295e0a8379cfc9c95e080f063b815b968acf6a10
[deliverable/linux.git] / arch / arm / kernel / smp.c
1 /*
2 * linux/arch/arm/kernel/smp.c
3 *
4 * Copyright (C) 2002 ARM Limited, All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/config.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/cpu.h>
21 #include <linux/smp.h>
22 #include <linux/seq_file.h>
23
24 #include <asm/atomic.h>
25 #include <asm/cacheflush.h>
26 #include <asm/cpu.h>
27 #include <asm/mmu_context.h>
28 #include <asm/pgtable.h>
29 #include <asm/pgalloc.h>
30 #include <asm/processor.h>
31 #include <asm/tlbflush.h>
32 #include <asm/ptrace.h>
33
34 /*
35 * bitmask of present and online CPUs.
36 * The present bitmask indicates that the CPU is physically present.
37 * The online bitmask indicates that the CPU is up and running.
38 */
39 cpumask_t cpu_possible_map;
40 cpumask_t cpu_online_map;
41
42 /*
43 * as from 2.5, kernels no longer have an init_tasks structure
44 * so we need some other way of telling a new secondary core
45 * where to place its SVC stack
46 */
47 struct secondary_data secondary_data;
48
49 /*
50 * structures for inter-processor calls
51 * - A collection of single bit ipi messages.
52 */
53 struct ipi_data {
54 spinlock_t lock;
55 unsigned long ipi_count;
56 unsigned long bits;
57 };
58
59 static DEFINE_PER_CPU(struct ipi_data, ipi_data) = {
60 .lock = SPIN_LOCK_UNLOCKED,
61 };
62
63 enum ipi_msg_type {
64 IPI_TIMER,
65 IPI_RESCHEDULE,
66 IPI_CALL_FUNC,
67 IPI_CPU_STOP,
68 };
69
70 struct smp_call_struct {
71 void (*func)(void *info);
72 void *info;
73 int wait;
74 cpumask_t pending;
75 cpumask_t unfinished;
76 };
77
78 static struct smp_call_struct * volatile smp_call_function_data;
79 static DEFINE_SPINLOCK(smp_call_function_lock);
80
81 int __cpuinit __cpu_up(unsigned int cpu)
82 {
83 struct task_struct *idle;
84 pgd_t *pgd;
85 pmd_t *pmd;
86 int ret;
87
88 /*
89 * Spawn a new process manually. Grab a pointer to
90 * its task struct so we can mess with it
91 */
92 idle = fork_idle(cpu);
93 if (IS_ERR(idle)) {
94 printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
95 return PTR_ERR(idle);
96 }
97
98 /*
99 * Allocate initial page tables to allow the new CPU to
100 * enable the MMU safely. This essentially means a set
101 * of our "standard" page tables, with the addition of
102 * a 1:1 mapping for the physical address of the kernel.
103 */
104 pgd = pgd_alloc(&init_mm);
105 pmd = pmd_offset(pgd, PHYS_OFFSET);
106 *pmd = __pmd((PHYS_OFFSET & PGDIR_MASK) |
107 PMD_TYPE_SECT | PMD_SECT_AP_WRITE);
108
109 /*
110 * We need to tell the secondary core where to find
111 * its stack and the page tables.
112 */
113 secondary_data.stack = (void *)idle->thread_info + THREAD_SIZE - 8;
114 secondary_data.pgdir = virt_to_phys(pgd);
115 wmb();
116
117 /*
118 * Now bring the CPU into our world.
119 */
120 ret = boot_secondary(cpu, idle);
121 if (ret == 0) {
122 unsigned long timeout;
123
124 /*
125 * CPU was successfully started, wait for it
126 * to come online or time out.
127 */
128 timeout = jiffies + HZ;
129 while (time_before(jiffies, timeout)) {
130 if (cpu_online(cpu))
131 break;
132
133 udelay(10);
134 barrier();
135 }
136
137 if (!cpu_online(cpu))
138 ret = -EIO;
139 }
140
141 secondary_data.stack = 0;
142 secondary_data.pgdir = 0;
143
144 *pmd_offset(pgd, PHYS_OFFSET) = __pmd(0);
145 pgd_free(pgd);
146
147 if (ret) {
148 printk(KERN_CRIT "CPU%u: processor failed to boot\n", cpu);
149
150 /*
151 * FIXME: We need to clean up the new idle thread. --rmk
152 */
153 }
154
155 return ret;
156 }
157
158 /*
159 * This is the secondary CPU boot entry. We're using this CPUs
160 * idle thread stack, but a set of temporary page tables.
