regmap: irq: Add support to call client specific pre/post interrupt service
[deliverable/linux.git] / arch / arm / kvm / arm.c
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/cpu_pm.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/vmalloc.h>
25 #include <linux/fs.h>
26 #include <linux/mman.h>
27 #include <linux/sched.h>
28 #include <linux/kvm.h>
29 #include <trace/events/kvm.h>
30 #include <kvm/arm_pmu.h>
31
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34
35 #include <asm/uaccess.h>
36 #include <asm/ptrace.h>
37 #include <asm/mman.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
40 #include <asm/virt.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/kvm_psci.h>
47 #include <asm/sections.h>
48
49 #ifdef REQUIRES_VIRT
50 __asm__(".arch_extension virt");
51 #endif
52
53 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
54 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
55 static unsigned long hyp_default_vectors;
56
57 /* Per-CPU variable containing the currently running vcpu. */
58 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
59
60 /* The VMID used in the VTTBR */
61 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
62 static u32 kvm_next_vmid;
63 static unsigned int kvm_vmid_bits __read_mostly;
64 static DEFINE_SPINLOCK(kvm_vmid_lock);
65
66 static bool vgic_present;
67
68 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
69
70 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
71 {
72 BUG_ON(preemptible());
73 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
74 }
75
76 /**
77 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
78 * Must be called from non-preemptible context
79 */
80 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
81 {
82 BUG_ON(preemptible());
83 return __this_cpu_read(kvm_arm_running_vcpu);
84 }
85
86 /**
87 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
88 */
89 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
90 {
91 return &kvm_arm_running_vcpu;
92 }
93
94 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
95 {
96 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
97 }
98
99 int kvm_arch_hardware_setup(void)
100 {
101 return 0;
102 }
103
104 void kvm_arch_check_processor_compat(void *rtn)
105 {
106 *(int *)rtn = 0;
107 }
108
109
110 /**
111 * kvm_arch_init_vm - initializes a VM data structure
112 * @kvm: pointer to the KVM struct
113 */
114 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
115 {
116 int ret = 0;
117
118 if (type)
119 return -EINVAL;
120
121 ret = kvm_alloc_stage2_pgd(kvm);
122 if (ret)
123 goto out_fail_alloc;
124
125 ret = create_hyp_mappings(kvm, kvm + 1);
126 if (ret)
127 goto out_free_stage2_pgd;
128
129 kvm_vgic_early_init(kvm);
130 kvm_timer_init(kvm);
131
132 /* Mark the initial VMID generation invalid */
133 kvm->arch.vmid_gen = 0;
134
135 /* The maximum number of VCPUs is limited by the host's GIC model */
136 kvm->arch.max_vcpus = vgic_present ?
137 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
138
139 return ret;
140 out_free_stage2_pgd:
141 kvm_free_stage2_pgd(kvm);
142 out_fail_alloc:
143 return ret;
144 }
145
146 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
147 {
148 return VM_FAULT_SIGBUS;
149 }
150
151
152 /**
153 * kvm_arch_destroy_vm - destroy the VM data structure
154 * @kvm: pointer to the KVM struct
155 */
156 void kvm_arch_destroy_vm(struct kvm *kvm)
157 {
158 int i;
159
160 kvm_free_stage2_pgd(kvm);
161
162 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
163 if (kvm->vcpus[i]) {
164 kvm_arch_vcpu_free(kvm->vcpus[i]);
165 kvm->vcpus[i] = NULL;
166 }
167 }
168
169 kvm_vgic_destroy(kvm);
170 }
171
172 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
173 {
174 int r;
175 switch (ext) {
176 case KVM_CAP_IRQCHIP:
177 r = vgic_present;
178 break;
179 case KVM_CAP_IOEVENTFD:
180 case KVM_CAP_DEVICE_CTRL:
181 case KVM_CAP_USER_MEMORY:
182 case KVM_CAP_SYNC_MMU:
183 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
184 case KVM_CAP_ONE_REG:
185 case KVM_CAP_ARM_PSCI:
186 case KVM_CAP_ARM_PSCI_0_2:
187 case KVM_CAP_READONLY_MEM:
188 case KVM_CAP_MP_STATE:
189 r = 1;
190 break;
191 case KVM_CAP_COALESCED_MMIO:
192 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
193 break;
194 case KVM_CAP_ARM_SET_DEVICE_ADDR:
195 r = 1;
196 break;
197 case KVM_CAP_NR_VCPUS:
198 r = num_online_cpus();
199 break;
200 case KVM_CAP_MAX_VCPUS:
201 r = KVM_MAX_VCPUS;
202 break;
203 default:
204 r = kvm_arch_dev_ioctl_check_extension(ext);
205 break;
206 }
207 return r;
208 }
209
210 long kvm_arch_dev_ioctl(struct file *filp,
211 unsigned int ioctl, unsigned long arg)
212 {
213 return -EINVAL;
214 }
