Merge branch 'signal-cleanup' of git://git.kernel.org/pub/scm/linux/kernel/git/rw...
[deliverable/linux.git] / arch / arm / kvm / arm.c
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/cpu.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34
35 #include <asm/uaccess.h>
36 #include <asm/ptrace.h>
37 #include <asm/mman.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
40 #include <asm/virt.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/kvm_psci.h>
47
48 #ifdef REQUIRES_VIRT
49 __asm__(".arch_extension virt");
50 #endif
51
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
54 static unsigned long hyp_default_vectors;
55
56 /* Per-CPU variable containing the currently running vcpu. */
57 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
58
59 /* The VMID used in the VTTBR */
60 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
61 static u8 kvm_next_vmid;
62 static DEFINE_SPINLOCK(kvm_vmid_lock);
63
64 static bool vgic_present;
65
66 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
67 {
68 BUG_ON(preemptible());
69 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
70 }
71
72 /**
73 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
74 * Must be called from non-preemptible context
75 */
76 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
77 {
78 BUG_ON(preemptible());
79 return __this_cpu_read(kvm_arm_running_vcpu);
80 }
81
82 /**
83 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
84 */
85 struct kvm_vcpu __percpu **kvm_get_running_vcpus(void)
86 {
87 return &kvm_arm_running_vcpu;
88 }
89
90 int kvm_arch_hardware_enable(void *garbage)
91 {
92 return 0;
93 }
94
95 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
96 {
97 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
98 }
99
100 void kvm_arch_hardware_disable(void *garbage)
101 {
102 }
103
104 int kvm_arch_hardware_setup(void)
105 {
106 return 0;
107 }
108
109 void kvm_arch_hardware_unsetup(void)
110 {
111 }
112
113 void kvm_arch_check_processor_compat(void *rtn)
114 {
115 *(int *)rtn = 0;
116 }
117
118 void kvm_arch_sync_events(struct kvm *kvm)
119 {
120 }
121
122 /**
123 * kvm_arch_init_vm - initializes a VM data structure
124 * @kvm: pointer to the KVM struct
125 */
126 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
127 {
128 int ret = 0;
129
130 if (type)
131 return -EINVAL;
132
133 ret = kvm_alloc_stage2_pgd(kvm);
134 if (ret)
135 goto out_fail_alloc;
136
137 ret = create_hyp_mappings(kvm, kvm + 1);
138 if (ret)
139 goto out_free_stage2_pgd;
140
141 kvm_timer_init(kvm);
142
143 /* Mark the initial VMID generation invalid */
144 kvm->arch.vmid_gen = 0;
145
146 return ret;
147 out_free_stage2_pgd:
148 kvm_free_stage2_pgd(kvm);
149 out_fail_alloc:
150 return ret;
151 }
152
153 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
154 {
155 return VM_FAULT_SIGBUS;
156 }
157
158
159 /**
160 * kvm_arch_destroy_vm - destroy the VM data structure
161 * @kvm: pointer to the KVM struct
162 */
163 void kvm_arch_destroy_vm(struct kvm *kvm)
164 {
165 int i;
166
167 kvm_free_stage2_pgd(kvm);
168
169 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
170 if (kvm->vcpus[i]) {
171 kvm_arch_vcpu_free(kvm->vcpus[i]);
172 kvm->vcpus[i] = NULL;
173 }
174 }
175 }
176
177 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
178 {
179 int r;
180 switch (ext) {
181 case KVM_CAP_IRQCHIP:
182 r = vgic_present;
183 break;
184 case KVM_CAP_DEVICE_CTRL:
185 case KVM_CAP_USER_MEMORY:
186 case KVM_CAP_SYNC_MMU:
187 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
188 case KVM_CAP_ONE_REG:
189 case KVM_CAP_ARM_PSCI:
190 case KVM_CAP_ARM_PSCI_0_2:
191 r = 1;
192 break;
193 case KVM_CAP_COALESCED_MMIO:
194 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
195 break;
196 case KVM_CAP_ARM_SET_DEVICE_ADDR:
197 r = 1;
198 break;
199 case KVM_CAP_NR_VCPUS:
200 r = num_online_cpus();
201 break;
202 case KVM_CAP_MAX_VCPUS:
203 r = KVM_MAX_VCPUS;
204 break;
205 default:
206 r = kvm_arch_dev_ioctl_check_extension(ext);
207 break;
208 }
209 return r;
210 }
211
212 long kvm_arch_dev_ioctl(struct file *filp,
213 unsigned int ioctl, unsigned long arg)
214 {
215 return -EINVAL;
216 }
217
218
219 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
220 {
221 int err;
222 struct kvm_vcpu *vcpu;
223
224 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
225 if (!vcpu) {
226 err = -ENOMEM;
227 goto out;
228 }
229
230 err = kvm_vcpu_init(vcpu, kvm, id);
231 if (err)
232 goto free_vcpu;
233
234 err = create_hyp_mappings(vcpu, vcpu + 1);
235 if (err)
236 goto vcpu_uninit;
237
238 return vcpu;
239 vcpu_uninit:
240 kvm_vcpu_uninit(vcpu);
241 free_vcpu:
242 kmem_cache_free(kvm_vcpu_cache, vcpu);
243 out:
244 return ERR_PTR(err);
245 }
246
247 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
248 {
249 return 0;
250 }
251
252 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
253 {
254 kvm_mmu_free_memory_caches(vcpu);
255 kvm_timer_vcpu_terminate(vcpu);
256 kmem_cache_free(kvm_vcpu_cache, vcpu);
257 }
258
259 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
260 {
261 kvm_arch_vcpu_free(vcpu);
262 }
263
264 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
265 {
266 return 0;
267 }
268
269 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
270 {
271 int ret;
272
273 /* Force users to call KVM_ARM_VCPU_INIT */
274 vcpu->arch.target = -1;
275
276 /* Set up VGIC */
277 ret = kvm_vgic_vcpu_init(vcpu);
278 if (ret)
279 return ret;
280
281 /* Set up the timer */
282 kvm_timer_vcpu_init(vcpu);
283
284 return 0;
285 }
286
287 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
288 {
289 }
290
291 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
292 {
293 vcpu->cpu = cpu;
294 vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
295
296 /*
297 * Check whether this vcpu requires the cache to be flushed on
298 * this physical CPU. This is a consequence of doing dcache
299 * operations by set/way on this vcpu. We do it here to be in
300 * a non-preemptible section.
301 */
302 if (cpumask_test_and_clear_cpu(cpu, &vcpu->arch.require_dcache_flush))
303 flush_cache_all(); /* We'd really want v7_flush_dcache_all() */
304
305 kvm_arm_set_running_vcpu(vcpu);
306 }
307
308 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
309 {
310 /*
311 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
312 * if the vcpu is no longer assigned to a cpu. This is used for the
313 * optimized make_all_cpus_request path.
314 */
315 vcpu->cpu = -1;
316
317 kvm_arm_set_running_vcpu(NULL);
318 }
319
320 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
321 struct kvm_guest_debug *dbg)
322 {
323 return -EINVAL;
324 }
325
326
327 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
328 struct kvm_mp_state *mp_state)
329 {
330 return -EINVAL;
331 }
332
333 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
334 struct kvm_mp_state *mp_state)
335 {
336 return -EINVAL;
337 }
338
339 /**
340 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
341 * @v: The VCPU pointer
342 *
343 * If the guest CPU is not waiting for interrupts or an interrupt line is
344 * asserted, the CPU is by definition runnable.
