Merge branch 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / arch / arm / kvm / arm.c
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/cpu.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34
35 #include <asm/uaccess.h>
36 #include <asm/ptrace.h>
37 #include <asm/mman.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
40 #include <asm/virt.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/kvm_psci.h>
47
48 #ifdef REQUIRES_VIRT
49 __asm__(".arch_extension virt");
50 #endif
51
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
54 static unsigned long hyp_default_vectors;
55
56 /* Per-CPU variable containing the currently running vcpu. */
57 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
58
59 /* The VMID used in the VTTBR */
60 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
61 static u8 kvm_next_vmid;
62 static DEFINE_SPINLOCK(kvm_vmid_lock);
63
64 static bool vgic_present;
65
66 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
67 {
68 BUG_ON(preemptible());
69 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
70 }
71
72 /**
73 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
74 * Must be called from non-preemptible context
75 */
76 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
77 {
78 BUG_ON(preemptible());
79 return __this_cpu_read(kvm_arm_running_vcpu);
80 }
81
82 /**
83 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
84 */
85 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
86 {
87 return &kvm_arm_running_vcpu;
88 }
89
90 int kvm_arch_hardware_enable(void)
91 {
92 return 0;
93 }
94
95 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
96 {
97 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
98 }
99
100 int kvm_arch_hardware_setup(void)
101 {
102 return 0;
103 }
104
105 void kvm_arch_check_processor_compat(void *rtn)
106 {
107 *(int *)rtn = 0;
108 }
109
110
111 /**
112 * kvm_arch_init_vm - initializes a VM data structure
113 * @kvm: pointer to the KVM struct
114 */
115 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
116 {
117 int ret = 0;
118
119 if (type)
120 return -EINVAL;
121
122 ret = kvm_alloc_stage2_pgd(kvm);
123 if (ret)
124 goto out_fail_alloc;
125
126 ret = create_hyp_mappings(kvm, kvm + 1);
127 if (ret)
128 goto out_free_stage2_pgd;
129
130 kvm_timer_init(kvm);
131
132 /* Mark the initial VMID generation invalid */
133 kvm->arch.vmid_gen = 0;
134
135 /* The maximum number of VCPUs is limited by the host's GIC model */
136 kvm->arch.max_vcpus = kvm_vgic_get_max_vcpus();
137
138 return ret;
139 out_free_stage2_pgd:
140 kvm_free_stage2_pgd(kvm);
141 out_fail_alloc:
142 return ret;
143 }
144
145 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
146 {
147 return VM_FAULT_SIGBUS;
148 }
149
150
151 /**
152 * kvm_arch_destroy_vm - destroy the VM data structure
153 * @kvm: pointer to the KVM struct
154 */
155 void kvm_arch_destroy_vm(struct kvm *kvm)
156 {
157 int i;
158
159 kvm_free_stage2_pgd(kvm);
160
161 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
162 if (kvm->vcpus[i]) {
163 kvm_arch_vcpu_free(kvm->vcpus[i]);
164 kvm->vcpus[i] = NULL;
165 }
166 }
167
168 kvm_vgic_destroy(kvm);
169 }
170
171 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
172 {
173 int r;
174 switch (ext) {
175 case KVM_CAP_IRQCHIP:
176 r = vgic_present;
177 break;
178 case KVM_CAP_DEVICE_CTRL:
179 case KVM_CAP_USER_MEMORY:
180 case KVM_CAP_SYNC_MMU:
181 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
182 case KVM_CAP_ONE_REG:
183 case KVM_CAP_ARM_PSCI:
184 case KVM_CAP_ARM_PSCI_0_2:
185 case KVM_CAP_READONLY_MEM:
186 r = 1;
187 break;
188 case KVM_CAP_COALESCED_MMIO:
189 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
190 break;
191 case KVM_CAP_ARM_SET_DEVICE_ADDR:
192 r = 1;
193 break;
194 case KVM_CAP_NR_VCPUS:
195 r = num_online_cpus();
196 break;
197 case KVM_CAP_MAX_VCPUS:
198 r = KVM_MAX_VCPUS;
199 break;
200 default:
201 r = kvm_arch_dev_ioctl_check_extension(ext);
202 break;
203 }
204 return r;
205 }
206
207 long kvm_arch_dev_ioctl(struct file *filp,
208 unsigned int ioctl, unsigned long arg)
209 {
210 return -EINVAL;
211 }
212
213
214 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
215 {
216 int err;
217 struct kvm_vcpu *vcpu;
