[ARM SMP] Ensure secondary CPUs have a clean TLB
[deliverable/linux.git] / arch / arm / kernel / smp.c
1 /*
2 * linux/arch/arm/kernel/smp.c
3 *
4 * Copyright (C) 2002 ARM Limited, All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/config.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/cpu.h>
21 #include <linux/smp.h>
22 #include <linux/seq_file.h>
23
24 #include <asm/atomic.h>
25 #include <asm/cacheflush.h>
26 #include <asm/cpu.h>
27 #include <asm/mmu_context.h>
28 #include <asm/pgtable.h>
29 #include <asm/pgalloc.h>
30 #include <asm/processor.h>
31 #include <asm/tlbflush.h>
32 #include <asm/ptrace.h>
33
34 /*
35 * bitmask of present and online CPUs.
36 * The present bitmask indicates that the CPU is physically present.
37 * The online bitmask indicates that the CPU is up and running.
38 */
39 cpumask_t cpu_possible_map;
40 cpumask_t cpu_online_map;
41
42 /*
43 * as from 2.5, kernels no longer have an init_tasks structure
44 * so we need some other way of telling a new secondary core
45 * where to place its SVC stack
46 */
47 struct secondary_data secondary_data;
48
49 /*
50 * structures for inter-processor calls
51 * - A collection of single bit ipi messages.
52 */
53 struct ipi_data {
54 spinlock_t lock;
55 unsigned long ipi_count;
56 unsigned long bits;
57 };
58
59 static DEFINE_PER_CPU(struct ipi_data, ipi_data) = {
60 .lock = SPIN_LOCK_UNLOCKED,
61 };
62
63 enum ipi_msg_type {
64 IPI_TIMER,
65 IPI_RESCHEDULE,
66 IPI_CALL_FUNC,
67 IPI_CPU_STOP,
68 };
69
70 struct smp_call_struct {
71 void (*func)(void *info);
72 void *info;
73 int wait;
74 cpumask_t pending;
75 cpumask_t unfinished;
76 };
77
78 static struct smp_call_struct * volatile smp_call_function_data;
79 static DEFINE_SPINLOCK(smp_call_function_lock);
80
81 int __cpuinit __cpu_up(unsigned int cpu)
82 {
83 struct task_struct *idle;
84 pgd_t *pgd;
85 pmd_t *pmd;
86 int ret;
87
88 /*
89 * Spawn a new process manually. Grab a pointer to
90 * its task struct so we can mess with it
91 */
92 idle = fork_idle(cpu);
93 if (IS_ERR(idle)) {
94 printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
95 return PTR_ERR(idle);
96 }
97
98 /*
99 * Allocate initial page tables to allow the new CPU to
100 * enable the MMU safely. This essentially means a set
101 * of our "standard" page tables, with the addition of
102 * a 1:1 mapping for the physical address of the kernel.
103 */
104 pgd = pgd_alloc(&init_mm);
105 pmd = pmd_offset(pgd, PHYS_OFFSET);
106 *pmd = __pmd((PHYS_OFFSET & PGDIR_MASK) |
107 PMD_TYPE_SECT | PMD_SECT_AP_WRITE);
108
109 /*
110 * We need to tell the secondary core where to find
111 * its stack and the page tables.
112 */
113 secondary_data.stack = (void *)idle->thread_info + THREAD_SIZE - 8;
114 secondary_data.pgdir = virt_to_phys(pgd);
115 wmb();
116
117 /*
118 * Now bring the CPU into our world.
119 */
120 ret = boot_secondary(cpu, idle);
121 if (ret == 0) {
122 unsigned long timeout;
123
124 /*
125 * CPU was successfully started, wait for it
126 * to come online or time out.
127 */
128 timeout = jiffies + HZ;
129 while (time_before(jiffies, timeout)) {
130 if (cpu_online(cpu))
131 break;
132
133 udelay(10);
134 barrier();
135 }
136
137 if (!cpu_online(cpu))
138 ret = -EIO;
139 }
140
141 secondary_data.stack = 0;
142 secondary_data.pgdir = 0;
143
144 *pmd_offset(pgd, PHYS_OFFSET) = __pmd(0);
145 pgd_free(pgd);
146
147 if (ret) {
148 printk(KERN_CRIT "CPU%u: processor failed to boot\n", cpu);
149
150 /*
151 * FIXME: We need to clean up the new idle thread. --rmk
152 */
153 }
154
155 return ret;
156 }
157
158 /*
159 * This is the secondary CPU boot entry. We're using this CPUs
160 * idle thread stack, but a set of temporary page tables.
