KVM: arm: guest debug, add stub KVM_SET_GUEST_DEBUG ioctl
[deliverable/linux.git] / arch / arm / kvm / arm.c
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/cpu.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34
35 #include <asm/uaccess.h>
36 #include <asm/ptrace.h>
37 #include <asm/mman.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
40 #include <asm/virt.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/kvm_psci.h>
47
48 #ifdef REQUIRES_VIRT
49 __asm__(".arch_extension virt");
50 #endif
51
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
54 static unsigned long hyp_default_vectors;
55
56 /* Per-CPU variable containing the currently running vcpu. */
57 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
58
59 /* The VMID used in the VTTBR */
60 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
61 static u8 kvm_next_vmid;
62 static DEFINE_SPINLOCK(kvm_vmid_lock);
63
64 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
65 {
66 BUG_ON(preemptible());
67 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
68 }
69
70 /**
71 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
72 * Must be called from non-preemptible context
73 */
74 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
75 {
76 BUG_ON(preemptible());
77 return __this_cpu_read(kvm_arm_running_vcpu);
78 }
79
80 /**
81 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
82 */
83 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
84 {
85 return &kvm_arm_running_vcpu;
86 }
87
88 int kvm_arch_hardware_enable(void)
89 {
90 return 0;
91 }
92
93 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
94 {
95 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
96 }
97
98 int kvm_arch_hardware_setup(void)
99 {
100 return 0;
101 }
102
103 void kvm_arch_check_processor_compat(void *rtn)
104 {
105 *(int *)rtn = 0;
106 }
107
108
109 /**
110 * kvm_arch_init_vm - initializes a VM data structure
111 * @kvm: pointer to the KVM struct
112 */
113 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
114 {
115 int ret = 0;
116
117 if (type)
118 return -EINVAL;
119
120 ret = kvm_alloc_stage2_pgd(kvm);
121 if (ret)
122 goto out_fail_alloc;
123
124 ret = create_hyp_mappings(kvm, kvm + 1);
125 if (ret)
126 goto out_free_stage2_pgd;
127
128 kvm_timer_init(kvm);
129
130 /* Mark the initial VMID generation invalid */
131 kvm->arch.vmid_gen = 0;
132
133 /* The maximum number of VCPUs is limited by the host's GIC model */
134 kvm->arch.max_vcpus = kvm_vgic_get_max_vcpus();
135
136 return ret;
137 out_free_stage2_pgd:
138 kvm_free_stage2_pgd(kvm);
139 out_fail_alloc:
140 return ret;
141 }
142
143 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
144 {
145 return VM_FAULT_SIGBUS;
146 }
147
148
149 /**
150 * kvm_arch_destroy_vm - destroy the VM data structure
151 * @kvm: pointer to the KVM struct
152 */
153 void kvm_arch_destroy_vm(struct kvm *kvm)
154 {
155 int i;
156
157 kvm_free_stage2_pgd(kvm);
158
159 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
160 if (kvm->vcpus[i]) {
161 kvm_arch_vcpu_free(kvm->vcpus[i]);
162 kvm->vcpus[i] = NULL;
163 }
164 }
165
166 kvm_vgic_destroy(kvm);
167 }
168
169 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
170 {
171 int r;
172 switch (ext) {
173 case KVM_CAP_IRQCHIP:
174 case KVM_CAP_IOEVENTFD:
175 case KVM_CAP_DEVICE_CTRL:
176 case KVM_CAP_USER_MEMORY:
177 case KVM_CAP_SYNC_MMU:
178 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
179 case KVM_CAP_ONE_REG:
180 case KVM_CAP_ARM_PSCI:
181 case KVM_CAP_ARM_PSCI_0_2:
182 case KVM_CAP_READONLY_MEM:
183 case KVM_CAP_MP_STATE:
184 r = 1;
185 break;
186 case KVM_CAP_COALESCED_MMIO:
187 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
188 break;
189 case KVM_CAP_ARM_SET_DEVICE_ADDR:
190 r = 1;
191 break;
192 case KVM_CAP_NR_VCPUS:
193 r = num_online_cpus();
194 break;
195 case KVM_CAP_MAX_VCPUS:
196 r = KVM_MAX_VCPUS;
197 break;
198 default:
199 r = kvm_arch_dev_ioctl_check_extension(ext);
200 break;
201 }
202 return r;
203 }
204
205 long kvm_arch_dev_ioctl(struct file *filp,
206 unsigned int ioctl, unsigned long arg)
207 {
208 return -EINVAL;
209 }
210
211
212 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