345 */
346 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
347 {
348 return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
349 }
350
351 /* Just ensure a guest exit from a particular CPU */
352 static void exit_vm_noop(void *info)
353 {
354 }
355
356 void force_vm_exit(const cpumask_t *mask)
357 {
358 smp_call_function_many(mask, exit_vm_noop, NULL, true);
359 }
360
361 /**
362 * need_new_vmid_gen - check that the VMID is still valid
363 * @kvm: The VM's VMID to checkt
364 *
365 * return true if there is a new generation of VMIDs being used
366 *
367 * The hardware supports only 256 values with the value zero reserved for the
368 * host, so we check if an assigned value belongs to a previous generation,
369 * which which requires us to assign a new value. If we're the first to use a
370 * VMID for the new generation, we must flush necessary caches and TLBs on all
371 * CPUs.
372 */
373 static bool need_new_vmid_gen(struct kvm *kvm)
374 {
375 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
376 }
377
378 /**
379 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
380 * @kvm The guest that we are about to run
381 *
382 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
383 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
384 * caches and TLBs.
385 */
386 static void update_vttbr(struct kvm *kvm)
387 {
388 phys_addr_t pgd_phys;
389 u64 vmid;
390
391 if (!need_new_vmid_gen(kvm))
392 return;
393
394 spin_lock(&kvm_vmid_lock);
395
396 /*
397 * We need to re-check the vmid_gen here to ensure that if another vcpu
398 * already allocated a valid vmid for this vm, then this vcpu should
399 * use the same vmid.
400 */
401 if (!need_new_vmid_gen(kvm)) {
402 spin_unlock(&kvm_vmid_lock);
403 return;
404 }
405
406 /* First user of a new VMID generation? */
407 if (unlikely(kvm_next_vmid == 0)) {
408 atomic64_inc(&kvm_vmid_gen);
409 kvm_next_vmid = 1;
410
411 /*
412 * On SMP we know no other CPUs can use this CPU's or each
413 * other's VMID after force_vm_exit returns since the
414 * kvm_vmid_lock blocks them from reentry to the guest.
415 */
416 force_vm_exit(cpu_all_mask);
417 /*
418 * Now broadcast TLB + ICACHE invalidation over the inner
419 * shareable domain to make sure all data structures are
420 * clean.
421 */
422 kvm_call_hyp(__kvm_flush_vm_context);
423 }
424
425 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
426 kvm->arch.vmid = kvm_next_vmid;
427 kvm_next_vmid++;
428
429 /* update vttbr to be used with the new vmid */
430 pgd_phys = virt_to_phys(kvm->arch.pgd);
431 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
432 kvm->arch.vttbr = pgd_phys & VTTBR_BADDR_MASK;
433 kvm->arch.vttbr |= vmid;
434
435 spin_unlock(&kvm_vmid_lock);
436 }
437
438 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
439 {
440 int ret;
441
442 if (likely(vcpu->arch.has_run_once))
443 return 0;
444
445 vcpu->arch.has_run_once = true;
446
447 /*
448 * Initialize the VGIC before running a vcpu the first time on
449 * this VM.
450 */
451 if (unlikely(!vgic_initialized(vcpu->kvm))) {
452 ret = kvm_vgic_init(vcpu->kvm);
453 if (ret)
454 return ret;
455 }
456
457 return 0;
458 }
459
460 static void vcpu_pause(struct kvm_vcpu *vcpu)
461 {
462 wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
463
464 wait_event_interruptible(*wq, !vcpu->arch.pause);
465 }
466
467 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
468 {
469 return vcpu->arch.target >= 0;
470 }
471
472 /**
473 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
474 * @vcpu: The VCPU pointer
475 * @run: The kvm_run structure pointer used for userspace state exchange
476 *
477 * This function is called through the VCPU_RUN ioctl called from user space. It
478 * will execute VM code in a loop until the time slice for the process is used
479 * or some emulation is needed from user space in which case the function will
480 * return with return value 0 and with the kvm_run structure filled in with the
481 * required data for the requested emulation.
