ARM i.MX6Q: Use ENET_CLK_SEL defines in imx6q_1588_init
[deliverable/linux.git] / arch / arm / kvm / interrupts.S
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/linkage.h>
20 #include <linux/const.h>
21 #include <asm/unified.h>
22 #include <asm/page.h>
23 #include <asm/ptrace.h>
24 #include <asm/asm-offsets.h>
25 #include <asm/kvm_asm.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/vfpmacros.h>
28 #include "interrupts_head.S"
29
30 .text
31
32 __kvm_hyp_code_start:
33 .globl __kvm_hyp_code_start
34
35 /********************************************************************
36 * Flush per-VMID TLBs
37 *
38 * void __kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa);
39 *
40 * We rely on the hardware to broadcast the TLB invalidation to all CPUs
41 * inside the inner-shareable domain (which is the case for all v7
42 * implementations). If we come across a non-IS SMP implementation, we'll
43 * have to use an IPI based mechanism. Until then, we stick to the simple
44 * hardware assisted version.
45 *
46 * As v7 does not support flushing per IPA, just nuke the whole TLB
47 * instead, ignoring the ipa value.
48 */
49 ENTRY(__kvm_tlb_flush_vmid_ipa)
50 push {r2, r3}
51
52 dsb ishst
53 add r0, r0, #KVM_VTTBR
54 ldrd r2, r3, [r0]
55 mcrr p15, 6, r2, r3, c2 @ Write VTTBR
56 isb
57 mcr p15, 0, r0, c8, c3, 0 @ TLBIALLIS (rt ignored)
58 dsb
59 isb
60 mov r2, #0
61 mov r3, #0
62 mcrr p15, 6, r2, r3, c2 @ Back to VMID #0
63 isb @ Not necessary if followed by eret
64
65 pop {r2, r3}
66 bx lr
67 ENDPROC(__kvm_tlb_flush_vmid_ipa)
68
69 /********************************************************************
70 * Flush TLBs and instruction caches of all CPUs inside the inner-shareable
71 * domain, for all VMIDs
72 *
73 * void __kvm_flush_vm_context(void);
74 */
75 ENTRY(__kvm_flush_vm_context)
76 mov r0, #0 @ rn parameter for c15 flushes is SBZ
77
78 /* Invalidate NS Non-Hyp TLB Inner Shareable (TLBIALLNSNHIS) */
79 mcr p15, 4, r0, c8, c3, 4
80 /* Invalidate instruction caches Inner Shareable (ICIALLUIS) */
81 mcr p15, 0, r0, c7, c1, 0
82 dsb
83 isb @ Not necessary if followed by eret
84
85 bx lr
86 ENDPROC(__kvm_flush_vm_context)
87
88
89 /********************************************************************
90 * Hypervisor world-switch code
91 *
92 *
93 * int __kvm_vcpu_run(struct kvm_vcpu *vcpu)
94 */
95 ENTRY(__kvm_vcpu_run)
96 @ Save the vcpu pointer
97 mcr p15, 4, vcpu, c13, c0, 2 @ HTPIDR
98
99 save_host_regs
100
101 restore_vgic_state
102 restore_timer_state
103
104 @ Store hardware CP15 state and load guest state
105 read_cp15_state store_to_vcpu = 0
106 write_cp15_state read_from_vcpu = 1
107
108 @ If the host kernel has not been configured with VFPv3 support,
109 @ then it is safer if we deny guests from using it as well.
110 #ifdef CONFIG_VFPv3
111 @ Set FPEXC_EN so the guest doesn't trap floating point instructions
112 VFPFMRX r2, FPEXC @ VMRS
113 push {r2}
114 orr r2, r2, #FPEXC_EN
115 VFPFMXR FPEXC, r2 @ VMSR
116 #endif
117
118 @ Configure Hyp-role
119 configure_hyp_role vmentry
120
121 @ Trap coprocessor CRx accesses
122 set_hstr vmentry
123 set_hcptr vmentry, (HCPTR_TTA | HCPTR_TCP(10) | HCPTR_TCP(11))
124 set_hdcr vmentry
125
126 @ Write configured ID register into MIDR alias
127 ldr r1, [vcpu, #VCPU_MIDR]
128 mcr p15, 4, r1, c0, c0, 0
129
130 @ Write guest view of MPIDR into VMPIDR
131 ldr r1, [vcpu, #CP15_OFFSET(c0_MPIDR)]
132 mcr p15, 4, r1, c0, c0, 5
133
134 @ Set up guest memory translation
135 ldr r1, [vcpu, #VCPU_KVM]
136 add r1, r1, #KVM_VTTBR
137 ldrd r2, r3, [r1]
138 mcrr p15, 6, r2, r3, c2 @ Write VTTBR
139
140 @ We're all done, just restore the GPRs and go to the guest
141 restore_guest_regs
142 clrex @ Clear exclusive monitor
143 eret
144
145 __kvm_vcpu_return:
146 /*
147 * return convention:
148 * guest r0, r1, r2 saved on the stack
149 * r0: vcpu pointer
150 * r1: exception code
151 */
152 save_guest_regs
153
154 @ Set VMID == 0
155 mov r2, #0
156 mov r3, #0
157 mcrr p15, 6, r2, r3, c2 @ Write VTTBR
158
159 @ Don't trap coprocessor accesses for host kernel
160 set_hstr vmexit
161 set_hdcr vmexit
162 set_hcptr vmexit, (HCPTR_TTA | HCPTR_TCP(10) | HCPTR_TCP(11))
163
164 #ifdef CONFIG_VFPv3
165 @ Save floating point registers we if let guest use them.