213 {
214 int err;
215 struct kvm_vcpu *vcpu;
216
217 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
218 err = -EBUSY;
219 goto out;
220 }
221
222 if (id >= kvm->arch.max_vcpus) {
223 err = -EINVAL;
224 goto out;
225 }
226
227 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
228 if (!vcpu) {
229 err = -ENOMEM;
230 goto out;
231 }
232
233 err = kvm_vcpu_init(vcpu, kvm, id);
234 if (err)
235 goto free_vcpu;
236
237 err = create_hyp_mappings(vcpu, vcpu + 1);
238 if (err)
239 goto vcpu_uninit;
240
241 return vcpu;
242 vcpu_uninit:
243 kvm_vcpu_uninit(vcpu);
244 free_vcpu:
245 kmem_cache_free(kvm_vcpu_cache, vcpu);
246 out:
247 return ERR_PTR(err);
248 }
249
250 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
251 {
252 }
253
254 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
255 {
256 kvm_mmu_free_memory_caches(vcpu);
257 kvm_timer_vcpu_terminate(vcpu);
258 kvm_vgic_vcpu_destroy(vcpu);
259 kmem_cache_free(kvm_vcpu_cache, vcpu);
260 }
261
262 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
263 {
264 kvm_arch_vcpu_free(vcpu);
265 }
266
267 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
268 {
269 return kvm_timer_should_fire(vcpu);
270 }
271
272 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
273 {
274 /* Force users to call KVM_ARM_VCPU_INIT */
275 vcpu->arch.target = -1;
276 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
277
278 /* Set up the timer */
279 kvm_timer_vcpu_init(vcpu);
280
281 return 0;
282 }
283
284 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
285 {
286 vcpu->cpu = cpu;
287 vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
288
289 kvm_arm_set_running_vcpu(vcpu);
290 }
291
292 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
293 {
294 /*
295 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
296 * if the vcpu is no longer assigned to a cpu. This is used for the
297 * optimized make_all_cpus_request path.
298 */
299 vcpu->cpu = -1;
300
301 kvm_arm_set_running_vcpu(NULL);
302 }
303
304 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
305 struct kvm_mp_state *mp_state)
306 {
307 if (vcpu->arch.pause)
308 mp_state->mp_state = KVM_MP_STATE_STOPPED;
309 else
310 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
311
312 return 0;
313 }
314
315 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
316 struct kvm_mp_state *mp_state)
317 {
318 switch (mp_state->mp_state) {
319 case KVM_MP_STATE_RUNNABLE:
320 vcpu->arch.pause = false;
321 break;
322 case KVM_MP_STATE_STOPPED:
323 vcpu->arch.pause = true;
324 break;
325 default:
326 return -EINVAL;
327 }
328
329 return 0;
330 }
331
332 /**
333 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
334 * @v: The VCPU pointer
335 *
336 * If the guest CPU is not waiting for interrupts or an interrupt line is
337 * asserted, the CPU is by definition runnable.
338 */
339 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
340 {
341 return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
342 }
343
344 /* Just ensure a guest exit from a particular CPU */
345 static void exit_vm_noop(void *info)
346 {
347 }
348
349 void force_vm_exit(const cpumask_t *mask)
350 {
351 smp_call_function_many(mask, exit_vm_noop, NULL, true);
352 }
353
354 /**
355 * need_new_vmid_gen - check that the VMID is still valid
356 * @kvm: The VM's VMID to checkt
357 *
358 * return true if there is a new generation of VMIDs being used
359 *
360 * The hardware supports only 256 values with the value zero reserved for the
361 * host, so we check if an assigned value belongs to a previous generation,
362 * which which requires us to assign a new value. If we're the first to use a
363 * VMID for the new generation, we must flush necessary caches and TLBs on all
364 * CPUs.
365 */
366 static bool need_new_vmid_gen(struct kvm *kvm)
367 {
368 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
369 }
370
371 /**
372 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
373 * @kvm The guest that we are about to run
374 *
375 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
376 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
377 * caches and TLBs.
