Merge tag 'edac_urgent_for_4.2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / arch / arm / kvm / arm.c
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/cpu.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34
35 #include <asm/uaccess.h>
36 #include <asm/ptrace.h>
37 #include <asm/mman.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
40 #include <asm/virt.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/kvm_psci.h>
47
48 #ifdef REQUIRES_VIRT
49 __asm__(".arch_extension virt");
50 #endif
51
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
54 static unsigned long hyp_default_vectors;
55
56 /* Per-CPU variable containing the currently running vcpu. */
57 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
58
59 /* The VMID used in the VTTBR */
60 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
61 static u8 kvm_next_vmid;
62 static DEFINE_SPINLOCK(kvm_vmid_lock);
63
64 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
65 {
66 BUG_ON(preemptible());
67 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
68 }
69
70 /**
71 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
72 * Must be called from non-preemptible context
73 */
74 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
75 {
76 BUG_ON(preemptible());
77 return __this_cpu_read(kvm_arm_running_vcpu);
78 }
79
80 /**
81 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
82 */
83 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
84 {
85 return &kvm_arm_running_vcpu;
86 }
87
88 int kvm_arch_hardware_enable(void)
89 {
90 return 0;
91 }
92
93 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
94 {
95 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
96 }
97
98 int kvm_arch_hardware_setup(void)
99 {
100 return 0;
101 }
102
103 void kvm_arch_check_processor_compat(void *rtn)
104 {
105 *(int *)rtn = 0;
106 }
107
108
109 /**
110 * kvm_arch_init_vm - initializes a VM data structure
111 * @kvm: pointer to the KVM struct
112 */
113 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
114 {
115 int ret = 0;
116
117 if (type)
118 return -EINVAL;
119
120 ret = kvm_alloc_stage2_pgd(kvm);
121 if (ret)
122 goto out_fail_alloc;
123
124 ret = create_hyp_mappings(kvm, kvm + 1);
125 if (ret)
126 goto out_free_stage2_pgd;
127
128 kvm_timer_init(kvm);
129
130 /* Mark the initial VMID generation invalid */
131 kvm->arch.vmid_gen = 0;
132
133 /* The maximum number of VCPUs is limited by the host's GIC model */
134 kvm->arch.max_vcpus = kvm_vgic_get_max_vcpus();
135
136 return ret;
137 out_free_stage2_pgd:
138 kvm_free_stage2_pgd(kvm);
139 out_fail_alloc:
140 return ret;
141 }
142
143 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
144 {
145 return VM_FAULT_SIGBUS;
146 }
147
148
149 /**
150 * kvm_arch_destroy_vm - destroy the VM data structure
151 * @kvm: pointer to the KVM struct
152 */
153 void kvm_arch_destroy_vm(struct kvm *kvm)
154 {
155 int i;
156
157 kvm_free_stage2_pgd(kvm);
158
159 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
160 if (kvm->vcpus[i]) {
161 kvm_arch_vcpu_free(kvm->vcpus[i]);
162 kvm->vcpus[i] = NULL;
163 }
164 }
165
166 kvm_vgic_destroy(kvm);
167 }
168
169 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
170 {
171 int r;
172 switch (ext) {
173 case KVM_CAP_IRQCHIP:
174 case KVM_CAP_IOEVENTFD:
175 case KVM_CAP_DEVICE_CTRL:
176 case KVM_CAP_USER_MEMORY:
177 case KVM_CAP_SYNC_MMU:
178 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
179 case KVM_CAP_ONE_REG:
180 case KVM_CAP_ARM_PSCI:
181 case KVM_CAP_ARM_PSCI_0_2:
182 case KVM_CAP_READONLY_MEM:
183 case KVM_CAP_MP_STATE:
184 r = 1;
185 break;
186 case KVM_CAP_COALESCED_MMIO:
187 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
188 break;
189 case KVM_CAP_ARM_SET_DEVICE_ADDR:
190 r = 1;
191 break;
192 case KVM_CAP_NR_VCPUS:
193 r = num_online_cpus();
194 break;
195 case KVM_CAP_MAX_VCPUS:
196 r = KVM_MAX_VCPUS;
197 break;
198 default:
199 r = kvm_arch_dev_ioctl_check_extension(ext);
200 break;
201 }
202 return r;
203 }
204
205 long kvm_arch_dev_ioctl(struct file *filp,
206 unsigned int ioctl, unsigned long arg)
207 {
208 return -EINVAL;
209 }
210
211
212 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
213 {
214 int err;
215 struct kvm_vcpu *vcpu;
