Merge tag 'powerpc-4.7-5' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[deliverable/linux.git] / arch / arm / kvm / coproc.c
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Authors: Rusty Russell <rusty@rustcorp.com.au>
4 * Christoffer Dall <c.dall@virtualopensystems.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2, as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
18 */
19
20 #include <linux/bsearch.h>
21 #include <linux/mm.h>
22 #include <linux/kvm_host.h>
23 #include <linux/uaccess.h>
24 #include <asm/kvm_arm.h>
25 #include <asm/kvm_host.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_coproc.h>
28 #include <asm/kvm_mmu.h>
29 #include <asm/cacheflush.h>
30 #include <asm/cputype.h>
31 #include <trace/events/kvm.h>
32 #include <asm/vfp.h>
33 #include "../vfp/vfpinstr.h"
34
35 #include "trace.h"
36 #include "coproc.h"
37
38
39 /******************************************************************************
40 * Co-processor emulation
41 *****************************************************************************/
42
43 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
44 static u32 cache_levels;
45
46 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
47 #define CSSELR_MAX 12
48
49 /*
50 * kvm_vcpu_arch.cp15 holds cp15 registers as an array of u32, but some
51 * of cp15 registers can be viewed either as couple of two u32 registers
52 * or one u64 register. Current u64 register encoding is that least
53 * significant u32 word is followed by most significant u32 word.
54 */
55 static inline void vcpu_cp15_reg64_set(struct kvm_vcpu *vcpu,
56 const struct coproc_reg *r,
57 u64 val)
58 {
59 vcpu_cp15(vcpu, r->reg) = val & 0xffffffff;
60 vcpu_cp15(vcpu, r->reg + 1) = val >> 32;
61 }
62
63 static inline u64 vcpu_cp15_reg64_get(struct kvm_vcpu *vcpu,
64 const struct coproc_reg *r)
65 {
66 u64 val;
67
68 val = vcpu_cp15(vcpu, r->reg + 1);
69 val = val << 32;
70 val = val | vcpu_cp15(vcpu, r->reg);
71 return val;
72 }
73
74 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
75 {
76 kvm_inject_undefined(vcpu);
77 return 1;
78 }
79
80 int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
81 {
82 /*
83 * We can get here, if the host has been built without VFPv3 support,
84 * but the guest attempted a floating point operation.
85 */
86 kvm_inject_undefined(vcpu);
87 return 1;
88 }
89
90 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
91 {
92 kvm_inject_undefined(vcpu);
93 return 1;
94 }
95
96 int kvm_handle_cp14_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
97 {
98 kvm_inject_undefined(vcpu);
99 return 1;
100 }
101
102 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
103 {
104 /*
105 * Compute guest MPIDR. We build a virtual cluster out of the
106 * vcpu_id, but we read the 'U' bit from the underlying
107 * hardware directly.
108 */
109 vcpu_cp15(vcpu, c0_MPIDR) = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) |
110 ((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) |
111 (vcpu->vcpu_id & 3));
112 }
113
114 /* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
115 static bool access_actlr(struct kvm_vcpu *vcpu,
116 const struct coproc_params *p,
117 const struct coproc_reg *r)
118 {
119 if (p->is_write)
120 return ignore_write(vcpu, p);
121
122 *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c1_ACTLR);
123 return true;
124 }
125
126 /* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
127 static bool access_cbar(struct kvm_vcpu *vcpu,
128 const struct coproc_params *p,
129 const struct coproc_reg *r)
130 {
131 if (p->is_write)
132 return write_to_read_only(vcpu, p);
133 return read_zero(vcpu, p);
134 }
135
136 /* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
137 static bool access_l2ctlr(struct kvm_vcpu *vcpu,
138 const struct coproc_params *p,
139 const struct coproc_reg *r)
140 {
141 if (p->is_write)
142 return ignore_write(vcpu, p);
143
144 *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c9_L2CTLR);
145 return true;
146 }
147
148 static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
149 {
150 u32 l2ctlr, ncores;
151
152 asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr));
153 l2ctlr &= ~(3 << 24);
154 ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1;
155 /* How many cores in the current cluster and the next ones */
156 ncores -= (vcpu->vcpu_id & ~3);
157 /* Cap it to the maximum number of cores in a single cluster */
158 ncores = min(ncores, 3U);
159 l2ctlr |= (ncores & 3) << 24;
160
161 vcpu_cp15(vcpu, c9_L2CTLR) = l2ctlr;
162 }
163
164 static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
165 {
166 u32 actlr;
167
168 /* ACTLR contains SMP bit: make sure you create all cpus first! */
169 asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
170 /* Make the SMP bit consistent with the guest configuration */
171 if (atomic_read(&vcpu->kvm->online_vcpus) > 1)
172 actlr |= 1U << 6;
173 else
174 actlr &= ~(1U << 6);
175
176 vcpu_cp15(vcpu, c1_ACTLR) = actlr;
177 }
178
179 /*
180 * TRM entries: A7:4.3.50, A15:4.3.49
181 * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
182 */
183 static bool access_l2ectlr(struct kvm_vcpu *vcpu,
184 const struct coproc_params *p,
185 const struct coproc_reg *r)
186 {
187 if (p->is_write)
188 return ignore_write(vcpu, p);
189
190 *vcpu_reg(vcpu, p->Rt1) = 0;
191 return true;
192 }
193
194 /*
195 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
196 */
197 static bool access_dcsw(struct kvm_vcpu *vcpu,
198 const struct coproc_params *p,
199 const struct coproc_reg *r)
200 {
201 if (!p->is_write)
202 return read_from_write_only(vcpu, p);
203
204 kvm_set_way_flush(vcpu);
205 return true;
206 }
207
208 /*
209 * Generic accessor for VM registers. Only called as long as HCR_TVM
210 * is set. If the guest enables the MMU, we stop trapping the VM
211 * sys_regs and leave it in complete control of the caches.
