Merge tag 'sound-fix2-3.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / arch / arm / kvm / mmu.c
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/mman.h>
20 #include <linux/kvm_host.h>
21 #include <linux/io.h>
22 #include <linux/hugetlb.h>
23 #include <trace/events/kvm.h>
24 #include <asm/pgalloc.h>
25 #include <asm/cacheflush.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_mmu.h>
28 #include <asm/kvm_mmio.h>
29 #include <asm/kvm_asm.h>
30 #include <asm/kvm_emulate.h>
31
32 #include "trace.h"
33
34 extern char __hyp_idmap_text_start[], __hyp_idmap_text_end[];
35
36 static pgd_t *boot_hyp_pgd;
37 static pgd_t *hyp_pgd;
38 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
39
40 static void *init_bounce_page;
41 static unsigned long hyp_idmap_start;
42 static unsigned long hyp_idmap_end;
43 static phys_addr_t hyp_idmap_vector;
44
45 #define kvm_pmd_huge(_x) (pmd_huge(_x) || pmd_trans_huge(_x))
46
47 static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
48 {
49 /*
50 * This function also gets called when dealing with HYP page
51 * tables. As HYP doesn't have an associated struct kvm (and
52 * the HYP page tables are fairly static), we don't do
53 * anything there.
54 */
55 if (kvm)
56 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
57 }
58
59 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
60 int min, int max)
61 {
62 void *page;
63
64 BUG_ON(max > KVM_NR_MEM_OBJS);
65 if (cache->nobjs >= min)
66 return 0;
67 while (cache->nobjs < max) {
68 page = (void *)__get_free_page(PGALLOC_GFP);
69 if (!page)
70 return -ENOMEM;
71 cache->objects[cache->nobjs++] = page;
72 }
73 return 0;
74 }
75
76 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
77 {
78 while (mc->nobjs)
79 free_page((unsigned long)mc->objects[--mc->nobjs]);
80 }
81
82 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
83 {
84 void *p;
85
86 BUG_ON(!mc || !mc->nobjs);
87 p = mc->objects[--mc->nobjs];
88 return p;
89 }
90
91 static bool page_empty(void *ptr)
92 {
93 struct page *ptr_page = virt_to_page(ptr);
94 return page_count(ptr_page) == 1;
95 }
96
97 static void clear_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
98 {
99 if (pud_huge(*pud)) {
100 pud_clear(pud);
101 kvm_tlb_flush_vmid_ipa(kvm, addr);
102 } else {
103 pmd_t *pmd_table = pmd_offset(pud, 0);
104 pud_clear(pud);
105 kvm_tlb_flush_vmid_ipa(kvm, addr);
106 pmd_free(NULL, pmd_table);
107 }
108 put_page(virt_to_page(pud));
109 }
110
111 static void clear_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
112 {
113 if (kvm_pmd_huge(*pmd)) {
114 pmd_clear(pmd);
115 kvm_tlb_flush_vmid_ipa(kvm, addr);
116 } else {
117 pte_t *pte_table = pte_offset_kernel(pmd, 0);
118 pmd_clear(pmd);
119 kvm_tlb_flush_vmid_ipa(kvm, addr);
120 pte_free_kernel(NULL, pte_table);
121 }
122 put_page(virt_to_page(pmd));
123 }
124
125 static void clear_pte_entry(struct kvm *kvm, pte_t *pte, phys_addr_t addr)
126 {
127 if (pte_present(*pte)) {
128 kvm_set_pte(pte, __pte(0));
129 put_page(virt_to_page(pte));
130 kvm_tlb_flush_vmid_ipa(kvm, addr);
131 }
132 }
133
134 static void unmap_range(struct kvm *kvm, pgd_t *pgdp,
135 unsigned long long start, u64 size)
136 {
137 pgd_t *pgd;
138 pud_t *pud;
139 pmd_t *pmd;
140 pte_t *pte;
141 unsigned long long addr = start, end = start + size;
142 u64 next;
143
144 while (addr < end) {
145 pgd = pgdp + pgd_index(addr);
146 pud = pud_offset(pgd, addr);
147 if (pud_none(*pud)) {
148 addr = pud_addr_end(addr, end);
149 continue;
150 }
151
152 if (pud_huge(*pud)) {
153 /*
154 * If we are dealing with a huge pud, just clear it and
155 * move on.
156 */
157 clear_pud_entry(kvm, pud, addr);
158 addr = pud_addr_end(addr, end);
159 continue;
160 }
161
162 pmd = pmd_offset(pud, addr);
163 if (pmd_none(*pmd)) {
164 addr = pmd_addr_end(addr, end);
165 continue;
166 }
167
168 if (!kvm_pmd_huge(*pmd)) {
169 pte = pte_offset_kernel(pmd, addr);
170 clear_pte_entry(kvm, pte, addr);
171 next = addr + PAGE_SIZE;
172 }
173
174 /*
175 * If the pmd entry is to be cleared, walk back up the ladder
176 */
177 if (kvm_pmd_huge(*pmd) || page_empty(pte)) {
178 clear_pmd_entry(kvm, pmd, addr);
179 next = pmd_addr_end(addr, end);
180 if (page_empty(pmd) && !page_empty(pud)) {
181 clear_pud_entry(kvm, pud, addr);
182 next = pud_addr_end(addr, end);
183 }
184 }
185
186 addr = next;
187 }
188 }
189
190 /**
191 * free_boot_hyp_pgd - free HYP boot page tables
192 *
193 * Free the HYP boot page tables. The bounce page is also freed.