378 */
379 static void update_vttbr(struct kvm *kvm)
380 {
381 phys_addr_t pgd_phys;
382 u64 vmid;
383
384 if (!need_new_vmid_gen(kvm))
385 return;
386
387 spin_lock(&kvm_vmid_lock);
388
389 /*
390 * We need to re-check the vmid_gen here to ensure that if another vcpu
391 * already allocated a valid vmid for this vm, then this vcpu should
392 * use the same vmid.
393 */
394 if (!need_new_vmid_gen(kvm)) {
395 spin_unlock(&kvm_vmid_lock);
396 return;
397 }
398
399 /* First user of a new VMID generation? */
400 if (unlikely(kvm_next_vmid == 0)) {
401 atomic64_inc(&kvm_vmid_gen);
402 kvm_next_vmid = 1;
403
404 /*
405 * On SMP we know no other CPUs can use this CPU's or each
406 * other's VMID after force_vm_exit returns since the
407 * kvm_vmid_lock blocks them from reentry to the guest.
408 */
409 force_vm_exit(cpu_all_mask);
410 /*
411 * Now broadcast TLB + ICACHE invalidation over the inner
412 * shareable domain to make sure all data structures are
413 * clean.
414 */
415 kvm_call_hyp(__kvm_flush_vm_context);
416 }
417
418 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
419 kvm->arch.vmid = kvm_next_vmid;
420 kvm_next_vmid++;
421
422 /* update vttbr to be used with the new vmid */
423 pgd_phys = virt_to_phys(kvm_get_hwpgd(kvm));
424 BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
425 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
426 kvm->arch.vttbr = pgd_phys | vmid;
427
428 spin_unlock(&kvm_vmid_lock);
429 }
430
431 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
432 {
433 struct kvm *kvm = vcpu->kvm;
434 int ret;
435
436 if (likely(vcpu->arch.has_run_once))
437 return 0;
438
439 vcpu->arch.has_run_once = true;
440
441 /*
442 * Map the VGIC hardware resources before running a vcpu the first
443 * time on this VM.
444 */
445 if (unlikely(!vgic_ready(kvm))) {
446 ret = kvm_vgic_map_resources(kvm);
447 if (ret)
448 return ret;
449 }
450
451 /*
452 * Enable the arch timers only if we have an in-kernel VGIC
453 * and it has been properly initialized, since we cannot handle
454 * interrupts from the virtual timer with a userspace gic.
455 */
456 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
457 kvm_timer_enable(kvm);
458
459 return 0;
460 }
461
462 bool kvm_arch_intc_initialized(struct kvm *kvm)
463 {
464 return vgic_initialized(kvm);
465 }
466
467 static void vcpu_pause(struct kvm_vcpu *vcpu)
468 {
469 wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
470
471 wait_event_interruptible(*wq, !vcpu->arch.pause);
472 }
473
474 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
475 {
476 return vcpu->arch.target >= 0;
477 }
478
479 /**
480 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
481 * @vcpu: The VCPU pointer
482 * @run: The kvm_run structure pointer used for userspace state exchange
483 *
484 * This function is called through the VCPU_RUN ioctl called from user space. It
485 * will execute VM code in a loop until the time slice for the process is used
486 * or some emulation is needed from user space in which case the function will
487 * return with return value 0 and with the kvm_run structure filled in with the
488 * required data for the requested emulation.
489 */
490 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
491 {
492 int ret;
493 sigset_t sigsaved;
494
495 if (unlikely(!kvm_vcpu_initialized(vcpu)))
496 return -ENOEXEC;
497
498 ret = kvm_vcpu_first_run_init(vcpu);
499 if (ret)
500 return ret;
501
502 if (run->exit_reason == KVM_EXIT_MMIO) {
503 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
504 if (ret)
505 return ret;
506 }
507
508 if (vcpu->sigset_active)
509 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
510
511 ret = 1;
512 run->exit_reason = KVM_EXIT_UNKNOWN;
513 while (ret > 0) {
514 /*
515 * Check conditions before entering the guest
516 */
517 cond_resched();
518
519 update_vttbr(vcpu->kvm);
520
521 if (vcpu->arch.pause)
522 vcpu_pause(vcpu);
523
524 kvm_vgic_flush_hwstate(vcpu);
525 kvm_timer_flush_hwstate(vcpu);
526
527 preempt_disable();
528 local_irq_disable();
529
530 /*
531 * Re-check atomic conditions
532 */
533 if (signal_pending(current)) {
534 ret = -EINTR;
535 run->exit_reason = KVM_EXIT_INTR;
536 }
537
538 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
539 local_irq_enable();
540 preempt_enable();
541 kvm_timer_sync_hwstate(vcpu);
542 kvm_vgic_sync_hwstate(vcpu);
543 continue;
544 }
545
546 /**************************************************************
547 * Enter the guest
548 */
549 trace_kvm_entry(*vcpu_pc(vcpu));
550 __kvm_guest_enter();
551 vcpu->mode = IN_GUEST_MODE;
552
553 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
554
555 vcpu->mode = OUTSIDE_GUEST_MODE;
556 /*
557 * Back from guest
558 *************************************************************/
559
560 /*
561 * We may have taken a host interrupt in HYP mode (ie
562 * while executing the guest). This interrupt is still
563 * pending, as we haven't serviced it yet!
