Merge tag 'asoc-3.4' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/sound...
[deliverable/linux.git] / arch / arm / kernel / perf_event.c
1 #undef DEBUG
2
3 /*
4 * ARM performance counter support.
5 *
6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
8 *
9 * This code is based on the sparc64 perf event code, which is in turn based
10 * on the x86 code. Callchain code is based on the ARM OProfile backtrace
11 * code.
12 */
13 #define pr_fmt(fmt) "hw perfevents: " fmt
14
15 #include <linux/bitmap.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/perf_event.h>
20 #include <linux/platform_device.h>
21 #include <linux/spinlock.h>
22 #include <linux/uaccess.h>
23
24 #include <asm/cputype.h>
25 #include <asm/irq.h>
26 #include <asm/irq_regs.h>
27 #include <asm/pmu.h>
28 #include <asm/stacktrace.h>
29
30 /*
31 * ARMv6 supports a maximum of 3 events, starting from index 0. If we add
32 * another platform that supports more, we need to increase this to be the
33 * largest of all platforms.
34 *
35 * ARMv7 supports up to 32 events:
36 * cycle counter CCNT + 31 events counters CNT0..30.
37 * Cortex-A8 has 1+4 counters, Cortex-A9 has 1+6 counters.
38 */
39 #define ARMPMU_MAX_HWEVENTS 32
40
41 static DEFINE_PER_CPU(struct perf_event * [ARMPMU_MAX_HWEVENTS], hw_events);
42 static DEFINE_PER_CPU(unsigned long [BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)], used_mask);
43 static DEFINE_PER_CPU(struct pmu_hw_events, cpu_hw_events);
44
45 #define to_arm_pmu(p) (container_of(p, struct arm_pmu, pmu))
46
47 /* Set at runtime when we know what CPU type we are. */
48 static struct arm_pmu *cpu_pmu;
49
50 enum arm_perf_pmu_ids
51 armpmu_get_pmu_id(void)
52 {
53 int id = -ENODEV;
54
55 if (cpu_pmu != NULL)
56 id = cpu_pmu->id;
57
58 return id;
59 }
60 EXPORT_SYMBOL_GPL(armpmu_get_pmu_id);
61
62 int perf_num_counters(void)
63 {
64 int max_events = 0;
65
66 if (cpu_pmu != NULL)
67 max_events = cpu_pmu->num_events;
68
69 return max_events;
70 }
71 EXPORT_SYMBOL_GPL(perf_num_counters);
72
73 #define HW_OP_UNSUPPORTED 0xFFFF
74
75 #define C(_x) \
76 PERF_COUNT_HW_CACHE_##_x
77
78 #define CACHE_OP_UNSUPPORTED 0xFFFF
79
80 static int
81 armpmu_map_cache_event(const unsigned (*cache_map)
82 [PERF_COUNT_HW_CACHE_MAX]
83 [PERF_COUNT_HW_CACHE_OP_MAX]
84 [PERF_COUNT_HW_CACHE_RESULT_MAX],
85 u64 config)
86 {
87 unsigned int cache_type, cache_op, cache_result, ret;
88
89 cache_type = (config >> 0) & 0xff;
90 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
91 return -EINVAL;
92
93 cache_op = (config >> 8) & 0xff;
94 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
95 return -EINVAL;
96
97 cache_result = (config >> 16) & 0xff;
98 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
99 return -EINVAL;
100
101 ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
102
103 if (ret == CACHE_OP_UNSUPPORTED)
104 return -ENOENT;
105
106 return ret;
107 }
108
109 static int
110 armpmu_map_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
111 {
112 int mapping = (*event_map)[config];
113 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
114 }
115
116 static int
117 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
118 {
119 return (int)(config & raw_event_mask);
120 }
121
122 static int map_cpu_event(struct perf_event *event,
123 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
124 const unsigned (*cache_map)
125 [PERF_COUNT_HW_CACHE_MAX]
126 [PERF_COUNT_HW_CACHE_OP_MAX]
127 [PERF_COUNT_HW_CACHE_RESULT_MAX],
128 u32 raw_event_mask)
129 {
130 u64 config = event->attr.config;
131
132 switch (event->attr.type) {
133 case PERF_TYPE_HARDWARE:
134 return armpmu_map_event(event_map, config);
135 case PERF_TYPE_HW_CACHE:
136 return armpmu_map_cache_event(cache_map, config);
137 case PERF_TYPE_RAW:
138 return armpmu_map_raw_event(raw_event_mask, config);
139 }
140
141 return -ENOENT;
142 }
143
144 int
145 armpmu_event_set_period(struct perf_event *event,
146 struct hw_perf_event *hwc,
147 int idx)
148 {
