MAINTAINERS: Add phy-miphy28lp.c and phy-miphy365x.c to ARCH/STI architecture
[deliverable/linux.git] / arch / arm / kernel / setup.c
1 /*
2 * linux/arch/arm/kernel/setup.c
3 *
4 * Copyright (C) 1995-2001 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/export.h>
11 #include <linux/kernel.h>
12 #include <linux/stddef.h>
13 #include <linux/ioport.h>
14 #include <linux/delay.h>
15 #include <linux/utsname.h>
16 #include <linux/initrd.h>
17 #include <linux/console.h>
18 #include <linux/bootmem.h>
19 #include <linux/seq_file.h>
20 #include <linux/screen_info.h>
21 #include <linux/of_iommu.h>
22 #include <linux/of_platform.h>
23 #include <linux/init.h>
24 #include <linux/kexec.h>
25 #include <linux/of_fdt.h>
26 #include <linux/cpu.h>
27 #include <linux/interrupt.h>
28 #include <linux/smp.h>
29 #include <linux/proc_fs.h>
30 #include <linux/memblock.h>
31 #include <linux/bug.h>
32 #include <linux/compiler.h>
33 #include <linux/sort.h>
34
35 #include <asm/unified.h>
36 #include <asm/cp15.h>
37 #include <asm/cpu.h>
38 #include <asm/cputype.h>
39 #include <asm/elf.h>
40 #include <asm/procinfo.h>
41 #include <asm/psci.h>
42 #include <asm/sections.h>
43 #include <asm/setup.h>
44 #include <asm/smp_plat.h>
45 #include <asm/mach-types.h>
46 #include <asm/cacheflush.h>
47 #include <asm/cachetype.h>
48 #include <asm/tlbflush.h>
49
50 #include <asm/prom.h>
51 #include <asm/mach/arch.h>
52 #include <asm/mach/irq.h>
53 #include <asm/mach/time.h>
54 #include <asm/system_info.h>
55 #include <asm/system_misc.h>
56 #include <asm/traps.h>
57 #include <asm/unwind.h>
58 #include <asm/memblock.h>
59 #include <asm/virt.h>
60
61 #include "atags.h"
62
63
64 #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
65 char fpe_type[8];
66
67 static int __init fpe_setup(char *line)
68 {
69 memcpy(fpe_type, line, 8);
70 return 1;
71 }
72
73 __setup("fpe=", fpe_setup);
74 #endif
75
76 extern void init_default_cache_policy(unsigned long);
77 extern void paging_init(const struct machine_desc *desc);
78 extern void early_paging_init(const struct machine_desc *,
79 struct proc_info_list *);
80 extern void sanity_check_meminfo(void);
81 extern enum reboot_mode reboot_mode;
82 extern void setup_dma_zone(const struct machine_desc *desc);
83
84 unsigned int processor_id;
85 EXPORT_SYMBOL(processor_id);
86 unsigned int __machine_arch_type __read_mostly;
87 EXPORT_SYMBOL(__machine_arch_type);
88 unsigned int cacheid __read_mostly;
89 EXPORT_SYMBOL(cacheid);
90
91 unsigned int __atags_pointer __initdata;
92
93 unsigned int system_rev;
94 EXPORT_SYMBOL(system_rev);
95
96 unsigned int system_serial_low;
97 EXPORT_SYMBOL(system_serial_low);
98
99 unsigned int system_serial_high;
100 EXPORT_SYMBOL(system_serial_high);
101
102 unsigned int elf_hwcap __read_mostly;
103 EXPORT_SYMBOL(elf_hwcap);
104
105 unsigned int elf_hwcap2 __read_mostly;
106 EXPORT_SYMBOL(elf_hwcap2);
107
108
109 #ifdef MULTI_CPU
110 struct processor processor __read_mostly;
111 #endif
112 #ifdef MULTI_TLB
113 struct cpu_tlb_fns cpu_tlb __read_mostly;
114 #endif
115 #ifdef MULTI_USER
116 struct cpu_user_fns cpu_user __read_mostly;
117 #endif
118 #ifdef MULTI_CACHE
119 struct cpu_cache_fns cpu_cache __read_mostly;
120 #endif
121 #ifdef CONFIG_OUTER_CACHE
122 struct outer_cache_fns outer_cache __read_mostly;
123 EXPORT_SYMBOL(outer_cache);
124 #endif
125
126 /*
127 * Cached cpu_architecture() result for use by assembler code.
