fb4661cf896ecdb5558b5c29fd3d2fe732356178
[deliverable/linux.git] / arch / arm / kvm / arm.c
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/cpu_pm.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/kvm_host.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31 #include <kvm/arm_pmu.h>
32
33 #define CREATE_TRACE_POINTS
34 #include "trace.h"
35
36 #include <asm/uaccess.h>
37 #include <asm/ptrace.h>
38 #include <asm/mman.h>
39 #include <asm/tlbflush.h>
40 #include <asm/cacheflush.h>
41 #include <asm/virt.h>
42 #include <asm/kvm_arm.h>
43 #include <asm/kvm_asm.h>
44 #include <asm/kvm_mmu.h>
45 #include <asm/kvm_emulate.h>
46 #include <asm/kvm_coproc.h>
47 #include <asm/kvm_psci.h>
48 #include <asm/sections.h>
49
50 #ifdef REQUIRES_VIRT
51 __asm__(".arch_extension virt");
52 #endif
53
54 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
55 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
56 static unsigned long hyp_default_vectors;
57
58 /* Per-CPU variable containing the currently running vcpu. */
59 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
60
61 /* The VMID used in the VTTBR */
62 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
63 static u32 kvm_next_vmid;
64 static unsigned int kvm_vmid_bits __read_mostly;
65 static DEFINE_SPINLOCK(kvm_vmid_lock);
66
67 static bool vgic_present;
68
69 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
70
71 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
72 {
73 BUG_ON(preemptible());
74 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
75 }
76
77 /**
78 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
79 * Must be called from non-preemptible context
80 */
81 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
82 {
83 BUG_ON(preemptible());
84 return __this_cpu_read(kvm_arm_running_vcpu);
85 }
86
87 /**
88 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
89 */
90 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
91 {
92 return &kvm_arm_running_vcpu;
93 }
94
95 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
96 {
97 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
98 }
99
100 int kvm_arch_hardware_setup(void)
101 {
102 return 0;
103 }
104
105 void kvm_arch_check_processor_compat(void *rtn)
106 {
107 *(int *)rtn = 0;
108 }
109
110
111 /**
112 * kvm_arch_init_vm - initializes a VM data structure
113 * @kvm: pointer to the KVM struct
114 */
115 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
116 {
117 int ret = 0;
118
119 if (type)
120 return -EINVAL;
121
122 ret = kvm_alloc_stage2_pgd(kvm);
123 if (ret)
124 goto out_fail_alloc;
125
126 ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
127 if (ret)
128 goto out_free_stage2_pgd;
129
130 kvm_vgic_early_init(kvm);
131 kvm_timer_init(kvm);
132
133 /* Mark the initial VMID generation invalid */
134 kvm->arch.vmid_gen = 0;
135
136 /* The maximum number of VCPUs is limited by the host's GIC model */
137 kvm->arch.max_vcpus = vgic_present ?
138 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
139
140 return ret;
141 out_free_stage2_pgd:
142 kvm_free_stage2_pgd(kvm);
143 out_fail_alloc:
144 return ret;
145 }
146
147 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
148 {
149 return VM_FAULT_SIGBUS;
150 }
151
152
153 /**
154 * kvm_arch_destroy_vm - destroy the VM data structure
155 * @kvm: pointer to the KVM struct
156 */
157 void kvm_arch_destroy_vm(struct kvm *kvm)
158 {
159 int i;
160
161 kvm_free_stage2_pgd(kvm);
162
163 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
164 if (kvm->vcpus[i]) {
165 kvm_arch_vcpu_free(kvm->vcpus[i]);
166 kvm->vcpus[i] = NULL;
167 }
168 }
169
170 kvm_vgic_destroy(kvm);
171 }
172
173 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
174 {
175 int r;
176 switch (ext) {
177 case KVM_CAP_IRQCHIP:
178 r = vgic_present;
179 break;
180 case KVM_CAP_IOEVENTFD:
181 case KVM_CAP_DEVICE_CTRL:
182 case KVM_CAP_USER_MEMORY:
183 case KVM_CAP_SYNC_MMU:
184 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
185 case KVM_CAP_ONE_REG:
186 case KVM_CAP_ARM_PSCI:
187 case KVM_CAP_ARM_PSCI_0_2:
188 case KVM_CAP_READONLY_MEM:
189 case KVM_CAP_MP_STATE:
190 r = 1;
191 break;
192 case KVM_CAP_COALESCED_MMIO:
193 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
194 break;
195 case KVM_CAP_ARM_SET_DEVICE_ADDR:
196 r = 1;
197 break;
198 case KVM_CAP_NR_VCPUS:
199 r = num_online_cpus();
200 break;
201 case KVM_CAP_MAX_VCPUS:
202 r = KVM_MAX_VCPUS;
203 break;
204 default:
205 r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
206 break;
207 }
208 return r;
209 }
210
211 long kvm_arch_dev_ioctl(struct file *filp,
212 unsigned int ioctl, unsigned long arg)
213 {
214 return -EINVAL;
215 }
216
217
218 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
219 {
220 int err;
221 struct kvm_vcpu *vcpu;
222
223 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
224 err = -EBUSY;
225 goto out;
226 }
227
228 if (id >= kvm->arch.max_vcpus) {
229 err = -EINVAL;
230 goto out;
231 }
232
233 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
234 if (!vcpu) {
235 err = -ENOMEM;
236 goto out;
237 }
238
239 err = kvm_vcpu_init(vcpu, kvm, id);
240 if (err)
241 goto free_vcpu;
242
243 err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
244 if (err)
245 goto vcpu_uninit;
246
247 return vcpu;
248 vcpu_uninit:
249 kvm_vcpu_uninit(vcpu);
250 free_vcpu:
251 kmem_cache_free(kvm_vcpu_cache, vcpu);
252 out:
253 return ERR_PTR(err);
254 }
255
256 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
257 {
258 kvm_vgic_vcpu_early_init(vcpu);
259 }
260
261 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
262 {
263 kvm_mmu_free_memory_caches(vcpu);
264 kvm_timer_vcpu_terminate(vcpu);
265 kvm_vgic_vcpu_destroy(vcpu);
266 kvm_pmu_vcpu_destroy(vcpu);
267 kmem_cache_free(kvm_vcpu_cache, vcpu);
268 }
269
270 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
271 {
272 kvm_arch_vcpu_free(vcpu);
273 }
274
275 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
276 {
277 return kvm_timer_should_fire(vcpu);
278 }
279
280 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
281 {
282 kvm_timer_schedule(vcpu);
283 }
284
285 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
286 {
287 kvm_timer_unschedule(vcpu);
288 }
289
290 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
291 {
292 /* Force users to call KVM_ARM_VCPU_INIT */
293 vcpu->arch.target = -1;
294 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
295
296 /* Set up the timer */
297 kvm_timer_vcpu_init(vcpu);
298
299 kvm_arm_reset_debug_ptr(vcpu);
300
301 return 0;
302 }
303
304 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
305 {
306 vcpu->cpu = cpu;
307 vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
308
309 kvm_arm_set_running_vcpu(vcpu);
310 }
311
312 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
313 {
314 /*
315 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
316 * if the vcpu is no longer assigned to a cpu. This is used for the
317 * optimized make_all_cpus_request path.
318 */
319 vcpu->cpu = -1;
320
321 kvm_arm_set_running_vcpu(NULL);
322 kvm_timer_vcpu_put(vcpu);
323 }
324
325 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
326 struct kvm_mp_state *mp_state)
327 {
328 if (vcpu->arch.power_off)
329 mp_state->mp_state = KVM_MP_STATE_STOPPED;
330 else
331 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
332
333 return 0;
334 }
335
336 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
337 struct kvm_mp_state *mp_state)
338 {
339 switch (mp_state->mp_state) {
340 case KVM_MP_STATE_RUNNABLE:
341 vcpu->arch.power_off = false;
342 break;
343 case KVM_MP_STATE_STOPPED:
344 vcpu->arch.power_off = true;
345 break;
346 default:
347 return -EINVAL;
348 }
349
350 return 0;
351 }
352
353 /**
354 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
355 * @v: The VCPU pointer
356 *
357 * If the guest CPU is not waiting for interrupts or an interrupt line is
358 * asserted, the CPU is by definition runnable.
359 */
360 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
361 {
362 return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
363 && !v->arch.power_off && !v->arch.pause);
364 }
365
366 /* Just ensure a guest exit from a particular CPU */
367 static void exit_vm_noop(void *info)
368 {
369 }
370
371 void force_vm_exit(const cpumask_t *mask)
372 {
373 preempt_disable();
374 smp_call_function_many(mask, exit_vm_noop, NULL, true);
375 preempt_enable();
376 }
377
378 /**
379 * need_new_vmid_gen - check that the VMID is still valid
380 * @kvm: The VM's VMID to check
381 *
382 * return true if there is a new generation of VMIDs being used
383 *
384 * The hardware supports only 256 values with the value zero reserved for the
385 * host, so we check if an assigned value belongs to a previous generation,
386 * which which requires us to assign a new value. If we're the first to use a
387 * VMID for the new generation, we must flush necessary caches and TLBs on all
388 * CPUs.