149 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
150 s64 left = local64_read(&hwc->period_left);
151 s64 period = hwc->sample_period;
152 int ret = 0;
153
154 if (unlikely(left <= -period)) {
155 left = period;
156 local64_set(&hwc->period_left, left);
157 hwc->last_period = period;
158 ret = 1;
159 }
160
161 if (unlikely(left <= 0)) {
162 left += period;
163 local64_set(&hwc->period_left, left);
164 hwc->last_period = period;
165 ret = 1;
166 }
167
168 if (left > (s64)armpmu->max_period)
169 left = armpmu->max_period;
170
171 local64_set(&hwc->prev_count, (u64)-left);
172
173 armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
174
175 perf_event_update_userpage(event);
176
177 return ret;
178 }
179
180 u64
181 armpmu_event_update(struct perf_event *event,
182 struct hw_perf_event *hwc,
183 int idx)
184 {
185 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
186 u64 delta, prev_raw_count, new_raw_count;
187
188 again:
189 prev_raw_count = local64_read(&hwc->prev_count);
190 new_raw_count = armpmu->read_counter(idx);
191
192 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
193 new_raw_count) != prev_raw_count)
194 goto again;
195
196 delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
197
198 local64_add(delta, &event->count);
199 local64_sub(delta, &hwc->period_left);
200
201 return new_raw_count;
202 }
203
204 static void
205 armpmu_read(struct perf_event *event)
206 {
207 struct hw_perf_event *hwc = &event->hw;
208
209 /* Don't read disabled counters! */
210 if (hwc->idx < 0)
211 return;
212
213 armpmu_event_update(event, hwc, hwc->idx);
214 }
215
216 static void
217 armpmu_stop(struct perf_event *event, int flags)
218 {
219 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
220 struct hw_perf_event *hwc = &event->hw;
221
222 /*
223 * ARM pmu always has to update the counter, so ignore
224 * PERF_EF_UPDATE, see comments in armpmu_start().
225 */
226 if (!(hwc->state & PERF_HES_STOPPED)) {
227 armpmu->disable(hwc, hwc->idx);
228 barrier(); /* why? */
229 armpmu_event_update(event, hwc, hwc->idx);
230 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
231 }
232 }
233
234 static void
235 armpmu_start(struct perf_event *event, int flags)
236 {
237 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
238 struct hw_perf_event *hwc = &event->hw;
239
240 /*
241 * ARM pmu always has to reprogram the period, so ignore
242 * PERF_EF_RELOAD, see the comment below.
243 */
244 if (flags & PERF_EF_RELOAD)
245 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
246
247 hwc->state = 0;
248 /*
249 * Set the period again. Some counters can't be stopped, so when we
250 * were stopped we simply disabled the IRQ source and the counter
251 * may have been left counting. If we don't do this step then we may
252 * get an interrupt too soon or *way* too late if the overflow has
253 * happened since disabling.
254 */
255 armpmu_event_set_period(event, hwc, hwc->idx);
256 armpmu->enable(hwc, hwc->idx);
257 }
258
259 static void
260 armpmu_del(struct perf_event *event, int flags)
261 {
262 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
263 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
264 struct hw_perf_event *hwc = &event->hw;
265 int idx = hwc->idx;
266
267 WARN_ON(idx < 0);
268
269 armpmu_stop(event, PERF_EF_UPDATE);
270 hw_events->events[idx] = NULL;
271 clear_bit(idx, hw_events->used_mask);
272
273 perf_event_update_userpage(event);
274 }
275
276 static int
277 armpmu_add(struct perf_event *event, int flags)
278 {
279 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
280 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
281 struct hw_perf_event *hwc = &event->hw;
282 int idx;
283 int err = 0;
284
285 perf_pmu_disable(event->pmu);
286
287 /* If we don't have a space for the counter then finish early. */
288 idx = armpmu->get_event_idx(hw_events, hwc);
289 if (idx < 0) {
290 err = idx;
291 goto out;
292 }
293
294 /*
295 * If there is an event in the counter we are going to use then make
296 * sure it is disabled.