218
219 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
220 err = -EBUSY;
221 goto out;
222 }
223
224 if (id >= kvm->arch.max_vcpus) {
225 err = -EINVAL;
226 goto out;
227 }
228
229 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
230 if (!vcpu) {
231 err = -ENOMEM;
232 goto out;
233 }
234
235 err = kvm_vcpu_init(vcpu, kvm, id);
236 if (err)
237 goto free_vcpu;
238
239 err = create_hyp_mappings(vcpu, vcpu + 1);
240 if (err)
241 goto vcpu_uninit;
242
243 return vcpu;
244 vcpu_uninit:
245 kvm_vcpu_uninit(vcpu);
246 free_vcpu:
247 kmem_cache_free(kvm_vcpu_cache, vcpu);
248 out:
249 return ERR_PTR(err);
250 }
251
252 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
253 {
254 }
255
256 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
257 {
258 kvm_mmu_free_memory_caches(vcpu);
259 kvm_timer_vcpu_terminate(vcpu);
260 kvm_vgic_vcpu_destroy(vcpu);
261 kmem_cache_free(kvm_vcpu_cache, vcpu);
262 }
263
264 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
265 {
266 kvm_arch_vcpu_free(vcpu);
267 }
268
269 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
270 {
271 return 0;
272 }
273
274 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
275 {
276 /* Force users to call KVM_ARM_VCPU_INIT */
277 vcpu->arch.target = -1;
278 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
279
280 /* Set up the timer */
281 kvm_timer_vcpu_init(vcpu);
282
283 return 0;
284 }
285
286 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
287 {
288 vcpu->cpu = cpu;
289 vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
290
291 kvm_arm_set_running_vcpu(vcpu);
292 }
293
294 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
295 {
296 /*
297 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
298 * if the vcpu is no longer assigned to a cpu. This is used for the
299 * optimized make_all_cpus_request path.
300 */
301 vcpu->cpu = -1;
302
303 kvm_arm_set_running_vcpu(NULL);
304 }
305
306 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
307 struct kvm_guest_debug *dbg)
308 {
309 return -EINVAL;
310 }
311
312
313 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
314 struct kvm_mp_state *mp_state)
315 {
316 return -EINVAL;
317 }
318
319 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
320 struct kvm_mp_state *mp_state)
321 {
322 return -EINVAL;
323 }
324
325 /**
326 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
327 * @v: The VCPU pointer
328 *
329 * If the guest CPU is not waiting for interrupts or an interrupt line is
330 * asserted, the CPU is by definition runnable.
331 */
332 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
333 {
334 return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
335 }
336
337 /* Just ensure a guest exit from a particular CPU */
338 static void exit_vm_noop(void *info)
339 {
340 }
341
342 void force_vm_exit(const cpumask_t *mask)
343 {
344 smp_call_function_many(mask, exit_vm_noop, NULL, true);
345 }
346
347 /**
348 * need_new_vmid_gen - check that the VMID is still valid
349 * @kvm: The VM's VMID to checkt
350 *
351 * return true if there is a new generation of VMIDs being used
352 *
353 * The hardware supports only 256 values with the value zero reserved for the
354 * host, so we check if an assigned value belongs to a previous generation,
355 * which which requires us to assign a new value. If we're the first to use a
356 * VMID for the new generation, we must flush necessary caches and TLBs on all
357 * CPUs.
358 */
359 static bool need_new_vmid_gen(struct kvm *kvm)
360 {
361 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
362 }
363
364 /**
365 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
366 * @kvm The guest that we are about to run
367 *
368 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
369 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
370 * caches and TLBs.
371 */
372 static void update_vttbr(struct kvm *kvm)
373 {
374 phys_addr_t pgd_phys;
375 u64 vmid;
376
377 if (!need_new_vmid_gen(kvm))
378 return;
379
380 spin_lock(&kvm_vmid_lock);
381
382 /*
383 * We need to re-check the vmid_gen here to ensure that if another vcpu
384 * already allocated a valid vmid for this vm, then this vcpu should
385 * use the same vmid.