389 */
390 static bool need_new_vmid_gen(struct kvm *kvm)
391 {
392 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
393 }
394
395 /**
396 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
397 * @kvm The guest that we are about to run
398 *
399 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
400 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
401 * caches and TLBs.
402 */
403 static void update_vttbr(struct kvm *kvm)
404 {
405 phys_addr_t pgd_phys;
406 u64 vmid;
407
408 if (!need_new_vmid_gen(kvm))
409 return;
410
411 spin_lock(&kvm_vmid_lock);
412
413 /*
414 * We need to re-check the vmid_gen here to ensure that if another vcpu
415 * already allocated a valid vmid for this vm, then this vcpu should
416 * use the same vmid.
417 */
418 if (!need_new_vmid_gen(kvm)) {
419 spin_unlock(&kvm_vmid_lock);
420 return;
421 }
422
423 /* First user of a new VMID generation? */
424 if (unlikely(kvm_next_vmid == 0)) {
425 atomic64_inc(&kvm_vmid_gen);
426 kvm_next_vmid = 1;
427
428 /*
429 * On SMP we know no other CPUs can use this CPU's or each
430 * other's VMID after force_vm_exit returns since the
431 * kvm_vmid_lock blocks them from reentry to the guest.
432 */
433 force_vm_exit(cpu_all_mask);
434 /*
435 * Now broadcast TLB + ICACHE invalidation over the inner
436 * shareable domain to make sure all data structures are
437 * clean.
438 */
439 kvm_call_hyp(__kvm_flush_vm_context);
440 }
441
442 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
443 kvm->arch.vmid = kvm_next_vmid;
444 kvm_next_vmid++;
445 kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
446
447 /* update vttbr to be used with the new vmid */
448 pgd_phys = virt_to_phys(kvm->arch.pgd);
449 BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
450 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
451 kvm->arch.vttbr = pgd_phys | vmid;
452
453 spin_unlock(&kvm_vmid_lock);
454 }
455
456 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
457 {
458 struct kvm *kvm = vcpu->kvm;
459 int ret = 0;
460
461 if (likely(vcpu->arch.has_run_once))
462 return 0;
463
464 vcpu->arch.has_run_once = true;
465
466 /*
467 * Map the VGIC hardware resources before running a vcpu the first
468 * time on this VM.
469 */
470 if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
471 ret = kvm_vgic_map_resources(kvm);
472 if (ret)
473 return ret;
474 }
475
476 /*
477 * Enable the arch timers only if we have an in-kernel VGIC
478 * and it has been properly initialized, since we cannot handle
479 * interrupts from the virtual timer with a userspace gic.
480 */
481 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
482 ret = kvm_timer_enable(vcpu);
483
484 return ret;
485 }
486
487 bool kvm_arch_intc_initialized(struct kvm *kvm)
488 {
489 return vgic_initialized(kvm);
490 }
491
492 void kvm_arm_halt_guest(struct kvm *kvm)
493 {
494 int i;
495 struct kvm_vcpu *vcpu;
496
497 kvm_for_each_vcpu(i, vcpu, kvm)
498 vcpu->arch.pause = true;
499 kvm_make_all_cpus_request(kvm, KVM_REQ_VCPU_EXIT);
500 }
501
502 void kvm_arm_halt_vcpu(struct kvm_vcpu *vcpu)
503 {
504 vcpu->arch.pause = true;
505 kvm_vcpu_kick(vcpu);
506 }
507
508 void kvm_arm_resume_vcpu(struct kvm_vcpu *vcpu)
509 {
510 struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
511
512 vcpu->arch.pause = false;
513 swake_up(wq);
514 }
515
516 void kvm_arm_resume_guest(struct kvm *kvm)
517 {
518 int i;
519 struct kvm_vcpu *vcpu;
520
521 kvm_for_each_vcpu(i, vcpu, kvm)
522 kvm_arm_resume_vcpu(vcpu);
523 }
524
525 static void vcpu_sleep(struct kvm_vcpu *vcpu)
526 {
527 struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
528
529 swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
530 (!vcpu->arch.pause)));
531 }
532
533 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
534 {
535 return vcpu->arch.target >= 0;
536 }
537
538 /**
539 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
540 * @vcpu: The VCPU pointer
541 * @run: The kvm_run structure pointer used for userspace state exchange
542 *
543 * This function is called through the VCPU_RUN ioctl called from user space. It
544 * will execute VM code in a loop until the time slice for the process is used
545 * or some emulation is needed from user space in which case the function will
546 * return with return value 0 and with the kvm_run structure filled in with the
547 * required data for the requested emulation.