161 */
162 asmlinkage void __cpuinit secondary_start_kernel(void)
163 {
164 struct mm_struct *mm = &init_mm;
165 unsigned int cpu = smp_processor_id();
166
167 printk("CPU%u: Booted secondary processor\n", cpu);
168
169 /*
170 * All kernel threads share the same mm context; grab a
171 * reference and switch to it.
172 */
173 atomic_inc(&mm->mm_users);
174 atomic_inc(&mm->mm_count);
175 current->active_mm = mm;
176 cpu_set(cpu, mm->cpu_vm_mask);
177 cpu_switch_mm(mm->pgd, mm);
178 enter_lazy_tlb(mm, current);
179 local_flush_tlb_all();
180
181 cpu_init();
182
183 /*
184 * Give the platform a chance to do its own initialisation.
185 */
186 platform_secondary_init(cpu);
187
188 /*
189 * Enable local interrupts.
190 */
191 local_irq_enable();
192 local_fiq_enable();
193
194 calibrate_delay();
195
196 smp_store_cpu_info(cpu);
197
198 /*
199 * OK, now it's safe to let the boot CPU continue
200 */
201 cpu_set(cpu, cpu_online_map);
202
203 /*
204 * OK, it's off to the idle thread for us
205 */
206 cpu_idle();
207 }
208
209 /*
210 * Called by both boot and secondaries to move global data into
211 * per-processor storage.
212 */
213 void __cpuinit smp_store_cpu_info(unsigned int cpuid)
214 {
215 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
216
217 cpu_info->loops_per_jiffy = loops_per_jiffy;
218 }
219
220 void __init smp_cpus_done(unsigned int max_cpus)
221 {
222 int cpu;
223 unsigned long bogosum = 0;
224
225 for_each_online_cpu(cpu)
226 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
227
228 printk(KERN_INFO "SMP: Total of %d processors activated "
229 "(%lu.%02lu BogoMIPS).\n",
230 num_online_cpus(),
231 bogosum / (500000/HZ),
232 (bogosum / (5000/HZ)) % 100);
233 }
234
235 void __init smp_prepare_boot_cpu(void)
236 {
237 unsigned int cpu = smp_processor_id();
238
239 cpu_set(cpu, cpu_possible_map);
240 cpu_set(cpu, cpu_present_map);
241 cpu_set(cpu, cpu_online_map);
242 }
243
244 static void send_ipi_message(cpumask_t callmap, enum ipi_msg_type msg)
245 {
246 unsigned long flags;
247 unsigned int cpu;
248
249 local_irq_save(flags);
250
251 for_each_cpu_mask(cpu, callmap) {
252 struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
253
254 spin_lock(&ipi->lock);
255 ipi->bits |= 1 << msg;
256 spin_unlock(&ipi->lock);
257 }
258
259 /*
260 * Call the platform specific cross-CPU call function.
261 */
262 smp_cross_call(callmap);
263
264 local_irq_restore(flags);
265 }
266
267 /*
268 * You must not call this function with disabled interrupts, from a
269 * hardware interrupt handler, nor from a bottom half handler.
270 */
271 int smp_call_function_on_cpu(void (*func)(void *info), void *info, int retry,
272 int wait, cpumask_t callmap)
273 {
274 struct smp_call_struct data;
275 unsigned long timeout;
276 int ret = 0;
277
278 data.func = func;
279 data.info = info;
280 data.wait = wait;
281
282 cpu_clear(smp_processor_id(), callmap);
283 if (cpus_empty(callmap))
284 goto out;
285
286 data.pending = callmap;
287 if (wait)
288 data.unfinished = callmap;
289
290 /*
291 * try to get the mutex on smp_call_function_data
292 */
293 spin_lock(&smp_call_function_lock);
294 smp_call_function_data = &data;
295
296 send_ipi_message(callmap, IPI_CALL_FUNC);
297
298 timeout = jiffies + HZ;
299 while (!cpus_empty(data.pending) && time_before(jiffies, timeout))
300 barrier();
301
302 /*
303 * did we time out?