215
216
217 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
218 {
219 int err;
220 struct kvm_vcpu *vcpu;
221
222 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
223 err = -EBUSY;
224 goto out;
225 }
226
227 if (id >= kvm->arch.max_vcpus) {
228 err = -EINVAL;
229 goto out;
230 }
231
232 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
233 if (!vcpu) {
234 err = -ENOMEM;
235 goto out;
236 }
237
238 err = kvm_vcpu_init(vcpu, kvm, id);
239 if (err)
240 goto free_vcpu;
241
242 err = create_hyp_mappings(vcpu, vcpu + 1);
243 if (err)
244 goto vcpu_uninit;
245
246 return vcpu;
247 vcpu_uninit:
248 kvm_vcpu_uninit(vcpu);
249 free_vcpu:
250 kmem_cache_free(kvm_vcpu_cache, vcpu);
251 out:
252 return ERR_PTR(err);
253 }
254
255 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
256 {
257 kvm_vgic_vcpu_early_init(vcpu);
258 }
259
260 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
261 {
262 kvm_mmu_free_memory_caches(vcpu);
263 kvm_timer_vcpu_terminate(vcpu);
264 kvm_vgic_vcpu_destroy(vcpu);
265 kvm_pmu_vcpu_destroy(vcpu);
266 kmem_cache_free(kvm_vcpu_cache, vcpu);
267 }
268
269 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
270 {
271 kvm_arch_vcpu_free(vcpu);
272 }
273
274 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
275 {
276 return kvm_timer_should_fire(vcpu);
277 }
278
279 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
280 {
281 kvm_timer_schedule(vcpu);
282 }
283
284 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
285 {
286 kvm_timer_unschedule(vcpu);
287 }
288
289 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
290 {
291 /* Force users to call KVM_ARM_VCPU_INIT */
292 vcpu->arch.target = -1;
293 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
294
295 /* Set up the timer */
296 kvm_timer_vcpu_init(vcpu);
297
298 kvm_arm_reset_debug_ptr(vcpu);
299
300 return 0;
301 }
302
303 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
304 {
305 vcpu->cpu = cpu;
306 vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
307
308 kvm_arm_set_running_vcpu(vcpu);
309 }
310
311 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
312 {
313 /*
314 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
315 * if the vcpu is no longer assigned to a cpu. This is used for the
316 * optimized make_all_cpus_request path.
317 */
318 vcpu->cpu = -1;
319
320 kvm_arm_set_running_vcpu(NULL);
321 kvm_timer_vcpu_put(vcpu);
322 }
323
324 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
325 struct kvm_mp_state *mp_state)
326 {
327 if (vcpu->arch.power_off)
328 mp_state->mp_state = KVM_MP_STATE_STOPPED;
329 else
330 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
331
332 return 0;
333 }
334
335 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
336 struct kvm_mp_state *mp_state)
337 {
338 switch (mp_state->mp_state) {
339 case KVM_MP_STATE_RUNNABLE:
340 vcpu->arch.power_off = false;
341 break;
342 case KVM_MP_STATE_STOPPED:
343 vcpu->arch.power_off = true;
344 break;
345 default:
346 return -EINVAL;
347 }
348
349 return 0;
350 }
351
352 /**
353 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
354 * @v: The VCPU pointer
355 *
356 * If the guest CPU is not waiting for interrupts or an interrupt line is
357 * asserted, the CPU is by definition runnable.
358 */
359 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
360 {
361 return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
362 && !v->arch.power_off && !v->arch.pause);
363 }
364
365 /* Just ensure a guest exit from a particular CPU */
366 static void exit_vm_noop(void *info)
367 {
368 }
369
370 void force_vm_exit(const cpumask_t *mask)
371 {
372 preempt_disable();
373 smp_call_function_many(mask, exit_vm_noop, NULL, true);
374 preempt_enable();
375 }
376
377 /**
378 * need_new_vmid_gen - check that the VMID is still valid
379 * @kvm: The VM's VMID to checkt
380 *
381 * return true if there is a new generation of VMIDs being used
382 *
383 * The hardware supports only 256 values with the value zero reserved for the
384 * host, so we check if an assigned value belongs to a previous generation,
385 * which which requires us to assign a new value. If we're the first to use a
386 * VMID for the new generation, we must flush necessary caches and TLBs on all
387 * CPUs.
388 */
389 static bool need_new_vmid_gen(struct kvm *kvm)
390 {
391 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
392 }
393
394 /**
395 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
396 * @kvm The guest that we are about to run
397 *
398 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
399 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
400 * caches and TLBs.