482 */
483 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
484 {
485 int ret;
486 sigset_t sigsaved;
487
488 if (unlikely(!kvm_vcpu_initialized(vcpu)))
489 return -ENOEXEC;
490
491 ret = kvm_vcpu_first_run_init(vcpu);
492 if (ret)
493 return ret;
494
495 if (run->exit_reason == KVM_EXIT_MMIO) {
496 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
497 if (ret)
498 return ret;
499 }
500
501 if (vcpu->sigset_active)
502 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
503
504 ret = 1;
505 run->exit_reason = KVM_EXIT_UNKNOWN;
506 while (ret > 0) {
507 /*
508 * Check conditions before entering the guest
509 */
510 cond_resched();
511
512 update_vttbr(vcpu->kvm);
513
514 if (vcpu->arch.pause)
515 vcpu_pause(vcpu);
516
517 kvm_vgic_flush_hwstate(vcpu);
518 kvm_timer_flush_hwstate(vcpu);
519
520 local_irq_disable();
521
522 /*
523 * Re-check atomic conditions
524 */
525 if (signal_pending(current)) {
526 ret = -EINTR;
527 run->exit_reason = KVM_EXIT_INTR;
528 }
529
530 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
531 local_irq_enable();
532 kvm_timer_sync_hwstate(vcpu);
533 kvm_vgic_sync_hwstate(vcpu);
534 continue;
535 }
536
537 /**************************************************************
538 * Enter the guest
539 */
540 trace_kvm_entry(*vcpu_pc(vcpu));
541 kvm_guest_enter();
542 vcpu->mode = IN_GUEST_MODE;
543
544 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
545
546 vcpu->mode = OUTSIDE_GUEST_MODE;
547 vcpu->arch.last_pcpu = smp_processor_id();
548 kvm_guest_exit();
549 trace_kvm_exit(*vcpu_pc(vcpu));
550 /*
551 * We may have taken a host interrupt in HYP mode (ie
552 * while executing the guest). This interrupt is still
553 * pending, as we haven't serviced it yet!
554 *
555 * We're now back in SVC mode, with interrupts
556 * disabled. Enabling the interrupts now will have
557 * the effect of taking the interrupt again, in SVC
558 * mode this time.
559 */
560 local_irq_enable();
561
562 /*
563 * Back from guest
564 *************************************************************/
565
566 kvm_timer_sync_hwstate(vcpu);
567 kvm_vgic_sync_hwstate(vcpu);
568
569 ret = handle_exit(vcpu, run, ret);
570 }
571
572 if (vcpu->sigset_active)
573 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
574 return ret;
575 }
576
577 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
578 {
579 int bit_index;
580 bool set;
581 unsigned long *ptr;
582
583 if (number == KVM_ARM_IRQ_CPU_IRQ)
584 bit_index = __ffs(HCR_VI);
585 else /* KVM_ARM_IRQ_CPU_FIQ */
586 bit_index = __ffs(HCR_VF);
587
588 ptr = (unsigned long *)&vcpu->arch.irq_lines;
589 if (level)
590 set = test_and_set_bit(bit_index, ptr);
591 else
592 set = test_and_clear_bit(bit_index, ptr);
593
594 /*
595 * If we didn't change anything, no need to wake up or kick other CPUs
596 */
597 if (set == level)
598 return 0;
599
600 /*
601 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
602 * trigger a world-switch round on the running physical CPU to set the
603 * virtual IRQ/FIQ fields in the HCR appropriately.