216
217 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
218 err = -EBUSY;
219 goto out;
220 }
221
222 if (id >= kvm->arch.max_vcpus) {
223 err = -EINVAL;
224 goto out;
225 }
226
227 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
228 if (!vcpu) {
229 err = -ENOMEM;
230 goto out;
231 }
232
233 err = kvm_vcpu_init(vcpu, kvm, id);
234 if (err)
235 goto free_vcpu;
236
237 err = create_hyp_mappings(vcpu, vcpu + 1);
238 if (err)
239 goto vcpu_uninit;
240
241 return vcpu;
242 vcpu_uninit:
243 kvm_vcpu_uninit(vcpu);
244 free_vcpu:
245 kmem_cache_free(kvm_vcpu_cache, vcpu);
246 out:
247 return ERR_PTR(err);
248 }
249
250 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
251 {
252 }
253
254 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
255 {
256 kvm_mmu_free_memory_caches(vcpu);
257 kvm_timer_vcpu_terminate(vcpu);
258 kvm_vgic_vcpu_destroy(vcpu);
259 kmem_cache_free(kvm_vcpu_cache, vcpu);
260 }
261
262 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
263 {
264 kvm_arch_vcpu_free(vcpu);
265 }
266
267 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
268 {
269 return kvm_timer_should_fire(vcpu);
270 }
271
272 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
273 {
274 /* Force users to call KVM_ARM_VCPU_INIT */
275 vcpu->arch.target = -1;
276 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
277
278 /* Set up the timer */
279 kvm_timer_vcpu_init(vcpu);
280
281 return 0;
282 }
283
284 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
285 {
286 vcpu->cpu = cpu;
287 vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
288
289 kvm_arm_set_running_vcpu(vcpu);
290 }
291
292 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
293 {
294 /*
295 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
296 * if the vcpu is no longer assigned to a cpu. This is used for the
297 * optimized make_all_cpus_request path.
298 */
299 vcpu->cpu = -1;
300
301 kvm_arm_set_running_vcpu(NULL);
302 }
303
304 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
305 struct kvm_guest_debug *dbg)
306 {
307 return -EINVAL;
308 }
309
310
311 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
312 struct kvm_mp_state *mp_state)
313 {
314 if (vcpu->arch.pause)
315 mp_state->mp_state = KVM_MP_STATE_STOPPED;
316 else
317 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
318
319 return 0;
320 }
321
322 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
323 struct kvm_mp_state *mp_state)
324 {
325 switch (mp_state->mp_state) {
326 case KVM_MP_STATE_RUNNABLE:
327 vcpu->arch.pause = false;
328 break;
329 case KVM_MP_STATE_STOPPED:
330 vcpu->arch.pause = true;
331 break;
332 default:
333 return -EINVAL;
334 }
335
336 return 0;
337 }
338
339 /**
340 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
341 * @v: The VCPU pointer
342 *
343 * If the guest CPU is not waiting for interrupts or an interrupt line is
344 * asserted, the CPU is by definition runnable.
345 */
346 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
347 {
348 return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
349 }
350
351 /* Just ensure a guest exit from a particular CPU */
352 static void exit_vm_noop(void *info)
353 {
354 }
355
356 void force_vm_exit(const cpumask_t *mask)
357 {
358 smp_call_function_many(mask, exit_vm_noop, NULL, true);
359 }
360
361 /**
362 * need_new_vmid_gen - check that the VMID is still valid
363 * @kvm: The VM's VMID to checkt
364 *
365 * return true if there is a new generation of VMIDs being used
366 *
367 * The hardware supports only 256 values with the value zero reserved for the
368 * host, so we check if an assigned value belongs to a previous generation,
369 * which which requires us to assign a new value. If we're the first to use a
370 * VMID for the new generation, we must flush necessary caches and TLBs on all
371 * CPUs.
372 */
373 static bool need_new_vmid_gen(struct kvm *kvm)
374 {
375 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
376 }
377
378 /**
379 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
380 * @kvm The guest that we are about to run
381 *
382 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
383 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
384 * caches and TLBs.
