88c901cfc75e356384326156d29654a00e0ea5f0
[deliverable/linux.git] / arch / arm / kvm / arm.c
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/cpu.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34
35 #include <asm/uaccess.h>
36 #include <asm/ptrace.h>
37 #include <asm/mman.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
40 #include <asm/virt.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/kvm_psci.h>
47
48 #ifdef REQUIRES_VIRT
49 __asm__(".arch_extension virt");
50 #endif
51
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
54 static unsigned long hyp_default_vectors;
55
56 /* Per-CPU variable containing the currently running vcpu. */
57 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
58
59 /* The VMID used in the VTTBR */
60 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
61 static u8 kvm_next_vmid;
62 static DEFINE_SPINLOCK(kvm_vmid_lock);
63
64 static bool vgic_present;
65
66 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
67 {
68 BUG_ON(preemptible());
69 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
70 }
71
72 /**
73 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
74 * Must be called from non-preemptible context
75 */
76 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
77 {
78 BUG_ON(preemptible());
79 return __this_cpu_read(kvm_arm_running_vcpu);
80 }
81
82 /**
83 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
84 */
85 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
86 {
87 return &kvm_arm_running_vcpu;
88 }
89
90 int kvm_arch_hardware_enable(void)
91 {
92 return 0;
93 }
94
95 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
96 {
97 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
98 }
99
100 int kvm_arch_hardware_setup(void)
101 {
102 return 0;
103 }
104
105 void kvm_arch_check_processor_compat(void *rtn)
106 {
107 *(int *)rtn = 0;
108 }
109
110
111 /**
112 * kvm_arch_init_vm - initializes a VM data structure
113 * @kvm: pointer to the KVM struct
114 */
115 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
116 {
117 int ret = 0;
118
119 if (type)
120 return -EINVAL;
121
122 ret = kvm_alloc_stage2_pgd(kvm);
123 if (ret)
124 goto out_fail_alloc;
125
126 ret = create_hyp_mappings(kvm, kvm + 1);
127 if (ret)
128 goto out_free_stage2_pgd;
129
130 kvm_timer_init(kvm);
131
132 /* Mark the initial VMID generation invalid */
133 kvm->arch.vmid_gen = 0;
134
135 return ret;
136 out_free_stage2_pgd:
137 kvm_free_stage2_pgd(kvm);
138 out_fail_alloc:
139 return ret;
140 }
141
142 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
143 {
144 return VM_FAULT_SIGBUS;
145 }
146
147
148 /**
149 * kvm_arch_destroy_vm - destroy the VM data structure
150 * @kvm: pointer to the KVM struct
151 */
152 void kvm_arch_destroy_vm(struct kvm *kvm)
153 {
154 int i;
155
156 kvm_free_stage2_pgd(kvm);
157
158 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
159 if (kvm->vcpus[i]) {
160 kvm_arch_vcpu_free(kvm->vcpus[i]);
161 kvm->vcpus[i] = NULL;
162 }
163 }
164 }
165
166 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
167 {
168 int r;
169 switch (ext) {
170 case KVM_CAP_IRQCHIP:
171 r = vgic_present;
172 break;
173 case KVM_CAP_DEVICE_CTRL:
174 case KVM_CAP_USER_MEMORY:
175 case KVM_CAP_SYNC_MMU:
176 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
177 case KVM_CAP_ONE_REG:
178 case KVM_CAP_ARM_PSCI:
179 case KVM_CAP_ARM_PSCI_0_2:
180 case KVM_CAP_READONLY_MEM:
181 r = 1;
182 break;
183 case KVM_CAP_COALESCED_MMIO:
184 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
185 break;
186 case KVM_CAP_ARM_SET_DEVICE_ADDR:
187 r = 1;
188 break;
189 case KVM_CAP_NR_VCPUS:
190 r = num_online_cpus();
191 break;
192 case KVM_CAP_MAX_VCPUS:
193 r = KVM_MAX_VCPUS;
194 break;
195 default:
196 r = kvm_arch_dev_ioctl_check_extension(ext);
197 break;
198 }
199 return r;
200 }
201
202 long kvm_arch_dev_ioctl(struct file *filp,
203 unsigned int ioctl, unsigned long arg)
204 {
205 return -EINVAL;
206 }
207
208
209 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
210 {
211 int err;
212 struct kvm_vcpu *vcpu;
213
214 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
215 if (!vcpu) {
216 err = -ENOMEM;
217 goto out;
218 }
219
220 err = kvm_vcpu_init(vcpu, kvm, id);
221 if (err)
222 goto free_vcpu;
