Merge git://www.linux-watchdog.org/linux-watchdog
[deliverable/linux.git] / arch / arm / kvm / arm.c
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/cpu_pm.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/vmalloc.h>
25 #include <linux/fs.h>
26 #include <linux/mman.h>
27 #include <linux/sched.h>
28 #include <linux/kvm.h>
29 #include <trace/events/kvm.h>
30 #include <kvm/arm_pmu.h>
31
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34
35 #include <asm/uaccess.h>
36 #include <asm/ptrace.h>
37 #include <asm/mman.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
40 #include <asm/virt.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/kvm_psci.h>
47 #include <asm/sections.h>
48
49 #ifdef REQUIRES_VIRT
50 __asm__(".arch_extension virt");
51 #endif
52
53 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
54 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
55 static unsigned long hyp_default_vectors;
56
57 /* Per-CPU variable containing the currently running vcpu. */
58 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
59
60 /* The VMID used in the VTTBR */
61 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
62 static u32 kvm_next_vmid;
63 static unsigned int kvm_vmid_bits __read_mostly;
64 static DEFINE_SPINLOCK(kvm_vmid_lock);
65
66 static bool vgic_present;
67
68 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
69
70 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
71 {
72 BUG_ON(preemptible());
73 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
74 }
75
76 /**
77 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
78 * Must be called from non-preemptible context
79 */
80 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
81 {
82 BUG_ON(preemptible());
83 return __this_cpu_read(kvm_arm_running_vcpu);
84 }
85
86 /**
87 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
88 */
89 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
90 {
91 return &kvm_arm_running_vcpu;
92 }
93
94 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
95 {
96 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
97 }
98
99 int kvm_arch_hardware_setup(void)
100 {
101 return 0;
102 }
103
104 void kvm_arch_check_processor_compat(void *rtn)
105 {
106 *(int *)rtn = 0;
107 }
108
109
110 /**
111 * kvm_arch_init_vm - initializes a VM data structure
112 * @kvm: pointer to the KVM struct
113 */
114 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
115 {
116 int ret = 0;
117
118 if (type)
119 return -EINVAL;
120
121 ret = kvm_alloc_stage2_pgd(kvm);
122 if (ret)
123 goto out_fail_alloc;
124
125 ret = create_hyp_mappings(kvm, kvm + 1);
126 if (ret)
127 goto out_free_stage2_pgd;
128
129 kvm_vgic_early_init(kvm);
130 kvm_timer_init(kvm);
131
132 /* Mark the initial VMID generation invalid */
133 kvm->arch.vmid_gen = 0;
134
135 /* The maximum number of VCPUs is limited by the host's GIC model */
136 kvm->arch.max_vcpus = vgic_present ?
137 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
138
139 return ret;
140 out_free_stage2_pgd:
141 kvm_free_stage2_pgd(kvm);
142 out_fail_alloc:
143 return ret;
144 }
145
146 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
147 {
148 return VM_FAULT_SIGBUS;
149 }
150
151
152 /**
153 * kvm_arch_destroy_vm - destroy the VM data structure
154 * @kvm: pointer to the KVM struct
155 */
156 void kvm_arch_destroy_vm(struct kvm *kvm)
157 {
158 int i;
159
160 kvm_free_stage2_pgd(kvm);
161
162 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
163 if (kvm->vcpus[i]) {
164 kvm_arch_vcpu_free(kvm->vcpus[i]);
165 kvm->vcpus[i] = NULL;
166 }
167 }
168
169 kvm_vgic_destroy(kvm);
170 }
171
172 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
173 {
174 int r;
175 switch (ext) {
176 case KVM_CAP_IRQCHIP:
177 r = vgic_present;
178 break;
179 case KVM_CAP_IOEVENTFD:
180 case KVM_CAP_DEVICE_CTRL:
181 case KVM_CAP_USER_MEMORY:
182 case KVM_CAP_SYNC_MMU:
183 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
184 case KVM_CAP_ONE_REG:
185 case KVM_CAP_ARM_PSCI:
186 case KVM_CAP_ARM_PSCI_0_2:
187 case KVM_CAP_READONLY_MEM:
188 case KVM_CAP_MP_STATE:
189 r = 1;
190 break;
191 case KVM_CAP_COALESCED_MMIO:
192 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
193 break;
194 case KVM_CAP_ARM_SET_DEVICE_ADDR:
195 r = 1;
196 break;
197 case KVM_CAP_NR_VCPUS:
198 r = num_online_cpus();
199 break;
200 case KVM_CAP_MAX_VCPUS:
201 r = KVM_MAX_VCPUS;
202 break;
203 default:
204 r = kvm_arch_dev_ioctl_check_extension(ext);
205 break;
206 }
207 return r;
208 }
209
210 long kvm_arch_dev_ioctl(struct file *filp,
211 unsigned int ioctl, unsigned long arg)
212 {
213 return -EINVAL;
214 }
215
216