128 * C code should use the cpu_architecture() function instead of accessing this
129 * variable directly.
130 */
131 int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
132
133 struct stack {
134 u32 irq[3];
135 u32 abt[3];
136 u32 und[3];
137 u32 fiq[3];
138 } ____cacheline_aligned;
139
140 #ifndef CONFIG_CPU_V7M
141 static struct stack stacks[NR_CPUS];
142 #endif
143
144 char elf_platform[ELF_PLATFORM_SIZE];
145 EXPORT_SYMBOL(elf_platform);
146
147 static const char *cpu_name;
148 static const char *machine_name;
149 static char __initdata cmd_line[COMMAND_LINE_SIZE];
150 const struct machine_desc *machine_desc __initdata;
151
152 static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
153 #define ENDIANNESS ((char)endian_test.l)
154
155 DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
156
157 /*
158 * Standard memory resources
159 */
160 static struct resource mem_res[] = {
161 {
162 .name = "Video RAM",
163 .start = 0,
164 .end = 0,
165 .flags = IORESOURCE_MEM
166 },
167 {
168 .name = "Kernel code",
169 .start = 0,
170 .end = 0,
171 .flags = IORESOURCE_MEM
172 },
173 {
174 .name = "Kernel data",
175 .start = 0,
176 .end = 0,
177 .flags = IORESOURCE_MEM
178 }
179 };
180
181 #define video_ram mem_res[0]
182 #define kernel_code mem_res[1]
183 #define kernel_data mem_res[2]
184
185 static struct resource io_res[] = {
186 {
187 .name = "reserved",
188 .start = 0x3bc,
189 .end = 0x3be,
190 .flags = IORESOURCE_IO | IORESOURCE_BUSY
191 },
192 {
193 .name = "reserved",
194 .start = 0x378,
195 .end = 0x37f,
196 .flags = IORESOURCE_IO | IORESOURCE_BUSY
197 },
198 {
199 .name = "reserved",
200 .start = 0x278,
201 .end = 0x27f,
202 .flags = IORESOURCE_IO | IORESOURCE_BUSY
203 }
204 };
205
206 #define lp0 io_res[0]
207 #define lp1 io_res[1]
208 #define lp2 io_res[2]
209
210 static const char *proc_arch[] = {
211 "undefined/unknown",
212 "3",
213 "4",
214 "4T",
215 "5",
216 "5T",
217 "5TE",
218 "5TEJ",
219 "6TEJ",
220 "7",
221 "7M",
222 "?(12)",
223 "?(13)",
224 "?(14)",
225 "?(15)",
226 "?(16)",
227 "?(17)",
228 };
229
230 #ifdef CONFIG_CPU_V7M
231 static int __get_cpu_architecture(void)
232 {
233 return CPU_ARCH_ARMv7M;
234 }
235 #else
236 static int __get_cpu_architecture(void)
237 {
238 int cpu_arch;
239
240 if ((read_cpuid_id() & 0x0008f000) == 0) {
241 cpu_arch = CPU_ARCH_UNKNOWN;
242 } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
243 cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
244 } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
245 cpu_arch = (read_cpuid_id() >> 16) & 7;
246 if (cpu_arch)
247 cpu_arch += CPU_ARCH_ARMv3;
248 } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
249 unsigned int mmfr0;
250
251 /* Revised CPUID format. Read the Memory Model Feature
252 * Register 0 and check for VMSAv7 or PMSAv7 */
253 asm("mrc p15, 0, %0, c0, c1, 4"
254 : "=r" (mmfr0));
255 if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
256 (mmfr0 & 0x000000f0) >= 0x00000030)
257 cpu_arch = CPU_ARCH_ARMv7;
258 else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
259 (mmfr0 & 0x000000f0) == 0x00000020)
260 cpu_arch = CPU_ARCH_ARMv6;
261 else
262 cpu_arch = CPU_ARCH_UNKNOWN;
263 } else
264 cpu_arch = CPU_ARCH_UNKNOWN;
265
266 return cpu_arch;
267 }
268 #endif
269
270 int __pure cpu_architecture(void)
271 {
272 BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
273
274 return __cpu_architecture;
275 }
276