386 */
387 if (!need_new_vmid_gen(kvm)) {
388 spin_unlock(&kvm_vmid_lock);
389 return;
390 }
391
392 /* First user of a new VMID generation? */
393 if (unlikely(kvm_next_vmid == 0)) {
394 atomic64_inc(&kvm_vmid_gen);
395 kvm_next_vmid = 1;
396
397 /*
398 * On SMP we know no other CPUs can use this CPU's or each
399 * other's VMID after force_vm_exit returns since the
400 * kvm_vmid_lock blocks them from reentry to the guest.
401 */
402 force_vm_exit(cpu_all_mask);
403 /*
404 * Now broadcast TLB + ICACHE invalidation over the inner
405 * shareable domain to make sure all data structures are
406 * clean.
407 */
408 kvm_call_hyp(__kvm_flush_vm_context);
409 }
410
411 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
412 kvm->arch.vmid = kvm_next_vmid;
413 kvm_next_vmid++;
414
415 /* update vttbr to be used with the new vmid */
416 pgd_phys = virt_to_phys(kvm_get_hwpgd(kvm));
417 BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
418 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
419 kvm->arch.vttbr = pgd_phys | vmid;
420
421 spin_unlock(&kvm_vmid_lock);
422 }
423
424 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
425 {
426 struct kvm *kvm = vcpu->kvm;
427 int ret;
428
429 if (likely(vcpu->arch.has_run_once))
430 return 0;
431
432 vcpu->arch.has_run_once = true;
433
434 /*
435 * Map the VGIC hardware resources before running a vcpu the first
436 * time on this VM.
437 */
438 if (unlikely(!vgic_ready(kvm))) {
439 ret = kvm_vgic_map_resources(kvm);
440 if (ret)
441 return ret;
442 }
443
444 /*
445 * Enable the arch timers only if we have an in-kernel VGIC
446 * and it has been properly initialized, since we cannot handle
447 * interrupts from the virtual timer with a userspace gic.
448 */
449 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
450 kvm_timer_enable(kvm);
451
452 return 0;
453 }
454
455 static void vcpu_pause(struct kvm_vcpu *vcpu)
456 {
457 wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
458
459 wait_event_interruptible(*wq, !vcpu->arch.pause);
460 }
461
462 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
463 {
464 return vcpu->arch.target >= 0;
465 }
466
467 /**
468 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
469 * @vcpu: The VCPU pointer
470 * @run: The kvm_run structure pointer used for userspace state exchange
471 *
472 * This function is called through the VCPU_RUN ioctl called from user space. It
473 * will execute VM code in a loop until the time slice for the process is used
474 * or some emulation is needed from user space in which case the function will
475 * return with return value 0 and with the kvm_run structure filled in with the
476 * required data for the requested emulation.
477 */
478 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
479 {
480 int ret;
481 sigset_t sigsaved;
482
483 if (unlikely(!kvm_vcpu_initialized(vcpu)))
484 return -ENOEXEC;
485
486 ret = kvm_vcpu_first_run_init(vcpu);
487 if (ret)
488 return ret;
489
490 if (run->exit_reason == KVM_EXIT_MMIO) {
491 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
492 if (ret)
493 return ret;
494 }
495
496 if (vcpu->sigset_active)
497 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
498
499 ret = 1;
500 run->exit_reason = KVM_EXIT_UNKNOWN;
501 while (ret > 0) {
502 /*
503 * Check conditions before entering the guest
504 */
505 cond_resched();
506
507 update_vttbr(vcpu->kvm);
508
509 if (vcpu->arch.pause)
510 vcpu_pause(vcpu);
511
512 kvm_vgic_flush_hwstate(vcpu);
513 kvm_timer_flush_hwstate(vcpu);
514
515 local_irq_disable();
516
517 /*
518 * Re-check atomic conditions
519 */
520 if (signal_pending(current)) {
521 ret = -EINTR;
522 run->exit_reason = KVM_EXIT_INTR;
523 }
524
525 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
526 local_irq_enable();
527 kvm_timer_sync_hwstate(vcpu);
528 kvm_vgic_sync_hwstate(vcpu);
529 continue;
530 }
531
532 /**************************************************************
533 * Enter the guest
534 */
535 trace_kvm_entry(*vcpu_pc(vcpu));
536 kvm_guest_enter();
537 vcpu->mode = IN_GUEST_MODE;
538
539 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
540
541 vcpu->mode = OUTSIDE_GUEST_MODE;
542 kvm_guest_exit();
543 trace_kvm_exit(*vcpu_pc(vcpu));
544 /*
545 * We may have taken a host interrupt in HYP mode (ie
546 * while executing the guest). This interrupt is still
547 * pending, as we haven't serviced it yet!