212 *
213 * Used by the cpu-specific code.
214 */
215 bool access_vm_reg(struct kvm_vcpu *vcpu,
216 const struct coproc_params *p,
217 const struct coproc_reg *r)
218 {
219 bool was_enabled = vcpu_has_cache_enabled(vcpu);
220
221 BUG_ON(!p->is_write);
222
223 vcpu_cp15(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt1);
224 if (p->is_64bit)
225 vcpu_cp15(vcpu, r->reg + 1) = *vcpu_reg(vcpu, p->Rt2);
226
227 kvm_toggle_cache(vcpu, was_enabled);
228 return true;
229 }
230
231 /*
232 * We could trap ID_DFR0 and tell the guest we don't support performance
233 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
234 * NAKed, so it will read the PMCR anyway.
235 *
236 * Therefore we tell the guest we have 0 counters. Unfortunately, we
237 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
238 * all PM registers, which doesn't crash the guest kernel at least.
239 */
240 static bool pm_fake(struct kvm_vcpu *vcpu,
241 const struct coproc_params *p,
242 const struct coproc_reg *r)
243 {
244 if (p->is_write)
245 return ignore_write(vcpu, p);
246 else
247 return read_zero(vcpu, p);
248 }
249
250 #define access_pmcr pm_fake
251 #define access_pmcntenset pm_fake
252 #define access_pmcntenclr pm_fake
253 #define access_pmovsr pm_fake
254 #define access_pmselr pm_fake
255 #define access_pmceid0 pm_fake
256 #define access_pmceid1 pm_fake
257 #define access_pmccntr pm_fake
258 #define access_pmxevtyper pm_fake
259 #define access_pmxevcntr pm_fake
260 #define access_pmuserenr pm_fake
261 #define access_pmintenset pm_fake
262 #define access_pmintenclr pm_fake
263
264 /* Architected CP15 registers.
265 * CRn denotes the primary register number, but is copied to the CRm in the
266 * user space API for 64-bit register access in line with the terminology used
267 * in the ARM ARM.
268 * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
269 * registers preceding 32-bit ones.
270 */
271 static const struct coproc_reg cp15_regs[] = {
272 /* MPIDR: we use VMPIDR for guest access. */
273 { CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32,
274 NULL, reset_mpidr, c0_MPIDR },
275
276 /* CSSELR: swapped by interrupt.S. */
277 { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
278 NULL, reset_unknown, c0_CSSELR },
279
280 /* ACTLR: trapped by HCR.TAC bit. */
281 { CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32,
282 access_actlr, reset_actlr, c1_ACTLR },
283
284 /* CPACR: swapped by interrupt.S. */
285 { CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32,
286 NULL, reset_val, c1_CPACR, 0x00000000 },
287
288 /* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */
289 { CRm64( 2), Op1( 0), is64, access_vm_reg, reset_unknown64, c2_TTBR0 },
290 { CRn(2), CRm( 0), Op1( 0), Op2( 0), is32,
291 access_vm_reg, reset_unknown, c2_TTBR0 },
292 { CRn(2), CRm( 0), Op1( 0), Op2( 1), is32,
293 access_vm_reg, reset_unknown, c2_TTBR1 },
294 { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
295 access_vm_reg, reset_val, c2_TTBCR, 0x00000000 },
296 { CRm64( 2), Op1( 1), is64, access_vm_reg, reset_unknown64, c2_TTBR1 },
297
298
299 /* DACR: swapped by interrupt.S. */
300 { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
301 access_vm_reg, reset_unknown, c3_DACR },
302
303 /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
304 { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
305 access_vm_reg, reset_unknown, c5_DFSR },
306 { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
307 access_vm_reg, reset_unknown, c5_IFSR },
308 { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
309 access_vm_reg, reset_unknown, c5_ADFSR },
310 { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
311 access_vm_reg, reset_unknown, c5_AIFSR },
312
313 /* DFAR/IFAR: swapped by interrupt.S. */
314 { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
315 access_vm_reg, reset_unknown, c6_DFAR },
316 { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
317 access_vm_reg, reset_unknown, c6_IFAR },
318
319 /* PAR swapped by interrupt.S */
320 { CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
321
322 /*
323 * DC{C,I,CI}SW operations:
324 */
325 { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
326 { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
327 { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
328 /*
329 * L2CTLR access (guest wants to know #CPUs).