548 */
549 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
550 {
551 int ret;
552 sigset_t sigsaved;
553
554 if (unlikely(!kvm_vcpu_initialized(vcpu)))
555 return -ENOEXEC;
556
557 ret = kvm_vcpu_first_run_init(vcpu);
558 if (ret)
559 return ret;
560
561 if (run->exit_reason == KVM_EXIT_MMIO) {
562 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
563 if (ret)
564 return ret;
565 }
566
567 if (vcpu->sigset_active)
568 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
569
570 ret = 1;
571 run->exit_reason = KVM_EXIT_UNKNOWN;
572 while (ret > 0) {
573 /*
574 * Check conditions before entering the guest
575 */
576 cond_resched();
577
578 update_vttbr(vcpu->kvm);
579
580 if (vcpu->arch.power_off || vcpu->arch.pause)
581 vcpu_sleep(vcpu);
582
583 /*
584 * Preparing the interrupts to be injected also
585 * involves poking the GIC, which must be done in a
586 * non-preemptible context.
587 */
588 preempt_disable();
589 kvm_pmu_flush_hwstate(vcpu);
590 kvm_timer_flush_hwstate(vcpu);
591 kvm_vgic_flush_hwstate(vcpu);
592
593 local_irq_disable();
594
595 /*
596 * Re-check atomic conditions
597 */
598 if (signal_pending(current)) {
599 ret = -EINTR;
600 run->exit_reason = KVM_EXIT_INTR;
601 }
602
603 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
604 vcpu->arch.power_off || vcpu->arch.pause) {
605 local_irq_enable();
606 kvm_pmu_sync_hwstate(vcpu);
607 kvm_timer_sync_hwstate(vcpu);
608 kvm_vgic_sync_hwstate(vcpu);
609 preempt_enable();
610 continue;
611 }
612
613 kvm_arm_setup_debug(vcpu);
614
615 /**************************************************************
616 * Enter the guest
617 */
618 trace_kvm_entry(*vcpu_pc(vcpu));
619 __kvm_guest_enter();
620 vcpu->mode = IN_GUEST_MODE;
621
622 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
623
624 vcpu->mode = OUTSIDE_GUEST_MODE;
625 vcpu->stat.exits++;
626 /*
627 * Back from guest
628 *************************************************************/
629
630 kvm_arm_clear_debug(vcpu);
631
632 /*
633 * We may have taken a host interrupt in HYP mode (ie
634 * while executing the guest). This interrupt is still
635 * pending, as we haven't serviced it yet!
636 *
637 * We're now back in SVC mode, with interrupts
638 * disabled. Enabling the interrupts now will have
639 * the effect of taking the interrupt again, in SVC
640 * mode this time.
641 */
642 local_irq_enable();
643
644 /*
645 * We do local_irq_enable() before calling kvm_guest_exit() so
646 * that if a timer interrupt hits while running the guest we
647 * account that tick as being spent in the guest. We enable
648 * preemption after calling kvm_guest_exit() so that if we get
649 * preempted we make sure ticks after that is not counted as
650 * guest time.
651 */
652 kvm_guest_exit();
653 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
654
655 /*
656 * We must sync the PMU and timer state before the vgic state so
657 * that the vgic can properly sample the updated state of the
658 * interrupt line.
659 */
660 kvm_pmu_sync_hwstate(vcpu);
661 kvm_timer_sync_hwstate(vcpu);
662
663 kvm_vgic_sync_hwstate(vcpu);
664
665 preempt_enable();
666
667 ret = handle_exit(vcpu, run, ret);
668 }
669
670 if (vcpu->sigset_active)
671 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
672 return ret;
673 }
674
675 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
676 {
677 int bit_index;
678 bool set;
679 unsigned long *ptr;
680
681 if (number == KVM_ARM_IRQ_CPU_IRQ)
682 bit_index = __ffs(HCR_VI);
683 else /* KVM_ARM_IRQ_CPU_FIQ */
684 bit_index = __ffs(HCR_VF);
685
686 ptr = (unsigned long *)&vcpu->arch.irq_lines;
687 if (level)
688 set = test_and_set_bit(bit_index, ptr);
689 else
690 set = test_and_clear_bit(bit_index, ptr);
691
692 /*
693 * If we didn't change anything, no need to wake up or kick other CPUs
694 */
695 if (set == level)
696 return 0;
697
698 /*
699 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
700 * trigger a world-switch round on the running physical CPU to set the
701 * virtual IRQ/FIQ fields in the HCR appropriately.