304 */
305 if (!cpus_empty(data.pending)) {
306 /*
307 * this may be causing our panic - report it
308 */
309 printk(KERN_CRIT
310 "CPU%u: smp_call_function timeout for %p(%p)\n"
311 " callmap %lx pending %lx, %swait\n",
312 smp_processor_id(), func, info, callmap, data.pending,
313 wait ? "" : "no ");
314
315 /*
316 * TRACE
317 */
318 timeout = jiffies + (5 * HZ);
319 while (!cpus_empty(data.pending) && time_before(jiffies, timeout))
320 barrier();
321
322 if (cpus_empty(data.pending))
323 printk(KERN_CRIT " RESOLVED\n");
324 else
325 printk(KERN_CRIT " STILL STUCK\n");
326 }
327
328 /*
329 * whatever happened, we're done with the data, so release it
330 */
331 smp_call_function_data = NULL;
332 spin_unlock(&smp_call_function_lock);
333
334 if (!cpus_empty(data.pending)) {
335 ret = -ETIMEDOUT;
336 goto out;
337 }
338
339 if (wait)
340 while (!cpus_empty(data.unfinished))
341 barrier();
342 out:
343
344 return 0;
345 }
346
347 int smp_call_function(void (*func)(void *info), void *info, int retry,
348 int wait)
349 {
350 return smp_call_function_on_cpu(func, info, retry, wait,
351 cpu_online_map);
352 }
353
354 void show_ipi_list(struct seq_file *p)
355 {
356 unsigned int cpu;
357
358 seq_puts(p, "IPI:");
359
360 for_each_present_cpu(cpu)
361 seq_printf(p, " %10lu", per_cpu(ipi_data, cpu).ipi_count);
362
363 seq_putc(p, '\n');
364 }
365
366 static void ipi_timer(struct pt_regs *regs)
367 {
368 int user = user_mode(regs);
369
370 irq_enter();
371 profile_tick(CPU_PROFILING, regs);
372 update_process_times(user);
373 irq_exit();
374 }
375
376 /*
377 * ipi_call_function - handle IPI from smp_call_function()
378 *
379 * Note that we copy data out of the cross-call structure and then
380 * let the caller know that we're here and have done with their data
381 */
382 static void ipi_call_function(unsigned int cpu)
383 {
384 struct smp_call_struct *data = smp_call_function_data;
385 void (*func)(void *info) = data->func;
386 void *info = data->info;
387 int wait = data->wait;
388
389 cpu_clear(cpu, data->pending);
390
391 func(info);
392
393 if (wait)
394 cpu_clear(cpu, data->unfinished);
395 }
396
397 static DEFINE_SPINLOCK(stop_lock);
398
399 /*
400 * ipi_cpu_stop - handle IPI from smp_send_stop()
401 */
402 static void ipi_cpu_stop(unsigned int cpu)
403 {
404 spin_lock(&stop_lock);
405 printk(KERN_CRIT "CPU%u: stopping\n", cpu);
406 dump_stack();
407 spin_unlock(&stop_lock);
408
409 cpu_clear(cpu, cpu_online_map);
410
411 local_fiq_disable();
412 local_irq_disable();
413
414 while (1)
415 cpu_relax();
416 }
417
418 /*
419 * Main handler for inter-processor interrupts
420 *
421 * For ARM, the ipimask now only identifies a single
422 * category of IPI (Bit 1 IPIs have been replaced by a
423 * different mechanism):
424 *
425 * Bit 0 - Inter-processor function call
426 */
427 void do_IPI(struct pt_regs *regs)
428 {
429 unsigned int cpu = smp_processor_id();
430 struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
431
432 ipi->ipi_count++;
433
434 for (;;) {
435 unsigned long msgs;
436
437 spin_lock(&ipi->lock);
438 msgs = ipi->bits;
439 ipi->bits = 0;
440 spin_unlock(&ipi->lock);
441
442 if (!msgs)
443 break;
444
445 do {
446 unsigned nextmsg;
447
448 nextmsg = msgs & -msgs;
449 msgs &= ~nextmsg;
450 nextmsg = ffz(~nextmsg);
451
452 switch (nextmsg) {
453 case IPI_TIMER:
454 ipi_timer(regs);
455 break;
456
457 case IPI_RESCHEDULE:
458 /*
459 * nothing more to do - eveything is
460 * done on the interrupt return path
461 */
462 break;
463
464 case IPI_CALL_FUNC:
465 ipi_call_function(cpu);
466 break;
467
468 case IPI_CPU_STOP:
469 ipi_cpu_stop(cpu);