277 static int cpu_has_aliasing_icache(unsigned int arch)
278 {
279 int aliasing_icache;
280 unsigned int id_reg, num_sets, line_size;
281
282 /* PIPT caches never alias. */
283 if (icache_is_pipt())
284 return 0;
285
286 /* arch specifies the register format */
287 switch (arch) {
288 case CPU_ARCH_ARMv7:
289 asm("mcr p15, 2, %0, c0, c0, 0 @ set CSSELR"
290 : /* No output operands */
291 : "r" (1));
292 isb();
293 asm("mrc p15, 1, %0, c0, c0, 0 @ read CCSIDR"
294 : "=r" (id_reg));
295 line_size = 4 << ((id_reg & 0x7) + 2);
296 num_sets = ((id_reg >> 13) & 0x7fff) + 1;
297 aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
298 break;
299 case CPU_ARCH_ARMv6:
300 aliasing_icache = read_cpuid_cachetype() & (1 << 11);
301 break;
302 default:
303 /* I-cache aliases will be handled by D-cache aliasing code */
304 aliasing_icache = 0;
305 }
306
307 return aliasing_icache;
308 }
309
310 static void __init cacheid_init(void)
311 {
312 unsigned int arch = cpu_architecture();
313
314 if (arch == CPU_ARCH_ARMv7M) {
315 cacheid = 0;
316 } else if (arch >= CPU_ARCH_ARMv6) {
317 unsigned int cachetype = read_cpuid_cachetype();
318 if ((cachetype & (7 << 29)) == 4 << 29) {
319 /* ARMv7 register format */
320 arch = CPU_ARCH_ARMv7;
321 cacheid = CACHEID_VIPT_NONALIASING;
322 switch (cachetype & (3 << 14)) {
323 case (1 << 14):
324 cacheid |= CACHEID_ASID_TAGGED;
325 break;
326 case (3 << 14):
327 cacheid |= CACHEID_PIPT;
328 break;
329 }
330 } else {
331 arch = CPU_ARCH_ARMv6;
332 if (cachetype & (1 << 23))
333 cacheid = CACHEID_VIPT_ALIASING;
334 else
335 cacheid = CACHEID_VIPT_NONALIASING;
336 }
337 if (cpu_has_aliasing_icache(arch))
338 cacheid |= CACHEID_VIPT_I_ALIASING;
339 } else {
340 cacheid = CACHEID_VIVT;
341 }
342
343 pr_info("CPU: %s data cache, %s instruction cache\n",
344 cache_is_vivt() ? "VIVT" :
345 cache_is_vipt_aliasing() ? "VIPT aliasing" :
346 cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
347 cache_is_vivt() ? "VIVT" :
348 icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
349 icache_is_vipt_aliasing() ? "VIPT aliasing" :
350 icache_is_pipt() ? "PIPT" :
351 cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
352 }
353
354 /*
355 * These functions re-use the assembly code in head.S, which
356 * already provide the required functionality.
357 */
358 extern struct proc_info_list *lookup_processor_type(unsigned int);
359
360 void __init early_print(const char *str, ...)
361 {
362 extern void printascii(const char *);
363 char buf[256];
364 va_list ap;
365
366 va_start(ap, str);
367 vsnprintf(buf, sizeof(buf), str, ap);
368 va_end(ap);
369
370 #ifdef CONFIG_DEBUG_LL
371 printascii(buf);
372 #endif
373 printk("%s", buf);
374 }
375
376 static void __init cpuid_init_hwcaps(void)
377 {
378 unsigned int divide_instrs, vmsa;
379
380 if (cpu_architecture() < CPU_ARCH_ARMv7)
381 return;
382
383 divide_instrs = (read_cpuid_ext(CPUID_EXT_ISAR0) & 0x0f000000) >> 24;
384
385 switch (divide_instrs) {
386 case 2:
387 elf_hwcap |= HWCAP_IDIVA;
388 case 1:
389 elf_hwcap |= HWCAP_IDIVT;
390 }
391
392 /* LPAE implies atomic ldrd/strd instructions */
393 vmsa = (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xf) >> 0;
394 if (vmsa >= 5)
395 elf_hwcap |= HWCAP_LPAE;
396 }
397
398 static void __init elf_hwcap_fixup(void)
399 {
400 unsigned id = read_cpuid_id();
401 unsigned sync_prim;
402
403 /*
404 * HWCAP_TLS is available only on 1136 r1p0 and later,
405 * see also kuser_get_tls_init.