330 */
331 { CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32,
332 access_l2ctlr, reset_l2ctlr, c9_L2CTLR },
333 { CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr},
334
335 /*
336 * Dummy performance monitor implementation.
337 */
338 { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
339 { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
340 { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
341 { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
342 { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
343 { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
344 { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
345 { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
346 { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
347 { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
348 { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
349 { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
350 { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
351
352 /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
353 { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
354 access_vm_reg, reset_unknown, c10_PRRR},
355 { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
356 access_vm_reg, reset_unknown, c10_NMRR},
357
358 /* AMAIR0/AMAIR1: swapped by interrupt.S. */
359 { CRn(10), CRm( 3), Op1( 0), Op2( 0), is32,
360 access_vm_reg, reset_unknown, c10_AMAIR0},
361 { CRn(10), CRm( 3), Op1( 0), Op2( 1), is32,
362 access_vm_reg, reset_unknown, c10_AMAIR1},
363
364 /* VBAR: swapped by interrupt.S. */
365 { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
366 NULL, reset_val, c12_VBAR, 0x00000000 },
367
368 /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
369 { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
370 access_vm_reg, reset_val, c13_CID, 0x00000000 },
371 { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
372 NULL, reset_unknown, c13_TID_URW },
373 { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
374 NULL, reset_unknown, c13_TID_URO },
375 { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
376 NULL, reset_unknown, c13_TID_PRIV },
377
378 /* CNTKCTL: swapped by interrupt.S. */
379 { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
380 NULL, reset_val, c14_CNTKCTL, 0x00000000 },
381
382 /* The Configuration Base Address Register. */
383 { CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar},
384 };
385
386 static int check_reg_table(const struct coproc_reg *table, unsigned int n)
387 {
388 unsigned int i;
389
390 for (i = 1; i < n; i++) {
391 if (cmp_reg(&table[i-1], &table[i]) >= 0) {
392 kvm_err("reg table %p out of order (%d)\n", table, i - 1);
393 return 1;
394 }
395 }
396
397 return 0;
398 }
399
400 /* Target specific emulation tables */
401 static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
402
403 void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
404 {
405 BUG_ON(check_reg_table(table->table, table->num));
406 target_tables[table->target] = table;
407 }
408
409 /* Get specific register table for this target. */
410 static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
411 {
412 struct kvm_coproc_target_table *table;
413
414 table = target_tables[target];
415 *num = table->num;
416 return table->table;
417 }
418
419 #define reg_to_match_value(x) \
420 ({ \
421 unsigned long val; \
422 val = (x)->CRn << 11; \
423 val |= (x)->CRm << 7; \
424 val |= (x)->Op1 << 4; \
425 val |= (x)->Op2 << 1; \
426 val |= !(x)->is_64bit; \
427 val; \
428 })
429
430 static int match_reg(const void *key, const void *elt)
431 {
432 const unsigned long pval = (unsigned long)key;
433 const struct coproc_reg *r = elt;
434
435 return pval - reg_to_match_value(r);
436 }
437
438 static const struct coproc_reg *find_reg(const struct coproc_params *params,
439 const struct coproc_reg table[],
440 unsigned int num)
441 {
442 unsigned long pval = reg_to_match_value(params);
443
444 return bsearch((void *)pval, table, num, sizeof(table[0]), match_reg);
445 }
446
447 static int emulate_cp15(struct kvm_vcpu *vcpu,
448 const struct coproc_params *params)
449 {
450 size_t num;
451 const struct coproc_reg *table, *r;
452
453 trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
454 params->CRm, params->Op2, params->is_write);
455
456 table = get_target_table(vcpu->arch.target, &num);
457
458 /* Search target-specific then generic table. */
459 r = find_reg(params, table, num);
460 if (!r)
461 r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
462
463 if (likely(r)) {
464 /* If we don't have an accessor, we should never get here! */
465 BUG_ON(!r->access);
466
467 if (likely(r->access(vcpu, params, r))) {