166 tst r2, #(HCPTR_TCP(10) | HCPTR_TCP(11))
167 bne after_vfp_restore
168
169 @ Switch VFP/NEON hardware state to the host's
170 add r7, vcpu, #VCPU_VFP_GUEST
171 store_vfp_state r7
172 add r7, vcpu, #VCPU_VFP_HOST
173 ldr r7, [r7]
174 restore_vfp_state r7
175
176 after_vfp_restore:
177 @ Restore FPEXC_EN which we clobbered on entry
178 pop {r2}
179 VFPFMXR FPEXC, r2
180 #endif
181
182 @ Reset Hyp-role
183 configure_hyp_role vmexit
184
185 @ Let host read hardware MIDR
186 mrc p15, 0, r2, c0, c0, 0
187 mcr p15, 4, r2, c0, c0, 0
188
189 @ Back to hardware MPIDR
190 mrc p15, 0, r2, c0, c0, 5
191 mcr p15, 4, r2, c0, c0, 5
192
193 @ Store guest CP15 state and restore host state
194 read_cp15_state store_to_vcpu = 1
195 write_cp15_state read_from_vcpu = 0
196
197 save_timer_state
198 save_vgic_state
199
200 restore_host_regs
201 clrex @ Clear exclusive monitor
202 mov r0, r1 @ Return the return code
203 mov r1, #0 @ Clear upper bits in return value
204 bx lr @ return to IOCTL
205
206 /********************************************************************
207 * Call function in Hyp mode
208 *
209 *
210 * u64 kvm_call_hyp(void *hypfn, ...);
211 *
212 * This is not really a variadic function in the classic C-way and care must
213 * be taken when calling this to ensure parameters are passed in registers
214 * only, since the stack will change between the caller and the callee.
215 *
216 * Call the function with the first argument containing a pointer to the
217 * function you wish to call in Hyp mode, and subsequent arguments will be
218 * passed as r0, r1, and r2 (a maximum of 3 arguments in addition to the
219 * function pointer can be passed). The function being called must be mapped
220 * in Hyp mode (see init_hyp_mode in arch/arm/kvm/arm.c). Return values are
221 * passed in r0 and r1.
222 *
223 * The calling convention follows the standard AAPCS:
224 * r0 - r3: caller save
225 * r12: caller save
226 * rest: callee save
227 */
228 ENTRY(kvm_call_hyp)
229 hvc #0
230 bx lr
231
232 /********************************************************************
233 * Hypervisor exception vector and handlers
234 *
235 *
236 * The KVM/ARM Hypervisor ABI is defined as follows:
237 *
238 * Entry to Hyp mode from the host kernel will happen _only_ when an HVC
239 * instruction is issued since all traps are disabled when running the host
240 * kernel as per the Hyp-mode initialization at boot time.
241 *
242 * HVC instructions cause a trap to the vector page + offset 0x14 (see hyp_hvc
243 * below) when the HVC instruction is called from SVC mode (i.e. a guest or the
244 * host kernel) and they cause a trap to the vector page + offset 0x8 when HVC
245 * instructions are called from within Hyp-mode.
246 *
247 * Hyp-ABI: Calling HYP-mode functions from host (in SVC mode):
248 * Switching to Hyp mode is done through a simple HVC #0 instruction. The
249 * exception vector code will check that the HVC comes from VMID==0 and if
250 * so will push the necessary state (SPSR, lr_usr) on the Hyp stack.
251 * - r0 contains a pointer to a HYP function
252 * - r1, r2, and r3 contain arguments to the above function.