604 */
605 kvm_vcpu_kick(vcpu);
606
607 return 0;
608 }
609
610 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
611 bool line_status)
612 {
613 u32 irq = irq_level->irq;
614 unsigned int irq_type, vcpu_idx, irq_num;
615 int nrcpus = atomic_read(&kvm->online_vcpus);
616 struct kvm_vcpu *vcpu = NULL;
617 bool level = irq_level->level;
618
619 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
620 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
621 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
622
623 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
624
625 switch (irq_type) {
626 case KVM_ARM_IRQ_TYPE_CPU:
627 if (irqchip_in_kernel(kvm))
628 return -ENXIO;
629
630 if (vcpu_idx >= nrcpus)
631 return -EINVAL;
632
633 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
634 if (!vcpu)
635 return -EINVAL;
636
637 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
638 return -EINVAL;
639
640 return vcpu_interrupt_line(vcpu, irq_num, level);
641 case KVM_ARM_IRQ_TYPE_PPI:
642 if (!irqchip_in_kernel(kvm))
643 return -ENXIO;
644
645 if (vcpu_idx >= nrcpus)
646 return -EINVAL;
647
648 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
649 if (!vcpu)
650 return -EINVAL;
651
652 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
653 return -EINVAL;
654
655 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
656 case KVM_ARM_IRQ_TYPE_SPI:
657 if (!irqchip_in_kernel(kvm))
658 return -ENXIO;
659
660 if (irq_num < VGIC_NR_PRIVATE_IRQS ||
661 irq_num > KVM_ARM_IRQ_GIC_MAX)
662 return -EINVAL;
663
664 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
665 }
666
667 return -EINVAL;
668 }
669
670 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
671 struct kvm_vcpu_init *init)
672 {
673 int ret;
674
675 ret = kvm_vcpu_set_target(vcpu, init);
676 if (ret)
677 return ret;
678
679 /*
680 * Handle the "start in power-off" case by marking the VCPU as paused.
681 */
682 if (__test_and_clear_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
683 vcpu->arch.pause = true;
684
685 return 0;
686 }
687
688 long kvm_arch_vcpu_ioctl(struct file *filp,
689 unsigned int ioctl, unsigned long arg)
690 {
691 struct kvm_vcpu *vcpu = filp->private_data;
692 void __user *argp = (void __user *)arg;
693
694 switch (ioctl) {
695 case KVM_ARM_VCPU_INIT: {
696 struct kvm_vcpu_init init;
697
698 if (copy_from_user(&init, argp, sizeof(init)))
699 return -EFAULT;
700
701 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
702 }
703 case KVM_SET_ONE_REG:
704 case KVM_GET_ONE_REG: {
705 struct kvm_one_reg reg;
706
707 if (unlikely(!kvm_vcpu_initialized(vcpu)))
708 return -ENOEXEC;
709
710 if (copy_from_user(&reg, argp, sizeof(reg)))
711 return -EFAULT;
712 if (ioctl == KVM_SET_ONE_REG)
713 return kvm_arm_set_reg(vcpu, &reg);
714 else
715 return kvm_arm_get_reg(vcpu, &reg);
716 }
717 case KVM_GET_REG_LIST: {
718 struct kvm_reg_list __user *user_list = argp;
719 struct kvm_reg_list reg_list;
720 unsigned n;
721
722 if (unlikely(!kvm_vcpu_initialized(vcpu)))
723 return -ENOEXEC;
724
725 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
726 return -EFAULT;
727 n = reg_list.n;
728 reg_list.n = kvm_arm_num_regs(vcpu);
729 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
730 return -EFAULT;
731 if (n < reg_list.n)
732 return -E2BIG;
733 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
734 }
735 default:
736 return -EINVAL;
737 }
738 }
739