297 */
298 event->hw.idx = idx;
299 armpmu->disable(hwc, idx);
300 hw_events->events[idx] = event;
301
302 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
303 if (flags & PERF_EF_START)
304 armpmu_start(event, PERF_EF_RELOAD);
305
306 /* Propagate our changes to the userspace mapping. */
307 perf_event_update_userpage(event);
308
309 out:
310 perf_pmu_enable(event->pmu);
311 return err;
312 }
313
314 static int
315 validate_event(struct pmu_hw_events *hw_events,
316 struct perf_event *event)
317 {
318 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
319 struct hw_perf_event fake_event = event->hw;
320 struct pmu *leader_pmu = event->group_leader->pmu;
321
322 if (event->pmu != leader_pmu || event->state <= PERF_EVENT_STATE_OFF)
323 return 1;
324
325 return armpmu->get_event_idx(hw_events, &fake_event) >= 0;
326 }
327
328 static int
329 validate_group(struct perf_event *event)
330 {
331 struct perf_event *sibling, *leader = event->group_leader;
332 struct pmu_hw_events fake_pmu;
333 DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS);
334
335 /*
336 * Initialise the fake PMU. We only need to populate the
337 * used_mask for the purposes of validation.
338 */
339 memset(fake_used_mask, 0, sizeof(fake_used_mask));
340 fake_pmu.used_mask = fake_used_mask;
341
342 if (!validate_event(&fake_pmu, leader))
343 return -EINVAL;
344
345 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
346 if (!validate_event(&fake_pmu, sibling))
347 return -EINVAL;
348 }
349
350 if (!validate_event(&fake_pmu, event))
351 return -EINVAL;
352
353 return 0;
354 }
355
356 static irqreturn_t armpmu_platform_irq(int irq, void *dev)
357 {
358 struct arm_pmu *armpmu = (struct arm_pmu *) dev;
359 struct platform_device *plat_device = armpmu->plat_device;
360 struct arm_pmu_platdata *plat = dev_get_platdata(&plat_device->dev);
361
362 return plat->handle_irq(irq, dev, armpmu->handle_irq);
363 }
364
365 static void
366 armpmu_release_hardware(struct arm_pmu *armpmu)
367 {
368 int i, irq, irqs;
369 struct platform_device *pmu_device = armpmu->plat_device;
370 struct arm_pmu_platdata *plat =
371 dev_get_platdata(&pmu_device->dev);
372
373 irqs = min(pmu_device->num_resources, num_possible_cpus());
374
375 for (i = 0; i < irqs; ++i) {
376 if (!cpumask_test_and_clear_cpu(i, &armpmu->active_irqs))
377 continue;
378 irq = platform_get_irq(pmu_device, i);
379 if (irq >= 0) {
380 if (plat && plat->disable_irq)
381 plat->disable_irq(irq);
382 free_irq(irq, armpmu);
383 }
384 }
385
386 release_pmu(armpmu->type);
387 }
388
389 static int
390 armpmu_reserve_hardware(struct arm_pmu *armpmu)
391 {
392 struct arm_pmu_platdata *plat;
393 irq_handler_t handle_irq;
394 int i, err, irq, irqs;
395 struct platform_device *pmu_device = armpmu->plat_device;
396
397 if (!pmu_device)
398 return -ENODEV;
399
400 err = reserve_pmu(armpmu->type);
401 if (err) {
402 pr_warning("unable to reserve pmu\n");
403 return err;
404 }
405
406 plat = dev_get_platdata(&pmu_device->dev);
407 if (plat && plat->handle_irq)
408 handle_irq = armpmu_platform_irq;
409 else
410 handle_irq = armpmu->handle_irq;
411
412 irqs = min(pmu_device->num_resources, num_possible_cpus());
413 if (irqs < 1) {
414 pr_err("no irqs for PMUs defined\n");
415 return -ENODEV;
416 }
417
418 for (i = 0; i < irqs; ++i) {
419 err = 0;
420 irq = platform_get_irq(pmu_device, i);
421 if (irq < 0)
422 continue;
423
424 /*
425 * If we have a single PMU interrupt that we can't shift,
426 * assume that we're running on a uniprocessor machine and
427 * continue. Otherwise, continue without this interrupt.