406 */
407 if (read_cpuid_part() == ARM_CPU_PART_ARM1136 &&
408 ((id >> 20) & 3) == 0) {
409 elf_hwcap &= ~HWCAP_TLS;
410 return;
411 }
412
413 /* Verify if CPUID scheme is implemented */
414 if ((id & 0x000f0000) != 0x000f0000)
415 return;
416
417 /*
418 * If the CPU supports LDREX/STREX and LDREXB/STREXB,
419 * avoid advertising SWP; it may not be atomic with
420 * multiprocessing cores.
421 */
422 sync_prim = ((read_cpuid_ext(CPUID_EXT_ISAR3) >> 8) & 0xf0) |
423 ((read_cpuid_ext(CPUID_EXT_ISAR4) >> 20) & 0x0f);
424 if (sync_prim >= 0x13)
425 elf_hwcap &= ~HWCAP_SWP;
426 }
427
428 /*
429 * cpu_init - initialise one CPU.
430 *
431 * cpu_init sets up the per-CPU stacks.
432 */
433 void notrace cpu_init(void)
434 {
435 #ifndef CONFIG_CPU_V7M
436 unsigned int cpu = smp_processor_id();
437 struct stack *stk = &stacks[cpu];
438
439 if (cpu >= NR_CPUS) {
440 pr_crit("CPU%u: bad primary CPU number\n", cpu);
441 BUG();
442 }
443
444 /*
445 * This only works on resume and secondary cores. For booting on the
446 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
447 */
448 set_my_cpu_offset(per_cpu_offset(cpu));
449
450 cpu_proc_init();
451
452 /*
453 * Define the placement constraint for the inline asm directive below.
454 * In Thumb-2, msr with an immediate value is not allowed.
455 */
456 #ifdef CONFIG_THUMB2_KERNEL
457 #define PLC "r"
458 #else
459 #define PLC "I"
460 #endif
461
462 /*
463 * setup stacks for re-entrant exception handlers
464 */
465 __asm__ (
466 "msr cpsr_c, %1\n\t"
467 "add r14, %0, %2\n\t"
468 "mov sp, r14\n\t"
469 "msr cpsr_c, %3\n\t"
470 "add r14, %0, %4\n\t"
471 "mov sp, r14\n\t"
472 "msr cpsr_c, %5\n\t"
473 "add r14, %0, %6\n\t"
474 "mov sp, r14\n\t"
475 "msr cpsr_c, %7\n\t"
476 "add r14, %0, %8\n\t"
477 "mov sp, r14\n\t"
478 "msr cpsr_c, %9"
479 :
480 : "r" (stk),
481 PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
482 "I" (offsetof(struct stack, irq[0])),
483 PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
484 "I" (offsetof(struct stack, abt[0])),
485 PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
486 "I" (offsetof(struct stack, und[0])),
487 PLC (PSR_F_BIT | PSR_I_BIT | FIQ_MODE),
488 "I" (offsetof(struct stack, fiq[0])),
489 PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
490 : "r14");
491 #endif
492 }
493
494 u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
495
496 void __init smp_setup_processor_id(void)
497 {
498 int i;
499 u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
500 u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
501
502 cpu_logical_map(0) = cpu;
503 for (i = 1; i < nr_cpu_ids; ++i)
504 cpu_logical_map(i) = i == cpu ? 0 : i;
505
506 /*
507 * clear __my_cpu_offset on boot CPU to avoid hang caused by
508 * using percpu variable early, for example, lockdep will
509 * access percpu variable inside lock_release
510 */
511 set_my_cpu_offset(0);
512
513 pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
514 }
515
516 struct mpidr_hash mpidr_hash;
517 #ifdef CONFIG_SMP
518 /**
519 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
520 * level in order to build a linear index from an
521 * MPIDR value. Resulting algorithm is a collision
522 * free hash carried out through shifting and ORing
523 */
524 static void __init smp_build_mpidr_hash(void)
525 {
526 u32 i, affinity;
527 u32 fs[3], bits[3], ls, mask = 0;
528 /*
529 * Pre-scan the list of MPIDRS and filter out bits that do
530 * not contribute to affinity levels, ie they never toggle.
531 */
532 for_each_possible_cpu(i)
533 mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
534 pr_debug("mask of set bits 0x%x\n", mask);
535 /*
536 * Find and stash the last and first bit set at all affinity levels to
537 * check how many bits are required to represent them.
538 */
539 for (i = 0; i < 3; i++) {
540 affinity = MPIDR_AFFINITY_LEVEL(mask, i);
541 /*
542 * Find the MSB bit and LSB bits position
543 * to determine how many bits are required
544 * to express the affinity level.