223
224 err = create_hyp_mappings(vcpu, vcpu + 1);
225 if (err)
226 goto vcpu_uninit;
227
228 return vcpu;
229 vcpu_uninit:
230 kvm_vcpu_uninit(vcpu);
231 free_vcpu:
232 kmem_cache_free(kvm_vcpu_cache, vcpu);
233 out:
234 return ERR_PTR(err);
235 }
236
237 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
238 {
239 return 0;
240 }
241
242 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
243 {
244 kvm_mmu_free_memory_caches(vcpu);
245 kvm_timer_vcpu_terminate(vcpu);
246 kmem_cache_free(kvm_vcpu_cache, vcpu);
247 }
248
249 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
250 {
251 kvm_arch_vcpu_free(vcpu);
252 }
253
254 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
255 {
256 return 0;
257 }
258
259 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
260 {
261 int ret;
262
263 /* Force users to call KVM_ARM_VCPU_INIT */
264 vcpu->arch.target = -1;
265
266 /* Set up VGIC */
267 ret = kvm_vgic_vcpu_init(vcpu);
268 if (ret)
269 return ret;
270
271 /* Set up the timer */
272 kvm_timer_vcpu_init(vcpu);
273
274 return 0;
275 }
276
277 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
278 {
279 vcpu->cpu = cpu;
280 vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
281
282 /*
283 * Check whether this vcpu requires the cache to be flushed on
284 * this physical CPU. This is a consequence of doing dcache
285 * operations by set/way on this vcpu. We do it here to be in
286 * a non-preemptible section.
287 */
288 if (cpumask_test_and_clear_cpu(cpu, &vcpu->arch.require_dcache_flush))
289 flush_cache_all(); /* We'd really want v7_flush_dcache_all() */
290
291 kvm_arm_set_running_vcpu(vcpu);
292 }
293
294 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
295 {
296 /*
297 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
298 * if the vcpu is no longer assigned to a cpu. This is used for the
299 * optimized make_all_cpus_request path.
300 */
301 vcpu->cpu = -1;
302
303 kvm_arm_set_running_vcpu(NULL);
304 }
305
306 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
307 struct kvm_guest_debug *dbg)
308 {
309 return -EINVAL;
310 }
311
312
313 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
314 struct kvm_mp_state *mp_state)
315 {
316 return -EINVAL;
317 }
318
319 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
320 struct kvm_mp_state *mp_state)
321 {
322 return -EINVAL;
323 }
324
325 /**
326 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
327 * @v: The VCPU pointer
328 *
329 * If the guest CPU is not waiting for interrupts or an interrupt line is
330 * asserted, the CPU is by definition runnable.
331 */
332 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
333 {
334 return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
335 }
336
337 /* Just ensure a guest exit from a particular CPU */
338 static void exit_vm_noop(void *info)
339 {
340 }
341
342 void force_vm_exit(const cpumask_t *mask)
343 {
344 smp_call_function_many(mask, exit_vm_noop, NULL, true);
345 }
346
347 /**
348 * need_new_vmid_gen - check that the VMID is still valid
349 * @kvm: The VM's VMID to checkt
350 *
351 * return true if there is a new generation of VMIDs being used
352 *
353 * The hardware supports only 256 values with the value zero reserved for the
354 * host, so we check if an assigned value belongs to a previous generation,
355 * which which requires us to assign a new value. If we're the first to use a
356 * VMID for the new generation, we must flush necessary caches and TLBs on all
357 * CPUs.
358 */
359 static bool need_new_vmid_gen(struct kvm *kvm)
360 {
361 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
362 }
363
364 /**
365 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
366 * @kvm The guest that we are about to run
367 *
368 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
369 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
370 * caches and TLBs.
371 */
372 static void update_vttbr(struct kvm *kvm)
373 {
374 phys_addr_t pgd_phys;
375 u64 vmid;
376
377 if (!need_new_vmid_gen(kvm))
378 return;
379
380 spin_lock(&kvm_vmid_lock);
381
382 /*
383 * We need to re-check the vmid_gen here to ensure that if another vcpu
384 * already allocated a valid vmid for this vm, then this vcpu should
385 * use the same vmid.