468 /* Skip instruction, since it was emulated */
469 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
470 return 1;
471 }
472 /* If access function fails, it should complain. */
473 } else {
474 kvm_err("Unsupported guest CP15 access at: %08lx\n",
475 *vcpu_pc(vcpu));
476 print_cp_instr(params);
477 }
478 kvm_inject_undefined(vcpu);
479 return 1;
480 }
481
482 /**
483 * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
484 * @vcpu: The VCPU pointer
485 * @run: The kvm_run struct
486 */
487 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
488 {
489 struct coproc_params params;
490
491 params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
492 params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
493 params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
494 params.is_64bit = true;
495
496 params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
497 params.Op2 = 0;
498 params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
499 params.CRm = 0;
500
501 return emulate_cp15(vcpu, &params);
502 }
503
504 static void reset_coproc_regs(struct kvm_vcpu *vcpu,
505 const struct coproc_reg *table, size_t num)
506 {
507 unsigned long i;
508
509 for (i = 0; i < num; i++)
510 if (table[i].reset)
511 table[i].reset(vcpu, &table[i]);
512 }
513
514 /**
515 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
516 * @vcpu: The VCPU pointer
517 * @run: The kvm_run struct
518 */
519 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
520 {
521 struct coproc_params params;
522
523 params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
524 params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
525 params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
526 params.is_64bit = false;
527
528 params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
529 params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
530 params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
531 params.Rt2 = 0;
532
533 return emulate_cp15(vcpu, &params);
534 }
535
536 /******************************************************************************
537 * Userspace API
538 *****************************************************************************/
539
540 static bool index_to_params(u64 id, struct coproc_params *params)
541 {
542 switch (id & KVM_REG_SIZE_MASK) {
543 case KVM_REG_SIZE_U32:
544 /* Any unused index bits means it's not valid. */
545 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
546 | KVM_REG_ARM_COPROC_MASK
547 | KVM_REG_ARM_32_CRN_MASK
548 | KVM_REG_ARM_CRM_MASK
549 | KVM_REG_ARM_OPC1_MASK
550 | KVM_REG_ARM_32_OPC2_MASK))
551 return false;
552
553 params->is_64bit = false;
554 params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
555 >> KVM_REG_ARM_32_CRN_SHIFT);
556 params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
557 >> KVM_REG_ARM_CRM_SHIFT);
558 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
559 >> KVM_REG_ARM_OPC1_SHIFT);
560 params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
561 >> KVM_REG_ARM_32_OPC2_SHIFT);
562 return true;
563 case KVM_REG_SIZE_U64:
564 /* Any unused index bits means it's not valid. */
565 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
566 | KVM_REG_ARM_COPROC_MASK
567 | KVM_REG_ARM_CRM_MASK
568 | KVM_REG_ARM_OPC1_MASK))
569 return false;
570 params->is_64bit = true;
571 /* CRm to CRn: see cp15_to_index for details */
572 params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
573 >> KVM_REG_ARM_CRM_SHIFT);
574 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
575 >> KVM_REG_ARM_OPC1_SHIFT);
576 params->Op2 = 0;
577 params->CRm = 0;
578 return true;
579 default:
580 return false;
581 }
582 }
583
584 /* Decode an index value, and find the cp15 coproc_reg entry. */
585 static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
586 u64 id)
587 {
588 size_t num;
589 const struct coproc_reg *table, *r;
590 struct coproc_params params;
591
592 /* We only do cp15 for now. */
593 if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
594 return NULL;
595
596 if (!index_to_params(id, &params))
597 return NULL;
598
599 table = get_target_table(vcpu->arch.target, &num);
600 r = find_reg(&params, table, num);
601 if (!r)
602 r = find_reg(&params, cp15_regs, ARRAY_SIZE(cp15_regs));
603
604 /* Not saved in the cp15 array? */
605 if (r && !r->reg)
606 r = NULL;
607
608 return r;
609 }
610
611 /*
612 * These are the invariant cp15 registers: we let the guest see the host
613 * versions of these, so they're part of the guest state.
614 *
615 * A future CPU may provide a mechanism to present different values to
616 * the guest, or a future kvm may trap them.