161 */
162 asmlinkage void __cpuinit secondary_start_kernel(void)
163 {
164 struct mm_struct *mm = &init_mm;
165 unsigned int cpu = smp_processor_id();
166
167 printk("CPU%u: Booted secondary processor\n", cpu);
168
169 /*
170 * All kernel threads share the same mm context; grab a
171 * reference and switch to it.
172 */
173 atomic_inc(&mm->mm_users);
174 atomic_inc(&mm->mm_count);
175 current->active_mm = mm;
176 cpu_set(cpu, mm->cpu_vm_mask);
177 cpu_switch_mm(mm->pgd, mm);
178 enter_lazy_tlb(mm, current);
179
180 cpu_init();
181
182 /*
183 * Give the platform a chance to do its own initialisation.
184 */
185 platform_secondary_init(cpu);
186
187 /*
188 * Enable local interrupts.
189 */
190 local_irq_enable();
191 local_fiq_enable();
192
193 calibrate_delay();
194
195 smp_store_cpu_info(cpu);
196
197 /*
198 * OK, now it's safe to let the boot CPU continue
199 */
200 cpu_set(cpu, cpu_online_map);
201
202 /*
203 * OK, it's off to the idle thread for us
204 */
205 cpu_idle();
206 }
207
208 /*
209 * Called by both boot and secondaries to move global data into
210 * per-processor storage.
211 */
212 void __cpuinit smp_store_cpu_info(unsigned int cpuid)
213 {
214 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
215
216 cpu_info->loops_per_jiffy = loops_per_jiffy;
217 }
218
219 void __init smp_cpus_done(unsigned int max_cpus)
220 {
221 int cpu;
222 unsigned long bogosum = 0;
223
224 for_each_online_cpu(cpu)
225 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
226
227 printk(KERN_INFO "SMP: Total of %d processors activated "
228 "(%lu.%02lu BogoMIPS).\n",
229 num_online_cpus(),
230 bogosum / (500000/HZ),
231 (bogosum / (5000/HZ)) % 100);
232 }
233
234 void __init smp_prepare_boot_cpu(void)
235 {
236 unsigned int cpu = smp_processor_id();
237
238 cpu_set(cpu, cpu_possible_map);
239 cpu_set(cpu, cpu_present_map);
240 cpu_set(cpu, cpu_online_map);
241 }
242
243 static void send_ipi_message(cpumask_t callmap, enum ipi_msg_type msg)
244 {
245 unsigned long flags;
246 unsigned int cpu;
247
248 local_irq_save(flags);
249
250 for_each_cpu_mask(cpu, callmap) {
251 struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
252
253 spin_lock(&ipi->lock);
254 ipi->bits |= 1 << msg;
255 spin_unlock(&ipi->lock);
256 }
257
258 /*
259 * Call the platform specific cross-CPU call function.
260 */
261 smp_cross_call(callmap);
262
263 local_irq_restore(flags);
264 }
265
266 /*
267 * You must not call this function with disabled interrupts, from a
268 * hardware interrupt handler, nor from a bottom half handler.
269 */
270 int smp_call_function_on_cpu(void (*func)(void *info), void *info, int retry,
271 int wait, cpumask_t callmap)
272 {
273 struct smp_call_struct data;
274 unsigned long timeout;
275 int ret = 0;
276
277 data.func = func;
278 data.info = info;
279 data.wait = wait;
280
281 cpu_clear(smp_processor_id(), callmap);
282 if (cpus_empty(callmap))
283 goto out;
284
285 data.pending = callmap;
286 if (wait)
287 data.unfinished = callmap;
288
289 /*
290 * try to get the mutex on smp_call_function_data
291 */
292 spin_lock(&smp_call_function_lock);
293 smp_call_function_data = &data;
294
295 send_ipi_message(callmap, IPI_CALL_FUNC);
296
297 timeout = jiffies + HZ;
298 while (!cpus_empty(data.pending) && time_before(jiffies, timeout))
299 barrier();
300
301 /*
302 * did we time out?