217 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
218 {
219 int err;
220 struct kvm_vcpu *vcpu;
221
222 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
223 err = -EBUSY;
224 goto out;
225 }
226
227 if (id >= kvm->arch.max_vcpus) {
228 err = -EINVAL;
229 goto out;
230 }
231
232 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
233 if (!vcpu) {
234 err = -ENOMEM;
235 goto out;
236 }
237
238 err = kvm_vcpu_init(vcpu, kvm, id);
239 if (err)
240 goto free_vcpu;
241
242 err = create_hyp_mappings(vcpu, vcpu + 1);
243 if (err)
244 goto vcpu_uninit;
245
246 return vcpu;
247 vcpu_uninit:
248 kvm_vcpu_uninit(vcpu);
249 free_vcpu:
250 kmem_cache_free(kvm_vcpu_cache, vcpu);
251 out:
252 return ERR_PTR(err);
253 }
254
255 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
256 {
257 kvm_vgic_vcpu_early_init(vcpu);
258 }
259
260 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
261 {
262 kvm_mmu_free_memory_caches(vcpu);
263 kvm_timer_vcpu_terminate(vcpu);
264 kvm_vgic_vcpu_destroy(vcpu);
265 kvm_pmu_vcpu_destroy(vcpu);
266 kmem_cache_free(kvm_vcpu_cache, vcpu);
267 }
268
269 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
270 {
271 kvm_arch_vcpu_free(vcpu);
272 }
273
274 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
275 {
276 return kvm_timer_should_fire(vcpu);
277 }
278
279 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
280 {
281 kvm_timer_schedule(vcpu);
282 }
283
284 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
285 {
286 kvm_timer_unschedule(vcpu);
287 }
288
289 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
290 {
291 /* Force users to call KVM_ARM_VCPU_INIT */
292 vcpu->arch.target = -1;
293 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
294
295 /* Set up the timer */
296 kvm_timer_vcpu_init(vcpu);
297
298 kvm_arm_reset_debug_ptr(vcpu);
299
300 return 0;
301 }
302
303 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
304 {
305 vcpu->cpu = cpu;
306 vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
307
308 kvm_arm_set_running_vcpu(vcpu);
309 }
310
311 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
312 {
313 /*
314 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
315 * if the vcpu is no longer assigned to a cpu. This is used for the
316 * optimized make_all_cpus_request path.
317 */
318 vcpu->cpu = -1;
319
320 kvm_arm_set_running_vcpu(NULL);
321 kvm_timer_vcpu_put(vcpu);
322 }
323
324 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
325 struct kvm_mp_state *mp_state)
326 {
327 if (vcpu->arch.power_off)
328 mp_state->mp_state = KVM_MP_STATE_STOPPED;
329 else
330 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
331
332 return 0;
333 }
334
335 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
336 struct kvm_mp_state *mp_state)
337 {
338 switch (mp_state->mp_state) {
339 case KVM_MP_STATE_RUNNABLE:
340 vcpu->arch.power_off = false;
341 break;
342 case KVM_MP_STATE_STOPPED:
343 vcpu->arch.power_off = true;
344 break;
345 default:
346 return -EINVAL;
347 }
348
349 return 0;
350 }
351
352 /**
353 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
354 * @v: The VCPU pointer
355 *
356 * If the guest CPU is not waiting for interrupts or an interrupt line is
357 * asserted, the CPU is by definition runnable.
358 */
359 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
360 {
361 return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
362 && !v->arch.power_off && !v->arch.pause);
363 }
364
365 /* Just ensure a guest exit from a particular CPU */
366 static void exit_vm_noop(void *info)
367 {
368 }
369
370 void force_vm_exit(const cpumask_t *mask)
371 {
372 preempt_disable();
373 smp_call_function_many(mask, exit_vm_noop, NULL, true);
374 preempt_enable();
375 }
376
377 /**
378 * need_new_vmid_gen - check that the VMID is still valid
379 * @kvm: The VM's VMID to checkt
380 *
381 * return true if there is a new generation of VMIDs being used
382 *
383 * The hardware supports only 256 values with the value zero reserved for the
384 * host, so we check if an assigned value belongs to a previous generation,
385 * which which requires us to assign a new value. If we're the first to use a
386 * VMID for the new generation, we must flush necessary caches and TLBs on all
387 * CPUs.
388 */
389 static bool need_new_vmid_gen(struct kvm *kvm)
390 {
391 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
392 }
393
394 /**
395 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
396 * @kvm The guest that we are about to run
397 *
398 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
399 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
400 * caches and TLBs.