401 */
402 static void update_vttbr(struct kvm *kvm)
403 {
404 phys_addr_t pgd_phys;
405 u64 vmid;
406
407 if (!need_new_vmid_gen(kvm))
408 return;
409
410 spin_lock(&kvm_vmid_lock);
411
412 /*
413 * We need to re-check the vmid_gen here to ensure that if another vcpu
414 * already allocated a valid vmid for this vm, then this vcpu should
415 * use the same vmid.
416 */
417 if (!need_new_vmid_gen(kvm)) {
418 spin_unlock(&kvm_vmid_lock);
419 return;
420 }
421
422 /* First user of a new VMID generation? */
423 if (unlikely(kvm_next_vmid == 0)) {
424 atomic64_inc(&kvm_vmid_gen);
425 kvm_next_vmid = 1;
426
427 /*
428 * On SMP we know no other CPUs can use this CPU's or each
429 * other's VMID after force_vm_exit returns since the
430 * kvm_vmid_lock blocks them from reentry to the guest.
431 */
432 force_vm_exit(cpu_all_mask);
433 /*
434 * Now broadcast TLB + ICACHE invalidation over the inner
435 * shareable domain to make sure all data structures are
436 * clean.
437 */
438 kvm_call_hyp(__kvm_flush_vm_context);
439 }
440
441 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
442 kvm->arch.vmid = kvm_next_vmid;
443 kvm_next_vmid++;
444 kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
445
446 /* update vttbr to be used with the new vmid */
447 pgd_phys = virt_to_phys(kvm->arch.pgd);
448 BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
449 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
450 kvm->arch.vttbr = pgd_phys | vmid;
451
452 spin_unlock(&kvm_vmid_lock);
453 }
454
455 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
456 {
457 struct kvm *kvm = vcpu->kvm;
458 int ret = 0;
459
460 if (likely(vcpu->arch.has_run_once))
461 return 0;
462
463 vcpu->arch.has_run_once = true;
464
465 /*
466 * Map the VGIC hardware resources before running a vcpu the first
467 * time on this VM.
468 */
469 if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
470 ret = kvm_vgic_map_resources(kvm);
471 if (ret)
472 return ret;
473 }
474
475 /*
476 * Enable the arch timers only if we have an in-kernel VGIC
477 * and it has been properly initialized, since we cannot handle
478 * interrupts from the virtual timer with a userspace gic.
479 */
480 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
481 ret = kvm_timer_enable(vcpu);
482
483 return ret;
484 }
485
486 bool kvm_arch_intc_initialized(struct kvm *kvm)
487 {
488 return vgic_initialized(kvm);
489 }
490
491 void kvm_arm_halt_guest(struct kvm *kvm)
492 {
493 int i;
494 struct kvm_vcpu *vcpu;
495
496 kvm_for_each_vcpu(i, vcpu, kvm)
497 vcpu->arch.pause = true;
498 kvm_make_all_cpus_request(kvm, KVM_REQ_VCPU_EXIT);
499 }
500
501 void kvm_arm_halt_vcpu(struct kvm_vcpu *vcpu)
502 {
503 vcpu->arch.pause = true;
504 kvm_vcpu_kick(vcpu);
505 }
506
507 void kvm_arm_resume_vcpu(struct kvm_vcpu *vcpu)
508 {
509 struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
510
511 vcpu->arch.pause = false;
512 swake_up(wq);
513 }
514
515 void kvm_arm_resume_guest(struct kvm *kvm)
516 {
517 int i;
518 struct kvm_vcpu *vcpu;
519
520 kvm_for_each_vcpu(i, vcpu, kvm)
521 kvm_arm_resume_vcpu(vcpu);
522 }
523
524 static void vcpu_sleep(struct kvm_vcpu *vcpu)
525 {
526 struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
527
528 swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
529 (!vcpu->arch.pause)));
530 }
531
532 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
533 {
534 return vcpu->arch.target >= 0;
535 }
536
537 /**
538 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
539 * @vcpu: The VCPU pointer
540 * @run: The kvm_run structure pointer used for userspace state exchange
541 *
542 * This function is called through the VCPU_RUN ioctl called from user space. It
543 * will execute VM code in a loop until the time slice for the process is used
544 * or some emulation is needed from user space in which case the function will
545 * return with return value 0 and with the kvm_run structure filled in with the
546 * required data for the requested emulation.