385 */
386 static void update_vttbr(struct kvm *kvm)
387 {
388 phys_addr_t pgd_phys;
389 u64 vmid;
390
391 if (!need_new_vmid_gen(kvm))
392 return;
393
394 spin_lock(&kvm_vmid_lock);
395
396 /*
397 * We need to re-check the vmid_gen here to ensure that if another vcpu
398 * already allocated a valid vmid for this vm, then this vcpu should
399 * use the same vmid.
400 */
401 if (!need_new_vmid_gen(kvm)) {
402 spin_unlock(&kvm_vmid_lock);
403 return;
404 }
405
406 /* First user of a new VMID generation? */
407 if (unlikely(kvm_next_vmid == 0)) {
408 atomic64_inc(&kvm_vmid_gen);
409 kvm_next_vmid = 1;
410
411 /*
412 * On SMP we know no other CPUs can use this CPU's or each
413 * other's VMID after force_vm_exit returns since the
414 * kvm_vmid_lock blocks them from reentry to the guest.
415 */
416 force_vm_exit(cpu_all_mask);
417 /*
418 * Now broadcast TLB + ICACHE invalidation over the inner
419 * shareable domain to make sure all data structures are
420 * clean.
421 */
422 kvm_call_hyp(__kvm_flush_vm_context);
423 }
424
425 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
426 kvm->arch.vmid = kvm_next_vmid;
427 kvm_next_vmid++;
428
429 /* update vttbr to be used with the new vmid */
430 pgd_phys = virt_to_phys(kvm_get_hwpgd(kvm));
431 BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
432 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
433 kvm->arch.vttbr = pgd_phys | vmid;
434
435 spin_unlock(&kvm_vmid_lock);
436 }
437
438 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
439 {
440 struct kvm *kvm = vcpu->kvm;
441 int ret;
442
443 if (likely(vcpu->arch.has_run_once))
444 return 0;
445
446 vcpu->arch.has_run_once = true;
447
448 /*
449 * Map the VGIC hardware resources before running a vcpu the first
450 * time on this VM.
451 */
452 if (unlikely(!vgic_ready(kvm))) {
453 ret = kvm_vgic_map_resources(kvm);
454 if (ret)
455 return ret;
456 }
457
458 /*
459 * Enable the arch timers only if we have an in-kernel VGIC
460 * and it has been properly initialized, since we cannot handle
461 * interrupts from the virtual timer with a userspace gic.
462 */
463 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
464 kvm_timer_enable(kvm);
465
466 return 0;
467 }
468
469 bool kvm_arch_intc_initialized(struct kvm *kvm)
470 {
471 return vgic_initialized(kvm);
472 }
473
474 static void vcpu_pause(struct kvm_vcpu *vcpu)
475 {
476 wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
477
478 wait_event_interruptible(*wq, !vcpu->arch.pause);
479 }
480
481 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
482 {
483 return vcpu->arch.target >= 0;
484 }
485
486 /**
487 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
488 * @vcpu: The VCPU pointer
489 * @run: The kvm_run structure pointer used for userspace state exchange
490 *
491 * This function is called through the VCPU_RUN ioctl called from user space. It
492 * will execute VM code in a loop until the time slice for the process is used
493 * or some emulation is needed from user space in which case the function will
494 * return with return value 0 and with the kvm_run structure filled in with the
495 * required data for the requested emulation.
496 */
497 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
498 {
499 int ret;
500 sigset_t sigsaved;
501
502 if (unlikely(!kvm_vcpu_initialized(vcpu)))
503 return -ENOEXEC;
504
505 ret = kvm_vcpu_first_run_init(vcpu);
506 if (ret)
507 return ret;
508
509 if (run->exit_reason == KVM_EXIT_MMIO) {
510 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
511 if (ret)
512 return ret;
513 }
514
515 if (vcpu->sigset_active)
516 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
517
518 ret = 1;
519 run->exit_reason = KVM_EXIT_UNKNOWN;
520 while (ret > 0) {
521 /*
522 * Check conditions before entering the guest
523 */
524 cond_resched();
525
526 update_vttbr(vcpu->kvm);
527
528 if (vcpu->arch.pause)
529 vcpu_pause(vcpu);
530
531 kvm_vgic_flush_hwstate(vcpu);
532 kvm_timer_flush_hwstate(vcpu);
533
534 preempt_disable();
535 local_irq_disable();
536
537 /*
538 * Re-check atomic conditions
539 */
540 if (signal_pending(current)) {
541 ret = -EINTR;
542 run->exit_reason = KVM_EXIT_INTR;
543 }
544
545 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
546 local_irq_enable();
547 preempt_enable();
548 kvm_timer_sync_hwstate(vcpu);
549 kvm_vgic_sync_hwstate(vcpu);
550 continue;
551 }
552
553 /**************************************************************
554 * Enter the guest
555 */
556 trace_kvm_entry(*vcpu_pc(vcpu));
557 __kvm_guest_enter();
558 vcpu->mode = IN_GUEST_MODE;
559
560 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
561
562 vcpu->mode = OUTSIDE_GUEST_MODE;
563 /*
564 * Back from guest
565 *************************************************************/
566
567 /*
568 * We may have taken a host interrupt in HYP mode (ie
569 * while executing the guest). This interrupt is still
570 * pending, as we haven't serviced it yet!