401 */
402 static void update_vttbr(struct kvm *kvm)
403 {
404 phys_addr_t pgd_phys;
405 u64 vmid;
406
407 if (!need_new_vmid_gen(kvm))
408 return;
409
410 spin_lock(&kvm_vmid_lock);
411
412 /*
413 * We need to re-check the vmid_gen here to ensure that if another vcpu
414 * already allocated a valid vmid for this vm, then this vcpu should
415 * use the same vmid.
416 */
417 if (!need_new_vmid_gen(kvm)) {
418 spin_unlock(&kvm_vmid_lock);
419 return;
420 }
421
422 /* First user of a new VMID generation? */
423 if (unlikely(kvm_next_vmid == 0)) {
424 atomic64_inc(&kvm_vmid_gen);
425 kvm_next_vmid = 1;
426
427 /*
428 * On SMP we know no other CPUs can use this CPU's or each
429 * other's VMID after force_vm_exit returns since the
430 * kvm_vmid_lock blocks them from reentry to the guest.
431 */
432 force_vm_exit(cpu_all_mask);
433 /*
434 * Now broadcast TLB + ICACHE invalidation over the inner
435 * shareable domain to make sure all data structures are
436 * clean.
437 */
438 kvm_call_hyp(__kvm_flush_vm_context);
439 }
440
441 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
442 kvm->arch.vmid = kvm_next_vmid;
443 kvm_next_vmid++;
444 kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
445
446 /* update vttbr to be used with the new vmid */
447 pgd_phys = virt_to_phys(kvm->arch.pgd);
448 BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
449 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
450 kvm->arch.vttbr = pgd_phys | vmid;
451
452 spin_unlock(&kvm_vmid_lock);
453 }
454
455 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
456 {
457 struct kvm *kvm = vcpu->kvm;
458 int ret;
459
460 if (likely(vcpu->arch.has_run_once))
461 return 0;
462
463 vcpu->arch.has_run_once = true;
464
465 /*
466 * Map the VGIC hardware resources before running a vcpu the first
467 * time on this VM.
468 */
469 if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
470 ret = kvm_vgic_map_resources(kvm);
471 if (ret)
472 return ret;
473 }
474
475 /*
476 * Enable the arch timers only if we have an in-kernel VGIC
477 * and it has been properly initialized, since we cannot handle
478 * interrupts from the virtual timer with a userspace gic.
479 */
480 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
481 kvm_timer_enable(kvm);
482
483 return 0;
484 }
485
486 bool kvm_arch_intc_initialized(struct kvm *kvm)
487 {
488 return vgic_initialized(kvm);
489 }
490
491 static void kvm_arm_halt_guest(struct kvm *kvm) __maybe_unused;
492 static void kvm_arm_resume_guest(struct kvm *kvm) __maybe_unused;
493
494 static void kvm_arm_halt_guest(struct kvm *kvm)
495 {
496 int i;
497 struct kvm_vcpu *vcpu;
498
499 kvm_for_each_vcpu(i, vcpu, kvm)
500 vcpu->arch.pause = true;
501 force_vm_exit(cpu_all_mask);
502 }
503
504 static void kvm_arm_resume_guest(struct kvm *kvm)
505 {
506 int i;
507 struct kvm_vcpu *vcpu;
508
509 kvm_for_each_vcpu(i, vcpu, kvm) {
510 struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
511
512 vcpu->arch.pause = false;
513 swake_up(wq);
514 }
515 }
516
517 static void vcpu_sleep(struct kvm_vcpu *vcpu)
518 {
519 struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
520
521 swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
522 (!vcpu->arch.pause)));
523 }
524
525 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
526 {
527 return vcpu->arch.target >= 0;
528 }
529
530 /**
531 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
532 * @vcpu: The VCPU pointer
533 * @run: The kvm_run structure pointer used for userspace state exchange
534 *
535 * This function is called through the VCPU_RUN ioctl called from user space. It
536 * will execute VM code in a loop until the time slice for the process is used
537 * or some emulation is needed from user space in which case the function will
538 * return with return value 0 and with the kvm_run structure filled in with the
539 * required data for the requested emulation.
540 */
541 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
542 {
543 int ret;
544 sigset_t sigsaved;
545
546 if (unlikely(!kvm_vcpu_initialized(vcpu)))
547 return -ENOEXEC;
548
549 ret = kvm_vcpu_first_run_init(vcpu);
550 if (ret)
551 return ret;
552
553 if (run->exit_reason == KVM_EXIT_MMIO) {
554 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
555 if (ret)
556 return ret;
557 }
558
559 if (vcpu->sigset_active)
560 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
561
562 ret = 1;
563 run->exit_reason = KVM_EXIT_UNKNOWN;
564 while (ret > 0) {
565 /*
566 * Check conditions before entering the guest
567 */
568 cond_resched();
569
570 update_vttbr(vcpu->kvm);
571
572 if (vcpu->arch.power_off || vcpu->arch.pause)
573 vcpu_sleep(vcpu);
574
575 /*
576 * Preparing the interrupts to be injected also
577 * involves poking the GIC, which must be done in a
578 * non-preemptible context.