547 */
548 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
549 {
550 int ret;
551 sigset_t sigsaved;
552
553 if (unlikely(!kvm_vcpu_initialized(vcpu)))
554 return -ENOEXEC;
555
556 ret = kvm_vcpu_first_run_init(vcpu);
557 if (ret)
558 return ret;
559
560 if (run->exit_reason == KVM_EXIT_MMIO) {
561 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
562 if (ret)
563 return ret;
564 }
565
566 if (vcpu->sigset_active)
567 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
568
569 ret = 1;
570 run->exit_reason = KVM_EXIT_UNKNOWN;
571 while (ret > 0) {
572 /*
573 * Check conditions before entering the guest
574 */
575 cond_resched();
576
577 update_vttbr(vcpu->kvm);
578
579 if (vcpu->arch.power_off || vcpu->arch.pause)
580 vcpu_sleep(vcpu);
581
582 /*
583 * Preparing the interrupts to be injected also
584 * involves poking the GIC, which must be done in a
585 * non-preemptible context.
586 */
587 preempt_disable();
588 kvm_pmu_flush_hwstate(vcpu);
589 kvm_timer_flush_hwstate(vcpu);
590 kvm_vgic_flush_hwstate(vcpu);
591
592 local_irq_disable();
593
594 /*
595 * Re-check atomic conditions
596 */
597 if (signal_pending(current)) {
598 ret = -EINTR;
599 run->exit_reason = KVM_EXIT_INTR;
600 }
601
602 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
603 vcpu->arch.power_off || vcpu->arch.pause) {
604 local_irq_enable();
605 kvm_pmu_sync_hwstate(vcpu);
606 kvm_timer_sync_hwstate(vcpu);
607 kvm_vgic_sync_hwstate(vcpu);
608 preempt_enable();
609 continue;
610 }
611
612 kvm_arm_setup_debug(vcpu);
613
614 /**************************************************************
615 * Enter the guest
616 */
617 trace_kvm_entry(*vcpu_pc(vcpu));
618 __kvm_guest_enter();
619 vcpu->mode = IN_GUEST_MODE;
620
621 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
622
623 vcpu->mode = OUTSIDE_GUEST_MODE;
624 vcpu->stat.exits++;
625 /*
626 * Back from guest
627 *************************************************************/
628
629 kvm_arm_clear_debug(vcpu);
630
631 /*
632 * We may have taken a host interrupt in HYP mode (ie
633 * while executing the guest). This interrupt is still
634 * pending, as we haven't serviced it yet!
635 *
636 * We're now back in SVC mode, with interrupts
637 * disabled. Enabling the interrupts now will have
638 * the effect of taking the interrupt again, in SVC
639 * mode this time.
640 */
641 local_irq_enable();
642
643 /*
644 * We do local_irq_enable() before calling kvm_guest_exit() so
645 * that if a timer interrupt hits while running the guest we
646 * account that tick as being spent in the guest. We enable
647 * preemption after calling kvm_guest_exit() so that if we get
648 * preempted we make sure ticks after that is not counted as
649 * guest time.
650 */
651 kvm_guest_exit();
652 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
653
654 /*
655 * We must sync the PMU and timer state before the vgic state so
656 * that the vgic can properly sample the updated state of the
657 * interrupt line.
658 */
659 kvm_pmu_sync_hwstate(vcpu);
660 kvm_timer_sync_hwstate(vcpu);
661
662 kvm_vgic_sync_hwstate(vcpu);
663
664 preempt_enable();
665
666 ret = handle_exit(vcpu, run, ret);
667 }
668
669 if (vcpu->sigset_active)
670 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
671 return ret;
672 }
673
674 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
675 {
676 int bit_index;
677 bool set;
678 unsigned long *ptr;
679
680 if (number == KVM_ARM_IRQ_CPU_IRQ)
681 bit_index = __ffs(HCR_VI);
682 else /* KVM_ARM_IRQ_CPU_FIQ */
683 bit_index = __ffs(HCR_VF);
684
685 ptr = (unsigned long *)&vcpu->arch.irq_lines;
686 if (level)
687 set = test_and_set_bit(bit_index, ptr);
688 else
689 set = test_and_clear_bit(bit_index, ptr);
690
691 /*
692 * If we didn't change anything, no need to wake up or kick other CPUs
693 */
694 if (set == level)
695 return 0;
696
697 /*
698 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
699 * trigger a world-switch round on the running physical CPU to set the
700 * virtual IRQ/FIQ fields in the HCR appropriately.