702 */
703 kvm_vcpu_kick(vcpu);
704
705 return 0;
706 }
707
708 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
709 bool line_status)
710 {
711 u32 irq = irq_level->irq;
712 unsigned int irq_type, vcpu_idx, irq_num;
713 int nrcpus = atomic_read(&kvm->online_vcpus);
714 struct kvm_vcpu *vcpu = NULL;
715 bool level = irq_level->level;
716
717 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
718 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
719 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
720
721 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
722
723 switch (irq_type) {
724 case KVM_ARM_IRQ_TYPE_CPU:
725 if (irqchip_in_kernel(kvm))
726 return -ENXIO;
727
728 if (vcpu_idx >= nrcpus)
729 return -EINVAL;
730
731 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
732 if (!vcpu)
733 return -EINVAL;
734
735 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
736 return -EINVAL;
737
738 return vcpu_interrupt_line(vcpu, irq_num, level);
739 case KVM_ARM_IRQ_TYPE_PPI:
740 if (!irqchip_in_kernel(kvm))
741 return -ENXIO;
742
743 if (vcpu_idx >= nrcpus)
744 return -EINVAL;
745
746 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
747 if (!vcpu)
748 return -EINVAL;
749
750 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
751 return -EINVAL;
752
753 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
754 case KVM_ARM_IRQ_TYPE_SPI:
755 if (!irqchip_in_kernel(kvm))
756 return -ENXIO;
757
758 if (irq_num < VGIC_NR_PRIVATE_IRQS)
759 return -EINVAL;
760
761 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
762 }
763
764 return -EINVAL;
765 }
766
767 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
768 const struct kvm_vcpu_init *init)
769 {
770 unsigned int i;
771 int phys_target = kvm_target_cpu();
772
773 if (init->target != phys_target)
774 return -EINVAL;
775
776 /*
777 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
778 * use the same target.
779 */
780 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
781 return -EINVAL;
782
783 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
784 for (i = 0; i < sizeof(init->features) * 8; i++) {
785 bool set = (init->features[i / 32] & (1 << (i % 32)));
786
787 if (set && i >= KVM_VCPU_MAX_FEATURES)
788 return -ENOENT;
789
790 /*
791 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
792 * use the same feature set.
793 */
794 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
795 test_bit(i, vcpu->arch.features) != set)
796 return -EINVAL;
797
798 if (set)
799 set_bit(i, vcpu->arch.features);
800 }
801
802 vcpu->arch.target = phys_target;
803
804 /* Now we know what it is, we can reset it. */
805 return kvm_reset_vcpu(vcpu);
806 }
807
808
809 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
810 struct kvm_vcpu_init *init)
811 {
812 int ret;
813
814 ret = kvm_vcpu_set_target(vcpu, init);
815 if (ret)
816 return ret;
817
818 /*
819 * Ensure a rebooted VM will fault in RAM pages and detect if the
820 * guest MMU is turned off and flush the caches as needed.
821 */
822 if (vcpu->arch.has_run_once)
823 stage2_unmap_vm(vcpu->kvm);
824
825 vcpu_reset_hcr(vcpu);
826
827 /*
828 * Handle the "start in power-off" case.
829 */
830 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
831 vcpu->arch.power_off = true;
832 else
833 vcpu->arch.power_off = false;
834
835 return 0;
836 }
837
838 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
839 struct kvm_device_attr *attr)
840 {
841 int ret = -ENXIO;
842
843 switch (attr->group) {
844 default:
845 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
846 break;
847 }
848
849 return ret;
850 }
851
852 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
853 struct kvm_device_attr *attr)
854 {
855 int ret = -ENXIO;
856
857 switch (attr->group) {
858 default:
859 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
860 break;
861 }
862
863 return ret;
864 }
865
866 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
867 struct kvm_device_attr *attr)
868 {
869 int ret = -ENXIO;
870
871 switch (attr->group) {
872 default:
873 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
874 break;
875 }
876
877 return ret;
878 }
879
880 long kvm_arch_vcpu_ioctl(struct file *filp,
881 unsigned int ioctl, unsigned long arg)
882 {
883 struct kvm_vcpu *vcpu = filp->private_data;
884 void __user *argp = (void __user *)arg;
885 struct kvm_device_attr attr;
886
887 switch (ioctl) {
888 case KVM_ARM_VCPU_INIT: {
889 struct kvm_vcpu_init init;
890
891 if (copy_from_user(&init, argp, sizeof(init)))
892 return -EFAULT;
893
894 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
895 }
896 case KVM_SET_ONE_REG:
897 case KVM_GET_ONE_REG: {
898 struct kvm_one_reg reg;
899