740 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
741 {
742 return -EINVAL;
743 }
744
745 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
746 struct kvm_arm_device_addr *dev_addr)
747 {
748 unsigned long dev_id, type;
749
750 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
751 KVM_ARM_DEVICE_ID_SHIFT;
752 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
753 KVM_ARM_DEVICE_TYPE_SHIFT;
754
755 switch (dev_id) {
756 case KVM_ARM_DEVICE_VGIC_V2:
757 if (!vgic_present)
758 return -ENXIO;
759 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
760 default:
761 return -ENODEV;
762 }
763 }
764
765 long kvm_arch_vm_ioctl(struct file *filp,
766 unsigned int ioctl, unsigned long arg)
767 {
768 struct kvm *kvm = filp->private_data;
769 void __user *argp = (void __user *)arg;
770
771 switch (ioctl) {
772 case KVM_CREATE_IRQCHIP: {
773 if (vgic_present)
774 return kvm_vgic_create(kvm);
775 else
776 return -ENXIO;
777 }
778 case KVM_ARM_SET_DEVICE_ADDR: {
779 struct kvm_arm_device_addr dev_addr;
780
781 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
782 return -EFAULT;
783 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
784 }
785 case KVM_ARM_PREFERRED_TARGET: {
786 int err;
787 struct kvm_vcpu_init init;
788
789 err = kvm_vcpu_preferred_target(&init);
790 if (err)
791 return err;
792
793 if (copy_to_user(argp, &init, sizeof(init)))
794 return -EFAULT;
795
796 return 0;
797 }
798 default:
799 return -EINVAL;
800 }
801 }
802
803 static void cpu_init_hyp_mode(void *dummy)
804 {
805 phys_addr_t boot_pgd_ptr;
806 phys_addr_t pgd_ptr;
807 unsigned long hyp_stack_ptr;
808 unsigned long stack_page;
809 unsigned long vector_ptr;
810
811 /* Switch from the HYP stub to our own HYP init vector */
812 __hyp_set_vectors(kvm_get_idmap_vector());
813
814 boot_pgd_ptr = kvm_mmu_get_boot_httbr();
815 pgd_ptr = kvm_mmu_get_httbr();
816 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
817 hyp_stack_ptr = stack_page + PAGE_SIZE;
818 vector_ptr = (unsigned long)__kvm_hyp_vector;
819
820 __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
821 }
822
823 static int hyp_init_cpu_notify(struct notifier_block *self,
824 unsigned long action, void *cpu)
825 {
826 switch (action) {
827 case CPU_STARTING:
828 case CPU_STARTING_FROZEN:
829 cpu_init_hyp_mode(NULL);
830 break;
831 }
832
833 return NOTIFY_OK;
834 }
835
836 static struct notifier_block hyp_init_cpu_nb = {
837 .notifier_call = hyp_init_cpu_notify,
838 };
839
840 #ifdef CONFIG_CPU_PM
841 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
842 unsigned long cmd,
843 void *v)
844 {
845 if (cmd == CPU_PM_EXIT &&
846 __hyp_get_vectors() == hyp_default_vectors) {
847 cpu_init_hyp_mode(NULL);
848 return NOTIFY_OK;
849 }
850
851 return NOTIFY_DONE;
852 }
853
854 static struct notifier_block hyp_init_cpu_pm_nb = {
855 .notifier_call = hyp_init_cpu_pm_notifier,
856 };
857
858 static void __init hyp_cpu_pm_init(void)
859 {
860 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
861 }
862 #else
863 static inline void hyp_cpu_pm_init(void)
864 {
865 }
866 #endif
867
868 /**
869 * Inits Hyp-mode on all online CPUs
870 */
871 static int init_hyp_mode(void)
872 {
873 int cpu;
874 int err = 0;
875
876 /*
877 * Allocate Hyp PGD and setup Hyp identity mapping
878 */
879 err = kvm_mmu_init();
880 if (err)
881 goto out_err;
882
883 /*
884 * It is probably enough to obtain the default on one
885 * CPU. It's unlikely to be different on the others.