564 *
565 * We're now back in SVC mode, with interrupts
566 * disabled. Enabling the interrupts now will have
567 * the effect of taking the interrupt again, in SVC
568 * mode this time.
569 */
570 local_irq_enable();
571
572 /*
573 * We do local_irq_enable() before calling kvm_guest_exit() so
574 * that if a timer interrupt hits while running the guest we
575 * account that tick as being spent in the guest. We enable
576 * preemption after calling kvm_guest_exit() so that if we get
577 * preempted we make sure ticks after that is not counted as
578 * guest time.
579 */
580 kvm_guest_exit();
581 trace_kvm_exit(kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
582 preempt_enable();
583
584
585 kvm_timer_sync_hwstate(vcpu);
586 kvm_vgic_sync_hwstate(vcpu);
587
588 ret = handle_exit(vcpu, run, ret);
589 }
590
591 if (vcpu->sigset_active)
592 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
593 return ret;
594 }
595
596 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
597 {
598 int bit_index;
599 bool set;
600 unsigned long *ptr;
601
602 if (number == KVM_ARM_IRQ_CPU_IRQ)
603 bit_index = __ffs(HCR_VI);
604 else /* KVM_ARM_IRQ_CPU_FIQ */
605 bit_index = __ffs(HCR_VF);
606
607 ptr = (unsigned long *)&vcpu->arch.irq_lines;
608 if (level)
609 set = test_and_set_bit(bit_index, ptr);
610 else
611 set = test_and_clear_bit(bit_index, ptr);
612
613 /*
614 * If we didn't change anything, no need to wake up or kick other CPUs
615 */
616 if (set == level)
617 return 0;
618
619 /*
620 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
621 * trigger a world-switch round on the running physical CPU to set the
622 * virtual IRQ/FIQ fields in the HCR appropriately.
623 */
624 kvm_vcpu_kick(vcpu);
625
626 return 0;
627 }
628
629 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
630 bool line_status)
631 {
632 u32 irq = irq_level->irq;
633 unsigned int irq_type, vcpu_idx, irq_num;
634 int nrcpus = atomic_read(&kvm->online_vcpus);
635 struct kvm_vcpu *vcpu = NULL;
636 bool level = irq_level->level;
637
638 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
639 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
640 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
641
642 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
643
644 switch (irq_type) {
645 case KVM_ARM_IRQ_TYPE_CPU:
646 if (irqchip_in_kernel(kvm))
647 return -ENXIO;
648
649 if (vcpu_idx >= nrcpus)
650 return -EINVAL;
651
652 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
653 if (!vcpu)
654 return -EINVAL;
655
656 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
657 return -EINVAL;
658
659 return vcpu_interrupt_line(vcpu, irq_num, level);
660 case KVM_ARM_IRQ_TYPE_PPI:
661 if (!irqchip_in_kernel(kvm))
662 return -ENXIO;
663
664 if (vcpu_idx >= nrcpus)
665 return -EINVAL;
666
667 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
668 if (!vcpu)
669 return -EINVAL;
670
671 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
672 return -EINVAL;
673
674 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
675 case KVM_ARM_IRQ_TYPE_SPI:
676 if (!irqchip_in_kernel(kvm))
677 return -ENXIO;
678
679 if (irq_num < VGIC_NR_PRIVATE_IRQS)
680 return -EINVAL;
681
682 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
683 }
684
685 return -EINVAL;
686 }
687
688 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
689 const struct kvm_vcpu_init *init)
690 {
691 unsigned int i;
692 int phys_target = kvm_target_cpu();
693
694 if (init->target != phys_target)
695 return -EINVAL;
696
697 /*
698 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
699 * use the same target.