303 */
304 if (!cpus_empty(data.pending)) {
305 /*
306 * this may be causing our panic - report it
307 */
308 printk(KERN_CRIT
309 "CPU%u: smp_call_function timeout for %p(%p)\n"
310 " callmap %lx pending %lx, %swait\n",
311 smp_processor_id(), func, info, callmap, data.pending,
312 wait ? "" : "no ");
313
314 /*
315 * TRACE
316 */
317 timeout = jiffies + (5 * HZ);
318 while (!cpus_empty(data.pending) && time_before(jiffies, timeout))
319 barrier();
320
321 if (cpus_empty(data.pending))
322 printk(KERN_CRIT " RESOLVED\n");
323 else
324 printk(KERN_CRIT " STILL STUCK\n");
325 }
326
327 /*
328 * whatever happened, we're done with the data, so release it
329 */
330 smp_call_function_data = NULL;
331 spin_unlock(&smp_call_function_lock);
332
333 if (!cpus_empty(data.pending)) {
334 ret = -ETIMEDOUT;
335 goto out;
336 }
337
338 if (wait)
339 while (!cpus_empty(data.unfinished))
340 barrier();
341 out:
342
343 return 0;
344 }
345
346 int smp_call_function(void (*func)(void *info), void *info, int retry,
347 int wait)
348 {
349 return smp_call_function_on_cpu(func, info, retry, wait,
350 cpu_online_map);
351 }
352
353 void show_ipi_list(struct seq_file *p)
354 {
355 unsigned int cpu;
356
357 seq_puts(p, "IPI:");
358
359 for_each_present_cpu(cpu)
360 seq_printf(p, " %10lu", per_cpu(ipi_data, cpu).ipi_count);
361
362 seq_putc(p, '\n');
363 }
364
365 static void ipi_timer(struct pt_regs *regs)
366 {
367 int user = user_mode(regs);
368
369 irq_enter();
370 profile_tick(CPU_PROFILING, regs);
371 update_process_times(user);
372 irq_exit();
373 }
374
375 /*
376 * ipi_call_function - handle IPI from smp_call_function()
377 *
378 * Note that we copy data out of the cross-call structure and then
379 * let the caller know that we're here and have done with their data
380 */
381 static void ipi_call_function(unsigned int cpu)
382 {
383 struct smp_call_struct *data = smp_call_function_data;
384 void (*func)(void *info) = data->func;
385 void *info = data->info;
386 int wait = data->wait;
387
388 cpu_clear(cpu, data->pending);
389
390 func(info);
391
392 if (wait)
393 cpu_clear(cpu, data->unfinished);
394 }
395
396 static DEFINE_SPINLOCK(stop_lock);
397
398 /*
399 * ipi_cpu_stop - handle IPI from smp_send_stop()
400 */
401 static void ipi_cpu_stop(unsigned int cpu)
402 {
403 spin_lock(&stop_lock);
404 printk(KERN_CRIT "CPU%u: stopping\n", cpu);
405 dump_stack();
406 spin_unlock(&stop_lock);
407
408 cpu_clear(cpu, cpu_online_map);
409
410 local_fiq_disable();
411 local_irq_disable();
412
413 while (1)
414 cpu_relax();
415 }
416
417 /*
418 * Main handler for inter-processor interrupts
419 *
420 * For ARM, the ipimask now only identifies a single
421 * category of IPI (Bit 1 IPIs have been replaced by a
422 * different mechanism):
423 *
424 * Bit 0 - Inter-processor function call
425 */
426 void do_IPI(struct pt_regs *regs)
427 {
428 unsigned int cpu = smp_processor_id();
429 struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
430
431 ipi->ipi_count++;
432
433 for (;;) {
434 unsigned long msgs;
435
436 spin_lock(&ipi->lock);
437 msgs = ipi->bits;
438 ipi->bits = 0;
439 spin_unlock(&ipi->lock);
440
441 if (!msgs)
442 break;
443
444 do {
445 unsigned nextmsg;
446
447 nextmsg = msgs & -msgs;
448 msgs &= ~nextmsg;
449 nextmsg = ffz(~nextmsg);
450
451 switch (nextmsg) {
452 case IPI_TIMER:
453 ipi_timer(regs);
454 break;
455
456 case IPI_RESCHEDULE:
457 /*
458 * nothing more to do - eveything is
459 * done on the interrupt return path
460 */
461 break;
462
463 case IPI_CALL_FUNC:
464 ipi_call_function(cpu);
465 break;
466
467 case IPI_CPU_STOP:
468 ipi_cpu_stop(cpu);
