;
104 }
105
106 if (unlikely(left <= 0)) {
107 left += period;
108 local64_set(&hwc->period_left, left);
109 hwc->last_period = period;
110 ret = 1;
111 }
112
113 if (left > (s64)armpmu->max_period)
114 left = armpmu->max_period;
115
116 local64_set(&hwc->prev_count, (u64)-left);
117
118 armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
119
120 perf_event_update_userpage(event);
121
122 return ret;
123 }
124
125 u64
126 armpmu_event_update(struct perf_event *event,
127 struct hw_perf_event *hwc,
128 int idx)
129 {
130 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
131 u64 delta, prev_raw_count, new_raw_count;
132
133 again:
134 prev_raw_count = local64_read(&hwc->prev_count);
135 new_raw_count = armpmu->read_counter(idx);
136
137 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
138 new_raw_count) != prev_raw_count)
139 goto again;
140
141 delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
142
143 local64_add(delta, &event->count);
144 local64_sub(delta, &hwc->period_left);
145
146 return new_raw_count;
147 }
148
149 static void
150 armpmu_read(struct perf_event *event)
151 {
152 struct hw_perf_event *hwc = &event->hw;
153
154 /* Don't read disabled counters! */
155 if (hwc->idx < 0)
156 return;
157
158 armpmu_event_update(event, hwc, hwc->idx);
159 }
160
161 static void
162 armpmu_stop(struct perf_event *event, int flags)
163 {
164 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
165 struct hw_perf_event *hwc = &event->hw;
166
167 /*
168 * ARM pmu always has to update the counter, so ignore
169 * PERF_EF_UPDATE, see comments in armpmu_start().
170 */
171 if (!(hwc->state & PERF_HES_STOPPED)) {
172 armpmu->disable(hwc, hwc->idx);
173 armpmu_event_update(event, hwc, hwc->idx);
174 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
175 }
176 }
177
178 static void
179 armpmu_start(struct perf_event *event, int flags)
180 {
181 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
182 struct hw_perf_event *hwc = &event->hw;
183
184 /*
185 * ARM pmu always has to reprogram the period, so ignore
186 * PERF_EF_RELOAD, see the comment below.
187 */
188 if (flags & PERF_EF_RELOAD)
189 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
190
191 hwc->state = 0;
192 /*
193 * Set the period again. Some counters can't be stopped, so when we
194 * were stopped we simply disabled the IRQ source and the counter
195 * may have been left counting. If we don't do this step then we may
196 * get an interrupt too soon or *way* too late if the overflow has
197 * happened since disabling.
198 */
199 armpmu_event_set_period(event, hwc, hwc->idx);
200 armpmu->enable(hwc, hwc->idx);
201 }
202
203 static void
204 armpmu_del(struct perf_event *event, int flags)
205 {
206 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
207 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
208 struct hw_perf_event *hwc = &event->hw;
209 int idx = hwc->idx;
210
211 WARN_ON(idx < 0);
212
213 armpmu_stop(event, PERF_EF_UPDATE);
214 hw_events->events[idx] = NULL;
215 clear_bit(idx, hw_events->used_mask);
216
217 perf_event_update_userpage(event);
218 }
219
220 static int
221 armpmu_add(struct perf_event *event, int flags)
222 {
223 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
224 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
225 struct hw_perf_event *hwc = &event->hw;
226 int idx;
227 int err = 0;
228
229 perf_pmu_disable(event->pmu);
230
231 /* If we don't have a space for the counter then finish early. */
232 idx = armpmu->get_event_idx(hw_events, hwc);
233 if (idx < 0) {
234 err = idx;
235 goto out;
236 }
237
238 /*
239 * If there is an event in the counter we are going to use then make
240 * sure it is disabled.
241 */
242 event->hw.idx = idx;
243 armpmu->disable(hwc, idx);
244 hw_events->events[idx] = event;
245
246 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
247 if (flags & PERF_EF_START)
248 armpmu_start(event, PERF_EF_RELOAD);
249
250 /* Propagate our changes to the userspace mapping. */
251 perf_event_update_userpage(event);
252
253 out:
254 perf_pmu_enable(event->pmu);
255 return err;
256 }
257
258 static int
259 validate_event(struct pmu_hw_events *hw_events,
260 struct perf_event *event)
261 {
262 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
263 struct hw_perf_event fake_event = event->hw;
264 struct pmu *leader_pmu = event->group_leader->pmu;
265
266 if (event->pmu != leader_pmu || event->state <= PERF_EVENT_STATE_OFF)
267 return 1;
268
269 return armpmu->get_event_idx(hw_events, &fake_event) >= 0;
270 }
271
272 static int
273 validate_group(struct perf_event *event)
274 {
275 struct perf_event *sibling, *leader = event->group_leader;
276 struct pmu_hw_events fake_pmu;
277 DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS);
278
279 /*
280 * Initialise the fake PMU. We only need to populate the
281 * used_mask for the purposes of validation.