571 *
572 * We're now back in SVC mode, with interrupts
573 * disabled. Enabling the interrupts now will have
574 * the effect of taking the interrupt again, in SVC
575 * mode this time.
576 */
577 local_irq_enable();
578
579 /*
580 * We do local_irq_enable() before calling kvm_guest_exit() so
581 * that if a timer interrupt hits while running the guest we
582 * account that tick as being spent in the guest. We enable
583 * preemption after calling kvm_guest_exit() so that if we get
584 * preempted we make sure ticks after that is not counted as
585 * guest time.
586 */
587 kvm_guest_exit();
588 trace_kvm_exit(kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
589 preempt_enable();
590
591
592 kvm_timer_sync_hwstate(vcpu);
593 kvm_vgic_sync_hwstate(vcpu);
594
595 ret = handle_exit(vcpu, run, ret);
596 }
597
598 if (vcpu->sigset_active)
599 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
600 return ret;
601 }
602
603 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
604 {
605 int bit_index;
606 bool set;
607 unsigned long *ptr;
608
609 if (number == KVM_ARM_IRQ_CPU_IRQ)
610 bit_index = __ffs(HCR_VI);
611 else /* KVM_ARM_IRQ_CPU_FIQ */
612 bit_index = __ffs(HCR_VF);
613
614 ptr = (unsigned long *)&vcpu->arch.irq_lines;
615 if (level)
616 set = test_and_set_bit(bit_index, ptr);
617 else
618 set = test_and_clear_bit(bit_index, ptr);
619
620 /*
621 * If we didn't change anything, no need to wake up or kick other CPUs
622 */
623 if (set == level)
624 return 0;
625
626 /*
627 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
628 * trigger a world-switch round on the running physical CPU to set the
629 * virtual IRQ/FIQ fields in the HCR appropriately.
630 */
631 kvm_vcpu_kick(vcpu);
632
633 return 0;
634 }
635
636 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
637 bool line_status)
638 {
639 u32 irq = irq_level->irq;
640 unsigned int irq_type, vcpu_idx, irq_num;
641 int nrcpus = atomic_read(&kvm->online_vcpus);
642 struct kvm_vcpu *vcpu = NULL;
643 bool level = irq_level->level;
644
645 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
646 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
647 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
648
649 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
650
651 switch (irq_type) {
652 case KVM_ARM_IRQ_TYPE_CPU:
653 if (irqchip_in_kernel(kvm))
654 return -ENXIO;
655
656 if (vcpu_idx >= nrcpus)
657 return -EINVAL;
658
659 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
660 if (!vcpu)
661 return -EINVAL;
662
663 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
664 return -EINVAL;
665
666 return vcpu_interrupt_line(vcpu, irq_num, level);
667 case KVM_ARM_IRQ_TYPE_PPI:
668 if (!irqchip_in_kernel(kvm))
669 return -ENXIO;
670
671 if (vcpu_idx >= nrcpus)
672 return -EINVAL;
673
674 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
675 if (!vcpu)
676 return -EINVAL;
677
678 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
679 return -EINVAL;
680
681 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
682 case KVM_ARM_IRQ_TYPE_SPI:
683 if (!irqchip_in_kernel(kvm))
684 return -ENXIO;
685
686 if (irq_num < VGIC_NR_PRIVATE_IRQS)
687 return -EINVAL;
688
689 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
690 }
691
692 return -EINVAL;
693 }
694
695 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
696 const struct kvm_vcpu_init *init)
697 {
698 unsigned int i;
699 int phys_target = kvm_target_cpu();
700
701 if (init->target != phys_target)
702 return -EINVAL;
703
704 /*
705 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
706 * use the same target.