701 */
702 kvm_vcpu_kick(vcpu);
703
704 return 0;
705 }
706
707 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
708 bool line_status)
709 {
710 u32 irq = irq_level->irq;
711 unsigned int irq_type, vcpu_idx, irq_num;
712 int nrcpus = atomic_read(&kvm->online_vcpus);
713 struct kvm_vcpu *vcpu = NULL;
714 bool level = irq_level->level;
715
716 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
717 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
718 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
719
720 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
721
722 switch (irq_type) {
723 case KVM_ARM_IRQ_TYPE_CPU:
724 if (irqchip_in_kernel(kvm))
725 return -ENXIO;
726
727 if (vcpu_idx >= nrcpus)
728 return -EINVAL;
729
730 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
731 if (!vcpu)
732 return -EINVAL;
733
734 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
735 return -EINVAL;
736
737 return vcpu_interrupt_line(vcpu, irq_num, level);
738 case KVM_ARM_IRQ_TYPE_PPI:
739 if (!irqchip_in_kernel(kvm))
740 return -ENXIO;
741
742 if (vcpu_idx >= nrcpus)
743 return -EINVAL;
744
745 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
746 if (!vcpu)
747 return -EINVAL;
748
749 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
750 return -EINVAL;
751
752 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
753 case KVM_ARM_IRQ_TYPE_SPI:
754 if (!irqchip_in_kernel(kvm))
755 return -ENXIO;
756
757 if (irq_num < VGIC_NR_PRIVATE_IRQS)
758 return -EINVAL;
759
760 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
761 }
762
763 return -EINVAL;
764 }
765
766 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
767 const struct kvm_vcpu_init *init)
768 {
769 unsigned int i;
770 int phys_target = kvm_target_cpu();
771
772 if (init->target != phys_target)
773 return -EINVAL;
774
775 /*
776 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
777 * use the same target.
778 */
779 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
780 return -EINVAL;
781
782 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
783 for (i = 0; i < sizeof(init->features) * 8; i++) {
784 bool set = (init->features[i / 32] & (1 << (i % 32)));
785
786 if (set && i >= KVM_VCPU_MAX_FEATURES)
787 return -ENOENT;
788
789 /*
790 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
791 * use the same feature set.
792 */
793 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
794 test_bit(i, vcpu->arch.features) != set)
795 return -EINVAL;
796
797 if (set)
798 set_bit(i, vcpu->arch.features);
799 }
800
801 vcpu->arch.target = phys_target;
802
803 /* Now we know what it is, we can reset it. */
804 return kvm_reset_vcpu(vcpu);
805 }
806
807
808 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
809 struct kvm_vcpu_init *init)
810 {
811 int ret;
812
813 ret = kvm_vcpu_set_target(vcpu, init);
814 if (ret)
815 return ret;
816
817 /*
818 * Ensure a rebooted VM will fault in RAM pages and detect if the
819 * guest MMU is turned off and flush the caches as needed.
820 */
821 if (vcpu->arch.has_run_once)
822 stage2_unmap_vm(vcpu->kvm);
823
824 vcpu_reset_hcr(vcpu);
825
826 /*
827 * Handle the "start in power-off" case.
828 */
829 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
830 vcpu->arch.power_off = true;
831 else
832 vcpu->arch.power_off = false;
833
834 return 0;
835 }
836
837 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
838 struct kvm_device_attr *attr)
839 {
840 int ret = -ENXIO;
841
842 switch (attr->group) {
843 default:
844 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
845 break;
846 }
847
848 return ret;
849 }
850
851 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
852 struct kvm_device_attr *attr)
853 {
854 int ret = -ENXIO;
855
856 switch (attr->group) {
857 default:
858 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
859 break;
860 }
861
862 return ret;
863 }
864
865 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
866 struct kvm_device_attr *attr)
867 {
868 int ret = -ENXIO;
869
870 switch (attr->group) {
871 default:
872 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
873 break;
874 }
875
876 return ret;
877 }
878
879 long kvm_arch_vcpu_ioctl(struct file *filp,
880 unsigned int ioctl, unsigned long arg)
881 {
882 struct kvm_vcpu *vcpu = filp->private_data;
883 void __user *argp = (void __user *)arg;
884 struct kvm_device_attr attr;
885
886 switch (ioctl) {
887 case KVM_ARM_VCPU_INIT: {
888 struct kvm_vcpu_init init;
889
890 if (copy_from_user(&init, argp, sizeof(init)))
891 return -EFAULT;
892
893 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
894 }
895 case KVM_SET_ONE_REG:
896 case KVM_GET_ONE_REG: {
897 struct kvm_one_reg reg;
898
899 if (unlikely(!kvm_vcpu_initialized(vcpu)))
900 return -ENOEXEC;
901
902 if (copy_from_user(&reg, argp, sizeof(reg)))
903 return -EFAULT;
904 if (ioctl == KVM_SET_ONE_REG)
905 return kvm_arm_set_reg(vcpu, &reg);
906 else
907 return kvm_arm_get_reg(vcpu, &reg);
908 }
909 case KVM_GET_REG_LIST: {
910 struct kvm_reg_list __user *user_list = argp;
911 struct kvm_reg_list reg_list;
912 unsigned n;
913
914 if (unlikely(!kvm_vcpu_initialized(vcpu)))
915 return -ENOEXEC;
916
917 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
918 return -EFAULT;
919 n = reg_list.n;
920 reg_list.n = kvm_arm_num_regs(vcpu);
921 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
922 return -EFAULT;
923 if (n < reg_list.n)
924 return -E2BIG;
925 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
926 }
927 case KVM_SET_DEVICE_ATTR: {
928 if (copy_from_user(&attr, argp, sizeof(attr)))
929 return -EFAULT;
930 return kvm_arm_vcpu_set_attr(vcpu, &attr);
931 }
932 case KVM_GET_DEVICE_ATTR: {
933 if (copy_from_user(&attr, argp, sizeof(attr)))
934 return -EFAULT;
935 return kvm_arm_vcpu_get_attr(vcpu, &attr);
936 }
937 case KVM_HAS_DEVICE_ATTR: {
938 if (copy_from_user(&attr, argp, sizeof(attr)))
939 return -EFAULT;
940 return kvm_arm_vcpu_has_attr(vcpu, &attr);
941 }
942 default:
943 return -EINVAL;
944 }
945 }
946
947 /**
948 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
949 * @kvm: kvm instance
950 * @log: slot id and address to which we copy the log
951 *
952 * Steps 1-4 below provide general overview of dirty page logging. See
953 * kvm_get_dirty_log_protect() function description for additional details.