470 break;
471
472 default:
473 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
474 cpu, nextmsg);
475 break;
476 }
477 } while (msgs);
478 }
479 }
480
481 void smp_send_reschedule(int cpu)
482 {
483 send_ipi_message(cpumask_of_cpu(cpu), IPI_RESCHEDULE);
484 }
485
486 void smp_send_timer(void)
487 {
488 cpumask_t mask = cpu_online_map;
489 cpu_clear(smp_processor_id(), mask);
490 send_ipi_message(mask, IPI_TIMER);
491 }
492
493 void smp_send_stop(void)
494 {
495 cpumask_t mask = cpu_online_map;
496 cpu_clear(smp_processor_id(), mask);
497 send_ipi_message(mask, IPI_CPU_STOP);
498 }
499
500 /*
501 * not supported here
502 */
503 int __init setup_profiling_timer(unsigned int multiplier)
504 {
505 return -EINVAL;
506 }
507
508 static int
509 on_each_cpu_mask(void (*func)(void *), void *info, int retry, int wait,
510 cpumask_t mask)
511 {
512 int ret = 0;
513
514 preempt_disable();
515
516 ret = smp_call_function_on_cpu(func, info, retry, wait, mask);
517 if (cpu_isset(smp_processor_id(), mask))
518 func(info);
519
520 preempt_enable();
521
522 return ret;
523 }
524
525 /**********************************************************************/
526
527 /*
528 * TLB operations
529 */
530 struct tlb_args {
531 struct vm_area_struct *ta_vma;
532 unsigned long ta_start;
533 unsigned long ta_end;
534 };
535
536 static inline void ipi_flush_tlb_all(void *ignored)
537 {
538 local_flush_tlb_all();
539 }
540
541 static inline void ipi_flush_tlb_mm(void *arg)
542 {
543 struct mm_struct *mm = (struct mm_struct *)arg;
544
545 local_flush_tlb_mm(mm);
546 }
547
548 static inline void ipi_flush_tlb_page(void *arg)
549 {
550 struct tlb_args *ta = (struct tlb_args *)arg;
551
552 local_flush_tlb_page(ta->ta_vma, ta->ta_start);
553 }
554
555 static inline void ipi_flush_tlb_kernel_page(void *arg)
556 {
557 struct tlb_args *ta = (struct tlb_args *)arg;
558
559 local_flush_tlb_kernel_page(ta->ta_start);
560 }
561
562 static inline void ipi_flush_tlb_range(void *arg)
563 {
564 struct tlb_args *ta = (struct tlb_args *)arg;
565
566 local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
567 }
568
569 static inline void ipi_flush_tlb_kernel_range(void *arg)
570 {
571 struct tlb_args *ta = (struct tlb_args *)arg;
572
573 local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
574 }
575
576 void flush_tlb_all(void)
577 {
578 on_each_cpu(ipi_flush_tlb_all, NULL, 1, 1);
579 }
580
581 void flush_tlb_mm(struct mm_struct *mm)
582 {
583 cpumask_t mask = mm->cpu_vm_mask;
584
585 on_each_cpu_mask(ipi_flush_tlb_mm, mm, 1, 1, mask);
586 }
587
588 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
589 {
590 cpumask_t mask = vma->vm_mm->cpu_vm_mask;
591 struct tlb_args ta;
592
593 ta.ta_vma = vma;
594 ta.ta_start = uaddr;
595
596 on_each_cpu_mask(ipi_flush_tlb_page, &ta, 1, 1, mask);
597 }
598
599 void flush_tlb_kernel_page(unsigned long kaddr)
600 {
601 struct tlb_args ta;
602
603 ta.ta_start = kaddr;
604
605 on_each_cpu(ipi_flush_tlb_kernel_page, &ta, 1, 1);
606 }
607
608 void flush_tlb_range(struct vm_area_struct *vma,
609 unsigned long start, unsigned long end)
610 {
611 cpumask_t mask = vma->vm_mm->cpu_vm_mask;
612 struct tlb_args ta;
613
614 ta.ta_vma = vma;
615 ta.ta_start = start;
616 ta.ta_end = end;
617
618 on_each_cpu_mask(ipi_flush_tlb_range, &ta, 1, 1, mask);
619 }
620
621 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
622 {
623 struct tlb_args ta;
624
625 ta.ta_start = start;
626 ta.ta_end = end;
627
628 on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1, 1);
629 }
This page took 0.057443 seconds and 5 git commands to generate.