545 */
546 ls = fls(affinity);
547 fs[i] = affinity ? ffs(affinity) - 1 : 0;
548 bits[i] = ls - fs[i];
549 }
550 /*
551 * An index can be created from the MPIDR by isolating the
552 * significant bits at each affinity level and by shifting
553 * them in order to compress the 24 bits values space to a
554 * compressed set of values. This is equivalent to hashing
555 * the MPIDR through shifting and ORing. It is a collision free
556 * hash though not minimal since some levels might contain a number
557 * of CPUs that is not an exact power of 2 and their bit
558 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
559 */
560 mpidr_hash.shift_aff[0] = fs[0];
561 mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
562 mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
563 (bits[1] + bits[0]);
564 mpidr_hash.mask = mask;
565 mpidr_hash.bits = bits[2] + bits[1] + bits[0];
566 pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
567 mpidr_hash.shift_aff[0],
568 mpidr_hash.shift_aff[1],
569 mpidr_hash.shift_aff[2],
570 mpidr_hash.mask,
571 mpidr_hash.bits);
572 /*
573 * 4x is an arbitrary value used to warn on a hash table much bigger
574 * than expected on most systems.
575 */
576 if (mpidr_hash_size() > 4 * num_possible_cpus())
577 pr_warn("Large number of MPIDR hash buckets detected\n");
578 sync_cache_w(&mpidr_hash);
579 }
580 #endif
581
582 static void __init setup_processor(void)
583 {
584 struct proc_info_list *list;
585
586 /*
587 * locate processor in the list of supported processor
588 * types. The linker builds this table for us from the
589 * entries in arch/arm/mm/proc-*.S
590 */
591 list = lookup_processor_type(read_cpuid_id());
592 if (!list) {
593 pr_err("CPU configuration botched (ID %08x), unable to continue.\n",
594 read_cpuid_id());
595 while (1);
596 }
597
598 cpu_name = list->cpu_name;
599 __cpu_architecture = __get_cpu_architecture();
600
601 #ifdef MULTI_CPU
602 processor = *list->proc;
603 #endif
604 #ifdef MULTI_TLB
605 cpu_tlb = *list->tlb;
606 #endif
607 #ifdef MULTI_USER
608 cpu_user = *list->user;
609 #endif
610 #ifdef MULTI_CACHE
611 cpu_cache = *list->cache;
612 #endif
613
614 pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
615 cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
616 proc_arch[cpu_architecture()], get_cr());
617
618 snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
619 list->arch_name, ENDIANNESS);
620 snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
621 list->elf_name, ENDIANNESS);
622 elf_hwcap = list->elf_hwcap;
623
624 cpuid_init_hwcaps();
625
626 #ifndef CONFIG_ARM_THUMB
627 elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
628 #endif
629 #ifdef CONFIG_MMU
630 init_default_cache_policy(list->__cpu_mm_mmu_flags);
631 #endif
632 erratum_a15_798181_init();
633
634 elf_hwcap_fixup();
635
636 cacheid_init();
637 cpu_init();
638 }
639
640 void __init dump_machine_table(void)
641 {
642 const struct machine_desc *p;
643
644 early_print("Available machine support:\n\nID (hex)\tNAME\n");
645 for_each_machine_desc(p)
646 early_print("%08x\t%s\n", p->nr, p->name);
647
648 early_print("\nPlease check your kernel config and/or bootloader.\n");
649
650 while (true)
651 /* can't use cpu_relax() here as it may require MMU setup */;
652 }
653
654 int __init arm_add_memory(u64 start, u64 size)
655 {
656 u64 aligned_start;
657
658 /*
659 * Ensure that start/size are aligned to a page boundary.
660 * Size is rounded down, start is rounded up.
661 */
662 aligned_start = PAGE_ALIGN(start);
663 if (aligned_start > start + size)
664 size = 0;
665 else
666 size -= aligned_start - start;
667
668 #ifndef CONFIG_ARCH_PHYS_ADDR_T_64BIT
669 if (aligned_start > ULONG_MAX) {
670 pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
671 (long long)start);
672 return -EINVAL;
673 }
674
675 if (aligned_start + size > ULONG_MAX) {
676 pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
677 (long long)start);
678 /*
679 * To ensure bank->start + bank->size is representable in
680 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
681 * This means we lose a page after masking.