548 *
549 * We're now back in SVC mode, with interrupts
550 * disabled. Enabling the interrupts now will have
551 * the effect of taking the interrupt again, in SVC
552 * mode this time.
553 */
554 local_irq_enable();
555
556 /*
557 * Back from guest
558 *************************************************************/
559
560 kvm_timer_sync_hwstate(vcpu);
561 kvm_vgic_sync_hwstate(vcpu);
562
563 ret = handle_exit(vcpu, run, ret);
564 }
565
566 if (vcpu->sigset_active)
567 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
568 return ret;
569 }
570
571 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
572 {
573 int bit_index;
574 bool set;
575 unsigned long *ptr;
576
577 if (number == KVM_ARM_IRQ_CPU_IRQ)
578 bit_index = __ffs(HCR_VI);
579 else /* KVM_ARM_IRQ_CPU_FIQ */
580 bit_index = __ffs(HCR_VF);
581
582 ptr = (unsigned long *)&vcpu->arch.irq_lines;
583 if (level)
584 set = test_and_set_bit(bit_index, ptr);
585 else
586 set = test_and_clear_bit(bit_index, ptr);
587
588 /*
589 * If we didn't change anything, no need to wake up or kick other CPUs
590 */
591 if (set == level)
592 return 0;
593
594 /*
595 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
596 * trigger a world-switch round on the running physical CPU to set the
597 * virtual IRQ/FIQ fields in the HCR appropriately.
598 */
599 kvm_vcpu_kick(vcpu);
600
601 return 0;
602 }
603
604 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
605 bool line_status)
606 {
607 u32 irq = irq_level->irq;
608 unsigned int irq_type, vcpu_idx, irq_num;
609 int nrcpus = atomic_read(&kvm->online_vcpus);
610 struct kvm_vcpu *vcpu = NULL;
611 bool level = irq_level->level;
612
613 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
614 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
615 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
616
617 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
618
619 switch (irq_type) {
620 case KVM_ARM_IRQ_TYPE_CPU:
621 if (irqchip_in_kernel(kvm))
622 return -ENXIO;
623
624 if (vcpu_idx >= nrcpus)
625 return -EINVAL;
626
627 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
628 if (!vcpu)
629 return -EINVAL;
630
631 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
632 return -EINVAL;
633
634 return vcpu_interrupt_line(vcpu, irq_num, level);
635 case KVM_ARM_IRQ_TYPE_PPI:
636 if (!irqchip_in_kernel(kvm))
637 return -ENXIO;
638
639 if (vcpu_idx >= nrcpus)
640 return -EINVAL;
641
642 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
643 if (!vcpu)
644 return -EINVAL;
645
646 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
647 return -EINVAL;
648
649 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
650 case KVM_ARM_IRQ_TYPE_SPI:
651 if (!irqchip_in_kernel(kvm))
652 return -ENXIO;
653
654 if (irq_num < VGIC_NR_PRIVATE_IRQS ||
655 irq_num > KVM_ARM_IRQ_GIC_MAX)
656 return -EINVAL;
657
658 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
659 }
660
661 return -EINVAL;
662 }
663
664 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
665 const struct kvm_vcpu_init *init)
666 {
667 unsigned int i;
668 int phys_target = kvm_target_cpu();
669
670 if (init->target != phys_target)
671 return -EINVAL;
672
673 /*
674 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
675 * use the same target.
676 */
677 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
678 return -EINVAL;
679
680 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
681 for (i = 0; i < sizeof(init->features) * 8; i++) {
682 bool set = (init->features[i / 32] & (1 << (i % 32)));
683
684 if (set && i >= KVM_VCPU_MAX_FEATURES)
685 return -ENOENT;
686
687 /*
688 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
689 * use the same feature set.