954 *
955 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
956 * always flush the TLB (step 4) even if previous step failed and the dirty
957 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
958 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
959 * writes will be marked dirty for next log read.
960 *
961 * 1. Take a snapshot of the bit and clear it if needed.
962 * 2. Write protect the corresponding page.
963 * 3. Copy the snapshot to the userspace.
964 * 4. Flush TLB's if needed.
965 */
966 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
967 {
968 bool is_dirty = false;
969 int r;
970
971 mutex_lock(&kvm->slots_lock);
972
973 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
974
975 if (is_dirty)
976 kvm_flush_remote_tlbs(kvm);
977
978 mutex_unlock(&kvm->slots_lock);
979 return r;
980 }
981
982 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
983 struct kvm_arm_device_addr *dev_addr)
984 {
985 unsigned long dev_id, type;
986
987 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
988 KVM_ARM_DEVICE_ID_SHIFT;
989 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
990 KVM_ARM_DEVICE_TYPE_SHIFT;
991
992 switch (dev_id) {
993 case KVM_ARM_DEVICE_VGIC_V2:
994 if (!vgic_present)
995 return -ENXIO;
996 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
997 default:
998 return -ENODEV;
999 }
1000 }
1001
1002 long kvm_arch_vm_ioctl(struct file *filp,
1003 unsigned int ioctl, unsigned long arg)
1004 {
1005 struct kvm *kvm = filp->private_data;
1006 void __user *argp = (void __user *)arg;
1007
1008 switch (ioctl) {
1009 case KVM_CREATE_IRQCHIP: {
1010 if (!vgic_present)
1011 return -ENXIO;
1012 return kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1013 }
1014 case KVM_ARM_SET_DEVICE_ADDR: {
1015 struct kvm_arm_device_addr dev_addr;
1016
1017 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1018 return -EFAULT;
1019 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1020 }
1021 case KVM_ARM_PREFERRED_TARGET: {
1022 int err;
1023 struct kvm_vcpu_init init;
1024
1025 err = kvm_vcpu_preferred_target(&init);
1026 if (err)
1027 return err;
1028
1029 if (copy_to_user(argp, &init, sizeof(init)))
1030 return -EFAULT;
1031
1032 return 0;
1033 }
1034 default:
1035 return -EINVAL;
1036 }
1037 }
1038
1039 static void cpu_init_hyp_mode(void *dummy)
1040 {
1041 phys_addr_t boot_pgd_ptr;
1042 phys_addr_t pgd_ptr;
1043 unsigned long hyp_stack_ptr;
1044 unsigned long stack_page;
1045 unsigned long vector_ptr;
1046
1047 /* Switch from the HYP stub to our own HYP init vector */
1048 __hyp_set_vectors(kvm_get_idmap_vector());
1049
1050 boot_pgd_ptr = kvm_mmu_get_boot_httbr();
1051 pgd_ptr = kvm_mmu_get_httbr();
1052 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1053 hyp_stack_ptr = stack_page + PAGE_SIZE;
1054 vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
1055
1056 __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
1057 __cpu_init_stage2();
1058
1059 kvm_arm_init_debug();
1060 }
1061
1062 static void cpu_hyp_reinit(void)
1063 {
1064 if (is_kernel_in_hyp_mode()) {
1065 /*
1066 * __cpu_init_stage2() is safe to call even if the PM
1067 * event was cancelled before the CPU was reset.