682 */
683 size = ULONG_MAX - aligned_start;
684 }
685 #endif
686
687 if (aligned_start < PHYS_OFFSET) {
688 if (aligned_start + size <= PHYS_OFFSET) {
689 pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
690 aligned_start, aligned_start + size);
691 return -EINVAL;
692 }
693
694 pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
695 aligned_start, (u64)PHYS_OFFSET);
696
697 size -= PHYS_OFFSET - aligned_start;
698 aligned_start = PHYS_OFFSET;
699 }
700
701 start = aligned_start;
702 size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
703
704 /*
705 * Check whether this memory region has non-zero size or
706 * invalid node number.
707 */
708 if (size == 0)
709 return -EINVAL;
710
711 memblock_add(start, size);
712 return 0;
713 }
714
715 /*
716 * Pick out the memory size. We look for mem=size@start,
717 * where start and size are "size[KkMm]"
718 */
719
720 static int __init early_mem(char *p)
721 {
722 static int usermem __initdata = 0;
723 u64 size;
724 u64 start;
725 char *endp;
726
727 /*
728 * If the user specifies memory size, we
729 * blow away any automatically generated
730 * size.
731 */
732 if (usermem == 0) {
733 usermem = 1;
734 memblock_remove(memblock_start_of_DRAM(),
735 memblock_end_of_DRAM() - memblock_start_of_DRAM());
736 }
737
738 start = PHYS_OFFSET;
739 size = memparse(p, &endp);
740 if (*endp == '@')
741 start = memparse(endp + 1, NULL);
742
743 arm_add_memory(start, size);
744
745 return 0;
746 }
747 early_param("mem", early_mem);
748
749 static void __init request_standard_resources(const struct machine_desc *mdesc)
750 {
751 struct memblock_region *region;
752 struct resource *res;
753
754 kernel_code.start = virt_to_phys(_text);
755 kernel_code.end = virt_to_phys(_etext - 1);
756 kernel_data.start = virt_to_phys(_sdata);
757 kernel_data.end = virt_to_phys(_end - 1);
758
759 for_each_memblock(memory, region) {
760 res = memblock_virt_alloc(sizeof(*res), 0);
761 res->name = "System RAM";
762 res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
763 res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
764 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
765
766 request_resource(&iomem_resource, res);
767
768 if (kernel_code.start >= res->start &&
769 kernel_code.end <= res->end)
770 request_resource(res, &kernel_code);
771 if (kernel_data.start >= res->start &&
772 kernel_data.end <= res->end)
773 request_resource(res, &kernel_data);
774 }
775
776 if (mdesc->video_start) {
777 video_ram.start = mdesc->video_start;
778 video_ram.end = mdesc->video_end;
779 request_resource(&iomem_resource, &video_ram);
780 }
781
782 /*
783 * Some machines don't have the possibility of ever
784 * possessing lp0, lp1 or lp2
785 */
786 if (mdesc->reserve_lp0)
787 request_resource(&ioport_resource, &lp0);
788 if (mdesc->reserve_lp1)
789 request_resource(&ioport_resource, &lp1);
790 if (mdesc->reserve_lp2)
791 request_resource(&ioport_resource, &lp2);
792 }
793
794 #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
795 struct screen_info screen_info = {
796 .orig_video_lines = 30,
797 .orig_video_cols = 80,
798 .orig_video_mode = 0,
799 .orig_video_ega_bx = 0,
800 .orig_video_isVGA = 1,
801 .orig_video_points = 8
802 };
803 #endif
804
805 static int __init customize_machine(void)
806 {
807 /*
808 * customizes platform devices, or adds new ones
809 * On DT based machines, we fall back to populating the
810 * machine from the device tree, if no callback is provided,
811 * otherwise we would always need an init_machine callback.
812 */
813 of_iommu_init();
814 if (machine_desc->init_machine)
815 machine_desc->init_machine();
816 #ifdef CONFIG_OF
817 else
818 of_platform_populate(NULL, of_default_bus_match_table,
819 NULL, NULL);
820 #endif
821 return 0;
822 }
823 arch_initcall(customize_machine);
824
825 static int __init init_machine_late(void)
826 {
827 if (machine_desc->init_late)
828 machine_desc->init_late();
829 return 0;
830 }
831 late_initcall(init_machine_late);
832
833 #ifdef CONFIG_KEXEC
834 static inline unsigned long long get_total_mem(void)
835 {
836 unsigned long total;
837
838 total = max_low_pfn - min_low_pfn;
839 return total << PAGE_SHIFT;
840 }
841
842 /**
843 * reserve_crashkernel() - reserves memory are for crash kernel
844 *
845 * This function reserves memory area given in "crashkernel=" kernel command
846 * line parameter. The memory reserved is used by a dump capture kernel when
847 * primary kernel is crashing.