428 */
429 if (irq_set_affinity(irq, cpumask_of(i)) && irqs > 1) {
430 pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n",
431 irq, i);
432 continue;
433 }
434
435 err = request_irq(irq, handle_irq,
436 IRQF_DISABLED | IRQF_NOBALANCING,
437 "arm-pmu", armpmu);
438 if (err) {
439 pr_err("unable to request IRQ%d for ARM PMU counters\n",
440 irq);
441 armpmu_release_hardware(armpmu);
442 return err;
443 } else if (plat && plat->enable_irq)
444 plat->enable_irq(irq);
445
446 cpumask_set_cpu(i, &armpmu->active_irqs);
447 }
448
449 return 0;
450 }
451
452 static void
453 hw_perf_event_destroy(struct perf_event *event)
454 {
455 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
456 atomic_t *active_events = &armpmu->active_events;
457 struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
458
459 if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
460 armpmu_release_hardware(armpmu);
461 mutex_unlock(pmu_reserve_mutex);
462 }
463 }
464
465 static int
466 event_requires_mode_exclusion(struct perf_event_attr *attr)
467 {
468 return attr->exclude_idle || attr->exclude_user ||
469 attr->exclude_kernel || attr->exclude_hv;
470 }
471
472 static int
473 __hw_perf_event_init(struct perf_event *event)
474 {
475 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
476 struct hw_perf_event *hwc = &event->hw;
477 int mapping, err;
478
479 mapping = armpmu->map_event(event);
480
481 if (mapping < 0) {
482 pr_debug("event %x:%llx not supported\n", event->attr.type,
483 event->attr.config);
484 return mapping;
485 }
486
487 /*
488 * We don't assign an index until we actually place the event onto
489 * hardware. Use -1 to signify that we haven't decided where to put it
490 * yet. For SMP systems, each core has it's own PMU so we can't do any
491 * clever allocation or constraints checking at this point.
492 */
493 hwc->idx = -1;
494 hwc->config_base = 0;
495 hwc->config = 0;
496 hwc->event_base = 0;
497
498 /*
499 * Check whether we need to exclude the counter from certain modes.
500 */
501 if ((!armpmu->set_event_filter ||
502 armpmu->set_event_filter(hwc, &event->attr)) &&
503 event_requires_mode_exclusion(&event->attr)) {
504 pr_debug("ARM performance counters do not support "
505 "mode exclusion\n");
506 return -EPERM;
507 }
508
509 /*
510 * Store the event encoding into the config_base field.
511 */
512 hwc->config_base |= (unsigned long)mapping;
513
514 if (!hwc->sample_period) {
515 /*
516 * For non-sampling runs, limit the sample_period to half
517 * of the counter width. That way, the new counter value
518 * is far less likely to overtake the previous one unless
519 * you have some serious IRQ latency issues.
520 */
521 hwc->sample_period = armpmu->max_period >> 1;
522 hwc->last_period = hwc->sample_period;
523 local64_set(&hwc->period_left, hwc->sample_period);
524 }
525
526 err = 0;
527 if (event->group_leader != event) {
528 err = validate_group(event);
529 if (err)
530 return -EINVAL;
531 }
532
533 return err;
534 }
535
536 static int armpmu_event_init(struct perf_event *event)
537 {
538 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
539 int err = 0;
540 atomic_t *active_events = &armpmu->active_events;
541
542 if (armpmu->map_event(event) == -ENOENT)
543 return -ENOENT;
544
545 event->destroy = hw_perf_event_destroy;
546
547 if (!atomic_inc_not_zero(active_events)) {
548 mutex_lock(&armpmu->reserve_mutex);
549 if (atomic_read(active_events) == 0)
550 err = armpmu_reserve_hardware(armpmu);
551
552 if (!err)
553 atomic_inc(active_events);
554 mutex_unlock(&armpmu->reserve_mutex);
555 }
556
557 if (err)
558 return err;
559
560 err = __hw_perf_event_init(event);
561 if (err)
562 hw_perf_event_destroy(event);
563
564 return err;
565 }
566
567 static void armpmu_enable(struct pmu *pmu)
568 {
569 struct arm_pmu *armpmu = to_arm_pmu(pmu);
570 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
571 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
572
573 if (enabled)
574 armpmu->start();
575 }
576
577 static void armpmu_disable(struct pmu *pmu)
578 {
579 struct arm_pmu *armpmu = to_arm_pmu(pmu);
580 armpmu->stop();
581 }
582
583 static void __init armpmu_init(struct arm_pmu *armpmu)
584 {
585 atomic_set(&armpmu->active_events, 0);
586 mutex_init(&armpmu->reserve_mutex);
587
588 armpmu->pmu = (struct pmu) {
589 .pmu_enable = armpmu_enable,
590 .pmu_disable = armpmu_disable,
591 .event_init = armpmu_event_init,
592 .add = armpmu_add,
593 .del = armpmu_del,
594 .start = armpmu_start,
595 .stop = armpmu_stop,
596 .read = armpmu_read,
597 };
598 }
599
600 int __init armpmu_register(struct arm_pmu *armpmu, char *name, int type)
601 {
602 armpmu_init(armpmu);
603 return perf_pmu_register(&armpmu->pmu, name, type);
604 }
605
606 /* Include the PMU-specific implementations. */
607 #include "perf_event_xscale.c"
608 #include "perf_event_v6.c"
609 #include "perf_event_v7.c"
610
611 /*
612 * Ensure the PMU has sane values out of reset.
