oprofile: introduce module_param oprofile.cpu_type
[deliverable/linux.git] / arch / arm / kernel / smp.c
1 /*
2 * linux/arch/arm/kernel/smp.c
3 *
4 * Copyright (C) 2002 ARM Limited, All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/smp.h>
23 #include <linux/seq_file.h>
24 #include <linux/irq.h>
25
26 #include <asm/atomic.h>
27 #include <asm/cacheflush.h>
28 #include <asm/cpu.h>
29 #include <asm/mmu_context.h>
30 #include <asm/pgtable.h>
31 #include <asm/pgalloc.h>
32 #include <asm/processor.h>
33 #include <asm/tlbflush.h>
34 #include <asm/ptrace.h>
35
36 /*
37 * as from 2.5, kernels no longer have an init_tasks structure
38 * so we need some other way of telling a new secondary core
39 * where to place its SVC stack
40 */
41 struct secondary_data secondary_data;
42
43 /*
44 * structures for inter-processor calls
45 * - A collection of single bit ipi messages.
46 */
47 struct ipi_data {
48 spinlock_t lock;
49 unsigned long ipi_count;
50 unsigned long bits;
51 };
52
53 static DEFINE_PER_CPU(struct ipi_data, ipi_data) = {
54 .lock = SPIN_LOCK_UNLOCKED,
55 };
56
57 enum ipi_msg_type {
58 IPI_TIMER,
59 IPI_RESCHEDULE,
60 IPI_CALL_FUNC,
61 IPI_CALL_FUNC_SINGLE,
62 IPI_CPU_STOP,
63 };
64
65 int __cpuinit __cpu_up(unsigned int cpu)
66 {
67 struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu);
68 struct task_struct *idle = ci->idle;
69 pgd_t *pgd;
70 pmd_t *pmd;
71 int ret;
72
73 /*
74 * Spawn a new process manually, if not already done.
75 * Grab a pointer to its task struct so we can mess with it
76 */
77 if (!idle) {
78 idle = fork_idle(cpu);
79 if (IS_ERR(idle)) {
80 printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
81 return PTR_ERR(idle);
82 }
83 ci->idle = idle;
84 }
85
86 /*
87 * Allocate initial page tables to allow the new CPU to
88 * enable the MMU safely. This essentially means a set
89 * of our "standard" page tables, with the addition of
90 * a 1:1 mapping for the physical address of the kernel.
91 */
92 pgd = pgd_alloc(&init_mm);
93 pmd = pmd_offset(pgd + pgd_index(PHYS_OFFSET), PHYS_OFFSET);
94 *pmd = __pmd((PHYS_OFFSET & PGDIR_MASK) |
95 PMD_TYPE_SECT | PMD_SECT_AP_WRITE);
96 flush_pmd_entry(pmd);
97
98 /*
99 * We need to tell the secondary core where to find
100 * its stack and the page tables.
101 */
102 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
103 secondary_data.pgdir = virt_to_phys(pgd);
104 wmb();
105
106 /*
107 * Now bring the CPU into our world.
108 */
109 ret = boot_secondary(cpu, idle);
110 if (ret == 0) {
111 unsigned long timeout;
112
113 /*
114 * CPU was successfully started, wait for it
115 * to come online or time out.
116 */
117 timeout = jiffies + HZ;
118 while (time_before(jiffies, timeout)) {
119 if (cpu_online(cpu))
120 break;
121
122 udelay(10);
123 barrier();
124 }
125
126 if (!cpu_online(cpu))
127 ret = -EIO;
128 }
129
130 secondary_data.stack = NULL;
131 secondary_data.pgdir = 0;
132
133 *pmd = __pmd(0);
134 clean_pmd_entry(pmd);
135 pgd_free(&init_mm, pgd);
136
137 if (ret) {
138 printk(KERN_CRIT "CPU%u: processor failed to boot\n", cpu);
139
140 /*
141 * FIXME: We need to clean up the new idle thread. --rmk
142 */
143 }
144
145 return ret;
146 }
147
148 #ifdef CONFIG_HOTPLUG_CPU
149 /*
150 * __cpu_disable runs on the processor to be shutdown.
151 */
152 int __cpuexit __cpu_disable(void)
153 {
154 unsigned int cpu = smp_processor_id();
155 struct task_struct *p;
156 int ret;
157
158 ret = mach_cpu_disable(cpu);
159 if (ret)
160 return ret;
161
162 /*
163 * Take this CPU offline. Once we clear this, we can't return,
164 * and we must not schedule until we're ready to give up the cpu.