469 break;
470
471 default:
472 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
473 cpu, nextmsg);
474 break;
475 }
476 } while (msgs);
477 }
478 }
479
480 void smp_send_reschedule(int cpu)
481 {
482 send_ipi_message(cpumask_of_cpu(cpu), IPI_RESCHEDULE);
483 }
484
485 void smp_send_timer(void)
486 {
487 cpumask_t mask = cpu_online_map;
488 cpu_clear(smp_processor_id(), mask);
489 send_ipi_message(mask, IPI_TIMER);
490 }
491
492 void smp_send_stop(void)
493 {
494 cpumask_t mask = cpu_online_map;
495 cpu_clear(smp_processor_id(), mask);
496 send_ipi_message(mask, IPI_CPU_STOP);
497 }
498
499 /*
500 * not supported here
501 */
502 int __init setup_profiling_timer(unsigned int multiplier)
503 {
504 return -EINVAL;
505 }
506
507 static int
508 on_each_cpu_mask(void (*func)(void *), void *info, int retry, int wait,
509 cpumask_t mask)
510 {
511 int ret = 0;
512
513 preempt_disable();
514
515 ret = smp_call_function_on_cpu(func, info, retry, wait, mask);
516 if (cpu_isset(smp_processor_id(), mask))
517 func(info);
518
519 preempt_enable();
520
521 return ret;
522 }
523
524 /**********************************************************************/
525
526 /*
527 * TLB operations
528 */
529 struct tlb_args {
530 struct vm_area_struct *ta_vma;
531 unsigned long ta_start;
532 unsigned long ta_end;
533 };
534
535 static inline void ipi_flush_tlb_all(void *ignored)
536 {
537 local_flush_tlb_all();
538 }
539
540 static inline void ipi_flush_tlb_mm(void *arg)
541 {
542 struct mm_struct *mm = (struct mm_struct *)arg;
543
544 local_flush_tlb_mm(mm);
545 }
546
547 static inline void ipi_flush_tlb_page(void *arg)
548 {
549 struct tlb_args *ta = (struct tlb_args *)arg;
550
551 local_flush_tlb_page(ta->ta_vma, ta->ta_start);
552 }
553
554 static inline void ipi_flush_tlb_kernel_page(void *arg)
555 {
556 struct tlb_args *ta = (struct tlb_args *)arg;
557
558 local_flush_tlb_kernel_page(ta->ta_start);
559 }
560
561 static inline void ipi_flush_tlb_range(void *arg)
562 {
563 struct tlb_args *ta = (struct tlb_args *)arg;
564
565 local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
566 }
567
568 static inline void ipi_flush_tlb_kernel_range(void *arg)
569 {
570 struct tlb_args *ta = (struct tlb_args *)arg;
571
572 local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
573 }
574
575 void flush_tlb_all(void)
576 {
577 on_each_cpu(ipi_flush_tlb_all, NULL, 1, 1);
578 }
579
580 void flush_tlb_mm(struct mm_struct *mm)
581 {
582 cpumask_t mask = mm->cpu_vm_mask;
583
584 on_each_cpu_mask(ipi_flush_tlb_mm, mm, 1, 1, mask);
585 }
586
587 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
588 {
589 cpumask_t mask = vma->vm_mm->cpu_vm_mask;
590 struct tlb_args ta;
591
592 ta.ta_vma = vma;
593 ta.ta_start = uaddr;
594
595 on_each_cpu_mask(ipi_flush_tlb_page, &ta, 1, 1, mask);
596 }
597
598 void flush_tlb_kernel_page(unsigned long kaddr)
599 {
600 struct tlb_args ta;
601
602 ta.ta_start = kaddr;
603
604 on_each_cpu(ipi_flush_tlb_kernel_page, &ta, 1, 1);
605 }
606
607 void flush_tlb_range(struct vm_area_struct *vma,
608 unsigned long start, unsigned long end)
609 {
610 cpumask_t mask = vma->vm_mm->cpu_vm_mask;
611 struct tlb_args ta;
612
613 ta.ta_vma = vma;
614 ta.ta_start = start;
615 ta.ta_end = end;
616
617 on_each_cpu_mask(ipi_flush_tlb_range, &ta, 1, 1, mask);
618 }
619
620 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
621 {
622 struct tlb_args ta;
623
624 ta.ta_start = start;
625 ta.ta_end = end;
626
627 on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1, 1);
628 }
This page took 0.053475 seconds and 4 git commands to generate.