579 */
580 preempt_disable();
581 kvm_pmu_flush_hwstate(vcpu);
582 kvm_timer_flush_hwstate(vcpu);
583 kvm_vgic_flush_hwstate(vcpu);
584
585 local_irq_disable();
586
587 /*
588 * Re-check atomic conditions
589 */
590 if (signal_pending(current)) {
591 ret = -EINTR;
592 run->exit_reason = KVM_EXIT_INTR;
593 }
594
595 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
596 vcpu->arch.power_off || vcpu->arch.pause) {
597 local_irq_enable();
598 kvm_pmu_sync_hwstate(vcpu);
599 kvm_timer_sync_hwstate(vcpu);
600 kvm_vgic_sync_hwstate(vcpu);
601 preempt_enable();
602 continue;
603 }
604
605 kvm_arm_setup_debug(vcpu);
606
607 /**************************************************************
608 * Enter the guest
609 */
610 trace_kvm_entry(*vcpu_pc(vcpu));
611 __kvm_guest_enter();
612 vcpu->mode = IN_GUEST_MODE;
613
614 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
615
616 vcpu->mode = OUTSIDE_GUEST_MODE;
617 vcpu->stat.exits++;
618 /*
619 * Back from guest
620 *************************************************************/
621
622 kvm_arm_clear_debug(vcpu);
623
624 /*
625 * We may have taken a host interrupt in HYP mode (ie
626 * while executing the guest). This interrupt is still
627 * pending, as we haven't serviced it yet!
628 *
629 * We're now back in SVC mode, with interrupts
630 * disabled. Enabling the interrupts now will have
631 * the effect of taking the interrupt again, in SVC
632 * mode this time.
633 */
634 local_irq_enable();
635
636 /*
637 * We do local_irq_enable() before calling kvm_guest_exit() so
638 * that if a timer interrupt hits while running the guest we
639 * account that tick as being spent in the guest. We enable
640 * preemption after calling kvm_guest_exit() so that if we get
641 * preempted we make sure ticks after that is not counted as
642 * guest time.
643 */
644 kvm_guest_exit();
645 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
646
647 /*
648 * We must sync the PMU and timer state before the vgic state so
649 * that the vgic can properly sample the updated state of the
650 * interrupt line.
651 */
652 kvm_pmu_sync_hwstate(vcpu);
653 kvm_timer_sync_hwstate(vcpu);
654
655 kvm_vgic_sync_hwstate(vcpu);
656
657 preempt_enable();
658
659 ret = handle_exit(vcpu, run, ret);
660 }
661
662 if (vcpu->sigset_active)
663 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
664 return ret;
665 }
666
667 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
668 {
669 int bit_index;
670 bool set;
671 unsigned long *ptr;
672
673 if (number == KVM_ARM_IRQ_CPU_IRQ)
674 bit_index = __ffs(HCR_VI);
675 else /* KVM_ARM_IRQ_CPU_FIQ */
676 bit_index = __ffs(HCR_VF);
677
678 ptr = (unsigned long *)&vcpu->arch.irq_lines;
679 if (level)
680 set = test_and_set_bit(bit_index, ptr);
681 else
682 set = test_and_clear_bit(bit_index, ptr);
683
684 /*
685 * If we didn't change anything, no need to wake up or kick other CPUs
686 */
687 if (set == level)
688 return 0;
689
690 /*
691 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
692 * trigger a world-switch round on the running physical CPU to set the
693 * virtual IRQ/FIQ fields in the HCR appropriately.