700 */
701 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
702 return -EINVAL;
703
704 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
705 for (i = 0; i < sizeof(init->features) * 8; i++) {
706 bool set = (init->features[i / 32] & (1 << (i % 32)));
707
708 if (set && i >= KVM_VCPU_MAX_FEATURES)
709 return -ENOENT;
710
711 /*
712 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
713 * use the same feature set.
714 */
715 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
716 test_bit(i, vcpu->arch.features) != set)
717 return -EINVAL;
718
719 if (set)
720 set_bit(i, vcpu->arch.features);
721 }
722
723 vcpu->arch.target = phys_target;
724
725 /* Now we know what it is, we can reset it. */
726 return kvm_reset_vcpu(vcpu);
727 }
728
729
730 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
731 struct kvm_vcpu_init *init)
732 {
733 int ret;
734
735 ret = kvm_vcpu_set_target(vcpu, init);
736 if (ret)
737 return ret;
738
739 /*
740 * Ensure a rebooted VM will fault in RAM pages and detect if the
741 * guest MMU is turned off and flush the caches as needed.
742 */
743 if (vcpu->arch.has_run_once)
744 stage2_unmap_vm(vcpu->kvm);
745
746 vcpu_reset_hcr(vcpu);
747
748 /*
749 * Handle the "start in power-off" case by marking the VCPU as paused.
750 */
751 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
752 vcpu->arch.pause = true;
753 else
754 vcpu->arch.pause = false;
755
756 return 0;
757 }
758
759 long kvm_arch_vcpu_ioctl(struct file *filp,
760 unsigned int ioctl, unsigned long arg)
761 {
762 struct kvm_vcpu *vcpu = filp->private_data;
763 void __user *argp = (void __user *)arg;
764
765 switch (ioctl) {
766 case KVM_ARM_VCPU_INIT: {
767 struct kvm_vcpu_init init;
768
769 if (copy_from_user(&init, argp, sizeof(init)))
770 return -EFAULT;
771
772 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
773 }
774 case KVM_SET_ONE_REG:
775 case KVM_GET_ONE_REG: {
776 struct kvm_one_reg reg;
777
778 if (unlikely(!kvm_vcpu_initialized(vcpu)))
779 return -ENOEXEC;
780
781 if (copy_from_user(&reg, argp, sizeof(reg)))
782 return -EFAULT;
783 if (ioctl == KVM_SET_ONE_REG)
784 return kvm_arm_set_reg(vcpu, &reg);
785 else
786 return kvm_arm_get_reg(vcpu, &reg);
787 }
788 case KVM_GET_REG_LIST: {
789 struct kvm_reg_list __user *user_list = argp;
790 struct kvm_reg_list reg_list;
791 unsigned n;
792
793 if (unlikely(!kvm_vcpu_initialized(vcpu)))
794 return -ENOEXEC;
795
796 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
797 return -EFAULT;
798 n = reg_list.n;
799 reg_list.n = kvm_arm_num_regs(vcpu);
800 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
801 return -EFAULT;
802 if (n < reg_list.n)
803 return -E2BIG;
804 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
805 }
806 default:
807 return -EINVAL;
808 }
809 }
810
811 /**
812 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
813 * @kvm: kvm instance
814 * @log: slot id and address to which we copy the log
815 *
816 * Steps 1-4 below provide general overview of dirty page logging. See
817 * kvm_get_dirty_log_protect() function description for additional details.
818 *
819 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
820 * always flush the TLB (step 4) even if previous step failed and the dirty
821 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
822 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
823 * writes will be marked dirty for next log read.
824 *
825 * 1. Take a snapshot of the bit and clear it if needed.
826 * 2. Write protect the corresponding page.
827 * 3. Copy the snapshot to the userspace.
828 * 4. Flush TLB's if needed.