1068 */
1069 __cpu_init_stage2();
1070 } else {
1071 if (__hyp_get_vectors() == hyp_default_vectors)
1072 cpu_init_hyp_mode(NULL);
1073 }
1074 }
1075
1076 static void cpu_hyp_reset(void)
1077 {
1078 phys_addr_t boot_pgd_ptr;
1079 phys_addr_t phys_idmap_start;
1080
1081 if (!is_kernel_in_hyp_mode()) {
1082 boot_pgd_ptr = kvm_mmu_get_boot_httbr();
1083 phys_idmap_start = kvm_get_idmap_start();
1084
1085 __cpu_reset_hyp_mode(boot_pgd_ptr, phys_idmap_start);
1086 }
1087 }
1088
1089 static void _kvm_arch_hardware_enable(void *discard)
1090 {
1091 if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1092 cpu_hyp_reinit();
1093 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1094 }
1095 }
1096
1097 int kvm_arch_hardware_enable(void)
1098 {
1099 _kvm_arch_hardware_enable(NULL);
1100 return 0;
1101 }
1102
1103 static void _kvm_arch_hardware_disable(void *discard)
1104 {
1105 if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1106 cpu_hyp_reset();
1107 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1108 }
1109 }
1110
1111 void kvm_arch_hardware_disable(void)
1112 {
1113 _kvm_arch_hardware_disable(NULL);
1114 }
1115
1116 #ifdef CONFIG_CPU_PM
1117 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1118 unsigned long cmd,
1119 void *v)
1120 {
1121 /*
1122 * kvm_arm_hardware_enabled is left with its old value over
1123 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1124 * re-enable hyp.
1125 */
1126 switch (cmd) {
1127 case CPU_PM_ENTER:
1128 if (__this_cpu_read(kvm_arm_hardware_enabled))
1129 /*
1130 * don't update kvm_arm_hardware_enabled here
1131 * so that the hardware will be re-enabled
1132 * when we resume. See below.
1133 */
1134 cpu_hyp_reset();
1135
1136 return NOTIFY_OK;
1137 case CPU_PM_EXIT:
1138 if (__this_cpu_read(kvm_arm_hardware_enabled))
1139 /* The hardware was enabled before suspend. */
1140 cpu_hyp_reinit();
1141
1142 return NOTIFY_OK;
1143
1144 default:
1145 return NOTIFY_DONE;
1146 }
1147 }
1148
1149 static struct notifier_block hyp_init_cpu_pm_nb = {
1150 .notifier_call = hyp_init_cpu_pm_notifier,
1151 };
1152
1153 static void __init hyp_cpu_pm_init(void)
1154 {
1155 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1156 }
1157 static void __init hyp_cpu_pm_exit(void)
1158 {
1159 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1160 }
1161 #else
1162 static inline void hyp_cpu_pm_init(void)
1163 {
1164 }
1165 static inline void hyp_cpu_pm_exit(void)
1166 {
1167 }
1168 #endif
1169
1170 static void teardown_common_resources(void)
1171 {
1172 free_percpu(kvm_host_cpu_state);
1173 }
1174
1175 static int init_common_resources(void)
1176 {
1177 kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1178 if (!kvm_host_cpu_state) {
1179 kvm_err("Cannot allocate host CPU state\n");
1180 return -ENOMEM;
1181 }
1182
1183 return 0;
1184 }
1185
1186 static int init_subsystems(void)
1187 {
1188 int err = 0;
1189
1190 /*
1191 * Enable hardware so that subsystem initialisation can access EL2.
1192 */
1193 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1194
1195 /*
1196 * Register CPU lower-power notifier
1197 */
1198 hyp_cpu_pm_init();
1199
1200 /*
1201 * Init HYP view of VGIC
1202 */
1203 err = kvm_vgic_hyp_init();
1204 switch (err) {
1205 case 0:
1206 vgic_present = true;
1207 break;
1208 case -ENODEV:
1209 case -ENXIO:
1210 vgic_present = false;
1211 err = 0;
1212 break;
1213 default:
1214 goto out;
1215 }
1216
1217 /*
1218 * Init HYP architected timer support
1219 */
1220 err = kvm_timer_hyp_init();
1221 if (err)
1222 goto out;
1223
1224 kvm_perf_init();
1225 kvm_coproc_table_init();
1226
1227 out:
1228 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1229
1230 return err;
1231 }
1232
1233 static void teardown_hyp_mode(void)
1234 {
1235 int cpu;
1236
1237 if (is_kernel_in_hyp_mode())
1238 return;
1239
1240 free_hyp_pgds();
1241 for_each_possible_cpu(cpu)
1242 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1243 hyp_cpu_pm_exit();
1244 }
1245
1246 static int init_vhe_mode(void)
1247 {
1248 /* set size of VMID supported by CPU */
1249 kvm_vmid_bits = kvm_get_vmid_bits();
1250 kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1251
1252 kvm_info("VHE mode initialized successfully\n");
1253 return 0;
1254 }
1255
1256 /**
1257 * Inits Hyp-mode on all online CPUs
1258 */
1259 static int init_hyp_mode(void)
1260 {
1261 int cpu;
1262 int err = 0;
1263
1264 /*
1265 * Allocate Hyp PGD and setup Hyp identity mapping
1266 */
1267 err = kvm_mmu_init();
1268 if (err)
1269 goto out_err;
1270
1271 /*
1272 * It is probably enough to obtain the default on one
1273 * CPU. It's unlikely to be different on the others.