386 */
387 if (!need_new_vmid_gen(kvm)) {
388 spin_unlock(&kvm_vmid_lock);
389 return;
390 }
391
392 /* First user of a new VMID generation? */
393 if (unlikely(kvm_next_vmid == 0)) {
394 atomic64_inc(&kvm_vmid_gen);
395 kvm_next_vmid = 1;
396
397 /*
398 * On SMP we know no other CPUs can use this CPU's or each
399 * other's VMID after force_vm_exit returns since the
400 * kvm_vmid_lock blocks them from reentry to the guest.
401 */
402 force_vm_exit(cpu_all_mask);
403 /*
404 * Now broadcast TLB + ICACHE invalidation over the inner
405 * shareable domain to make sure all data structures are
406 * clean.
407 */
408 kvm_call_hyp(__kvm_flush_vm_context);
409 }
410
411 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
412 kvm->arch.vmid = kvm_next_vmid;
413 kvm_next_vmid++;
414
415 /* update vttbr to be used with the new vmid */
416 pgd_phys = virt_to_phys(kvm->arch.pgd);
417 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
418 kvm->arch.vttbr = pgd_phys & VTTBR_BADDR_MASK;
419 kvm->arch.vttbr |= vmid;
420
421 spin_unlock(&kvm_vmid_lock);
422 }
423
424 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
425 {
426 int ret;
427
428 if (likely(vcpu->arch.has_run_once))
429 return 0;
430
431 vcpu->arch.has_run_once = true;
432
433 /*
434 * Initialize the VGIC before running a vcpu the first time on
435 * this VM.
436 */
437 if (unlikely(!vgic_initialized(vcpu->kvm))) {
438 ret = kvm_vgic_init(vcpu->kvm);
439 if (ret)
440 return ret;
441 }
442
443 return 0;
444 }
445
446 static void vcpu_pause(struct kvm_vcpu *vcpu)
447 {
448 wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
449
450 wait_event_interruptible(*wq, !vcpu->arch.pause);
451 }
452
453 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
454 {
455 return vcpu->arch.target >= 0;
456 }
457
458 /**
459 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
460 * @vcpu: The VCPU pointer
461 * @run: The kvm_run structure pointer used for userspace state exchange
462 *
463 * This function is called through the VCPU_RUN ioctl called from user space. It
464 * will execute VM code in a loop until the time slice for the process is used
465 * or some emulation is needed from user space in which case the function will
466 * return with return value 0 and with the kvm_run structure filled in with the
467 * required data for the requested emulation.
468 */
469 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
470 {
471 int ret;
472 sigset_t sigsaved;
473
474 if (unlikely(!kvm_vcpu_initialized(vcpu)))
475 return -ENOEXEC;
476
477 ret = kvm_vcpu_first_run_init(vcpu);
478 if (ret)
479 return ret;
480
481 if (run->exit_reason == KVM_EXIT_MMIO) {
482 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
483 if (ret)
484 return ret;
485 }
486
487 if (vcpu->sigset_active)
488 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
489
490 ret = 1;
491 run->exit_reason = KVM_EXIT_UNKNOWN;
492 while (ret > 0) {
493 /*
494 * Check conditions before entering the guest
495 */
496 cond_resched();
497
498 update_vttbr(vcpu->kvm);
499
500 if (vcpu->arch.pause)
501 vcpu_pause(vcpu);
502
503 kvm_vgic_flush_hwstate(vcpu);
504 kvm_timer_flush_hwstate(vcpu);
505
506 local_irq_disable();
507
508 /*
509 * Re-check atomic conditions
510 */
511 if (signal_pending(current)) {
512 ret = -EINTR;
513 run->exit_reason = KVM_EXIT_INTR;
514 }
515
516 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
517 local_irq_enable();
518 kvm_timer_sync_hwstate(vcpu);
519 kvm_vgic_sync_hwstate(vcpu);
520 continue;
521 }
522
523 /**************************************************************
524 * Enter the guest
525 */
526 trace_kvm_entry(*vcpu_pc(vcpu));
527 kvm_guest_enter();
528 vcpu->mode = IN_GUEST_MODE;
529
530 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
531
532 vcpu->mode = OUTSIDE_GUEST_MODE;
533 vcpu->arch.last_pcpu = smp_processor_id();
534 kvm_guest_exit();
535 trace_kvm_exit(*vcpu_pc(vcpu));
536 /*
537 * We may have taken a host interrupt in HYP mode (ie
538 * while executing the guest). This interrupt is still
539 * pending, as we haven't serviced it yet!