690 */
691 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
692 test_bit(i, vcpu->arch.features) != set)
693 return -EINVAL;
694
695 if (set)
696 set_bit(i, vcpu->arch.features);
697 }
698
699 vcpu->arch.target = phys_target;
700
701 /* Now we know what it is, we can reset it. */
702 return kvm_reset_vcpu(vcpu);
703 }
704
705
706 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
707 struct kvm_vcpu_init *init)
708 {
709 int ret;
710
711 ret = kvm_vcpu_set_target(vcpu, init);
712 if (ret)
713 return ret;
714
715 /*
716 * Ensure a rebooted VM will fault in RAM pages and detect if the
717 * guest MMU is turned off and flush the caches as needed.
718 */
719 if (vcpu->arch.has_run_once)
720 stage2_unmap_vm(vcpu->kvm);
721
722 vcpu_reset_hcr(vcpu);
723
724 /*
725 * Handle the "start in power-off" case by marking the VCPU as paused.
726 */
727 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
728 vcpu->arch.pause = true;
729 else
730 vcpu->arch.pause = false;
731
732 return 0;
733 }
734
735 long kvm_arch_vcpu_ioctl(struct file *filp,
736 unsigned int ioctl, unsigned long arg)
737 {
738 struct kvm_vcpu *vcpu = filp->private_data;
739 void __user *argp = (void __user *)arg;
740
741 switch (ioctl) {
742 case KVM_ARM_VCPU_INIT: {
743 struct kvm_vcpu_init init;
744
745 if (copy_from_user(&init, argp, sizeof(init)))
746 return -EFAULT;
747
748 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
749 }
750 case KVM_SET_ONE_REG:
751 case KVM_GET_ONE_REG: {
752 struct kvm_one_reg reg;
753
754 if (unlikely(!kvm_vcpu_initialized(vcpu)))
755 return -ENOEXEC;
756
757 if (copy_from_user(&reg, argp, sizeof(reg)))
758 return -EFAULT;
759 if (ioctl == KVM_SET_ONE_REG)
760 return kvm_arm_set_reg(vcpu, &reg);
761 else
762 return kvm_arm_get_reg(vcpu, &reg);
763 }
764 case KVM_GET_REG_LIST: {
765 struct kvm_reg_list __user *user_list = argp;
766 struct kvm_reg_list reg_list;
767 unsigned n;
768
769 if (unlikely(!kvm_vcpu_initialized(vcpu)))
770 return -ENOEXEC;
771
772 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
773 return -EFAULT;
774 n = reg_list.n;
775 reg_list.n = kvm_arm_num_regs(vcpu);
776 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
777 return -EFAULT;
778 if (n < reg_list.n)
779 return -E2BIG;
780 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
781 }
782 default:
783 return -EINVAL;
784 }
785 }
786
787 /**
788 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
789 * @kvm: kvm instance
790 * @log: slot id and address to which we copy the log
791 *
792 * Steps 1-4 below provide general overview of dirty page logging. See
793 * kvm_get_dirty_log_protect() function description for additional details.
794 *
795 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
796 * always flush the TLB (step 4) even if previous step failed and the dirty
797 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
798 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
799 * writes will be marked dirty for next log read.
800 *
801 * 1. Take a snapshot of the bit and clear it if needed.
802 * 2. Write protect the corresponding page.
803 * 3. Copy the snapshot to the userspace.
804 * 4. Flush TLB's if needed.