694 */
695 kvm_vcpu_kick(vcpu);
696
697 return 0;
698 }
699
700 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
701 bool line_status)
702 {
703 u32 irq = irq_level->irq;
704 unsigned int irq_type, vcpu_idx, irq_num;
705 int nrcpus = atomic_read(&kvm->online_vcpus);
706 struct kvm_vcpu *vcpu = NULL;
707 bool level = irq_level->level;
708
709 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
710 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
711 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
712
713 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
714
715 switch (irq_type) {
716 case KVM_ARM_IRQ_TYPE_CPU:
717 if (irqchip_in_kernel(kvm))
718 return -ENXIO;
719
720 if (vcpu_idx >= nrcpus)
721 return -EINVAL;
722
723 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
724 if (!vcpu)
725 return -EINVAL;
726
727 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
728 return -EINVAL;
729
730 return vcpu_interrupt_line(vcpu, irq_num, level);
731 case KVM_ARM_IRQ_TYPE_PPI:
732 if (!irqchip_in_kernel(kvm))
733 return -ENXIO;
734
735 if (vcpu_idx >= nrcpus)
736 return -EINVAL;
737
738 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
739 if (!vcpu)
740 return -EINVAL;
741
742 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
743 return -EINVAL;
744
745 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
746 case KVM_ARM_IRQ_TYPE_SPI:
747 if (!irqchip_in_kernel(kvm))
748 return -ENXIO;
749
750 if (irq_num < VGIC_NR_PRIVATE_IRQS)
751 return -EINVAL;
752
753 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
754 }
755
756 return -EINVAL;
757 }
758
759 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
760 const struct kvm_vcpu_init *init)
761 {
762 unsigned int i;
763 int phys_target = kvm_target_cpu();
764
765 if (init->target != phys_target)
766 return -EINVAL;
767
768 /*
769 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
770 * use the same target.
771 */
772 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
773 return -EINVAL;
774
775 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
776 for (i = 0; i < sizeof(init->features) * 8; i++) {
777 bool set = (init->features[i / 32] & (1 << (i % 32)));
778
779 if (set && i >= KVM_VCPU_MAX_FEATURES)
780 return -ENOENT;
781
782 /*
783 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
784 * use the same feature set.
785 */
786 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
787 test_bit(i, vcpu->arch.features) != set)
788 return -EINVAL;
789
790 if (set)
791 set_bit(i, vcpu->arch.features);
792 }
793
794 vcpu->arch.target = phys_target;
795
796 /* Now we know what it is, we can reset it. */
797 return kvm_reset_vcpu(vcpu);
798 }
799
800
801 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
802 struct kvm_vcpu_init *init)
803 {
804 int ret;
805
806 ret = kvm_vcpu_set_target(vcpu, init);
807 if (ret)
808 return ret;
809
810 /*
811 * Ensure a rebooted VM will fault in RAM pages and detect if the
812 * guest MMU is turned off and flush the caches as needed.
813 */
814 if (vcpu->arch.has_run_once)
815 stage2_unmap_vm(vcpu->kvm);
816
817 vcpu_reset_hcr(vcpu);
818
819 /*
820 * Handle the "start in power-off" case.
821 */
822 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
823 vcpu->arch.power_off = true;
824 else
825 vcpu->arch.power_off = false;
826
827 return 0;
828 }
829
830 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
831 struct kvm_device_attr *attr)
832 {
833 int ret = -ENXIO;
834
835 switch (attr->group) {
836 default:
837 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
838 break;
839 }
840
841 return ret;
842 }
843
844 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
845 struct kvm_device_attr *attr)
846 {
847 int ret = -ENXIO;
848
849 switch (attr->group) {
850 default:
851 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
852 break;
853 }
854
855 return ret;
856 }
857
858 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
859 struct kvm_device_attr *attr)
860 {
861 int ret = -ENXIO;
862
863 switch (attr->group) {
864 default:
865 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
866 break;
867 }
868
869 return ret;
870 }
871
872 long kvm_arch_vcpu_ioctl(struct file *filp,
873 unsigned int ioctl, unsigned long arg)
874 {
875 struct kvm_vcpu *vcpu = filp->private_data;
876 void __user *argp = (void __user *)arg;
877 struct kvm_device_attr attr;
878
879 switch (ioctl) {
880 case KVM_ARM_VCPU_INIT: {
881 struct kvm_vcpu_init init;
882
883 if (copy_from_user(&init, argp, sizeof(init)))
884 return -EFAULT;
885
886 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
887 }
888 case KVM_SET_ONE_REG:
889 case KVM_GET_ONE_REG: {
890 struct kvm_one_reg reg;
891
892 if (unlikely(!kvm_vcpu_initialized(vcpu)))
893 return -ENOEXEC;
894
895 if (copy_from_user(&reg, argp, sizeof(reg)))
896 return -EFAULT;
897 if (ioctl == KVM_SET_ONE_REG)
898 return kvm_arm_set_reg(vcpu, &reg);
899 else
900 return kvm_arm_get_reg(vcpu, &reg);
901 }
902 case KVM_GET_REG_LIST: {
903 struct kvm_reg_list __user *user_list = argp;
904 struct kvm_reg_list reg_list;
905 unsigned n;
906
907 if (unlikely(!kvm_vcpu_initialized(vcpu)))
908 return -ENOEXEC;
909
910 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
911 return -EFAULT;
912 n = reg_list.n;
913 reg_list.n = kvm_arm_num_regs(vcpu);
914 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
915 return -EFAULT;
916 if (n < reg_list.n)
917 return -E2BIG;
918 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
919 }
920 case KVM_SET_DEVICE_ATTR: {
921 if (copy_from_user(&attr, argp, sizeof(attr)))
922 return -EFAULT;
923 return kvm_arm_vcpu_set_attr(vcpu, &attr);
924 }
925 case KVM_GET_DEVICE_ATTR: {
926 if (copy_from_user(&attr, argp, sizeof(attr)))
927 return -EFAULT;
928 return kvm_arm_vcpu_get_attr(vcpu, &attr);
929 }
930 case KVM_HAS_DEVICE_ATTR: {
931 if (copy_from_user(&attr, argp, sizeof(attr)))
932 return -EFAULT;
933 return kvm_arm_vcpu_has_attr(vcpu, &attr);
934 }
935 default:
936 return -EINVAL;
937 }
938 }
939
940 /**
941 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
942 * @kvm: kvm instance
943 * @log: slot id and address to which we copy the log
944 *
945 * Steps 1-4 below provide general overview of dirty page logging. See
946 * kvm_get_dirty_log_protect() function description for additional details.