1274 */
1275 hyp_default_vectors = __hyp_get_vectors();
1276
1277 /*
1278 * Allocate stack pages for Hypervisor-mode
1279 */
1280 for_each_possible_cpu(cpu) {
1281 unsigned long stack_page;
1282
1283 stack_page = __get_free_page(GFP_KERNEL);
1284 if (!stack_page) {
1285 err = -ENOMEM;
1286 goto out_err;
1287 }
1288
1289 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1290 }
1291
1292 /*
1293 * Map the Hyp-code called directly from the host
1294 */
1295 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1296 kvm_ksym_ref(__hyp_text_end));
1297 if (err) {
1298 kvm_err("Cannot map world-switch code\n");
1299 goto out_err;
1300 }
1301
1302 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1303 kvm_ksym_ref(__end_rodata));
1304 if (err) {
1305 kvm_err("Cannot map rodata section\n");
1306 goto out_err;
1307 }
1308
1309 /*
1310 * Map the Hyp stack pages
1311 */
1312 for_each_possible_cpu(cpu) {
1313 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1314 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
1315
1316 if (err) {
1317 kvm_err("Cannot map hyp stack\n");
1318 goto out_err;
1319 }
1320 }
1321
1322 for_each_possible_cpu(cpu) {
1323 kvm_cpu_context_t *cpu_ctxt;
1324
1325 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1326 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
1327
1328 if (err) {
1329 kvm_err("Cannot map host CPU state: %d\n", err);
1330 goto out_err;
1331 }
1332 }
1333
1334 #ifndef CONFIG_HOTPLUG_CPU
1335 free_boot_hyp_pgd();
1336 #endif
1337
1338 /* set size of VMID supported by CPU */
1339 kvm_vmid_bits = kvm_get_vmid_bits();
1340 kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1341
1342 kvm_info("Hyp mode initialized successfully\n");
1343
1344 return 0;
1345
1346 out_err:
1347 teardown_hyp_mode();
1348 kvm_err("error initializing Hyp mode: %d\n", err);
1349 return err;
1350 }
1351
1352 static void check_kvm_target_cpu(void *ret)
1353 {
1354 *(int *)ret = kvm_target_cpu();
1355 }
1356
1357 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1358 {
1359 struct kvm_vcpu *vcpu;
1360 int i;
1361
1362 mpidr &= MPIDR_HWID_BITMASK;
1363 kvm_for_each_vcpu(i, vcpu, kvm) {
1364 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1365 return vcpu;
1366 }
1367 return NULL;
1368 }
1369
1370 /**
1371 * Initialize Hyp-mode and memory mappings on all CPUs.
1372 */
1373 int kvm_arch_init(void *opaque)
1374 {
1375 int err;
1376 int ret, cpu;
1377
1378 if (!is_hyp_mode_available()) {
1379 kvm_err("HYP mode not available\n");
1380 return -ENODEV;
1381 }
1382
1383 for_each_online_cpu(cpu) {
1384 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1385 if (ret < 0) {
1386 kvm_err("Error, CPU %d not supported!\n", cpu);
1387 return -ENODEV;
1388 }
1389 }
1390
1391 err = init_common_resources();
1392 if (err)
1393 return err;
1394
1395 if (is_kernel_in_hyp_mode())
1396 err = init_vhe_mode();
1397 else
1398 err = init_hyp_mode();
1399 if (err)
1400 goto out_err;
1401
1402 err = init_subsystems();
1403 if (err)
1404 goto out_hyp;
1405
1406 return 0;
1407
1408 out_hyp:
1409 teardown_hyp_mode();
1410 out_err:
1411 teardown_common_resources();
1412 return err;
1413 }
1414
1415 /* NOP: Compiling as a module not supported */
1416 void kvm_arch_exit(void)
1417 {
1418 kvm_perf_teardown();
1419 }
1420
1421 static int arm_init(void)
1422 {
1423 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1424 return rc;
1425 }
1426
1427 module_init(arm_init);
This page took 0.059238 seconds and 5 git commands to generate.