848 */
849 static void __init reserve_crashkernel(void)
850 {
851 unsigned long long crash_size, crash_base;
852 unsigned long long total_mem;
853 int ret;
854
855 total_mem = get_total_mem();
856 ret = parse_crashkernel(boot_command_line, total_mem,
857 &crash_size, &crash_base);
858 if (ret)
859 return;
860
861 ret = memblock_reserve(crash_base, crash_size);
862 if (ret < 0) {
863 pr_warn("crashkernel reservation failed - memory is in use (0x%lx)\n",
864 (unsigned long)crash_base);
865 return;
866 }
867
868 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
869 (unsigned long)(crash_size >> 20),
870 (unsigned long)(crash_base >> 20),
871 (unsigned long)(total_mem >> 20));
872
873 crashk_res.start = crash_base;
874 crashk_res.end = crash_base + crash_size - 1;
875 insert_resource(&iomem_resource, &crashk_res);
876 }
877 #else
878 static inline void reserve_crashkernel(void) {}
879 #endif /* CONFIG_KEXEC */
880
881 void __init hyp_mode_check(void)
882 {
883 #ifdef CONFIG_ARM_VIRT_EXT
884 sync_boot_mode();
885
886 if (is_hyp_mode_available()) {
887 pr_info("CPU: All CPU(s) started in HYP mode.\n");
888 pr_info("CPU: Virtualization extensions available.\n");
889 } else if (is_hyp_mode_mismatched()) {
890 pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
891 __boot_cpu_mode & MODE_MASK);
892 pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
893 } else
894 pr_info("CPU: All CPU(s) started in SVC mode.\n");
895 #endif
896 }
897
898 void __init setup_arch(char **cmdline_p)
899 {
900 const struct machine_desc *mdesc;
901
902 setup_processor();
903 mdesc = setup_machine_fdt(__atags_pointer);
904 if (!mdesc)
905 mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
906 machine_desc = mdesc;
907 machine_name = mdesc->name;
908 dump_stack_set_arch_desc("%s", mdesc->name);
909
910 if (mdesc->reboot_mode != REBOOT_HARD)
911 reboot_mode = mdesc->reboot_mode;
912
913 init_mm.start_code = (unsigned long) _text;
914 init_mm.end_code = (unsigned long) _etext;
915 init_mm.end_data = (unsigned long) _edata;
916 init_mm.brk = (unsigned long) _end;
917
918 /* populate cmd_line too for later use, preserving boot_command_line */
919 strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
920 *cmdline_p = cmd_line;
921
922 parse_early_param();
923
924 early_paging_init(mdesc, lookup_processor_type(read_cpuid_id()));
925 setup_dma_zone(mdesc);
926 sanity_check_meminfo();
927 arm_memblock_init(mdesc);
928
929 paging_init(mdesc);
930 request_standard_resources(mdesc);
931
932 if (mdesc->restart)
933 arm_pm_restart = mdesc->restart;
934
935 unflatten_device_tree();
936
937 arm_dt_init_cpu_maps();
938 psci_init();
939 #ifdef CONFIG_SMP
940 if (is_smp()) {
941 if (!mdesc->smp_init || !mdesc->smp_init()) {
942 if (psci_smp_available())
943 smp_set_ops(&psci_smp_ops);
944 else if (mdesc->smp)
945 smp_set_ops(mdesc->smp);
946 }
947 smp_init_cpus();
948 smp_build_mpidr_hash();
949 }
950 #endif
951
952 if (!is_smp())
953 hyp_mode_check();
954
955 reserve_crashkernel();
956
957 #ifdef CONFIG_MULTI_IRQ_HANDLER
958 handle_arch_irq = mdesc->handle_irq;
959 #endif
960
961 #ifdef CONFIG_VT
962 #if defined(CONFIG_VGA_CONSOLE)
963 conswitchp = &vga_con;
964 #elif defined(CONFIG_DUMMY_CONSOLE)
965 conswitchp = &dummy_con;
966 #endif
967 #endif
968
969 if (mdesc->init_early)
970 mdesc->init_early();
971 }
972
973
974 static int __init topology_init(void)
975 {
976 int cpu;
977
978 for_each_possible_cpu(cpu) {
979 struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
