Merge branch 'devel-stable' into devel
[deliverable/linux.git] / arch / arm / kernel / smp.c
1 /*
2 * linux/arch/arm/kernel/smp.c
3 *
4 * Copyright (C) 2002 ARM Limited, All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/smp.h>
23 #include <linux/seq_file.h>
24 #include <linux/irq.h>
25 #include <linux/percpu.h>
26 #include <linux/clockchips.h>
27
28 #include <asm/atomic.h>
29 #include <asm/cacheflush.h>
30 #include <asm/cpu.h>
31 #include <asm/cputype.h>
32 #include <asm/mmu_context.h>
33 #include <asm/pgtable.h>
34 #include <asm/pgalloc.h>
35 #include <asm/processor.h>
36 #include <asm/tlbflush.h>
37 #include <asm/ptrace.h>
38 #include <asm/localtimer.h>
39 #include <asm/smp_plat.h>
40
41 /*
42 * as from 2.5, kernels no longer have an init_tasks structure
43 * so we need some other way of telling a new secondary core
44 * where to place its SVC stack
45 */
46 struct secondary_data secondary_data;
47
48 /*
49 * structures for inter-processor calls
50 * - A collection of single bit ipi messages.
51 */
52 struct ipi_data {
53 spinlock_t lock;
54 unsigned long ipi_count;
55 unsigned long bits;
56 };
57
58 static DEFINE_PER_CPU(struct ipi_data, ipi_data) = {
59 .lock = SPIN_LOCK_UNLOCKED,
60 };
61
62 enum ipi_msg_type {
63 IPI_TIMER,
64 IPI_RESCHEDULE,
65 IPI_CALL_FUNC,
66 IPI_CALL_FUNC_SINGLE,
67 IPI_CPU_STOP,
68 };
69
70 int __cpuinit __cpu_up(unsigned int cpu)
71 {
72 struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu);
73 struct task_struct *idle = ci->idle;
74 pgd_t *pgd;
75 pmd_t *pmd;
76 int ret;
77
78 /*
79 * Spawn a new process manually, if not already done.
80 * Grab a pointer to its task struct so we can mess with it
81 */
82 if (!idle) {
83 idle = fork_idle(cpu);
84 if (IS_ERR(idle)) {
85 printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
86 return PTR_ERR(idle);
87 }
88 ci->idle = idle;
89 } else {
90 /*
91 * Since this idle thread is being re-used, call
92 * init_idle() to reinitialize the thread structure.
93 */
94 init_idle(idle, cpu);
95 }
96
97 /*
98 * Allocate initial page tables to allow the new CPU to
99 * enable the MMU safely. This essentially means a set
100 * of our "standard" page tables, with the addition of
101 * a 1:1 mapping for the physical address of the kernel.
102 */
103 pgd = pgd_alloc(&init_mm);
104 pmd = pmd_offset(pgd + pgd_index(PHYS_OFFSET), PHYS_OFFSET);
105 *pmd = __pmd((PHYS_OFFSET & PGDIR_MASK) |
106 PMD_TYPE_SECT | PMD_SECT_AP_WRITE);
107 flush_pmd_entry(pmd);
108 outer_clean_range(__pa(pmd), __pa(pmd + 1));
109
110 /*
111 * We need to tell the secondary core where to find
112 * its stack and the page tables.
113 */
114 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
115 secondary_data.pgdir = virt_to_phys(pgd);
116 __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
117 outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
118
119 /*
120 * Now bring the CPU into our world.
121 */
122 ret = boot_secondary(cpu, idle);
123 if (ret == 0) {
124 unsigned long timeout;
125
126 /*
127 * CPU was successfully started, wait for it
128 * to come online or time out.