805 */
806 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
807 {
808 bool is_dirty = false;
809 int r;
810
811 mutex_lock(&kvm->slots_lock);
812
813 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
814
815 if (is_dirty)
816 kvm_flush_remote_tlbs(kvm);
817
818 mutex_unlock(&kvm->slots_lock);
819 return r;
820 }
821
822 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
823 struct kvm_arm_device_addr *dev_addr)
824 {
825 unsigned long dev_id, type;
826
827 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
828 KVM_ARM_DEVICE_ID_SHIFT;
829 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
830 KVM_ARM_DEVICE_TYPE_SHIFT;
831
832 switch (dev_id) {
833 case KVM_ARM_DEVICE_VGIC_V2:
834 if (!vgic_present)
835 return -ENXIO;
836 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
837 default:
838 return -ENODEV;
839 }
840 }
841
842 long kvm_arch_vm_ioctl(struct file *filp,
843 unsigned int ioctl, unsigned long arg)
844 {
845 struct kvm *kvm = filp->private_data;
846 void __user *argp = (void __user *)arg;
847
848 switch (ioctl) {
849 case KVM_CREATE_IRQCHIP: {
850 if (vgic_present)
851 return kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
852 else
853 return -ENXIO;
854 }
855 case KVM_ARM_SET_DEVICE_ADDR: {
856 struct kvm_arm_device_addr dev_addr;
857
858 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
859 return -EFAULT;
860 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
861 }
862 case KVM_ARM_PREFERRED_TARGET: {
863 int err;
864 struct kvm_vcpu_init init;
865
866 err = kvm_vcpu_preferred_target(&init);
867 if (err)
868 return err;
869
870 if (copy_to_user(argp, &init, sizeof(init)))
871 return -EFAULT;
872
873 return 0;
874 }
875 default:
876 return -EINVAL;
877 }
878 }
879
880 static void cpu_init_hyp_mode(void *dummy)
881 {
882 phys_addr_t boot_pgd_ptr;
883 phys_addr_t pgd_ptr;
884 unsigned long hyp_stack_ptr;
885 unsigned long stack_page;
886 unsigned long vector_ptr;
887
888 /* Switch from the HYP stub to our own HYP init vector */
889 __hyp_set_vectors(kvm_get_idmap_vector());
890
891 boot_pgd_ptr = kvm_mmu_get_boot_httbr();
892 pgd_ptr = kvm_mmu_get_httbr();
893 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
894 hyp_stack_ptr = stack_page + PAGE_SIZE;
895 vector_ptr = (unsigned long)__kvm_hyp_vector;
896
897 __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
898 }
899
900 static int hyp_init_cpu_notify(struct notifier_block *self,
901 unsigned long action, void *cpu)
902 {
903 switch (action) {
904 case CPU_STARTING:
905 case CPU_STARTING_FROZEN:
906 if (__hyp_get_vectors() == hyp_default_vectors)
907 cpu_init_hyp_mode(NULL);
908 break;
909 }
910
911 return NOTIFY_OK;
912 }
913
914 static struct notifier_block hyp_init_cpu_nb = {
915 .notifier_call = hyp_init_cpu_notify,
916 };
917
918 #ifdef CONFIG_CPU_PM
919 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
920 unsigned long cmd,
921 void *v)
922 {
923 if (cmd == CPU_PM_EXIT &&
924 __hyp_get_vectors() == hyp_default_vectors) {
925 cpu_init_hyp_mode(NULL);
926 return NOTIFY_OK;
927 }
928
929 return NOTIFY_DONE;
930 }
931
932 static struct notifier_block hyp_init_cpu_pm_nb = {
933 .notifier_call = hyp_init_cpu_pm_notifier,
934 };
935
936 static void __init hyp_cpu_pm_init(void)
937 {
938 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
939 }
940 #else
941 static inline void hyp_cpu_pm_init(void)
942 {
943 }
944 #endif
945
946 /**
947 * Inits Hyp-mode on all online CPUs
948 */
949 static int init_hyp_mode(void)
950 {
951 int cpu;
952 int err = 0;
953
954 /*
955 * Allocate Hyp PGD and setup Hyp identity mapping
956 */
957 err = kvm_mmu_init();
958 if (err)
959 goto out_err;
960
961 /*
962 * It is probably enough to obtain the default on one
963 * CPU. It's unlikely to be different on the others.