540 *
541 * We're now back in SVC mode, with interrupts
542 * disabled. Enabling the interrupts now will have
543 * the effect of taking the interrupt again, in SVC
544 * mode this time.
545 */
546 local_irq_enable();
547
548 /*
549 * Back from guest
550 *************************************************************/
551
552 kvm_timer_sync_hwstate(vcpu);
553 kvm_vgic_sync_hwstate(vcpu);
554
555 ret = handle_exit(vcpu, run, ret);
556 }
557
558 if (vcpu->sigset_active)
559 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
560 return ret;
561 }
562
563 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
564 {
565 int bit_index;
566 bool set;
567 unsigned long *ptr;
568
569 if (number == KVM_ARM_IRQ_CPU_IRQ)
570 bit_index = __ffs(HCR_VI);
571 else /* KVM_ARM_IRQ_CPU_FIQ */
572 bit_index = __ffs(HCR_VF);
573
574 ptr = (unsigned long *)&vcpu->arch.irq_lines;
575 if (level)
576 set = test_and_set_bit(bit_index, ptr);
577 else
578 set = test_and_clear_bit(bit_index, ptr);
579
580 /*
581 * If we didn't change anything, no need to wake up or kick other CPUs
582 */
583 if (set == level)
584 return 0;
585
586 /*
587 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
588 * trigger a world-switch round on the running physical CPU to set the
589 * virtual IRQ/FIQ fields in the HCR appropriately.
590 */
591 kvm_vcpu_kick(vcpu);
592
593 return 0;
594 }
595
596 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
597 bool line_status)
598 {
599 u32 irq = irq_level->irq;
600 unsigned int irq_type, vcpu_idx, irq_num;
601 int nrcpus = atomic_read(&kvm->online_vcpus);
602 struct kvm_vcpu *vcpu = NULL;
603 bool level = irq_level->level;
604
605 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
606 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
607 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
608
609 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
610
611 switch (irq_type) {
612 case KVM_ARM_IRQ_TYPE_CPU:
613 if (irqchip_in_kernel(kvm))
614 return -ENXIO;
615
616 if (vcpu_idx >= nrcpus)
617 return -EINVAL;
618
619 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
620 if (!vcpu)
621 return -EINVAL;
622
623 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
624 return -EINVAL;
625
626 return vcpu_interrupt_line(vcpu, irq_num, level);
627 case KVM_ARM_IRQ_TYPE_PPI:
628 if (!irqchip_in_kernel(kvm))
629 return -ENXIO;
630
631 if (vcpu_idx >= nrcpus)
632 return -EINVAL;
633
634 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
635 if (!vcpu)
636 return -EINVAL;
637
638 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
639 return -EINVAL;
640
641 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
642 case KVM_ARM_IRQ_TYPE_SPI:
643 if (!irqchip_in_kernel(kvm))
644 return -ENXIO;
645
646 if (irq_num < VGIC_NR_PRIVATE_IRQS ||
647 irq_num > KVM_ARM_IRQ_GIC_MAX)
648 return -EINVAL;
649
650 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
651 }
652
653 return -EINVAL;
654 }
655
656 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
657 struct kvm_vcpu_init *init)
658 {
659 int ret;
660
661 ret = kvm_vcpu_set_target(vcpu, init);
662 if (ret)
663 return ret;
664
665 /*
666 * Handle the "start in power-off" case by marking the VCPU as paused.