253 * - The HYP function will be called with its arguments in r0, r1 and r2.
254 * On HYP function return, we return directly to SVC.
255 *
256 * Note that the above is used to execute code in Hyp-mode from a host-kernel
257 * point of view, and is a different concept from performing a world-switch and
258 * executing guest code SVC mode (with a VMID != 0).
259 */
260
261 /* Handle undef, svc, pabt, or dabt by crashing with a user notice */
262 .macro bad_exception exception_code, panic_str
263 push {r0-r2}
264 mrrc p15, 6, r0, r1, c2 @ Read VTTBR
265 lsr r1, r1, #16
266 ands r1, r1, #0xff
267 beq 99f
268
269 load_vcpu @ Load VCPU pointer
270 .if \exception_code == ARM_EXCEPTION_DATA_ABORT
271 mrc p15, 4, r2, c5, c2, 0 @ HSR
272 mrc p15, 4, r1, c6, c0, 0 @ HDFAR
273 str r2, [vcpu, #VCPU_HSR]
274 str r1, [vcpu, #VCPU_HxFAR]
275 .endif
276 .if \exception_code == ARM_EXCEPTION_PREF_ABORT
277 mrc p15, 4, r2, c5, c2, 0 @ HSR
278 mrc p15, 4, r1, c6, c0, 2 @ HIFAR
279 str r2, [vcpu, #VCPU_HSR]
280 str r1, [vcpu, #VCPU_HxFAR]
281 .endif
282 mov r1, #\exception_code
283 b __kvm_vcpu_return
284
285 @ We were in the host already. Let's craft a panic-ing return to SVC.
286 99: mrs r2, cpsr
287 bic r2, r2, #MODE_MASK
288 orr r2, r2, #SVC_MODE
289 THUMB( orr r2, r2, #PSR_T_BIT )
290 msr spsr_cxsf, r2
291 mrs r1, ELR_hyp
292 ldr r2, =BSYM(panic)
293 msr ELR_hyp, r2
294 ldr r0, =\panic_str
295 clrex @ Clear exclusive monitor
296 eret
297 .endm
298
299 .text
300
301 .align 5
302 __kvm_hyp_vector:
303 .globl __kvm_hyp_vector
304
305 @ Hyp-mode exception vector
306 W(b) hyp_reset
307 W(b) hyp_undef
308 W(b) hyp_svc
309 W(b) hyp_pabt
310 W(b) hyp_dabt
311 W(b) hyp_hvc
312 W(b) hyp_irq
313 W(b) hyp_fiq
314
315 .align
316 hyp_reset:
317 b hyp_reset
318
319 .align
320 hyp_undef:
321 bad_exception ARM_EXCEPTION_UNDEFINED, und_die_str
322
323 .align
324 hyp_svc:
325 bad_exception ARM_EXCEPTION_HVC, svc_die_str
326
327 .align
328 hyp_pabt:
329 bad_exception ARM_EXCEPTION_PREF_ABORT, pabt_die_str
330
331 .align
332 hyp_dabt:
333 bad_exception ARM_EXCEPTION_DATA_ABORT, dabt_die_str
334
335 .align
336 hyp_hvc:
337 /*
338 * Getting here is either becuase of a trap from a guest or from calling
339 * HVC from the host kernel, which means "switch to Hyp mode".
340 */
341 push {r0, r1, r2}
342
343 @ Check syndrome register
344 mrc p15, 4, r1, c5, c2, 0 @ HSR
345 lsr r0, r1, #HSR_EC_SHIFT
346 #ifdef CONFIG_VFPv3
347 cmp r0, #HSR_EC_CP_0_13
348 beq switch_to_guest_vfp
349 #endif
350 cmp r0, #HSR_EC_HVC
351 bne guest_trap @ Not HVC instr.