900 if (unlikely(!kvm_vcpu_initialized(vcpu)))
901 return -ENOEXEC;
902
903 if (copy_from_user(&reg, argp, sizeof(reg)))
904 return -EFAULT;
905 if (ioctl == KVM_SET_ONE_REG)
906 return kvm_arm_set_reg(vcpu, &reg);
907 else
908 return kvm_arm_get_reg(vcpu, &reg);
909 }
910 case KVM_GET_REG_LIST: {
911 struct kvm_reg_list __user *user_list = argp;
912 struct kvm_reg_list reg_list;
913 unsigned n;
914
915 if (unlikely(!kvm_vcpu_initialized(vcpu)))
916 return -ENOEXEC;
917
918 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
919 return -EFAULT;
920 n = reg_list.n;
921 reg_list.n = kvm_arm_num_regs(vcpu);
922 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
923 return -EFAULT;
924 if (n < reg_list.n)
925 return -E2BIG;
926 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
927 }
928 case KVM_SET_DEVICE_ATTR: {
929 if (copy_from_user(&attr, argp, sizeof(attr)))
930 return -EFAULT;
931 return kvm_arm_vcpu_set_attr(vcpu, &attr);
932 }
933 case KVM_GET_DEVICE_ATTR: {
934 if (copy_from_user(&attr, argp, sizeof(attr)))
935 return -EFAULT;
936 return kvm_arm_vcpu_get_attr(vcpu, &attr);
937 }
938 case KVM_HAS_DEVICE_ATTR: {
939 if (copy_from_user(&attr, argp, sizeof(attr)))
940 return -EFAULT;
941 return kvm_arm_vcpu_has_attr(vcpu, &attr);
942 }
943 default:
944 return -EINVAL;
945 }
946 }
947
948 /**
949 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
950 * @kvm: kvm instance
951 * @log: slot id and address to which we copy the log
952 *
953 * Steps 1-4 below provide general overview of dirty page logging. See
954 * kvm_get_dirty_log_protect() function description for additional details.
955 *
956 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
957 * always flush the TLB (step 4) even if previous step failed and the dirty
958 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
959 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
960 * writes will be marked dirty for next log read.
961 *
962 * 1. Take a snapshot of the bit and clear it if needed.
963 * 2. Write protect the corresponding page.
964 * 3. Copy the snapshot to the userspace.
965 * 4. Flush TLB's if needed.
966 */
967 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
968 {
969 bool is_dirty = false;
970 int r;
971
972 mutex_lock(&kvm->slots_lock);
973
974 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
975
976 if (is_dirty)
977 kvm_flush_remote_tlbs(kvm);
978
979 mutex_unlock(&kvm->slots_lock);
980 return r;
981 }
982
983 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
984 struct kvm_arm_device_addr *dev_addr)
985 {
986 unsigned long dev_id, type;
987
988 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
989 KVM_ARM_DEVICE_ID_SHIFT;
990 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
991 KVM_ARM_DEVICE_TYPE_SHIFT;
992
993 switch (dev_id) {
994 case KVM_ARM_DEVICE_VGIC_V2:
995 if (!vgic_present)
996 return -ENXIO;
997 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
998 default:
999 return -ENODEV;
1000 }
1001 }
1002
1003 long kvm_arch_vm_ioctl(struct file *filp,
1004 unsigned int ioctl, unsigned long arg)
1005 {
1006 struct kvm *kvm = filp->private_data;
1007 void __user *argp = (void __user *)arg;
1008
1009 switch (ioctl) {
1010 case KVM_CREATE_IRQCHIP: {
1011 if (!vgic_present)
1012 return -ENXIO;
1013 return kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1014 }
1015 case KVM_ARM_SET_DEVICE_ADDR: {
1016 struct kvm_arm_device_addr dev_addr;
1017
1018 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1019 return -EFAULT;
1020 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1021 }
1022 case KVM_ARM_PREFERRED_TARGET: {
1023 int err;
1024 struct kvm_vcpu_init init;
1025
1026 err = kvm_vcpu_preferred_target(&init);
1027 if (err)
1028 return err;
1029
1030 if (copy_to_user(argp, &init, sizeof(init)))
1031 return -EFAULT;
1032
1033 return 0;
1034 }
1035 default:
1036 return -EINVAL;
1037 }
1038 }
1039
1040 static void cpu_init_hyp_mode(void *dummy)
1041 {
1042 phys_addr_t pgd_ptr;
1043 unsigned long hyp_stack_ptr;
1044 unsigned long stack_page;
1045 unsigned long vector_ptr;
1046
1047 /* Switch from the HYP stub to our own HYP init vector */
1048 __hyp_set_vectors(kvm_get_idmap_vector());
1049
1050 pgd_ptr = kvm_mmu_get_httbr();
1051 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1052 hyp_stack_ptr = stack_page + PAGE_SIZE;
1053 vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
1054
1055 __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1056 __cpu_init_stage2();
1057
1058 kvm_arm_init_debug();
1059 }
1060
1061 static void cpu_hyp_reinit(void)
1062 {
1063 if (is_kernel_in_hyp_mode()) {
1064 /*
1065 * __cpu_init_stage2() is safe to call even if the PM
1066 * event was cancelled before the CPU was reset.