129 */
130 timeout = jiffies + HZ;
131 while (time_before(jiffies, timeout)) {
132 if (cpu_online(cpu))
133 break;
134
135 udelay(10);
136 barrier();
137 }
138
139 if (!cpu_online(cpu))
140 ret = -EIO;
141 }
142
143 secondary_data.stack = NULL;
144 secondary_data.pgdir = 0;
145
146 *pmd = __pmd(0);
147 clean_pmd_entry(pmd);
148 pgd_free(&init_mm, pgd);
149
150 if (ret) {
151 printk(KERN_CRIT "CPU%u: processor failed to boot\n", cpu);
152
153 /*
154 * FIXME: We need to clean up the new idle thread. --rmk
155 */
156 }
157
158 return ret;
159 }
160
161 #ifdef CONFIG_HOTPLUG_CPU
162 /*
163 * __cpu_disable runs on the processor to be shutdown.
164 */
165 int __cpu_disable(void)
166 {
167 unsigned int cpu = smp_processor_id();
168 struct task_struct *p;
169 int ret;
170
171 ret = platform_cpu_disable(cpu);
172 if (ret)
173 return ret;
174
175 /*
176 * Take this CPU offline. Once we clear this, we can't return,
177 * and we must not schedule until we're ready to give up the cpu.
178 */
179 set_cpu_online(cpu, false);
180
181 /*
182 * OK - migrate IRQs away from this CPU
183 */
184 migrate_irqs();
185
186 /*
187 * Stop the local timer for this CPU.
188 */
189 local_timer_stop();
190
191 /*
192 * Flush user cache and TLB mappings, and then remove this CPU
193 * from the vm mask set of all processes.
194 */
195 flush_cache_all();
196 local_flush_tlb_all();
197
198 read_lock(&tasklist_lock);
199 for_each_process(p) {
200 if (p->mm)
201 cpumask_clear_cpu(cpu, mm_cpumask(p->mm));
202 }
203 read_unlock(&tasklist_lock);
204
205 return 0;
206 }
207
208 /*
209 * called on the thread which is asking for a CPU to be shutdown -
210 * waits until shutdown has completed, or it is timed out.
211 */
212 void __cpu_die(unsigned int cpu)
213 {
214 if (!platform_cpu_kill(cpu))
215 printk("CPU%u: unable to kill\n", cpu);
216 }
217
218 /*
219 * Called from the idle thread for the CPU which has been shutdown.
220 *
221 * Note that we disable IRQs here, but do not re-enable them
222 * before returning to the caller. This is also the behaviour
223 * of the other hotplug-cpu capable cores, so presumably coming
224 * out of idle fixes this.
225 */
226 void __ref cpu_die(void)
227 {
228 unsigned int cpu = smp_processor_id();
229
230 local_irq_disable();
231 idle_task_exit();
232
233 /*
234 * actual CPU shutdown procedure is at least platform (if not
235 * CPU) specific
236 */
237 platform_cpu_die(cpu);
238
239 /*
240 * Do not return to the idle loop - jump back to the secondary
241 * cpu initialisation. There's some initialisation which needs
242 * to be repeated to undo the effects of taking the CPU offline.
243 */
244 __asm__("mov sp, %0\n"
245 " b secondary_start_kernel"
246 :
247 : "r" (task_stack_page(current) + THREAD_SIZE - 8));
248 }
249 #endif /* CONFIG_HOTPLUG_CPU */
250
251 /*
252 * This is the secondary CPU boot entry. We're using this CPUs
253 * idle thread stack, but a set of temporary page tables.
254 */
255 asmlinkage void __cpuinit secondary_start_kernel(void)
256 {
257 struct mm_struct *mm = &init_mm;
258 unsigned int cpu = smp_processor_id();
259
260 printk("CPU%u: Booted secondary processor\n", cpu);
261
262 /*
263 * All kernel threads share the same mm context; grab a
264 * reference and switch to it.
265 */
266 atomic_inc(&mm->mm_users);
267 atomic_inc(&mm->mm_count);
268 current->active_mm = mm;
269 cpumask_set_cpu(cpu, mm_cpumask(mm));
270 cpu_switch_mm(mm->pgd, mm);
271 enter_lazy_tlb(mm, current);
272 local_flush_tlb_all();
273
274 cpu_init();
275 preempt_disable();
276
277 /*
278 * Give the platform a chance to do its own initialisation.