667 */
668 if (__test_and_clear_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
669 vcpu->arch.pause = true;
670
671 return 0;
672 }
673
674 long kvm_arch_vcpu_ioctl(struct file *filp,
675 unsigned int ioctl, unsigned long arg)
676 {
677 struct kvm_vcpu *vcpu = filp->private_data;
678 void __user *argp = (void __user *)arg;
679
680 switch (ioctl) {
681 case KVM_ARM_VCPU_INIT: {
682 struct kvm_vcpu_init init;
683
684 if (copy_from_user(&init, argp, sizeof(init)))
685 return -EFAULT;
686
687 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
688 }
689 case KVM_SET_ONE_REG:
690 case KVM_GET_ONE_REG: {
691 struct kvm_one_reg reg;
692
693 if (unlikely(!kvm_vcpu_initialized(vcpu)))
694 return -ENOEXEC;
695
696 if (copy_from_user(&reg, argp, sizeof(reg)))
697 return -EFAULT;
698 if (ioctl == KVM_SET_ONE_REG)
699 return kvm_arm_set_reg(vcpu, &reg);
700 else
701 return kvm_arm_get_reg(vcpu, &reg);
702 }
703 case KVM_GET_REG_LIST: {
704 struct kvm_reg_list __user *user_list = argp;
705 struct kvm_reg_list reg_list;
706 unsigned n;
707
708 if (unlikely(!kvm_vcpu_initialized(vcpu)))
709 return -ENOEXEC;
710
711 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
712 return -EFAULT;
713 n = reg_list.n;
714 reg_list.n = kvm_arm_num_regs(vcpu);
715 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
716 return -EFAULT;
717 if (n < reg_list.n)
718 return -E2BIG;
719 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
720 }
721 default:
722 return -EINVAL;
723 }
724 }
725
726 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
727 {
728 return -EINVAL;
729 }
730
731 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
732 struct kvm_arm_device_addr *dev_addr)
733 {
734 unsigned long dev_id, type;
735
736 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
737 KVM_ARM_DEVICE_ID_SHIFT;
738 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
739 KVM_ARM_DEVICE_TYPE_SHIFT;
740
741 switch (dev_id) {
742 case KVM_ARM_DEVICE_VGIC_V2:
743 if (!vgic_present)
744 return -ENXIO;
745 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
746 default:
747 return -ENODEV;
748 }
749 }
750
751 long kvm_arch_vm_ioctl(struct file *filp,
752 unsigned int ioctl, unsigned long arg)
753 {
754 struct kvm *kvm = filp->private_data;
755 void __user *argp = (void __user *)arg;
756
757 switch (ioctl) {
758 case KVM_CREATE_IRQCHIP: {
759 if (vgic_present)
760 return kvm_vgic_create(kvm);
761 else
762 return -ENXIO;
763 }
764 case KVM_ARM_SET_DEVICE_ADDR: {
765 struct kvm_arm_device_addr dev_addr;
766
767 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
768 return -EFAULT;
769 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
770 }
771 case KVM_ARM_PREFERRED_TARGET: {
772 int err;
773 struct kvm_vcpu_init init;
774
775 err = kvm_vcpu_preferred_target(&init);
776 if (err)
777 return err;
778
779 if (copy_to_user(argp, &init, sizeof(init)))
780 return -EFAULT;
781
782 return 0;
783 }
784 default:
785 return -EINVAL;
786 }
787 }
788
789 static void cpu_init_hyp_mode(void *dummy)
790 {
791 phys_addr_t boot_pgd_ptr;
792 phys_addr_t pgd_ptr;
793 unsigned long hyp_stack_ptr;
794 unsigned long stack_page;
795 unsigned long vector_ptr;
796
797 /* Switch from the HYP stub to our own HYP init vector */
798 __hyp_set_vectors(kvm_get_idmap_vector());
799
800 boot_pgd_ptr = kvm_mmu_get_boot_httbr();
801 pgd_ptr = kvm_mmu_get_httbr();
802 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
803 hyp_stack_ptr = stack_page + PAGE_SIZE;
804 vector_ptr = (unsigned long)__kvm_hyp_vector;
805
806 __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
807 }
808
809 static int hyp_init_cpu_notify(struct notifier_block *self,
810 unsigned long action, void *cpu)
811 {
812 switch (action) {
813 case CPU_STARTING:
814 case CPU_STARTING_FROZEN:
815 cpu_init_hyp_mode(NULL);
816 break;
817 }
818
819 return NOTIFY_OK;
820 }
821
822 static struct notifier_block hyp_init_cpu_nb = {
823 .notifier_call = hyp_init_cpu_notify,
824 };
825
826 #ifdef CONFIG_CPU_PM
827 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
828 unsigned long cmd,
829 void *v)
830 {
831 if (cmd == CPU_PM_EXIT &&
832 __hyp_get_vectors() == hyp_default_vectors) {
833 cpu_init_hyp_mode(NULL);
834 return NOTIFY_OK;
835 }
836
837 return NOTIFY_DONE;
838 }
839
840 static struct notifier_block hyp_init_cpu_pm_nb = {
841 .notifier_call = hyp_init_cpu_pm_notifier,
842 };
843
844 static void __init hyp_cpu_pm_init(void)
845 {
846 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
847 }
848 #else
849 static inline void hyp_cpu_pm_init(void)
850 {
851 }
852 #endif
853
854 /**
855 * Inits Hyp-mode on all online CPUs
856 */
857 static int init_hyp_mode(void)
858 {
859 int cpu;
860 int err = 0;
861
862 /*
863 * Allocate Hyp PGD and setup Hyp identity mapping
864 */
865 err = kvm_mmu_init();
866 if (err)
867 goto out_err;
868
869 /*
870 * It is probably enough to obtain the default on one
871 * CPU. It's unlikely to be different on the others.