964 */
965 hyp_default_vectors = __hyp_get_vectors();
966
967 /*
968 * Allocate stack pages for Hypervisor-mode
969 */
970 for_each_possible_cpu(cpu) {
971 unsigned long stack_page;
972
973 stack_page = __get_free_page(GFP_KERNEL);
974 if (!stack_page) {
975 err = -ENOMEM;
976 goto out_free_stack_pages;
977 }
978
979 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
980 }
981
982 /*
983 * Map the Hyp-code called directly from the host
984 */
985 err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
986 if (err) {
987 kvm_err("Cannot map world-switch code\n");
988 goto out_free_mappings;
989 }
990
991 /*
992 * Map the Hyp stack pages
993 */
994 for_each_possible_cpu(cpu) {
995 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
996 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
997
998 if (err) {
999 kvm_err("Cannot map hyp stack\n");
1000 goto out_free_mappings;
1001 }
1002 }
1003
1004 /*
1005 * Map the host CPU structures
1006 */
1007 kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1008 if (!kvm_host_cpu_state) {
1009 err = -ENOMEM;
1010 kvm_err("Cannot allocate host CPU state\n");
1011 goto out_free_mappings;
1012 }
1013
1014 for_each_possible_cpu(cpu) {
1015 kvm_cpu_context_t *cpu_ctxt;
1016
1017 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1018 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
1019
1020 if (err) {
1021 kvm_err("Cannot map host CPU state: %d\n", err);
1022 goto out_free_context;
1023 }
1024 }
1025
1026 /*
1027 * Execute the init code on each CPU.
1028 */
1029 on_each_cpu(cpu_init_hyp_mode, NULL, 1);
1030
1031 /*
1032 * Init HYP view of VGIC
1033 */
1034 err = kvm_vgic_hyp_init();
1035 if (err)
1036 goto out_free_context;
1037
1038 #ifdef CONFIG_KVM_ARM_VGIC
1039 vgic_present = true;
1040 #endif
1041
1042 /*
1043 * Init HYP architected timer support
1044 */
1045 err = kvm_timer_hyp_init();
1046 if (err)
1047 goto out_free_mappings;
1048
1049 #ifndef CONFIG_HOTPLUG_CPU
1050 free_boot_hyp_pgd();
1051 #endif
1052
1053 kvm_perf_init();
1054
1055 kvm_info("Hyp mode initialized successfully\n");
1056
1057 return 0;
1058 out_free_context:
1059 free_percpu(kvm_host_cpu_state);
1060 out_free_mappings:
1061 free_hyp_pgds();
1062 out_free_stack_pages:
1063 for_each_possible_cpu(cpu)
1064 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1065 out_err:
1066 kvm_err("error initializing Hyp mode: %d\n", err);
1067 return err;
1068 }
1069
1070 static void check_kvm_target_cpu(void *ret)
1071 {
1072 *(int *)ret = kvm_target_cpu();
1073 }
1074
1075 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1076 {
1077 struct kvm_vcpu *vcpu;
1078 int i;
1079
1080 mpidr &= MPIDR_HWID_BITMASK;
1081 kvm_for_each_vcpu(i, vcpu, kvm) {
1082 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1083 return vcpu;
1084 }
1085 return NULL;
1086 }
1087
1088 /**
1089 * Initialize Hyp-mode and memory mappings on all CPUs.
1090 */
1091 int kvm_arch_init(void *opaque)
1092 {
1093 int err;
1094 int ret, cpu;
1095
1096 if (!is_hyp_mode_available()) {
1097 kvm_err("HYP mode not available\n");
1098 return -ENODEV;
1099 }
1100
1101 for_each_online_cpu(cpu) {
1102 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1103 if (ret < 0) {
1104 kvm_err("Error, CPU %d not supported!\n", cpu);
1105 return -ENODEV;
1106 }
1107 }
1108
1109 cpu_notifier_register_begin();
1110
1111 err = init_hyp_mode();
1112 if (err)
1113 goto out_err;
1114
1115 err = __register_cpu_notifier(&hyp_init_cpu_nb);
1116 if (err) {
1117 kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
1118 goto out_err;
1119 }
1120
1121 cpu_notifier_register_done();
1122
1123 hyp_cpu_pm_init();
1124
1125 kvm_coproc_table_init();
1126 return 0;
1127 out_err:
1128 cpu_notifier_register_done();
1129 return err;
1130 }
1131
1132 /* NOP: Compiling as a module not supported */
1133 void kvm_arch_exit(void)
1134 {
1135 kvm_perf_teardown();
1136 }
1137
1138 static int arm_init(void)
1139 {
1140 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1141 return rc;
1142 }
1143
1144 module_init(arm_init);
This page took 0.078583 seconds and 6 git commands to generate.