279 */
280 platform_secondary_init(cpu);
281
282 /*
283 * Enable local interrupts.
284 */
285 notify_cpu_starting(cpu);
286 local_irq_enable();
287 local_fiq_enable();
288
289 /*
290 * Setup the percpu timer for this CPU.
291 */
292 percpu_timer_setup();
293
294 calibrate_delay();
295
296 smp_store_cpu_info(cpu);
297
298 /*
299 * OK, now it's safe to let the boot CPU continue
300 */
301 set_cpu_online(cpu, true);
302
303 /*
304 * OK, it's off to the idle thread for us
305 */
306 cpu_idle();
307 }
308
309 /*
310 * Called by both boot and secondaries to move global data into
311 * per-processor storage.
312 */
313 void __cpuinit smp_store_cpu_info(unsigned int cpuid)
314 {
315 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
316
317 cpu_info->loops_per_jiffy = loops_per_jiffy;
318 }
319
320 void __init smp_cpus_done(unsigned int max_cpus)
321 {
322 int cpu;
323 unsigned long bogosum = 0;
324
325 for_each_online_cpu(cpu)
326 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
327
328 printk(KERN_INFO "SMP: Total of %d processors activated "
329 "(%lu.%02lu BogoMIPS).\n",
330 num_online_cpus(),
331 bogosum / (500000/HZ),
332 (bogosum / (5000/HZ)) % 100);
333 }
334
335 void __init smp_prepare_boot_cpu(void)
336 {
337 unsigned int cpu = smp_processor_id();
338
339 per_cpu(cpu_data, cpu).idle = current;
340 }
341
342 static void send_ipi_message(const struct cpumask *mask, enum ipi_msg_type msg)
343 {
344 unsigned long flags;
345 unsigned int cpu;
346
347 local_irq_save(flags);
348
349 for_each_cpu(cpu, mask) {
350 struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
351
352 spin_lock(&ipi->lock);
353 ipi->bits |= 1 << msg;
354 spin_unlock(&ipi->lock);
355 }
356
357 /*
358 * Call the platform specific cross-CPU call function.
359 */
360 smp_cross_call(mask);
361
362 local_irq_restore(flags);
363 }
364
365 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
366 {
367 send_ipi_message(mask, IPI_CALL_FUNC);
368 }
369
370 void arch_send_call_function_single_ipi(int cpu)
371 {
372 send_ipi_message(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
373 }
374
375 void show_ipi_list(struct seq_file *p)
376 {
377 unsigned int cpu;
378
379 seq_puts(p, "IPI:");
380
381 for_each_present_cpu(cpu)
382 seq_printf(p, " %10lu", per_cpu(ipi_data, cpu).ipi_count);
383
384 seq_putc(p, '\n');
385 }
386
387 void show_local_irqs(struct seq_file *p)
388 {
389 unsigned int cpu;
390
391 seq_printf(p, "LOC: ");
392
393 for_each_present_cpu(cpu)
394 seq_printf(p, "%10u ", irq_stat[cpu].local_timer_irqs);
395
396 seq_putc(p, '\n');
397 }
398
399 /*
400 * Timer (local or broadcast) support
401 */
402 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
403
404 static void ipi_timer(void)
405 {
406 struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
407 irq_enter();
408 evt->event_handler(evt);
409 irq_exit();
410 }
411
412 #ifdef CONFIG_LOCAL_TIMERS
413 asmlinkage void __exception do_local_timer(struct pt_regs *regs)
414 {
415 struct pt_regs *old_regs = set_irq_regs(regs);
416 int cpu = smp_processor_id();
417
418 if (local_timer_ack()) {
419 irq_stat[cpu].local_timer_irqs++;
420 ipi_timer();
421 }
422
423 set_irq_regs(old_regs);
424 }