282 */
283 memset(fake_used_mask, 0, sizeof(fake_used_mask));
284 fake_pmu.used_mask = fake_used_mask;
285
286 if (!validate_event(&fake_pmu, leader))
287 return -EINVAL;
288
289 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
290 if (!validate_event(&fake_pmu, sibling))
291 return -EINVAL;
292 }
293
294 if (!validate_event(&fake_pmu, event))
295 return -EINVAL;
296
297 return 0;
298 }
299
300 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
301 {
302 struct arm_pmu *armpmu = (struct arm_pmu *) dev;
303 struct platform_device *plat_device = armpmu->plat_device;
304 struct arm_pmu_platdata *plat = dev_get_platdata(&plat_device->dev);
305
306 if (plat && plat->handle_irq)
307 return plat->handle_irq(irq, dev, armpmu->handle_irq);
308 else
309 return armpmu->handle_irq(irq, dev);
310 }
311
312 static void
313 armpmu_release_hardware(struct arm_pmu *armpmu)
314 {
315 armpmu->free_irq();
316 pm_runtime_put_sync(&armpmu->plat_device->dev);
317 }
318
319 static int
320 armpmu_reserve_hardware(struct arm_pmu *armpmu)
321 {
322 int err;
323 struct platform_device *pmu_device = armpmu->plat_device;
324
325 if (!pmu_device)
326 return -ENODEV;
327
328 pm_runtime_get_sync(&pmu_device->dev);
329 err = armpmu->request_irq(armpmu_dispatch_irq);
330 if (err) {
331 armpmu_release_hardware(armpmu);
332 return err;
333 }
334
335 return 0;
336 }
337
338 static void
339 hw_perf_event_destroy(struct perf_event *event)
340 {
341 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
342 atomic_t *active_events = &armpmu->active_events;
343 struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
344
345 if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
346 armpmu_release_hardware(armpmu);
347 mutex_unlock(pmu_reserve_mutex);
348 }
349 }
350
351 static int
352 event_requires_mode_exclusion(struct perf_event_attr *attr)
353 {
354 return attr->exclude_idle || attr->exclude_user ||
355 attr->exclude_kernel || attr->exclude_hv;
356 }
357
358 static int
359 __hw_perf_event_init(struct perf_event *event)
360 {
361 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
362 struct hw_perf_event *hwc = &event->hw;
363 int mapping, err;
364
365 mapping = armpmu->map_event(event);
366
367 if (mapping < 0) {
368 pr_debug("event %x:%llx not supported\n", event->attr.type,
369 event->attr.config);
370 return mapping;
371 }
372
373 /*
374 * We don't assign an index until we actually place the event onto
375 * hardware. Use -1 to signify that we haven't decided where to put it
376 * yet. For SMP systems, each core has it's own PMU so we can't do any
377 * clever allocation or constraints checking at this point.
378 */
379 hwc->idx = -1;
380 hwc->config_base = 0;
381 hwc->config = 0;
382 hwc->event_base = 0;
383
384 /*
385 * Check whether we need to exclude the counter from certain modes.
386 */
387 if ((!armpmu->set_event_filter ||
388 armpmu->set_event_filter(hwc, &event->attr)) &&
389 event_requires_mode_exclusion(&event->attr)) {
390 pr_debug("ARM performance counters do not support "
391 "mode exclusion\n");
392 return -EOPNOTSUPP;
393 }
394
395 /*
396 * Store the event encoding into the config_base field.
397 */
398 hwc->config_base |= (unsigned long)mapping;
399
400 if (!hwc->sample_period) {
401 /*
402 * For non-sampling runs, limit the sample_period to half
403 * of the counter width. That way, the new counter value
404 * is far less likely to overtake the previous one unless
405 * you have some serious IRQ latency issues.