165 */
166 cpu_clear(cpu, cpu_online_map);
167
168 /*
169 * OK - migrate IRQs away from this CPU
170 */
171 migrate_irqs();
172
173 /*
174 * Stop the local timer for this CPU.
175 */
176 local_timer_stop();
177
178 /*
179 * Flush user cache and TLB mappings, and then remove this CPU
180 * from the vm mask set of all processes.
181 */
182 flush_cache_all();
183 local_flush_tlb_all();
184
185 read_lock(&tasklist_lock);
186 for_each_process(p) {
187 if (p->mm)
188 cpu_clear(cpu, p->mm->cpu_vm_mask);
189 }
190 read_unlock(&tasklist_lock);
191
192 return 0;
193 }
194
195 /*
196 * called on the thread which is asking for a CPU to be shutdown -
197 * waits until shutdown has completed, or it is timed out.
198 */
199 void __cpuexit __cpu_die(unsigned int cpu)
200 {
201 if (!platform_cpu_kill(cpu))
202 printk("CPU%u: unable to kill\n", cpu);
203 }
204
205 /*
206 * Called from the idle thread for the CPU which has been shutdown.
207 *
208 * Note that we disable IRQs here, but do not re-enable them
209 * before returning to the caller. This is also the behaviour
210 * of the other hotplug-cpu capable cores, so presumably coming
211 * out of idle fixes this.
212 */
213 void __cpuexit cpu_die(void)
214 {
215 unsigned int cpu = smp_processor_id();
216
217 local_irq_disable();
218 idle_task_exit();
219
220 /*
221 * actual CPU shutdown procedure is at least platform (if not
222 * CPU) specific
223 */
224 platform_cpu_die(cpu);
225
226 /*
227 * Do not return to the idle loop - jump back to the secondary
228 * cpu initialisation. There's some initialisation which needs
229 * to be repeated to undo the effects of taking the CPU offline.
230 */
231 __asm__("mov sp, %0\n"
232 " b secondary_start_kernel"
233 :
234 : "r" (task_stack_page(current) + THREAD_SIZE - 8));
235 }
236 #endif /* CONFIG_HOTPLUG_CPU */
237
238 /*
239 * This is the secondary CPU boot entry. We're using this CPUs
240 * idle thread stack, but a set of temporary page tables.
241 */
242 asmlinkage void __cpuinit secondary_start_kernel(void)
243 {
244 struct mm_struct *mm = &init_mm;
245 unsigned int cpu = smp_processor_id();
246
247 printk("CPU%u: Booted secondary processor\n", cpu);
248
249 /*
250 * All kernel threads share the same mm context; grab a
251 * reference and switch to it.
252 */
253 atomic_inc(&mm->mm_users);
254 atomic_inc(&mm->mm_count);
255 current->active_mm = mm;
256 cpu_set(cpu, mm->cpu_vm_mask);
257 cpu_switch_mm(mm->pgd, mm);
258 enter_lazy_tlb(mm, current);
259 local_flush_tlb_all();
260
261 cpu_init();
262 preempt_disable();
263
264 /*
265 * Give the platform a chance to do its own initialisation.
266 */
267 platform_secondary_init(cpu);
268
269 /*
270 * Enable local interrupts.
271 */
272 notify_cpu_starting(cpu);
273 local_irq_enable();
274 local_fiq_enable();
275
276 /*
277 * Setup local timer for this CPU.
278 */
279 local_timer_setup();
280
281 calibrate_delay();
282
283 smp_store_cpu_info(cpu);
284
285 /*
286 * OK, now it's safe to let the boot CPU continue
287 */
288 cpu_set(cpu, cpu_online_map);
289
290 /*
291 * OK, it's off to the idle thread for us
292 */
293 cpu_idle();
294 }
295
296 /*
297 * Called by both boot and secondaries to move global data into
298 * per-processor storage.
299 */
300 void __cpuinit smp_store_cpu_info(unsigned int cpuid)
301 {
302 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
303
304 cpu_info->loops_per_jiffy = loops_per_jiffy;
305 }
306
307 void __init smp_cpus_done(unsigned int max_cpus)
308 {
309 int cpu;
310 unsigned long bogosum = 0;
311
312 for_each_online_cpu(cpu)
313 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
314
315 printk(KERN_INFO "SMP: Total of %d processors activated "
316 "(%lu.%02lu BogoMIPS).\n",
317 num_online_cpus(),
318 bogosum / (500000/HZ),
319 (bogosum / (5000/HZ)) % 100);
320 }
321
322 void __init smp_prepare_boot_cpu(void)
323 {
324 unsigned int cpu = smp_processor_id();
325
326 per_cpu(cpu_data, cpu).idle = current;
327 }
328
329 static void send_ipi_message(cpumask_t callmap, enum ipi_msg_type msg)
330 {
331 unsigned long flags;
332 unsigned int cpu;
333
334 local_irq_save(flags);
335
336 for_each_cpu_mask(cpu, callmap) {
337 struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
338
339 spin_lock(&ipi->lock);
340 ipi->bits |= 1 << msg;
341 spin_unlock(&ipi->lock);
342 }
343
344 /*
345 * Call the platform specific cross-CPU call function.