1067 */
1068 __cpu_init_stage2();
1069 } else {
1070 if (__hyp_get_vectors() == hyp_default_vectors)
1071 cpu_init_hyp_mode(NULL);
1072 }
1073 }
1074
1075 static void cpu_hyp_reset(void)
1076 {
1077 if (!is_kernel_in_hyp_mode())
1078 __cpu_reset_hyp_mode(hyp_default_vectors,
1079 kvm_get_idmap_start());
1080 }
1081
1082 static void _kvm_arch_hardware_enable(void *discard)
1083 {
1084 if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1085 cpu_hyp_reinit();
1086 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1087 }
1088 }
1089
1090 int kvm_arch_hardware_enable(void)
1091 {
1092 _kvm_arch_hardware_enable(NULL);
1093 return 0;
1094 }
1095
1096 static void _kvm_arch_hardware_disable(void *discard)
1097 {
1098 if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1099 cpu_hyp_reset();
1100 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1101 }
1102 }
1103
1104 void kvm_arch_hardware_disable(void)
1105 {
1106 _kvm_arch_hardware_disable(NULL);
1107 }
1108
1109 #ifdef CONFIG_CPU_PM
1110 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1111 unsigned long cmd,
1112 void *v)
1113 {
1114 /*
1115 * kvm_arm_hardware_enabled is left with its old value over
1116 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1117 * re-enable hyp.
1118 */
1119 switch (cmd) {
1120 case CPU_PM_ENTER:
1121 if (__this_cpu_read(kvm_arm_hardware_enabled))
1122 /*
1123 * don't update kvm_arm_hardware_enabled here
1124 * so that the hardware will be re-enabled
1125 * when we resume. See below.
1126 */
1127 cpu_hyp_reset();
1128
1129 return NOTIFY_OK;
1130 case CPU_PM_EXIT:
1131 if (__this_cpu_read(kvm_arm_hardware_enabled))
1132 /* The hardware was enabled before suspend. */
1133 cpu_hyp_reinit();
1134
1135 return NOTIFY_OK;
1136
1137 default:
1138 return NOTIFY_DONE;
1139 }
1140 }
1141
1142 static struct notifier_block hyp_init_cpu_pm_nb = {
1143 .notifier_call = hyp_init_cpu_pm_notifier,
1144 };
1145
1146 static void __init hyp_cpu_pm_init(void)
1147 {
1148 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1149 }
1150 static void __init hyp_cpu_pm_exit(void)
1151 {
1152 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1153 }
1154 #else
1155 static inline void hyp_cpu_pm_init(void)
1156 {
1157 }
1158 static inline void hyp_cpu_pm_exit(void)
1159 {
1160 }
1161 #endif
1162
1163 static void teardown_common_resources(void)
1164 {
1165 free_percpu(kvm_host_cpu_state);
1166 }
1167
1168 static int init_common_resources(void)
1169 {
1170 kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1171 if (!kvm_host_cpu_state) {
1172 kvm_err("Cannot allocate host CPU state\n");
1173 return -ENOMEM;
1174 }
1175
1176 return 0;
1177 }
1178
1179 static int init_subsystems(void)
1180 {
1181 int err = 0;
1182
1183 /*
1184 * Enable hardware so that subsystem initialisation can access EL2.
1185 */
1186 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1187
1188 /*
1189 * Register CPU lower-power notifier
1190 */
1191 hyp_cpu_pm_init();
1192
1193 /*
1194 * Init HYP view of VGIC
1195 */
1196 err = kvm_vgic_hyp_init();
1197 switch (err) {
1198 case 0:
1199 vgic_present = true;
1200 break;
1201 case -ENODEV:
1202 case -ENXIO:
1203 vgic_present = false;
1204 err = 0;
1205 break;
1206 default:
1207 goto out;
1208 }
1209
1210 /*
1211 * Init HYP architected timer support
1212 */
1213 err = kvm_timer_hyp_init();
1214 if (err)
1215 goto out;
1216
1217 kvm_perf_init();
1218 kvm_coproc_table_init();
1219
1220 out:
1221 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1222
1223 return err;
1224 }
1225
1226 static void teardown_hyp_mode(void)
1227 {
1228 int cpu;
1229
1230 if (is_kernel_in_hyp_mode())
1231 return;
1232
1233 free_hyp_pgds();
1234 for_each_possible_cpu(cpu)
1235 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1236 hyp_cpu_pm_exit();
1237 }
1238
1239 static int init_vhe_mode(void)
1240 {
1241 /* set size of VMID supported by CPU */
1242 kvm_vmid_bits = kvm_get_vmid_bits();
1243 kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1244
1245 kvm_info("VHE mode initialized successfully\n");
1246 return 0;
1247 }
1248
1249 /**
1250 * Inits Hyp-mode on all online CPUs
1251 */
1252 static int init_hyp_mode(void)
1253 {
1254 int cpu;
1255 int err = 0;
1256
1257 /*
1258 * Allocate Hyp PGD and setup Hyp identity mapping
1259 */
1260 err = kvm_mmu_init();
1261 if (err)
1262 goto out_err;
1263
1264 /*
1265 * It is probably enough to obtain the default on one
1266 * CPU. It's unlikely to be different on the others.