425 #endif
426
427 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
428 static void smp_timer_broadcast(const struct cpumask *mask)
429 {
430 send_ipi_message(mask, IPI_TIMER);
431 }
432
433 static void broadcast_timer_set_mode(enum clock_event_mode mode,
434 struct clock_event_device *evt)
435 {
436 }
437
438 static void local_timer_setup(struct clock_event_device *evt)
439 {
440 evt->name = "dummy_timer";
441 evt->features = CLOCK_EVT_FEAT_ONESHOT |
442 CLOCK_EVT_FEAT_PERIODIC |
443 CLOCK_EVT_FEAT_DUMMY;
444 evt->rating = 400;
445 evt->mult = 1;
446 evt->set_mode = broadcast_timer_set_mode;
447 evt->broadcast = smp_timer_broadcast;
448
449 clockevents_register_device(evt);
450 }
451 #endif
452
453 void __cpuinit percpu_timer_setup(void)
454 {
455 unsigned int cpu = smp_processor_id();
456 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
457
458 evt->cpumask = cpumask_of(cpu);
459
460 local_timer_setup(evt);
461 }
462
463 static DEFINE_SPINLOCK(stop_lock);
464
465 /*
466 * ipi_cpu_stop - handle IPI from smp_send_stop()
467 */
468 static void ipi_cpu_stop(unsigned int cpu)
469 {
470 spin_lock(&stop_lock);
471 printk(KERN_CRIT "CPU%u: stopping\n", cpu);
472 dump_stack();
473 spin_unlock(&stop_lock);
474
475 set_cpu_online(cpu, false);
476
477 local_fiq_disable();
478 local_irq_disable();
479
480 while (1)
481 cpu_relax();
482 }
483
484 /*
485 * Main handler for inter-processor interrupts
486 *
487 * For ARM, the ipimask now only identifies a single
488 * category of IPI (Bit 1 IPIs have been replaced by a
489 * different mechanism):
490 *
491 * Bit 0 - Inter-processor function call
492 */
493 asmlinkage void __exception do_IPI(struct pt_regs *regs)
494 {
495 unsigned int cpu = smp_processor_id();
496 struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
497 struct pt_regs *old_regs = set_irq_regs(regs);
498
499 ipi->ipi_count++;
500
501 for (;;) {
502 unsigned long msgs;
503
504 spin_lock(&ipi->lock);
505 msgs = ipi->bits;
506 ipi->bits = 0;
507 spin_unlock(&ipi->lock);
508
509 if (!msgs)
510 break;
511
512 do {
513 unsigned nextmsg;
514
515 nextmsg = msgs & -msgs;
516 msgs &= ~nextmsg;
517 nextmsg = ffz(~nextmsg);
518
519 switch (nextmsg) {
520 case IPI_TIMER:
521 ipi_timer();
522 break;
523
524 case IPI_RESCHEDULE:
525 /*
526 * nothing more to do - eveything is
527 * done on the interrupt return path
528 */
529 break;
530
531 case IPI_CALL_FUNC:
532 generic_smp_call_function_interrupt();
533 break;
534
535 case IPI_CALL_FUNC_SINGLE:
536 generic_smp_call_function_single_interrupt();
537 break;
538
539 case IPI_CPU_STOP:
540 ipi_cpu_stop(cpu);
541 break;
542
543 default:
544 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
545 cpu, nextmsg);
546 break;
547 }
548 } while (msgs);
549 }
550
551 set_irq_regs(old_regs);
552 }
553
554 void smp_send_reschedule(int cpu)
555 {
556 send_ipi_message(cpumask_of(cpu), IPI_RESCHEDULE);
557 }
558
559 void smp_send_stop(void)
560 {
561 cpumask_t mask = cpu_online_map;
562 cpu_clear(smp_processor_id(), mask);
563 send_ipi_message(&mask, IPI_CPU_STOP);
564 }
565
566 /*
567 * not supported here
568 */
569 int setup_profiling_timer(unsigned int multiplier)
570 {
571 return -EINVAL;