613 * This requires SMP to be available, so exists as a separate initcall.
614 */
615 static int __init
616 cpu_pmu_reset(void)
617 {
618 if (cpu_pmu && cpu_pmu->reset)
619 return on_each_cpu(cpu_pmu->reset, NULL, 1);
620 return 0;
621 }
622 arch_initcall(cpu_pmu_reset);
623
624 /*
625 * PMU platform driver and devicetree bindings.
626 */
627 static struct of_device_id armpmu_of_device_ids[] = {
628 {.compatible = "arm,cortex-a9-pmu"},
629 {.compatible = "arm,cortex-a8-pmu"},
630 {.compatible = "arm,arm1136-pmu"},
631 {.compatible = "arm,arm1176-pmu"},
632 {},
633 };
634
635 static struct platform_device_id armpmu_plat_device_ids[] = {
636 {.name = "arm-pmu"},
637 {},
638 };
639
640 static int __devinit armpmu_device_probe(struct platform_device *pdev)
641 {
642 if (!cpu_pmu)
643 return -ENODEV;
644
645 cpu_pmu->plat_device = pdev;
646 return 0;
647 }
648
649 static struct platform_driver armpmu_driver = {
650 .driver = {
651 .name = "arm-pmu",
652 .of_match_table = armpmu_of_device_ids,
653 },
654 .probe = armpmu_device_probe,
655 .id_table = armpmu_plat_device_ids,
656 };
657
658 static int __init register_pmu_driver(void)
659 {
660 return platform_driver_register(&armpmu_driver);
661 }
662 device_initcall(register_pmu_driver);
663
664 static struct pmu_hw_events *armpmu_get_cpu_events(void)
665 {
666 return &__get_cpu_var(cpu_hw_events);
667 }
668
669 static void __init cpu_pmu_init(struct arm_pmu *armpmu)
670 {
671 int cpu;
672 for_each_possible_cpu(cpu) {
673 struct pmu_hw_events *events = &per_cpu(cpu_hw_events, cpu);
674 events->events = per_cpu(hw_events, cpu);
675 events->used_mask = per_cpu(used_mask, cpu);
676 raw_spin_lock_init(&events->pmu_lock);
677 }
678 armpmu->get_hw_events = armpmu_get_cpu_events;
679 armpmu->type = ARM_PMU_DEVICE_CPU;
680 }
681
682 /*
683 * PMU hardware loses all context when a CPU goes offline.
684 * When a CPU is hotplugged back in, since some hardware registers are
685 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
686 * junk values out of them.
687 */
688 static int __cpuinit pmu_cpu_notify(struct notifier_block *b,
689 unsigned long action, void *hcpu)
690 {
691 if ((action & ~CPU_TASKS_FROZEN) != CPU_STARTING)
692 return NOTIFY_DONE;
693
694 if (cpu_pmu && cpu_pmu->reset)
695 cpu_pmu->reset(NULL);
696
697 return NOTIFY_OK;
698 }
699
700 static struct notifier_block __cpuinitdata pmu_cpu_notifier = {
701 .notifier_call = pmu_cpu_notify,
702 };
703
704 /*
705 * CPU PMU identification and registration.