829 */
830 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
831 {
832 bool is_dirty = false;
833 int r;
834
835 mutex_lock(&kvm->slots_lock);
836
837 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
838
839 if (is_dirty)
840 kvm_flush_remote_tlbs(kvm);
841
842 mutex_unlock(&kvm->slots_lock);
843 return r;
844 }
845
846 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
847 struct kvm_arm_device_addr *dev_addr)
848 {
849 unsigned long dev_id, type;
850
851 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
852 KVM_ARM_DEVICE_ID_SHIFT;
853 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
854 KVM_ARM_DEVICE_TYPE_SHIFT;
855
856 switch (dev_id) {
857 case KVM_ARM_DEVICE_VGIC_V2:
858 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
859 default:
860 return -ENODEV;
861 }
862 }
863
864 long kvm_arch_vm_ioctl(struct file *filp,
865 unsigned int ioctl, unsigned long arg)
866 {
867 struct kvm *kvm = filp->private_data;
868 void __user *argp = (void __user *)arg;
869
870 switch (ioctl) {
871 case KVM_CREATE_IRQCHIP: {
872 return kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
873 }
874 case KVM_ARM_SET_DEVICE_ADDR: {
875 struct kvm_arm_device_addr dev_addr;
876
877 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
878 return -EFAULT;
879 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
880 }
881 case KVM_ARM_PREFERRED_TARGET: {
882 int err;
883 struct kvm_vcpu_init init;
884
885 err = kvm_vcpu_preferred_target(&init);
886 if (err)
887 return err;
888
889 if (copy_to_user(argp, &init, sizeof(init)))
890 return -EFAULT;
891
892 return 0;
893 }
894 default:
895 return -EINVAL;
896 }
897 }
898
899 static void cpu_init_hyp_mode(void *dummy)
900 {
901 phys_addr_t boot_pgd_ptr;
902 phys_addr_t pgd_ptr;
903 unsigned long hyp_stack_ptr;
904 unsigned long stack_page;
905 unsigned long vector_ptr;
906
907 /* Switch from the HYP stub to our own HYP init vector */
908 __hyp_set_vectors(kvm_get_idmap_vector());
909
910 boot_pgd_ptr = kvm_mmu_get_boot_httbr();
911 pgd_ptr = kvm_mmu_get_httbr();
912 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
913 hyp_stack_ptr = stack_page + PAGE_SIZE;
914 vector_ptr = (unsigned long)__kvm_hyp_vector;
915
916 __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
917 }
918
919 static int hyp_init_cpu_notify(struct notifier_block *self,
920 unsigned long action, void *cpu)
921 {
922 switch (action) {
923 case CPU_STARTING:
924 case CPU_STARTING_FROZEN:
925 if (__hyp_get_vectors() == hyp_default_vectors)
926 cpu_init_hyp_mode(NULL);
927 break;
928 }
929
930 return NOTIFY_OK;
931 }
932
933 static struct notifier_block hyp_init_cpu_nb = {
934 .notifier_call = hyp_init_cpu_notify,
935 };
936
937 #ifdef CONFIG_CPU_PM
938 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
939 unsigned long cmd,
940 void *v)
941 {
942 if (cmd == CPU_PM_EXIT &&
943 __hyp_get_vectors() == hyp_default_vectors) {
944 cpu_init_hyp_mode(NULL);
945 return NOTIFY_OK;
946 }
947
948 return NOTIFY_DONE;
949 }
950
951 static struct notifier_block hyp_init_cpu_pm_nb = {
952 .notifier_call = hyp_init_cpu_pm_notifier,
953 };
954
955 static void __init hyp_cpu_pm_init(void)
956 {
957 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
958 }
959 #else
960 static inline void hyp_cpu_pm_init(void)
961 {
962 }
963 #endif
964
965 /**
966 * Inits Hyp-mode on all online CPUs
967 */
968 static int init_hyp_mode(void)
969 {
970 int cpu;
971 int err = 0;
972
973 /*
974 * Allocate Hyp PGD and setup Hyp identity mapping
975 */
976 err = kvm_mmu_init();
977 if (err)
978 goto out_err;
979
980 /*
981 * It is probably enough to obtain the default on one
982 * CPU. It's unlikely to be different on the others.