1267 */
1268 hyp_default_vectors = __hyp_get_vectors();
1269
1270 /*
1271 * Allocate stack pages for Hypervisor-mode
1272 */
1273 for_each_possible_cpu(cpu) {
1274 unsigned long stack_page;
1275
1276 stack_page = __get_free_page(GFP_KERNEL);
1277 if (!stack_page) {
1278 err = -ENOMEM;
1279 goto out_err;
1280 }
1281
1282 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1283 }
1284
1285 /*
1286 * Map the Hyp-code called directly from the host
1287 */
1288 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1289 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1290 if (err) {
1291 kvm_err("Cannot map world-switch code\n");
1292 goto out_err;
1293 }
1294
1295 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1296 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1297 if (err) {
1298 kvm_err("Cannot map rodata section\n");
1299 goto out_err;
1300 }
1301
1302 /*
1303 * Map the Hyp stack pages
1304 */
1305 for_each_possible_cpu(cpu) {
1306 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1307 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1308 PAGE_HYP);
1309
1310 if (err) {
1311 kvm_err("Cannot map hyp stack\n");
1312 goto out_err;
1313 }
1314 }
1315
1316 for_each_possible_cpu(cpu) {
1317 kvm_cpu_context_t *cpu_ctxt;
1318
1319 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1320 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1321
1322 if (err) {
1323 kvm_err("Cannot map host CPU state: %d\n", err);
1324 goto out_err;
1325 }
1326 }
1327
1328 /* set size of VMID supported by CPU */
1329 kvm_vmid_bits = kvm_get_vmid_bits();
1330 kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1331
1332 kvm_info("Hyp mode initialized successfully\n");
1333
1334 return 0;
1335
1336 out_err:
1337 teardown_hyp_mode();
1338 kvm_err("error initializing Hyp mode: %d\n", err);
1339 return err;
1340 }
1341
1342 static void check_kvm_target_cpu(void *ret)
1343 {
1344 *(int *)ret = kvm_target_cpu();
1345 }
1346
1347 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1348 {
1349 struct kvm_vcpu *vcpu;
1350 int i;
1351
1352 mpidr &= MPIDR_HWID_BITMASK;
1353 kvm_for_each_vcpu(i, vcpu, kvm) {
1354 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1355 return vcpu;
1356 }
1357 return NULL;
1358 }
1359
1360 /**
1361 * Initialize Hyp-mode and memory mappings on all CPUs.
1362 */
1363 int kvm_arch_init(void *opaque)
1364 {
1365 int err;
1366 int ret, cpu;
1367
1368 if (!is_hyp_mode_available()) {
1369 kvm_err("HYP mode not available\n");
1370 return -ENODEV;
1371 }
1372
1373 for_each_online_cpu(cpu) {
1374 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1375 if (ret < 0) {
1376 kvm_err("Error, CPU %d not supported!\n", cpu);
1377 return -ENODEV;
1378 }
1379 }
1380
1381 err = init_common_resources();
1382 if (err)
1383 return err;
1384
1385 if (is_kernel_in_hyp_mode())
1386 err = init_vhe_mode();
1387 else
1388 err = init_hyp_mode();
1389 if (err)
1390 goto out_err;
1391
1392 err = init_subsystems();
1393 if (err)
1394 goto out_hyp;
1395
1396 return 0;
1397
1398 out_hyp:
1399 teardown_hyp_mode();
1400 out_err:
1401 teardown_common_resources();
1402 return err;
1403 }
1404
1405 /* NOP: Compiling as a module not supported */
1406 void kvm_arch_exit(void)
1407 {
1408 kvm_perf_teardown();
1409 }
1410
1411 static int arm_init(void)
1412 {
1413 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1414 return rc;
1415 }
1416
1417 module_init(arm_init);
This page took 0.058612 seconds and 5 git commands to generate.