346 */
347 smp_cross_call(callmap);
348
349 local_irq_restore(flags);
350 }
351
352 void arch_send_call_function_ipi(cpumask_t mask)
353 {
354 send_ipi_message(mask, IPI_CALL_FUNC);
355 }
356
357 void arch_send_call_function_single_ipi(int cpu)
358 {
359 send_ipi_message(cpumask_of_cpu(cpu), IPI_CALL_FUNC_SINGLE);
360 }
361
362 void show_ipi_list(struct seq_file *p)
363 {
364 unsigned int cpu;
365
366 seq_puts(p, "IPI:");
367
368 for_each_present_cpu(cpu)
369 seq_printf(p, " %10lu", per_cpu(ipi_data, cpu).ipi_count);
370
371 seq_putc(p, '\n');
372 }
373
374 void show_local_irqs(struct seq_file *p)
375 {
376 unsigned int cpu;
377
378 seq_printf(p, "LOC: ");
379
380 for_each_present_cpu(cpu)
381 seq_printf(p, "%10u ", irq_stat[cpu].local_timer_irqs);
382
383 seq_putc(p, '\n');
384 }
385
386 static void ipi_timer(void)
387 {
388 irq_enter();
389 local_timer_interrupt();
390 irq_exit();
391 }
392
393 #ifdef CONFIG_LOCAL_TIMERS
394 asmlinkage void __exception do_local_timer(struct pt_regs *regs)
395 {
396 struct pt_regs *old_regs = set_irq_regs(regs);
397 int cpu = smp_processor_id();
398
399 if (local_timer_ack()) {
400 irq_stat[cpu].local_timer_irqs++;
401 ipi_timer();
402 }
403
404 set_irq_regs(old_regs);
405 }
406 #endif
407
408 static DEFINE_SPINLOCK(stop_lock);
409
410 /*
411 * ipi_cpu_stop - handle IPI from smp_send_stop()
412 */
413 static void ipi_cpu_stop(unsigned int cpu)
414 {
415 spin_lock(&stop_lock);
416 printk(KERN_CRIT "CPU%u: stopping\n", cpu);
417 dump_stack();
418 spin_unlock(&stop_lock);
419
420 cpu_clear(cpu, cpu_online_map);
421
422 local_fiq_disable();
423 local_irq_disable();
424
425 while (1)
426 cpu_relax();
427 }
428
429 /*
430 * Main handler for inter-processor interrupts
431 *
432 * For ARM, the ipimask now only identifies a single
433 * category of IPI (Bit 1 IPIs have been replaced by a
434 * different mechanism):
435 *
436 * Bit 0 - Inter-processor function call
437 */
438 asmlinkage void __exception do_IPI(struct pt_regs *regs)
439 {
440 unsigned int cpu = smp_processor_id();
441 struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
442 struct pt_regs *old_regs = set_irq_regs(regs);
443
444 ipi->ipi_count++;
445
446 for (;;) {
447 unsigned long msgs;
448
449 spin_lock(&ipi->lock);
450 msgs = ipi->bits;
451 ipi->bits = 0;
452 spin_unlock(&ipi->lock);
453
454 if (!msgs)
455 break;
456
457 do {
458 unsigned nextmsg;
459
460 nextmsg = msgs & -msgs;
461 msgs &= ~nextmsg;
462 nextmsg = ffz(~nextmsg);
463
464 switch (nextmsg) {
465 case IPI_TIMER:
466 ipi_timer();
467 break;
468
469 case IPI_RESCHEDULE:
470 /*
471 * nothing more to do - eveything is
472 * done on the interrupt return path
473 */
474 break;
475
476 case IPI_CALL_FUNC:
477 generic_smp_call_function_interrupt();
478 break;
479
480 case IPI_CALL_FUNC_SINGLE:
481 generic_smp_call_function_single_interrupt();
482 break;
483
484 case IPI_CPU_STOP:
485 ipi_cpu_stop(cpu);
486 break;
487
488 default:
489 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
490 cpu, nextmsg);
491 break;
492 }
493 } while (msgs);
494 }
495
496 set_irq_regs(old_regs);
497 }
498
499 void smp_send_reschedule(int cpu)
500 {
501 send_ipi_message(cpumask_of_cpu(cpu), IPI_RESCHEDULE);
502 }
503
504 void smp_send_timer(void)
505 {
506 cpumask_t mask = cpu_online_map;