707 */
708 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
709 return -EINVAL;
710
711 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
712 for (i = 0; i < sizeof(init->features) * 8; i++) {
713 bool set = (init->features[i / 32] & (1 << (i % 32)));
714
715 if (set && i >= KVM_VCPU_MAX_FEATURES)
716 return -ENOENT;
717
718 /*
719 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
720 * use the same feature set.
721 */
722 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
723 test_bit(i, vcpu->arch.features) != set)
724 return -EINVAL;
725
726 if (set)
727 set_bit(i, vcpu->arch.features);
728 }
729
730 vcpu->arch.target = phys_target;
731
732 /* Now we know what it is, we can reset it. */
733 return kvm_reset_vcpu(vcpu);
734 }
735
736
737 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
738 struct kvm_vcpu_init *init)
739 {
740 int ret;
741
742 ret = kvm_vcpu_set_target(vcpu, init);
743 if (ret)
744 return ret;
745
746 /*
747 * Ensure a rebooted VM will fault in RAM pages and detect if the
748 * guest MMU is turned off and flush the caches as needed.
749 */
750 if (vcpu->arch.has_run_once)
751 stage2_unmap_vm(vcpu->kvm);
752
753 vcpu_reset_hcr(vcpu);
754
755 /*
756 * Handle the "start in power-off" case by marking the VCPU as paused.
757 */
758 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
759 vcpu->arch.pause = true;
760 else
761 vcpu->arch.pause = false;
762
763 return 0;
764 }
765
766 long kvm_arch_vcpu_ioctl(struct file *filp,
767 unsigned int ioctl, unsigned long arg)
768 {
769 struct kvm_vcpu *vcpu = filp->private_data;
770 void __user *argp = (void __user *)arg;
771
772 switch (ioctl) {
773 case KVM_ARM_VCPU_INIT: {
774 struct kvm_vcpu_init init;
775
776 if (copy_from_user(&init, argp, sizeof(init)))
777 return -EFAULT;
778
779 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
780 }
781 case KVM_SET_ONE_REG:
782 case KVM_GET_ONE_REG: {
783 struct kvm_one_reg reg;
784
785 if (unlikely(!kvm_vcpu_initialized(vcpu)))
786 return -ENOEXEC;
787
788 if (copy_from_user(&reg, argp, sizeof(reg)))
789 return -EFAULT;
790 if (ioctl == KVM_SET_ONE_REG)
791 return kvm_arm_set_reg(vcpu, &reg);
792 else
793 return kvm_arm_get_reg(vcpu, &reg);
794 }
795 case KVM_GET_REG_LIST: {
796 struct kvm_reg_list __user *user_list = argp;
797 struct kvm_reg_list reg_list;
798 unsigned n;
799
800 if (unlikely(!kvm_vcpu_initialized(vcpu)))
801 return -ENOEXEC;
802
803 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
804 return -EFAULT;
805 n = reg_list.n;
806 reg_list.n = kvm_arm_num_regs(vcpu);
807 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
808 return -EFAULT;
809 if (n < reg_list.n)
810 return -E2BIG;
811 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
812 }
813 default:
814 return -EINVAL;
815 }
816 }
817
818 /**
819 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
820 * @kvm: kvm instance
821 * @log: slot id and address to which we copy the log
822 *
823 * Steps 1-4 below provide general overview of dirty page logging. See
824 * kvm_get_dirty_log_protect() function description for additional details.
825 *
826 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
827 * always flush the TLB (step 4) even if previous step failed and the dirty
828 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
829 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
830 * writes will be marked dirty for next log read.
831 *
832 * 1. Take a snapshot of the bit and clear it if needed.
833 * 2. Write protect the corresponding page.
834 * 3. Copy the snapshot to the userspace.
835 * 4. Flush TLB's if needed.