706 */
707 static int __init
708 init_hw_perf_events(void)
709 {
710 unsigned long cpuid = read_cpuid_id();
711 unsigned long implementor = (cpuid & 0xFF000000) >> 24;
712 unsigned long part_number = (cpuid & 0xFFF0);
713
714 /* ARM Ltd CPUs. */
715 if (0x41 == implementor) {
716 switch (part_number) {
717 case 0xB360: /* ARM1136 */
718 case 0xB560: /* ARM1156 */
719 case 0xB760: /* ARM1176 */
720 cpu_pmu = armv6pmu_init();
721 break;
722 case 0xB020: /* ARM11mpcore */
723 cpu_pmu = armv6mpcore_pmu_init();
724 break;
725 case 0xC080: /* Cortex-A8 */
726 cpu_pmu = armv7_a8_pmu_init();
727 break;
728 case 0xC090: /* Cortex-A9 */
729 cpu_pmu = armv7_a9_pmu_init();
730 break;
731 case 0xC050: /* Cortex-A5 */
732 cpu_pmu = armv7_a5_pmu_init();
733 break;
734 case 0xC0F0: /* Cortex-A15 */
735 cpu_pmu = armv7_a15_pmu_init();
736 break;
737 }
738 /* Intel CPUs [xscale]. */
739 } else if (0x69 == implementor) {
740 part_number = (cpuid >> 13) & 0x7;
741 switch (part_number) {
742 case 1:
743 cpu_pmu = xscale1pmu_init();
744 break;
745 case 2:
746 cpu_pmu = xscale2pmu_init();
747 break;
748 }
749 }
750
751 if (cpu_pmu) {
752 pr_info("enabled with %s PMU driver, %d counters available\n",
753 cpu_pmu->name, cpu_pmu->num_events);
754 cpu_pmu_init(cpu_pmu);
755 register_cpu_notifier(&pmu_cpu_notifier);
756 armpmu_register(cpu_pmu, "cpu", PERF_TYPE_RAW);
757 } else {
758 pr_info("no hardware support available\n");
759 }
760
761 return 0;
762 }
763 early_initcall(init_hw_perf_events);
764
765 /*
766 * Callchain handling code.
767 */
768
769 /*
770 * The registers we're interested in are at the end of the variable
771 * length saved register structure. The fp points at the end of this
772 * structure so the address of this struct is:
773 * (struct frame_tail *)(xxx->fp)-1
774 *
775 * This code has been adapted from the ARM OProfile support.
776 */
777 struct frame_tail {
778 struct frame_tail __user *fp;
779 unsigned long sp;
780 unsigned long lr;
781 } __attribute__((packed));
782
783 /*
784 * Get the return address for a single stackframe and return a pointer to the
785 * next frame tail.
786 */
787 static struct frame_tail __user *
788 user_backtrace(struct frame_tail __user *tail,
789 struct perf_callchain_entry *entry)
790 {
791 struct frame_tail buftail;
792
793 /* Also check accessibility of one struct frame_tail beyond */
794 if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
795 return NULL;
796 if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
797 return NULL;
798
799 perf_callchain_store(entry, buftail.lr);
800
801 /*
802 * Frame pointers should strictly progress back up the stack
803 * (towards higher addresses).
804 */
805 if (tail + 1 >= buftail.fp)
806 return NULL;
807
808 return buftail.fp - 1;
809 }
810
811 void
812 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
813 {
814 struct frame_tail __user *tail;
815
816
817 tail = (struct frame_tail __user *)regs->ARM_fp - 1;
818
819 while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
820 tail && !((unsigned long)tail & 0x3))
821 tail = user_backtrace(tail, entry);
822 }
823
824 /*
825 * Gets called by walk_stackframe() for every stackframe. This will be called
826 * whist unwinding the stackframe and is like a subroutine return so we use
827 * the PC.
828 */
829 static int
830 callchain_trace(struct stackframe *fr,
831 void *data)
832 {
833 struct perf_callchain_entry *entry = data;
834 perf_callchain_store(entry, fr->pc);
835 return 0;
836 }
837
838 void
839 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
840 {
841 struct stackframe fr;
842
843 fr.fp = regs->ARM_fp;
844 fr.sp = regs->ARM_sp;
845 fr.lr = regs->ARM_lr;
846 fr.pc = regs->ARM_pc;
847 walk_stackframe(&fr, callchain_trace, entry);
848 }
This page took 0.079697 seconds and 6 git commands to generate.