352
353 /*
354 * Let's check if the HVC came from VMID 0 and allow simple
355 * switch to Hyp mode
356 */
357 mrrc p15, 6, r0, r2, c2
358 lsr r2, r2, #16
359 and r2, r2, #0xff
360 cmp r2, #0
361 bne guest_trap @ Guest called HVC
362
363 host_switch_to_hyp:
364 pop {r0, r1, r2}
365
366 push {lr}
367 mrs lr, SPSR
368 push {lr}
369
370 mov lr, r0
371 mov r0, r1
372 mov r1, r2
373 mov r2, r3
374
375 THUMB( orr lr, #1)
376 blx lr @ Call the HYP function
377
378 pop {lr}
379 msr SPSR_csxf, lr
380 pop {lr}
381 eret
382
383 guest_trap:
384 load_vcpu @ Load VCPU pointer to r0
385 str r1, [vcpu, #VCPU_HSR]
386
387 @ Check if we need the fault information
388 lsr r1, r1, #HSR_EC_SHIFT
389 cmp r1, #HSR_EC_IABT
390 mrceq p15, 4, r2, c6, c0, 2 @ HIFAR
391 beq 2f
392 cmp r1, #HSR_EC_DABT
393 bne 1f
394 mrc p15, 4, r2, c6, c0, 0 @ HDFAR
395
396 2: str r2, [vcpu, #VCPU_HxFAR]
397
398 /*
399 * B3.13.5 Reporting exceptions taken to the Non-secure PL2 mode:
400 *
401 * Abort on the stage 2 translation for a memory access from a
402 * Non-secure PL1 or PL0 mode:
403 *
404 * For any Access flag fault or Translation fault, and also for any
405 * Permission fault on the stage 2 translation of a memory access
406 * made as part of a translation table walk for a stage 1 translation,
407 * the HPFAR holds the IPA that caused the fault. Otherwise, the HPFAR
408 * is UNKNOWN.
409 */
410
411 /* Check for permission fault, and S1PTW */
412 mrc p15, 4, r1, c5, c2, 0 @ HSR
413 and r0, r1, #HSR_FSC_TYPE
414 cmp r0, #FSC_PERM
415 tsteq r1, #(1 << 7) @ S1PTW
416 mrcne p15, 4, r2, c6, c0, 4 @ HPFAR
417 bne 3f
418
419 /* Preserve PAR */
420 mrrc p15, 0, r0, r1, c7 @ PAR
421 push {r0, r1}
422
423 /* Resolve IPA using the xFAR */
424 mcr p15, 0, r2, c7, c8, 0 @ ATS1CPR
425 isb
426 mrrc p15, 0, r0, r1, c7 @ PAR
427 tst r0, #1
428 bne 4f @ Failed translation
429 ubfx r2, r0, #12, #20
430 lsl r2, r2, #4
431 orr r2, r2, r1, lsl #24
432
433 /* Restore PAR */
434 pop {r0, r1}
435 mcrr p15, 0, r0, r1, c7 @ PAR
436
437 3: load_vcpu @ Load VCPU pointer to r0
438 str r2, [r0, #VCPU_HPFAR]
439
440 1: mov r1, #ARM_EXCEPTION_HVC
441 b __kvm_vcpu_return
442
443 4: pop {r0, r1} @ Failed translation, return to guest
444 mcrr p15, 0, r0, r1, c7 @ PAR
445 clrex
446 pop {r0, r1, r2}
447 eret
448
449 /*
450 * If VFPv3 support is not available, then we will not switch the VFP
451 * registers; however cp10 and cp11 accesses will still trap and fallback
452 * to the regular coprocessor emulation code, which currently will
453 * inject an undefined exception to the guest.
454 */
455 #ifdef CONFIG_VFPv3
456 switch_to_guest_vfp:
457 load_vcpu @ Load VCPU pointer to r0
458 push {r3-r7}
459
460 @ NEON/VFP used. Turn on VFP access.
461 set_hcptr vmexit, (HCPTR_TCP(10) | HCPTR_TCP(11))
462
463 @ Switch VFP/NEON hardware state to the guest's
464 add r7, r0, #VCPU_VFP_HOST
465 ldr r7, [r7]
466 store_vfp_state r7
467 add r7, r0, #VCPU_VFP_GUEST
468 restore_vfp_state r7
469
470 pop {r3-r7}
471 pop {r0-r2}
472 clrex
473 eret
474 #endif
475
476 .align
477 hyp_irq:
478 push {r0, r1, r2}
479 mov r1, #ARM_EXCEPTION_IRQ
480 load_vcpu @ Load VCPU pointer to r0
481 b __kvm_vcpu_return
482
483 .align
484 hyp_fiq:
485 b hyp_fiq
486
487 .ltorg
488
489 __kvm_hyp_code_end:
490 .globl __kvm_hyp_code_end
491
492 .section ".rodata"
493
494 und_die_str:
495 .ascii "unexpected undefined exception in Hyp mode at: %#08x"
496 pabt_die_str:
497 .ascii "unexpected prefetch abort in Hyp mode at: %#08x"
498 dabt_die_str:
499 .ascii "unexpected data abort in Hyp mode at: %#08x"
500 svc_die_str:
501 .ascii "unexpected HVC/SVC trap in Hyp mode at: %#08x"
This page took 0.041819 seconds and 5 git commands to generate.