947 *
948 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
949 * always flush the TLB (step 4) even if previous step failed and the dirty
950 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
951 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
952 * writes will be marked dirty for next log read.
953 *
954 * 1. Take a snapshot of the bit and clear it if needed.
955 * 2. Write protect the corresponding page.
956 * 3. Copy the snapshot to the userspace.
957 * 4. Flush TLB's if needed.
958 */
959 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
960 {
961 bool is_dirty = false;
962 int r;
963
964 mutex_lock(&kvm->slots_lock);
965
966 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
967
968 if (is_dirty)
969 kvm_flush_remote_tlbs(kvm);
970
971 mutex_unlock(&kvm->slots_lock);
972 return r;
973 }
974
975 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
976 struct kvm_arm_device_addr *dev_addr)
977 {
978 unsigned long dev_id, type;
979
980 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
981 KVM_ARM_DEVICE_ID_SHIFT;
982 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
983 KVM_ARM_DEVICE_TYPE_SHIFT;
984
985 switch (dev_id) {
986 case KVM_ARM_DEVICE_VGIC_V2:
987 if (!vgic_present)
988 return -ENXIO;
989 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
990 default:
991 return -ENODEV;
992 }
993 }
994
995 long kvm_arch_vm_ioctl(struct file *filp,
996 unsigned int ioctl, unsigned long arg)
997 {
998 struct kvm *kvm = filp->private_data;
999 void __user *argp = (void __user *)arg;
1000
1001 switch (ioctl) {
1002 case KVM_CREATE_IRQCHIP: {
1003 if (!vgic_present)
1004 return -ENXIO;
1005 return kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1006 }
1007 case KVM_ARM_SET_DEVICE_ADDR: {
1008 struct kvm_arm_device_addr dev_addr;
1009
1010 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1011 return -EFAULT;
1012 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1013 }
1014 case KVM_ARM_PREFERRED_TARGET: {
1015 int err;
1016 struct kvm_vcpu_init init;
1017
1018 err = kvm_vcpu_preferred_target(&init);
1019 if (err)
1020 return err;
1021
1022 if (copy_to_user(argp, &init, sizeof(init)))
1023 return -EFAULT;
1024
1025 return 0;
1026 }
1027 default:
1028 return -EINVAL;
1029 }
1030 }
1031
1032 static void cpu_init_hyp_mode(void *dummy)
1033 {
1034 phys_addr_t boot_pgd_ptr;
1035 phys_addr_t pgd_ptr;
1036 unsigned long hyp_stack_ptr;
1037 unsigned long stack_page;
1038 unsigned long vector_ptr;
1039
1040 /* Switch from the HYP stub to our own HYP init vector */
1041 __hyp_set_vectors(kvm_get_idmap_vector());
1042
1043 boot_pgd_ptr = kvm_mmu_get_boot_httbr();
1044 pgd_ptr = kvm_mmu_get_httbr();
1045 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1046 hyp_stack_ptr = stack_page + PAGE_SIZE;
1047 vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
1048
1049 __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
1050 __cpu_init_stage2();
1051
1052 kvm_arm_init_debug();
1053 }
1054
1055 static void cpu_hyp_reinit(void)
1056 {
1057 if (is_kernel_in_hyp_mode()) {
1058 /*
1059 * __cpu_init_stage2() is safe to call even if the PM
1060 * event was cancelled before the CPU was reset.