617 */
618 /* Unfortunately, there's no register-argument for mrc, so generate. */
619 #define FUNCTION_FOR32(crn, crm, op1, op2, name) \
620 static void get_##name(struct kvm_vcpu *v, \
621 const struct coproc_reg *r) \
622 { \
623 u32 val; \
624 \
625 asm volatile("mrc p15, " __stringify(op1) \
626 ", %0, c" __stringify(crn) \
627 ", c" __stringify(crm) \
628 ", " __stringify(op2) "\n" : "=r" (val)); \
629 ((struct coproc_reg *)r)->val = val; \
630 }
631
632 FUNCTION_FOR32(0, 0, 0, 0, MIDR)
633 FUNCTION_FOR32(0, 0, 0, 1, CTR)
634 FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
635 FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
636 FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
637 FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
638 FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
639 FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
640 FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
641 FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
642 FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
643 FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
644 FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
645 FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
646 FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
647 FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
648 FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
649 FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
650 FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
651 FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
652 FUNCTION_FOR32(0, 0, 1, 7, AIDR)
653
654 /* ->val is filled in by kvm_invariant_coproc_table_init() */
655 static struct coproc_reg invariant_cp15[] = {
656 { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
657 { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
658 { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
659 { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
660 { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
661
662 { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
663 { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
664
665 { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
666 { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
667 { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
668 { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
669 { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
670 { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
671 { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
672 { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
673
674 { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
675 { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
676 { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
677 { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
678 { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
679 { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
680 };
681
682 /*
683 * Reads a register value from a userspace address to a kernel
684 * variable. Make sure that register size matches sizeof(*__val).
685 */
686 static int reg_from_user(void *val, const void __user *uaddr, u64 id)
687 {
688 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
689 return -EFAULT;
690 return 0;
691 }
692
693 /*
694 * Writes a register value to a userspace address from a kernel variable.
695 * Make sure that register size matches sizeof(*__val).
696 */
697 static int reg_to_user(void __user *uaddr, const void *val, u64 id)
698 {
699 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
700 return -EFAULT;
701 return 0;
702 }
703
704 static int get_invariant_cp15(u64 id, void __user *uaddr)
705 {
706 struct coproc_params params;
707 const struct coproc_reg *r;
708 int ret;
709
710 if (!index_to_params(id, &params))
711 return -ENOENT;
712
713 r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
714 if (!r)
715 return -ENOENT;
716
717 ret = -ENOENT;
718 if (KVM_REG_SIZE(id) == 4) {
719 u32 val = r->val;
720
721 ret = reg_to_user(uaddr, &val, id);
722 } else if (KVM_REG_SIZE(id) == 8) {
723 ret = reg_to_user(uaddr, &r->val, id);
724 }
725 return ret;
726 }
727
728 static int set_invariant_cp15(u64 id, void __user *uaddr)
729 {
730 struct coproc_params params;
731 const struct coproc_reg *r;
732 int err;
733 u64 val;
734
735 if (!index_to_params(id, &params))
736 return -ENOENT;
737 r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
738 if (!r)
739 return -ENOENT;
740
741 err = -ENOENT;
742 if (KVM_REG_SIZE(id) == 4) {
743 u32 val32;
744
745 err = reg_from_user(&val32, uaddr, id);
746 if (!err)
747 val = val32;
748 } else if (KVM_REG_SIZE(id) == 8) {
749 err = reg_from_user(&val, uaddr, id);
750 }
751 if (err)
752 return err;
753
754 /* This is what we mean by invariant: you can't change it. */
755 if (r->val != val)
756 return -EINVAL;
757
758 return 0;