980 cpuinfo->cpu.hotpluggable = 1;
981 register_cpu(&cpuinfo->cpu, cpu);
982 }
983
984 return 0;
985 }
986 subsys_initcall(topology_init);
987
988 #ifdef CONFIG_HAVE_PROC_CPU
989 static int __init proc_cpu_init(void)
990 {
991 struct proc_dir_entry *res;
992
993 res = proc_mkdir("cpu", NULL);
994 if (!res)
995 return -ENOMEM;
996 return 0;
997 }
998 fs_initcall(proc_cpu_init);
999 #endif
1000
1001 static const char *hwcap_str[] = {
1002 "swp",
1003 "half",
1004 "thumb",
1005 "26bit",
1006 "fastmult",
1007 "fpa",
1008 "vfp",
1009 "edsp",
1010 "java",
1011 "iwmmxt",
1012 "crunch",
1013 "thumbee",
1014 "neon",
1015 "vfpv3",
1016 "vfpv3d16",
1017 "tls",
1018 "vfpv4",
1019 "idiva",
1020 "idivt",
1021 "vfpd32",
1022 "lpae",
1023 "evtstrm",
1024 NULL
1025 };
1026
1027 static const char *hwcap2_str[] = {
1028 "aes",
1029 "pmull",
1030 "sha1",
1031 "sha2",
1032 "crc32",
1033 NULL
1034 };
1035
1036 static int c_show(struct seq_file *m, void *v)
1037 {
1038 int i, j;
1039 u32 cpuid;
1040
1041 for_each_online_cpu(i) {
1042 /*
1043 * glibc reads /proc/cpuinfo to determine the number of
1044 * online processors, looking for lines beginning with
1045 * "processor". Give glibc what it expects.
1046 */
1047 seq_printf(m, "processor\t: %d\n", i);
1048 cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
1049 seq_printf(m, "model name\t: %s rev %d (%s)\n",
1050 cpu_name, cpuid & 15, elf_platform);
1051
1052 #if defined(CONFIG_SMP)
1053 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1054 per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
1055 (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
1056 #else
1057 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1058 loops_per_jiffy / (500000/HZ),
1059 (loops_per_jiffy / (5000/HZ)) % 100);
1060 #endif
1061 /* dump out the processor features */
1062 seq_puts(m, "Features\t: ");
1063
1064 for (j = 0; hwcap_str[j]; j++)
1065 if (elf_hwcap & (1 << j))
1066 seq_printf(m, "%s ", hwcap_str[j]);
1067
1068 for (j = 0; hwcap2_str[j]; j++)
1069 if (elf_hwcap2 & (1 << j))
1070 seq_printf(m, "%s ", hwcap2_str[j]);
1071
1072 seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
1073 seq_printf(m, "CPU architecture: %s\n",
1074 proc_arch[cpu_architecture()]);
1075
1076 if ((cpuid & 0x0008f000) == 0x00000000) {
1077 /* pre-ARM7 */
1078 seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
1079 } else {
1080 if ((cpuid & 0x0008f000) == 0x00007000) {
1081 /* ARM7 */
1082 seq_printf(m, "CPU variant\t: 0x%02x\n",
1083 (cpuid >> 16) & 127);
1084 } else {
1085 /* post-ARM7 */
1086 seq_printf(m, "CPU variant\t: 0x%x\n",
1087 (cpuid >> 20) & 15);
1088 }
1089 seq_printf(m, "CPU part\t: 0x%03x\n",
1090 (cpuid >> 4) & 0xfff);
1091 }
1092 seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
1093 }
1094
1095 seq_printf(m, "Hardware\t: %s\n", machine_name);
1096 seq_printf(m, "Revision\t: %04x\n", system_rev);
1097 seq_printf(m, "Serial\t\t: %08x%08x\n",
1098 system_serial_high, system_serial_low);
1099
1100 return 0;
1101 }
1102
1103 static void *c_start(struct seq_file *m, loff_t *pos)
1104 {
1105 return *pos < 1 ? (void *)1 : NULL;
1106 }
1107
1108 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1109 {
1110 ++*pos;
1111 return NULL;
1112 }
1113
1114 static void c_stop(struct seq_file *m, void *v)
1115 {
1116 }
1117
1118 const struct seq_operations cpuinfo_op = {
1119 .start = c_start,
1120 .next = c_next,
1121 .stop = c_stop,
1122 .show = c_show
1123 };
This page took 0.055409 seconds and 5 git commands to generate.