507 cpu_clear(smp_processor_id(), mask);
508 send_ipi_message(mask, IPI_TIMER);
509 }
510
511 void smp_timer_broadcast(cpumask_t mask)
512 {
513 send_ipi_message(mask, IPI_TIMER);
514 }
515
516 void smp_send_stop(void)
517 {
518 cpumask_t mask = cpu_online_map;
519 cpu_clear(smp_processor_id(), mask);
520 send_ipi_message(mask, IPI_CPU_STOP);
521 }
522
523 /*
524 * not supported here
525 */
526 int setup_profiling_timer(unsigned int multiplier)
527 {
528 return -EINVAL;
529 }
530
531 static int
532 on_each_cpu_mask(void (*func)(void *), void *info, int wait, cpumask_t mask)
533 {
534 int ret = 0;
535
536 preempt_disable();
537
538 ret = smp_call_function_mask(mask, func, info, wait);
539 if (cpu_isset(smp_processor_id(), mask))
540 func(info);
541
542 preempt_enable();
543
544 return ret;
545 }
546
547 /**********************************************************************/
548
549 /*
550 * TLB operations
551 */
552 struct tlb_args {
553 struct vm_area_struct *ta_vma;
554 unsigned long ta_start;
555 unsigned long ta_end;
556 };
557
558 static inline void ipi_flush_tlb_all(void *ignored)
559 {
560 local_flush_tlb_all();
561 }
562
563 static inline void ipi_flush_tlb_mm(void *arg)
564 {
565 struct mm_struct *mm = (struct mm_struct *)arg;
566
567 local_flush_tlb_mm(mm);
568 }
569
570 static inline void ipi_flush_tlb_page(void *arg)
571 {
572 struct tlb_args *ta = (struct tlb_args *)arg;
573
574 local_flush_tlb_page(ta->ta_vma, ta->ta_start);
575 }
576
577 static inline void ipi_flush_tlb_kernel_page(void *arg)
578 {
579 struct tlb_args *ta = (struct tlb_args *)arg;
580
581 local_flush_tlb_kernel_page(ta->ta_start);
582 }
583
584 static inline void ipi_flush_tlb_range(void *arg)
585 {
586 struct tlb_args *ta = (struct tlb_args *)arg;
587
588 local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
589 }
590
591 static inline void ipi_flush_tlb_kernel_range(void *arg)
592 {
593 struct tlb_args *ta = (struct tlb_args *)arg;
594
595 local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
596 }
597
598 void flush_tlb_all(void)
599 {
600 on_each_cpu(ipi_flush_tlb_all, NULL, 1);
601 }
602
603 void flush_tlb_mm(struct mm_struct *mm)
604 {
605 cpumask_t mask = mm->cpu_vm_mask;
606
607 on_each_cpu_mask(ipi_flush_tlb_mm, mm, 1, mask);
608 }
609
610 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
611 {
612 cpumask_t mask = vma->vm_mm->cpu_vm_mask;
613 struct tlb_args ta;
614
615 ta.ta_vma = vma;
616 ta.ta_start = uaddr;
617
618 on_each_cpu_mask(ipi_flush_tlb_page, &ta, 1, mask);
619 }
620
621 void flush_tlb_kernel_page(unsigned long kaddr)
622 {
623 struct tlb_args ta;
624
625 ta.ta_start = kaddr;
626
627 on_each_cpu(ipi_flush_tlb_kernel_page, &ta, 1);
628 }
629
630 void flush_tlb_range(struct vm_area_struct *vma,
631 unsigned long start, unsigned long end)
632 {
633 cpumask_t mask = vma->vm_mm->cpu_vm_mask;
634 struct tlb_args ta;
635
636 ta.ta_vma = vma;
637 ta.ta_start = start;
638 ta.ta_end = end;
639
640 on_each_cpu_mask(ipi_flush_tlb_range, &ta, 1, mask);
641 }
642
643 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
644 {
645 struct tlb_args ta;
646
647 ta.ta_start = start;
648 ta.ta_end = end;
649
650 on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1);
651 }
This page took 0.055873 seconds and 5 git commands to generate.