1061 */
1062 __cpu_init_stage2();
1063 } else {
1064 if (__hyp_get_vectors() == hyp_default_vectors)
1065 cpu_init_hyp_mode(NULL);
1066 }
1067 }
1068
1069 static void cpu_hyp_reset(void)
1070 {
1071 phys_addr_t boot_pgd_ptr;
1072 phys_addr_t phys_idmap_start;
1073
1074 if (!is_kernel_in_hyp_mode()) {
1075 boot_pgd_ptr = kvm_mmu_get_boot_httbr();
1076 phys_idmap_start = kvm_get_idmap_start();
1077
1078 __cpu_reset_hyp_mode(boot_pgd_ptr, phys_idmap_start);
1079 }
1080 }
1081
1082 static void _kvm_arch_hardware_enable(void *discard)
1083 {
1084 if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1085 cpu_hyp_reinit();
1086 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1087 }
1088 }
1089
1090 int kvm_arch_hardware_enable(void)
1091 {
1092 _kvm_arch_hardware_enable(NULL);
1093 return 0;
1094 }
1095
1096 static void _kvm_arch_hardware_disable(void *discard)
1097 {
1098 if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1099 cpu_hyp_reset();
1100 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1101 }
1102 }
1103
1104 void kvm_arch_hardware_disable(void)
1105 {
1106 _kvm_arch_hardware_disable(NULL);
1107 }
1108
1109 #ifdef CONFIG_CPU_PM
1110 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1111 unsigned long cmd,
1112 void *v)
1113 {
1114 /*
1115 * kvm_arm_hardware_enabled is left with its old value over
1116 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1117 * re-enable hyp.
1118 */
1119 switch (cmd) {
1120 case CPU_PM_ENTER:
1121 if (__this_cpu_read(kvm_arm_hardware_enabled))
1122 /*
1123 * don't update kvm_arm_hardware_enabled here
1124 * so that the hardware will be re-enabled
1125 * when we resume. See below.
1126 */
1127 cpu_hyp_reset();
1128
1129 return NOTIFY_OK;
1130 case CPU_PM_EXIT:
1131 if (__this_cpu_read(kvm_arm_hardware_enabled))
1132 /* The hardware was enabled before suspend. */
1133 cpu_hyp_reinit();
1134
1135 return NOTIFY_OK;
1136
1137 default:
1138 return NOTIFY_DONE;
1139 }
1140 }
1141
1142 static struct notifier_block hyp_init_cpu_pm_nb = {
1143 .notifier_call = hyp_init_cpu_pm_notifier,
1144 };
1145
1146 static void __init hyp_cpu_pm_init(void)
1147 {
1148 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1149 }
1150 static void __init hyp_cpu_pm_exit(void)
1151 {
1152 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1153 }
1154 #else
1155 static inline void hyp_cpu_pm_init(void)
1156 {
1157 }
1158 static inline void hyp_cpu_pm_exit(void)
1159 {
1160 }
1161 #endif
1162
1163 static void teardown_common_resources(void)
1164 {
1165 free_percpu(kvm_host_cpu_state);
1166 }
1167
1168 static int init_common_resources(void)
1169 {
1170 kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1171 if (!kvm_host_cpu_state) {
1172 kvm_err("Cannot allocate host CPU state\n");
1173 return -ENOMEM;
1174 }
1175
1176 return 0;
1177 }
1178
1179 static int init_subsystems(void)
1180 {
1181 int err = 0;
1182
1183 /*
1184 * Enable hardware so that subsystem initialisation can access EL2.
1185 */
1186 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1187
1188 /*
1189 * Register CPU lower-power notifier
1190 */
1191 hyp_cpu_pm_init();
1192
1193 /*
1194 * Init HYP view of VGIC
1195 */
1196 err = kvm_vgic_hyp_init();
1197 switch (err) {
1198 case 0:
1199 vgic_present = true;
1200 break;
1201 case -ENODEV:
1202 case -ENXIO:
1203 vgic_present = false;
1204 err = 0;
1205 break;
1206 default:
1207 goto out;
1208 }
1209
1210 /*
1211 * Init HYP architected timer support
1212 */
1213 err = kvm_timer_hyp_init();
1214 if (err)
1215 goto out;
1216
1217 kvm_perf_init();
1218 kvm_coproc_table_init();
1219
1220 out:
1221 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1222
1223 return err;
1224 }
1225
1226 static void teardown_hyp_mode(void)
1227 {
1228 int cpu;
1229
1230 if (is_kernel_in_hyp_mode())
1231 return;
1232
1233 free_hyp_pgds();
1234 for_each_possible_cpu(cpu)
1235 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1236 hyp_cpu_pm_exit();
1237 }
1238
1239 static int init_vhe_mode(void)
1240 {
1241 /* set size of VMID supported by CPU */
1242 kvm_vmid_bits = kvm_get_vmid_bits();
1243 kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1244
1245 kvm_info("VHE mode initialized successfully\n");
1246 return 0;
1247 }
1248
1249 /**
1250 * Inits Hyp-mode on all online CPUs
1251 */
1252 static int init_hyp_mode(void)
1253 {
1254 int cpu;
1255 int err = 0;
1256
1257 /*
1258 * Allocate Hyp PGD and setup Hyp identity mapping
1259 */
1260 err = kvm_mmu_init();
1261 if (err)
1262 goto out_err;
1263
1264 /*
1265 * It is probably enough to obtain the default on one
1266 * CPU. It's unlikely to be different on the others.