872 */
873 hyp_default_vectors = __hyp_get_vectors();
874
875 /*
876 * Allocate stack pages for Hypervisor-mode
877 */
878 for_each_possible_cpu(cpu) {
879 unsigned long stack_page;
880
881 stack_page = __get_free_page(GFP_KERNEL);
882 if (!stack_page) {
883 err = -ENOMEM;
884 goto out_free_stack_pages;
885 }
886
887 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
888 }
889
890 /*
891 * Map the Hyp-code called directly from the host
892 */
893 err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
894 if (err) {
895 kvm_err("Cannot map world-switch code\n");
896 goto out_free_mappings;
897 }
898
899 /*
900 * Map the Hyp stack pages
901 */
902 for_each_possible_cpu(cpu) {
903 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
904 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
905
906 if (err) {
907 kvm_err("Cannot map hyp stack\n");
908 goto out_free_mappings;
909 }
910 }
911
912 /*
913 * Map the host CPU structures
914 */
915 kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
916 if (!kvm_host_cpu_state) {
917 err = -ENOMEM;
918 kvm_err("Cannot allocate host CPU state\n");
919 goto out_free_mappings;
920 }
921
922 for_each_possible_cpu(cpu) {
923 kvm_cpu_context_t *cpu_ctxt;
924
925 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
926 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
927
928 if (err) {
929 kvm_err("Cannot map host CPU state: %d\n", err);
930 goto out_free_context;
931 }
932 }
933
934 /*
935 * Execute the init code on each CPU.
936 */
937 on_each_cpu(cpu_init_hyp_mode, NULL, 1);
938
939 /*
940 * Init HYP view of VGIC
941 */
942 err = kvm_vgic_hyp_init();
943 if (err)
944 goto out_free_context;
945
946 #ifdef CONFIG_KVM_ARM_VGIC
947 vgic_present = true;
948 #endif
949
950 /*
951 * Init HYP architected timer support
952 */
953 err = kvm_timer_hyp_init();
954 if (err)
955 goto out_free_mappings;
956
957 #ifndef CONFIG_HOTPLUG_CPU
958 free_boot_hyp_pgd();
959 #endif
960
961 kvm_perf_init();
962
963 kvm_info("Hyp mode initialized successfully\n");
964
965 return 0;
966 out_free_context:
967 free_percpu(kvm_host_cpu_state);
968 out_free_mappings:
969 free_hyp_pgds();
970 out_free_stack_pages:
971 for_each_possible_cpu(cpu)
972 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
973 out_err:
974 kvm_err("error initializing Hyp mode: %d\n", err);
975 return err;
976 }
977
978 static void check_kvm_target_cpu(void *ret)
979 {
980 *(int *)ret = kvm_target_cpu();
981 }
982
983 /**
984 * Initialize Hyp-mode and memory mappings on all CPUs.
985 */
986 int kvm_arch_init(void *opaque)
987 {
988 int err;
989 int ret, cpu;
990
991 if (!is_hyp_mode_available()) {
992 kvm_err("HYP mode not available\n");
993 return -ENODEV;
994 }
995
996 for_each_online_cpu(cpu) {
997 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
998 if (ret < 0) {
999 kvm_err("Error, CPU %d not supported!\n", cpu);
1000 return -ENODEV;
1001 }
1002 }
1003
1004 cpu_notifier_register_begin();
1005
1006 err = init_hyp_mode();
1007 if (err)
1008 goto out_err;
1009
1010 err = __register_cpu_notifier(&hyp_init_cpu_nb);
1011 if (err) {
1012 kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
1013 goto out_err;
1014 }
1015
1016 cpu_notifier_register_done();
1017
1018 hyp_cpu_pm_init();
1019
1020 kvm_coproc_table_init();
1021 return 0;
1022 out_err:
1023 cpu_notifier_register_done();
1024 return err;
1025 }
1026
1027 /* NOP: Compiling as a module not supported */
1028 void kvm_arch_exit(void)
1029 {
1030 kvm_perf_teardown();
1031 }
1032
1033 static int arm_init(void)
1034 {
1035 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1036 return rc;
1037 }
1038
1039 module_init(arm_init);
This page took 0.215292 seconds and 4 git commands to generate.