759 }
760
761 static bool is_valid_cache(u32 val)
762 {
763 u32 level, ctype;
764
765 if (val >= CSSELR_MAX)
766 return false;
767
768 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
769 level = (val >> 1);
770 ctype = (cache_levels >> (level * 3)) & 7;
771
772 switch (ctype) {
773 case 0: /* No cache */
774 return false;
775 case 1: /* Instruction cache only */
776 return (val & 1);
777 case 2: /* Data cache only */
778 case 4: /* Unified cache */
779 return !(val & 1);
780 case 3: /* Separate instruction and data caches */
781 return true;
782 default: /* Reserved: we can't know instruction or data. */
783 return false;
784 }
785 }
786
787 /* Which cache CCSIDR represents depends on CSSELR value. */
788 static u32 get_ccsidr(u32 csselr)
789 {
790 u32 ccsidr;
791
792 /* Make sure noone else changes CSSELR during this! */
793 local_irq_disable();
794 /* Put value into CSSELR */
795 asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
796 isb();
797 /* Read result out of CCSIDR */
798 asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
799 local_irq_enable();
800
801 return ccsidr;
802 }
803
804 static int demux_c15_get(u64 id, void __user *uaddr)
805 {
806 u32 val;
807 u32 __user *uval = uaddr;
808
809 /* Fail if we have unknown bits set. */
810 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
811 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
812 return -ENOENT;
813
814 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
815 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
816 if (KVM_REG_SIZE(id) != 4)
817 return -ENOENT;
818 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
819 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
820 if (!is_valid_cache(val))
821 return -ENOENT;
822
823 return put_user(get_ccsidr(val), uval);
824 default:
825 return -ENOENT;
826 }
827 }
828
829 static int demux_c15_set(u64 id, void __user *uaddr)
830 {
831 u32 val, newval;
832 u32 __user *uval = uaddr;
833
834 /* Fail if we have unknown bits set. */
835 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
836 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
837 return -ENOENT;
838
839 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
840 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
841 if (KVM_REG_SIZE(id) != 4)
842 return -ENOENT;
843 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
844 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
845 if (!is_valid_cache(val))
846 return -ENOENT;
847
848 if (get_user(newval, uval))
849 return -EFAULT;
850
851 /* This is also invariant: you can't change it. */
852 if (newval != get_ccsidr(val))
853 return -EINVAL;
854 return 0;
855 default:
856 return -ENOENT;
857 }
858 }
859
860 #ifdef CONFIG_VFPv3
861 static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
862 KVM_REG_ARM_VFP_FPSCR,
863 KVM_REG_ARM_VFP_FPINST,
864 KVM_REG_ARM_VFP_FPINST2,
865 KVM_REG_ARM_VFP_MVFR0,
866 KVM_REG_ARM_VFP_MVFR1,
867 KVM_REG_ARM_VFP_FPSID };
868
869 static unsigned int num_fp_regs(void)
870 {
871 if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
872 return 32;
873 else
874 return 16;
875 }
876
877 static unsigned int num_vfp_regs(void)
878 {
879 /* Normal FP regs + control regs. */
880 return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
881 }
882
883 static int copy_vfp_regids(u64 __user *uindices)
884 {
885 unsigned int i;
886 const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
887 const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
888
889 for (i = 0; i < num_fp_regs(); i++) {
890 if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
891 uindices))
892 return -EFAULT;
893 uindices++;
894 }
895
896 for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
897 if (put_user(u32reg | vfp_sysregs[i], uindices))
898 return -EFAULT;
899 uindices++;
900 }
901
902 return num_vfp_regs();
903 }
904
905 static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
906 {
907 u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
908 u32 val;
909
910 /* Fail if we have unknown bits set. */
911 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
912 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
913 return -ENOENT;
914
915 if (vfpid < num_fp_regs()) {
916 if (KVM_REG_SIZE(id) != 8)
917 return -ENOENT;
918 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpregs[vfpid],
919 id);
920 }
921
922 /* FP control registers are all 32 bit. */
923 if (KVM_REG_SIZE(id) != 4)
924 return -ENOENT;
925
926 switch (vfpid) {
927 case KVM_REG_ARM_VFP_FPEXC:
928 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpexc, id);
929 case KVM_REG_ARM_VFP_FPSCR:
930 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpscr, id);
931 case KVM_REG_ARM_VFP_FPINST:
932 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst, id);
933 case KVM_REG_ARM_VFP_FPINST2:
934 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst2, id);
935 case KVM_REG_ARM_VFP_MVFR0:
936 val = fmrx(MVFR0);
937 return reg_to_user(uaddr, &val, id);
938 case KVM_REG_ARM_VFP_MVFR1:
939 val = fmrx(MVFR1);
940 return reg_to_user(uaddr, &val, id);
941 case KVM_REG_ARM_VFP_FPSID:
942 val = fmrx(FPSID);
943 return reg_to_user(uaddr, &val, id);
944 default:
945 return -ENOENT;
946 }
947 }
948
949 static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
950 {
951 u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
952 u32 val;
953
954 /* Fail if we have unknown bits set. */
955 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
956 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
957 return -ENOENT;
958
959 if (vfpid < num_fp_regs()) {
960 if (KVM_REG_SIZE(id) != 8)
961 return -ENOENT;
962 return reg_from_user(&vcpu->arch.ctxt.vfp.fpregs[vfpid],
963 uaddr, id);
964 }
965
966 /* FP control registers are all 32 bit. */
967 if (KVM_REG_SIZE(id) != 4)
968 return -ENOENT;
969
970 switch (vfpid) {
971 case KVM_REG_ARM_VFP_FPEXC:
972 return reg_from_user(&vcpu->arch.ctxt.vfp.fpexc, uaddr, id);
973 case KVM_REG_ARM_VFP_FPSCR:
974 return reg_from_user(&vcpu->arch.ctxt.vfp.fpscr, uaddr, id);
975 case KVM_REG_ARM_VFP_FPINST:
976 return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst, uaddr, id);
977 case KVM_REG_ARM_VFP_FPINST2:
978 return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst2, uaddr, id);
979 /* These are invariant. */
980 case KVM_REG_ARM_VFP_MVFR0:
981 if (reg_from_user(&val, uaddr, id))
982 return -EFAULT;
983 if (val != fmrx(MVFR0))
984 return -EINVAL;
985 return 0;
986 case KVM_REG_ARM_VFP_MVFR1:
987 if (reg_from_user(&val, uaddr, id))
988 return -EFAULT;
989 if (val != fmrx(MVFR1))
990 return -EINVAL;
991 return 0;
992 case KVM_REG_ARM_VFP_FPSID:
993 if (reg_from_user(&val, uaddr, id))
994 return -EFAULT;
995 if (val != fmrx(FPSID))
996 return -EINVAL;
997 return 0;
998 default:
999 return -ENOENT;
1000 }
1001 }
1002 #else /* !CONFIG_VFPv3 */
1003 static unsigned int num_vfp_regs(void)
1004 {
1005 return 0;
1006 }
1007
1008 static int copy_vfp_regids(u64 __user *uindices)
1009 {
1010 return 0;
1011 }
1012
1013 static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
1014 {
1015 return -ENOENT;
1016 }
1017
1018 static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
1019 {
1020 return -ENOENT;
1021 }
1022 #endif /* !CONFIG_VFPv3 */
1023
1024 int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1025 {
1026 const struct coproc_reg *r;
1027 void __user *uaddr = (void __user *)(long)reg->addr;
1028 int ret;
1029
1030 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1031 return demux_c15_get(reg->id, uaddr);
1032
1033 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1034 return vfp_get_reg(vcpu, reg->id, uaddr);
1035
1036 r = index_to_coproc_reg(vcpu, reg->id);
1037 if (!r)
1038 return get_invariant_cp15(reg->id, uaddr);
1039
1040 ret = -ENOENT;
1041 if (KVM_REG_SIZE(reg->id) == 8) {
1042 u64 val;
1043
1044 val = vcpu_cp15_reg64_get(vcpu, r);
1045 ret = reg_to_user(uaddr, &val, reg->id);
1046 } else if (KVM_REG_SIZE(reg->id) == 4) {
1047 ret = reg_to_user(uaddr, &vcpu_cp15(vcpu, r->reg), reg->id);
1048 }
1049
1050 return ret;
1051 }
1052
1053 int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1054 {
1055 const struct coproc_reg *r;
1056 void __user *uaddr = (void __user *)(long)reg->addr;
1057 int ret;
1058
1059 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1060 return demux_c15_set(reg->id, uaddr);
1061
1062 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1063 return vfp_set_reg(vcpu, reg->id, uaddr);
1064
1065 r = index_to_coproc_reg(vcpu, reg->id);
1066 if (!r)
1067 return set_invariant_cp15(reg->id, uaddr);
1068
1069 ret = -ENOENT;
1070 if (KVM_REG_SIZE(reg->id) == 8) {
1071 u64 val;
1072
1073 ret = reg_from_user(&val, uaddr, reg->id);
1074 if (!ret)
1075 vcpu_cp15_reg64_set(vcpu, r, val);
1076 } else if (KVM_REG_SIZE(reg->id) == 4) {
1077 ret = reg_from_user(&vcpu_cp15(vcpu, r->reg), uaddr, reg->id);
1078 }
1079
1080 return ret;
1081 }
1082
1083 static unsigned int num_demux_regs(void)
1084 {
1085 unsigned int i, count = 0;
1086
1087 for (i = 0; i < CSSELR_MAX; i++)
1088 if (is_valid_cache(i))
1089 count++;
1090
1091 return count;
1092 }
1093
1094 static int write_demux_regids(u64 __user *uindices)
1095 {
1096 u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
1097 unsigned int i;
1098
1099 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1100 for (i = 0; i < CSSELR_MAX; i++) {
1101 if (!is_valid_cache(i))
1102 continue;
1103 if (put_user(val | i, uindices))
1104 return -EFAULT;
1105 uindices++;
1106 }
1107 return 0;
1108 }
1109
1110 static u64 cp15_to_index(const struct coproc_reg *reg)
1111 {
1112 u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
1113 if (reg->is_64bit) {
1114 val |= KVM_REG_SIZE_U64;
1115 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1116 /*
1117 * CRn always denotes the primary coproc. reg. nr. for the