983 */
984 hyp_default_vectors = __hyp_get_vectors();
985
986 /*
987 * Allocate stack pages for Hypervisor-mode
988 */
989 for_each_possible_cpu(cpu) {
990 unsigned long stack_page;
991
992 stack_page = __get_free_page(GFP_KERNEL);
993 if (!stack_page) {
994 err = -ENOMEM;
995 goto out_free_stack_pages;
996 }
997
998 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
999 }
1000
1001 /*
1002 * Map the Hyp-code called directly from the host
1003 */
1004 err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
1005 if (err) {
1006 kvm_err("Cannot map world-switch code\n");
1007 goto out_free_mappings;
1008 }
1009
1010 /*
1011 * Map the Hyp stack pages
1012 */
1013 for_each_possible_cpu(cpu) {
1014 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1015 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
1016
1017 if (err) {
1018 kvm_err("Cannot map hyp stack\n");
1019 goto out_free_mappings;
1020 }
1021 }
1022
1023 /*
1024 * Map the host CPU structures
1025 */
1026 kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1027 if (!kvm_host_cpu_state) {
1028 err = -ENOMEM;
1029 kvm_err("Cannot allocate host CPU state\n");
1030 goto out_free_mappings;
1031 }
1032
1033 for_each_possible_cpu(cpu) {
1034 kvm_cpu_context_t *cpu_ctxt;
1035
1036 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1037 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
1038
1039 if (err) {
1040 kvm_err("Cannot map host CPU state: %d\n", err);
1041 goto out_free_context;
1042 }
1043 }
1044
1045 /*
1046 * Execute the init code on each CPU.
1047 */
1048 on_each_cpu(cpu_init_hyp_mode, NULL, 1);
1049
1050 /*
1051 * Init HYP view of VGIC
1052 */
1053 err = kvm_vgic_hyp_init();
1054 if (err)
1055 goto out_free_context;
1056
1057 /*
1058 * Init HYP architected timer support
1059 */
1060 err = kvm_timer_hyp_init();
1061 if (err)
1062 goto out_free_mappings;
1063
1064 #ifndef CONFIG_HOTPLUG_CPU
1065 free_boot_hyp_pgd();
1066 #endif
1067
1068 kvm_perf_init();
1069
1070 kvm_info("Hyp mode initialized successfully\n");
1071
1072 return 0;
1073 out_free_context:
1074 free_percpu(kvm_host_cpu_state);
1075 out_free_mappings:
1076 free_hyp_pgds();
1077 out_free_stack_pages:
1078 for_each_possible_cpu(cpu)
1079 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1080 out_err:
1081 kvm_err("error initializing Hyp mode: %d\n", err);
1082 return err;
1083 }
1084
1085 static void check_kvm_target_cpu(void *ret)
1086 {
1087 *(int *)ret = kvm_target_cpu();
1088 }
1089
1090 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1091 {
1092 struct kvm_vcpu *vcpu;
1093 int i;
1094
1095 mpidr &= MPIDR_HWID_BITMASK;
1096 kvm_for_each_vcpu(i, vcpu, kvm) {
1097 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1098 return vcpu;
1099 }
1100 return NULL;
1101 }
1102
1103 /**
1104 * Initialize Hyp-mode and memory mappings on all CPUs.
1105 */
1106 int kvm_arch_init(void *opaque)
1107 {
1108 int err;
1109 int ret, cpu;
1110
1111 if (!is_hyp_mode_available()) {
1112 kvm_err("HYP mode not available\n");
1113 return -ENODEV;
1114 }
1115
1116 for_each_online_cpu(cpu) {
1117 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1118 if (ret < 0) {
1119 kvm_err("Error, CPU %d not supported!\n", cpu);
1120 return -ENODEV;
1121 }
1122 }
1123
1124 cpu_notifier_register_begin();
1125
1126 err = init_hyp_mode();
1127 if (err)
1128 goto out_err;
1129
1130 err = __register_cpu_notifier(&hyp_init_cpu_nb);
1131 if (err) {
1132 kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
1133 goto out_err;
1134 }
1135
1136 cpu_notifier_register_done();
1137
1138 hyp_cpu_pm_init();
1139
1140 kvm_coproc_table_init();
1141 return 0;
1142 out_err:
1143 cpu_notifier_register_done();
1144 return err;
1145 }
1146
1147 /* NOP: Compiling as a module not supported */
1148 void kvm_arch_exit(void)
1149 {
1150 kvm_perf_teardown();
1151 }
1152
1153 static int arm_init(void)
1154 {
1155 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1156 return rc;
1157 }
1158
1159 module_init(arm_init);
This page took 0.067803 seconds and 6 git commands to generate.