836 */
837 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
838 {
839 bool is_dirty = false;
840 int r;
841
842 mutex_lock(&kvm->slots_lock);
843
844 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
845
846 if (is_dirty)
847 kvm_flush_remote_tlbs(kvm);
848
849 mutex_unlock(&kvm->slots_lock);
850 return r;
851 }
852
853 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
854 struct kvm_arm_device_addr *dev_addr)
855 {
856 unsigned long dev_id, type;
857
858 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
859 KVM_ARM_DEVICE_ID_SHIFT;
860 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
861 KVM_ARM_DEVICE_TYPE_SHIFT;
862
863 switch (dev_id) {
864 case KVM_ARM_DEVICE_VGIC_V2:
865 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
866 default:
867 return -ENODEV;
868 }
869 }
870
871 long kvm_arch_vm_ioctl(struct file *filp,
872 unsigned int ioctl, unsigned long arg)
873 {
874 struct kvm *kvm = filp->private_data;
875 void __user *argp = (void __user *)arg;
876
877 switch (ioctl) {
878 case KVM_CREATE_IRQCHIP: {
879 return kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
880 }
881 case KVM_ARM_SET_DEVICE_ADDR: {
882 struct kvm_arm_device_addr dev_addr;
883
884 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
885 return -EFAULT;
886 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
887 }
888 case KVM_ARM_PREFERRED_TARGET: {
889 int err;
890 struct kvm_vcpu_init init;
891
892 err = kvm_vcpu_preferred_target(&init);
893 if (err)
894 return err;
895
896 if (copy_to_user(argp, &init, sizeof(init)))
897 return -EFAULT;
898
899 return 0;
900 }
901 default:
902 return -EINVAL;
903 }
904 }
905
906 static void cpu_init_hyp_mode(void *dummy)
907 {
908 phys_addr_t boot_pgd_ptr;
909 phys_addr_t pgd_ptr;
910 unsigned long hyp_stack_ptr;
911 unsigned long stack_page;
912 unsigned long vector_ptr;
913
914 /* Switch from the HYP stub to our own HYP init vector */
915 __hyp_set_vectors(kvm_get_idmap_vector());
916
917 boot_pgd_ptr = kvm_mmu_get_boot_httbr();
918 pgd_ptr = kvm_mmu_get_httbr();
919 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
920 hyp_stack_ptr = stack_page + PAGE_SIZE;
921 vector_ptr = (unsigned long)__kvm_hyp_vector;
922
923 __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
924 }
925
926 static int hyp_init_cpu_notify(struct notifier_block *self,
927 unsigned long action, void *cpu)
928 {
929 switch (action) {
930 case CPU_STARTING:
931 case CPU_STARTING_FROZEN:
932 if (__hyp_get_vectors() == hyp_default_vectors)
933 cpu_init_hyp_mode(NULL);
934 break;
935 }
936
937 return NOTIFY_OK;
938 }
939
940 static struct notifier_block hyp_init_cpu_nb = {
941 .notifier_call = hyp_init_cpu_notify,
942 };
943
944 #ifdef CONFIG_CPU_PM
945 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
946 unsigned long cmd,
947 void *v)
948 {
949 if (cmd == CPU_PM_EXIT &&
950 __hyp_get_vectors() == hyp_default_vectors) {
951 cpu_init_hyp_mode(NULL);
952 return NOTIFY_OK;
953 }
954
955 return NOTIFY_DONE;
956 }
957
958 static struct notifier_block hyp_init_cpu_pm_nb = {
959 .notifier_call = hyp_init_cpu_pm_notifier,
960 };
961
962 static void __init hyp_cpu_pm_init(void)
963 {
964 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
965 }
966 #else
967 static inline void hyp_cpu_pm_init(void)
968 {
969 }
970 #endif
971
972 /**
973 * Inits Hyp-mode on all online CPUs
974 */
975 static int init_hyp_mode(void)
976 {
977 int cpu;
978 int err = 0;
979
980 /*
981 * Allocate Hyp PGD and setup Hyp identity mapping
982 */
983 err = kvm_mmu_init();
984 if (err)
985 goto out_err;
986
987 /*
988 * It is probably enough to obtain the default on one
989 * CPU. It's unlikely to be different on the others.