1118 * in-kernel representation, but the user space API uses the
1119 * CRm for the encoding, because it is modelled after the
1120 * MRRC/MCRR instructions: see the ARM ARM rev. c page
1121 * B3-1445
1122 */
1123 val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
1124 } else {
1125 val |= KVM_REG_SIZE_U32;
1126 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1127 val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
1128 val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
1129 val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
1130 }
1131 return val;
1132 }
1133
1134 static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
1135 {
1136 if (!*uind)
1137 return true;
1138
1139 if (put_user(cp15_to_index(reg), *uind))
1140 return false;
1141
1142 (*uind)++;
1143 return true;
1144 }
1145
1146 /* Assumed ordered tables, see kvm_coproc_table_init. */
1147 static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
1148 {
1149 const struct coproc_reg *i1, *i2, *end1, *end2;
1150 unsigned int total = 0;
1151 size_t num;
1152
1153 /* We check for duplicates here, to allow arch-specific overrides. */
1154 i1 = get_target_table(vcpu->arch.target, &num);
1155 end1 = i1 + num;
1156 i2 = cp15_regs;
1157 end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
1158
1159 BUG_ON(i1 == end1 || i2 == end2);
1160
1161 /* Walk carefully, as both tables may refer to the same register. */
1162 while (i1 || i2) {
1163 int cmp = cmp_reg(i1, i2);
1164 /* target-specific overrides generic entry. */
1165 if (cmp <= 0) {
1166 /* Ignore registers we trap but don't save. */
1167 if (i1->reg) {
1168 if (!copy_reg_to_user(i1, &uind))
1169 return -EFAULT;
1170 total++;
1171 }
1172 } else {
1173 /* Ignore registers we trap but don't save. */
1174 if (i2->reg) {
1175 if (!copy_reg_to_user(i2, &uind))
1176 return -EFAULT;
1177 total++;
1178 }
1179 }
1180
1181 if (cmp <= 0 && ++i1 == end1)
1182 i1 = NULL;
1183 if (cmp >= 0 && ++i2 == end2)
1184 i2 = NULL;
1185 }
1186 return total;
1187 }
1188
1189 unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
1190 {
1191 return ARRAY_SIZE(invariant_cp15)
1192 + num_demux_regs()
1193 + num_vfp_regs()
1194 + walk_cp15(vcpu, (u64 __user *)NULL);
1195 }
1196
1197 int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1198 {
1199 unsigned int i;
1200 int err;
1201
1202 /* Then give them all the invariant registers' indices. */
1203 for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
1204 if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
1205 return -EFAULT;
1206 uindices++;
1207 }
1208
1209 err = walk_cp15(vcpu, uindices);
1210 if (err < 0)
1211 return err;
1212 uindices += err;
1213
1214 err = copy_vfp_regids(uindices);
1215 if (err < 0)
1216 return err;
1217 uindices += err;
1218
1219 return write_demux_regids(uindices);
1220 }
1221
1222 void kvm_coproc_table_init(void)
1223 {
1224 unsigned int i;
1225
1226 /* Make sure tables are unique and in order. */
1227 BUG_ON(check_reg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
1228 BUG_ON(check_reg_table(invariant_cp15, ARRAY_SIZE(invariant_cp15)));
1229
1230 /* We abuse the reset function to overwrite the table itself. */
1231 for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
1232 invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
1233
1234 /*
1235 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1236 *
1237 * If software reads the Cache Type fields from Ctype1
1238 * upwards, once it has seen a value of 0b000, no caches
1239 * exist at further-out levels of the hierarchy. So, for
1240 * example, if Ctype3 is the first Cache Type field with a
1241 * value of 0b000, the values of Ctype4 to Ctype7 must be
1242 * ignored.
1243 */
1244 asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
1245 for (i = 0; i < 7; i++)
1246 if (((cache_levels >> (i*3)) & 7) == 0)
1247 break;
1248 /* Clear all higher bits. */
1249 cache_levels &= (1 << (i*3))-1;
1250 }
1251
1252 /**
1253 * kvm_reset_coprocs - sets cp15 registers to reset value
1254 * @vcpu: The VCPU pointer
1255 *
1256 * This function finds the right table above and sets the registers on the
1257 * virtual CPU struct to their architecturally defined reset values.
1258 */
1259 void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
1260 {
1261 size_t num;
1262 const struct coproc_reg *table;
1263
1264 /* Catch someone adding a register without putting in reset entry. */
1265 memset(vcpu->arch.ctxt.cp15, 0x42, sizeof(vcpu->arch.ctxt.cp15));
1266
1267 /* Generic chip reset first (so target could override). */
1268 reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
1269
1270 table = get_target_table(vcpu->arch.target, &num);
1271 reset_coproc_regs(vcpu, table, num);
1272
1273 for (num = 1; num < NR_CP15_REGS; num++)
1274 if (vcpu_cp15(vcpu, num) == 0x42424242)
1275 panic("Didn't reset vcpu_cp15(vcpu, %zi)", num);
1276 }
This page took 0.063923 seconds and 5 git commands to generate.