572 }
573
574 static void
575 on_each_cpu_mask(void (*func)(void *), void *info, int wait,
576 const struct cpumask *mask)
577 {
578 preempt_disable();
579
580 smp_call_function_many(mask, func, info, wait);
581 if (cpumask_test_cpu(smp_processor_id(), mask))
582 func(info);
583
584 preempt_enable();
585 }
586
587 /**********************************************************************/
588
589 /*
590 * TLB operations
591 */
592 struct tlb_args {
593 struct vm_area_struct *ta_vma;
594 unsigned long ta_start;
595 unsigned long ta_end;
596 };
597
598 static inline void ipi_flush_tlb_all(void *ignored)
599 {
600 local_flush_tlb_all();
601 }
602
603 static inline void ipi_flush_tlb_mm(void *arg)
604 {
605 struct mm_struct *mm = (struct mm_struct *)arg;
606
607 local_flush_tlb_mm(mm);
608 }
609
610 static inline void ipi_flush_tlb_page(void *arg)
611 {
612 struct tlb_args *ta = (struct tlb_args *)arg;
613
614 local_flush_tlb_page(ta->ta_vma, ta->ta_start);
615 }
616
617 static inline void ipi_flush_tlb_kernel_page(void *arg)
618 {
619 struct tlb_args *ta = (struct tlb_args *)arg;
620
621 local_flush_tlb_kernel_page(ta->ta_start);
622 }
623
624 static inline void ipi_flush_tlb_range(void *arg)
625 {
626 struct tlb_args *ta = (struct tlb_args *)arg;
627
628 local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
629 }
630
631 static inline void ipi_flush_tlb_kernel_range(void *arg)
632 {
633 struct tlb_args *ta = (struct tlb_args *)arg;
634
635 local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
636 }
637
638 void flush_tlb_all(void)
639 {
640 if (tlb_ops_need_broadcast())
641 on_each_cpu(ipi_flush_tlb_all, NULL, 1);
642 else
643 local_flush_tlb_all();
644 }
645
646 void flush_tlb_mm(struct mm_struct *mm)
647 {
648 if (tlb_ops_need_broadcast())
649 on_each_cpu_mask(ipi_flush_tlb_mm, mm, 1, mm_cpumask(mm));
650 else
651 local_flush_tlb_mm(mm);
652 }
653
654 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
655 {
656 if (tlb_ops_need_broadcast()) {
657 struct tlb_args ta;
658 ta.ta_vma = vma;
659 ta.ta_start = uaddr;
660 on_each_cpu_mask(ipi_flush_tlb_page, &ta, 1, mm_cpumask(vma->vm_mm));
661 } else
662 local_flush_tlb_page(vma, uaddr);
663 }
664
665 void flush_tlb_kernel_page(unsigned long kaddr)
666 {
667 if (tlb_ops_need_broadcast()) {
668 struct tlb_args ta;
669 ta.ta_start = kaddr;
670 on_each_cpu(ipi_flush_tlb_kernel_page, &ta, 1);
671 } else
672 local_flush_tlb_kernel_page(kaddr);
673 }
674
675 void flush_tlb_range(struct vm_area_struct *vma,
676 unsigned long start, unsigned long end)
677 {
678 if (tlb_ops_need_broadcast()) {
679 struct tlb_args ta;
680 ta.ta_vma = vma;
681 ta.ta_start = start;
682 ta.ta_end = end;
683 on_each_cpu_mask(ipi_flush_tlb_range, &ta, 1, mm_cpumask(vma->vm_mm));
684 } else
685 local_flush_tlb_range(vma, start, end);
686 }
687
688 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
689 {
690 if (tlb_ops_need_broadcast()) {
691 struct tlb_args ta;
692 ta.ta_start = start;
693 ta.ta_end = end;
694 on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1);
695 } else
696 local_flush_tlb_kernel_range(start, end);
697 }
This page took 0.081953 seconds and 5 git commands to generate.