406 */
407 hwc->sample_period = armpmu->max_period >> 1;
408 hwc->last_period = hwc->sample_period;
409 local64_set(&hwc->period_left, hwc->sample_period);
410 }
411
412 err = 0;
413 if (event->group_leader != event) {
414 err = validate_group(event);
415 if (err)
416 return -EINVAL;
417 }
418
419 return err;
420 }
421
422 static int armpmu_event_init(struct perf_event *event)
423 {
424 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
425 int err = 0;
426 atomic_t *active_events = &armpmu->active_events;
427
428 /* does not support taken branch sampling */
429 if (has_branch_stack(event))
430 return -EOPNOTSUPP;
431
432 if (armpmu->map_event(event) == -ENOENT)
433 return -ENOENT;
434
435 event->destroy = hw_perf_event_destroy;
436
437 if (!atomic_inc_not_zero(active_events)) {
438 mutex_lock(&armpmu->reserve_mutex);
439 if (atomic_read(active_events) == 0)
440 err = armpmu_reserve_hardware(armpmu);
441
442 if (!err)
443 atomic_inc(active_events);
444 mutex_unlock(&armpmu->reserve_mutex);
445 }
446
447 if (err)
448 return err;
449
450 err = __hw_perf_event_init(event);
451 if (err)
452 hw_perf_event_destroy(event);
453
454 return err;
455 }
456
457 static void armpmu_enable(struct pmu *pmu)
458 {
459 struct arm_pmu *armpmu = to_arm_pmu(pmu);
460 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
461 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
462
463 if (enabled)
464 armpmu->start();
465 }
466
467 static void armpmu_disable(struct pmu *pmu)
468 {
469 struct arm_pmu *armpmu = to_arm_pmu(pmu);
470 armpmu->stop();
471 }
472
473 #ifdef CONFIG_PM_RUNTIME
474 static int armpmu_runtime_resume(struct device *dev)
475 {
476 struct arm_pmu_platdata *plat = dev_get_platdata(dev);
477
478 if (plat && plat->runtime_resume)
479 return plat->runtime_resume(dev);
480
481 return 0;
482 }
483
484 static int armpmu_runtime_suspend(struct device *dev)
485 {
486 struct arm_pmu_platdata *plat = dev_get_platdata(dev);
487
488 if (plat && plat->runtime_suspend)
489 return plat->runtime_suspend(dev);
490
491 return 0;
492 }
493 #endif
494
495 const struct dev_pm_ops armpmu_dev_pm_ops = {
496 SET_RUNTIME_PM_OPS(armpmu_runtime_suspend, armpmu_runtime_resume, NULL)
497 };
498
499 static void __init armpmu_init(struct arm_pmu *armpmu)
500 {
501 atomic_set(&armpmu->active_events, 0);
502 mutex_init(&armpmu->reserve_mutex);
503
504 armpmu->pmu = (struct pmu) {
505 .pmu_enable = armpmu_enable,
506 .pmu_disable = armpmu_disable,
507 .event_init = armpmu_event_init,
508 .add = armpmu_add,
509 .del = armpmu_del,
510 .start = armpmu_start,
511 .stop = armpmu_stop,
512 .read = armpmu_read,
513 };
514 }
515
516 int armpmu_register(struct arm_pmu *armpmu, char *name, int type)
517 {
518 armpmu_init(armpmu);
519 pr_info("enabled with %s PMU driver, %d counters available\n",
520 armpmu->name, armpmu->num_events);
521 return perf_pmu_register(&armpmu->pmu, name, type);
522 }
523
524 /*
525 * Callchain handling code.
526 */
527
528 /*
529 * The registers we're interested in are at the end of the variable
530 * length saved register structure. The fp points at the end of this
531 * structure so the address of this struct is:
532 * (struct frame_tail *)(xxx->fp)-1
533 *
534 * This code has been adapted from the ARM OProfile support.
535 */
536 struct frame_tail {
537 struct frame_tail __user *fp;
538 unsigned long sp;
539 unsigned long lr;
540 } __attribute__((packed));
541
542 /*
543 * Get the return address for a single stackframe and return a pointer to the
544 * next frame tail.
545 */
546 static struct frame_tail __user *
547 user_backtrace(struct frame_tail __user *tail,
548 struct perf_callchain_entry *entry)
549 {
550 struct frame_tail buftail;
551
552 /* Also check accessibility of one struct frame_tail beyond */
553 if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
554 return NULL;
555 if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
556 return NULL;
557
558 perf_callchain_store(entry, buftail.lr);
559
560 /*
561 * Frame pointers should strictly progress back up the stack
562 * (towards higher addresses).
563 */
564 if (tail + 1 >= buftail.fp)
565 return NULL;
566
567 return buftail.fp - 1;
568 }
569
570 void
571 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
572 {
573 struct frame_tail __user *tail;
574
575
576 tail = (struct frame_tail __user *)regs->ARM_fp - 1;
577
578 while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
579 tail && !((unsigned long)tail & 0x3))
580 tail = user_backtrace(tail, entry);
581 }
582
583 /*
584 * Gets called by walk_stackframe() for every stackframe. This will be called
585 * whist unwinding the stackframe and is like a subroutine return so we use
586 * the PC.
587 */
588 static int
589 callchain_trace(struct stackframe *fr,
590 void *data)
591 {
592 struct perf_callchain_entry *entry = data;
593 perf_callchain_store(entry, fr->pc);
594 return 0;
595 }
596
597 void
598 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
599 {
600 struct stackframe fr;
601
602 fr.fp = regs->ARM_fp;
603 fr.sp = regs->ARM_sp;
604 fr.lr = regs->ARM_lr;
605 fr.pc = regs->ARM_pc;
606 walk_stackframe(&fr, callchain_trace, entry);
607 }
This page took 0.042395 seconds and 5 git commands to generate.