990 */
991 hyp_default_vectors = __hyp_get_vectors();
992
993 /*
994 * Allocate stack pages for Hypervisor-mode
995 */
996 for_each_possible_cpu(cpu) {
997 unsigned long stack_page;
998
999 stack_page = __get_free_page(GFP_KERNEL);
1000 if (!stack_page) {
1001 err = -ENOMEM;
1002 goto out_free_stack_pages;
1003 }
1004
1005 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1006 }
1007
1008 /*
1009 * Map the Hyp-code called directly from the host
1010 */
1011 err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
1012 if (err) {
1013 kvm_err("Cannot map world-switch code\n");
1014 goto out_free_mappings;
1015 }
1016
1017 /*
1018 * Map the Hyp stack pages
1019 */
1020 for_each_possible_cpu(cpu) {
1021 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1022 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
1023
1024 if (err) {
1025 kvm_err("Cannot map hyp stack\n");
1026 goto out_free_mappings;
1027 }
1028 }
1029
1030 /*
1031 * Map the host CPU structures
1032 */
1033 kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1034 if (!kvm_host_cpu_state) {
1035 err = -ENOMEM;
1036 kvm_err("Cannot allocate host CPU state\n");
1037 goto out_free_mappings;
1038 }
1039
1040 for_each_possible_cpu(cpu) {
1041 kvm_cpu_context_t *cpu_ctxt;
1042
1043 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1044 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
1045
1046 if (err) {
1047 kvm_err("Cannot map host CPU state: %d\n", err);
1048 goto out_free_context;
1049 }
1050 }
1051
1052 /*
1053 * Execute the init code on each CPU.
1054 */
1055 on_each_cpu(cpu_init_hyp_mode, NULL, 1);
1056
1057 /*
1058 * Init HYP view of VGIC
1059 */
1060 err = kvm_vgic_hyp_init();
1061 if (err)
1062 goto out_free_context;
1063
1064 /*
1065 * Init HYP architected timer support
1066 */
1067 err = kvm_timer_hyp_init();
1068 if (err)
1069 goto out_free_mappings;
1070
1071 #ifndef CONFIG_HOTPLUG_CPU
1072 free_boot_hyp_pgd();
1073 #endif
1074
1075 kvm_perf_init();
1076
1077 kvm_info("Hyp mode initialized successfully\n");
1078
1079 return 0;
1080 out_free_context:
1081 free_percpu(kvm_host_cpu_state);
1082 out_free_mappings:
1083 free_hyp_pgds();
1084 out_free_stack_pages:
1085 for_each_possible_cpu(cpu)
1086 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1087 out_err:
1088 kvm_err("error initializing Hyp mode: %d\n", err);
1089 return err;
1090 }
1091
1092 static void check_kvm_target_cpu(void *ret)
1093 {
1094 *(int *)ret = kvm_target_cpu();
1095 }
1096
1097 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1098 {
1099 struct kvm_vcpu *vcpu;
1100 int i;
1101
1102 mpidr &= MPIDR_HWID_BITMASK;
1103 kvm_for_each_vcpu(i, vcpu, kvm) {
1104 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1105 return vcpu;
1106 }
1107 return NULL;
1108 }
1109
1110 /**
1111 * Initialize Hyp-mode and memory mappings on all CPUs.
1112 */
1113 int kvm_arch_init(void *opaque)
1114 {
1115 int err;
1116 int ret, cpu;
1117
1118 if (!is_hyp_mode_available()) {
1119 kvm_err("HYP mode not available\n");
1120 return -ENODEV;
1121 }
1122
1123 for_each_online_cpu(cpu) {
1124 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1125 if (ret < 0) {
1126 kvm_err("Error, CPU %d not supported!\n", cpu);
1127 return -ENODEV;
1128 }
1129 }
1130
1131 cpu_notifier_register_begin();
1132
1133 err = init_hyp_mode();
1134 if (err)
1135 goto out_err;
1136
1137 err = __register_cpu_notifier(&hyp_init_cpu_nb);
1138 if (err) {
1139 kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
1140 goto out_err;
1141 }
1142
1143 cpu_notifier_register_done();
1144
1145 hyp_cpu_pm_init();
1146
1147 kvm_coproc_table_init();
1148 return 0;
1149 out_err:
1150 cpu_notifier_register_done();
1151 return err;
1152 }
1153
1154 /* NOP: Compiling as a module not supported */
1155 void kvm_arch_exit(void)
1156 {
1157 kvm_perf_teardown();
1158 }
1159
1160 static int arm_init(void)
1161 {
1162 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1163 return rc;
1164 }
1165
1166 module_init(arm_init);
This page took 0.066582 seconds and 6 git commands to generate.