886 */
887 hyp_default_vectors = __hyp_get_vectors();
888
889 /*
890 * Allocate stack pages for Hypervisor-mode
891 */
892 for_each_possible_cpu(cpu) {
893 unsigned long stack_page;
894
895 stack_page = __get_free_page(GFP_KERNEL);
896 if (!stack_page) {
897 err = -ENOMEM;
898 goto out_free_stack_pages;
899 }
900
901 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
902 }
903
904 /*
905 * Map the Hyp-code called directly from the host
906 */
907 err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
908 if (err) {
909 kvm_err("Cannot map world-switch code\n");
910 goto out_free_mappings;
911 }
912
913 /*
914 * Map the Hyp stack pages
915 */
916 for_each_possible_cpu(cpu) {
917 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
918 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
919
920 if (err) {
921 kvm_err("Cannot map hyp stack\n");
922 goto out_free_mappings;
923 }
924 }
925
926 /*
927 * Map the host CPU structures
928 */
929 kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
930 if (!kvm_host_cpu_state) {
931 err = -ENOMEM;
932 kvm_err("Cannot allocate host CPU state\n");
933 goto out_free_mappings;
934 }
935
936 for_each_possible_cpu(cpu) {
937 kvm_cpu_context_t *cpu_ctxt;
938
939 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
940 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
941
942 if (err) {
943 kvm_err("Cannot map host CPU state: %d\n", err);
944 goto out_free_context;
945 }
946 }
947
948 /*
949 * Execute the init code on each CPU.
950 */
951 on_each_cpu(cpu_init_hyp_mode, NULL, 1);
952
953 /*
954 * Init HYP view of VGIC
955 */
956 err = kvm_vgic_hyp_init();
957 if (err)
958 goto out_free_context;
959
960 #ifdef CONFIG_KVM_ARM_VGIC
961 vgic_present = true;
962 #endif
963
964 /*
965 * Init HYP architected timer support
966 */
967 err = kvm_timer_hyp_init();
968 if (err)
969 goto out_free_mappings;
970
971 #ifndef CONFIG_HOTPLUG_CPU
972 free_boot_hyp_pgd();
973 #endif
974
975 kvm_perf_init();
976
977 kvm_info("Hyp mode initialized successfully\n");
978
979 return 0;
980 out_free_context:
981 free_percpu(kvm_host_cpu_state);
982 out_free_mappings:
983 free_hyp_pgds();
984 out_free_stack_pages:
985 for_each_possible_cpu(cpu)
986 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
987 out_err:
988 kvm_err("error initializing Hyp mode: %d\n", err);
989 return err;
990 }
991
992 static void check_kvm_target_cpu(void *ret)
993 {
994 *(int *)ret = kvm_target_cpu();
995 }
996
997 /**
998 * Initialize Hyp-mode and memory mappings on all CPUs.
999 */
1000 int kvm_arch_init(void *opaque)
1001 {
1002 int err;
1003 int ret, cpu;
1004
1005 if (!is_hyp_mode_available()) {
1006 kvm_err("HYP mode not available\n");
1007 return -ENODEV;
1008 }
1009
1010 for_each_online_cpu(cpu) {
1011 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1012 if (ret < 0) {
1013 kvm_err("Error, CPU %d not supported!\n", cpu);
1014 return -ENODEV;
1015 }
1016 }
1017
1018 cpu_notifier_register_begin();
1019
1020 err = init_hyp_mode();
1021 if (err)
1022 goto out_err;
1023
1024 err = __register_cpu_notifier(&hyp_init_cpu_nb);
1025 if (err) {
1026 kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
1027 goto out_err;
1028 }
1029
1030 cpu_notifier_register_done();
1031
1032 hyp_cpu_pm_init();
1033
1034 kvm_coproc_table_init();
1035 return 0;
1036 out_err:
1037 cpu_notifier_register_done();
1038 return err;
1039 }
1040
1041 /* NOP: Compiling as a module not supported */
1042 void kvm_arch_exit(void)
1043 {
1044 kvm_perf_teardown();
1045 }
1046
1047 static int arm_init(void)
1048 {
1049 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1050 return rc;
1051 }
1052
1053 module_init(arm_init);
This page took 0.052256 seconds and 5 git commands to generate.