1267 */
1268 hyp_default_vectors = __hyp_get_vectors();
1269
1270 /*
1271 * Allocate stack pages for Hypervisor-mode
1272 */
1273 for_each_possible_cpu(cpu) {
1274 unsigned long stack_page;
1275
1276 stack_page = __get_free_page(GFP_KERNEL);
1277 if (!stack_page) {
1278 err = -ENOMEM;
1279 goto out_err;
1280 }
1281
1282 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1283 }
1284
1285 /*
1286 * Map the Hyp-code called directly from the host
1287 */
1288 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1289 kvm_ksym_ref(__hyp_text_end));
1290 if (err) {
1291 kvm_err("Cannot map world-switch code\n");
1292 goto out_err;
1293 }
1294
1295 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1296 kvm_ksym_ref(__end_rodata));
1297 if (err) {
1298 kvm_err("Cannot map rodata section\n");
1299 goto out_err;
1300 }
1301
1302 /*
1303 * Map the Hyp stack pages
1304 */
1305 for_each_possible_cpu(cpu) {
1306 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1307 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
1308
1309 if (err) {
1310 kvm_err("Cannot map hyp stack\n");
1311 goto out_err;
1312 }
1313 }
1314
1315 for_each_possible_cpu(cpu) {
1316 kvm_cpu_context_t *cpu_ctxt;
1317
1318 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1319 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
1320
1321 if (err) {
1322 kvm_err("Cannot map host CPU state: %d\n", err);
1323 goto out_err;
1324 }
1325 }
1326
1327 #ifndef CONFIG_HOTPLUG_CPU
1328 free_boot_hyp_pgd();
1329 #endif
1330
1331 /* set size of VMID supported by CPU */
1332 kvm_vmid_bits = kvm_get_vmid_bits();
1333 kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1334
1335 kvm_info("Hyp mode initialized successfully\n");
1336
1337 return 0;
1338
1339 out_err:
1340 teardown_hyp_mode();
1341 kvm_err("error initializing Hyp mode: %d\n", err);
1342 return err;
1343 }
1344
1345 static void check_kvm_target_cpu(void *ret)
1346 {
1347 *(int *)ret = kvm_target_cpu();
1348 }
1349
1350 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1351 {
1352 struct kvm_vcpu *vcpu;
1353 int i;
1354
1355 mpidr &= MPIDR_HWID_BITMASK;
1356 kvm_for_each_vcpu(i, vcpu, kvm) {
1357 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1358 return vcpu;
1359 }
1360 return NULL;
1361 }
1362
1363 /**
1364 * Initialize Hyp-mode and memory mappings on all CPUs.
1365 */
1366 int kvm_arch_init(void *opaque)
1367 {
1368 int err;
1369 int ret, cpu;
1370
1371 if (!is_hyp_mode_available()) {
1372 kvm_err("HYP mode not available\n");
1373 return -ENODEV;
1374 }
1375
1376 for_each_online_cpu(cpu) {
1377 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1378 if (ret < 0) {
1379 kvm_err("Error, CPU %d not supported!\n", cpu);
1380 return -ENODEV;
1381 }
1382 }
1383
1384 err = init_common_resources();
1385 if (err)
1386 return err;
1387
1388 if (is_kernel_in_hyp_mode())
1389 err = init_vhe_mode();
1390 else
1391 err = init_hyp_mode();
1392 if (err)
1393 goto out_err;
1394
1395 err = init_subsystems();
1396 if (err)
1397 goto out_hyp;
1398
1399 return 0;
1400
1401 out_hyp:
1402 teardown_hyp_mode();
1403 out_err:
1404 teardown_common_resources();
1405 return err;
1406 }
1407
1408 /* NOP: Compiling as a module not supported */
1409 void kvm_arch_exit(void)
1410 {
1411 kvm_perf_teardown();
1412 }
1413
1414 static int arm_init(void)
1415 {
1416 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1417 return rc;
1418 }
1419
1420 module_init(arm_init);
This page took 0.059822 seconds and 6 git commands to generate.