194 */
195 void free_boot_hyp_pgd(void)
196 {
197 mutex_lock(&kvm_hyp_pgd_mutex);
198
199 if (boot_hyp_pgd) {
200 unmap_range(NULL, boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
201 unmap_range(NULL, boot_hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
202 kfree(boot_hyp_pgd);
203 boot_hyp_pgd = NULL;
204 }
205
206 if (hyp_pgd)
207 unmap_range(NULL, hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
208
209 kfree(init_bounce_page);
210 init_bounce_page = NULL;
211
212 mutex_unlock(&kvm_hyp_pgd_mutex);
213 }
214
215 /**
216 * free_hyp_pgds - free Hyp-mode page tables
217 *
218 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
219 * therefore contains either mappings in the kernel memory area (above
220 * PAGE_OFFSET), or device mappings in the vmalloc range (from
221 * VMALLOC_START to VMALLOC_END).
222 *
223 * boot_hyp_pgd should only map two pages for the init code.
224 */
225 void free_hyp_pgds(void)
226 {
227 unsigned long addr;
228
229 free_boot_hyp_pgd();
230
231 mutex_lock(&kvm_hyp_pgd_mutex);
232
233 if (hyp_pgd) {
234 for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
235 unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
236 for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
237 unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
238
239 kfree(hyp_pgd);
240 hyp_pgd = NULL;
241 }
242
243 mutex_unlock(&kvm_hyp_pgd_mutex);
244 }
245
246 static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
247 unsigned long end, unsigned long pfn,
248 pgprot_t prot)
249 {
250 pte_t *pte;
251 unsigned long addr;
252
253 addr = start;
254 do {
255 pte = pte_offset_kernel(pmd, addr);
256 kvm_set_pte(pte, pfn_pte(pfn, prot));
257 get_page(virt_to_page(pte));
258 kvm_flush_dcache_to_poc(pte, sizeof(*pte));
259 pfn++;
260 } while (addr += PAGE_SIZE, addr != end);
261 }
262
263 static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
264 unsigned long end, unsigned long pfn,
265 pgprot_t prot)
266 {
267 pmd_t *pmd;
268 pte_t *pte;
269 unsigned long addr, next;
270
271 addr = start;
272 do {
273 pmd = pmd_offset(pud, addr);
274
275 BUG_ON(pmd_sect(*pmd));
276
277 if (pmd_none(*pmd)) {
278 pte = pte_alloc_one_kernel(NULL, addr);
279 if (!pte) {
280 kvm_err("Cannot allocate Hyp pte\n");
281 return -ENOMEM;
282 }
283 pmd_populate_kernel(NULL, pmd, pte);
284 get_page(virt_to_page(pmd));
285 kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
286 }
287
288 next = pmd_addr_end(addr, end);
289
290 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
291 pfn += (next - addr) >> PAGE_SHIFT;
292 } while (addr = next, addr != end);
293
294 return 0;
295 }
296
297 static int __create_hyp_mappings(pgd_t *pgdp,
298 unsigned long start, unsigned long end,
299 unsigned long pfn, pgprot_t prot)
300 {
301 pgd_t *pgd;
302 pud_t *pud;
303 pmd_t *pmd;
304 unsigned long addr, next;
305 int err = 0;
306
307 mutex_lock(&kvm_hyp_pgd_mutex);
308 addr = start & PAGE_MASK;
309 end = PAGE_ALIGN(end);
310 do {
311 pgd = pgdp + pgd_index(addr);
312 pud = pud_offset(pgd, addr);
313
314 if (pud_none_or_clear_bad(pud)) {
315 pmd = pmd_alloc_one(NULL, addr);
316 if (!pmd) {
317 kvm_err("Cannot allocate Hyp pmd\n");
318 err = -ENOMEM;
319 goto out;
320 }
321 pud_populate(NULL, pud, pmd);
322 get_page(virt_to_page(pud));
323 kvm_flush_dcache_to_poc(pud, sizeof(*pud));
324 }
325
326 next = pgd_addr_end(addr, end);
327 err = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
328 if (err)
329 goto out;
330 pfn += (next - addr) >> PAGE_SHIFT;
331 } while (addr = next, addr != end);
332 out:
333 mutex_unlock(&kvm_hyp_pgd_mutex);
334 return err;
335 }
336
337 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
338 {
339 if (!is_vmalloc_addr(kaddr)) {
340 BUG_ON(!virt_addr_valid(kaddr));
341 return __pa(kaddr);
342 } else {
343 return page_to_phys(vmalloc_to_page(kaddr)) +
344 offset_in_page(kaddr);
345 }
346 }
347
348 /**
349 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
350 * @from: The virtual kernel start address of the range
351 * @to: The virtual kernel end address of the range (exclusive)
352 *
353 * The same virtual address as the kernel virtual address is also used
354 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
355 * physical pages.
356 */
357 int create_hyp_mappings(void *from, void *to)
358 {
359 phys_addr_t phys_addr;
360 unsigned long virt_addr;
361 unsigned long start = KERN_TO_HYP((unsigned long)from);
362 unsigned long end = KERN_TO_HYP((unsigned long)to);
363
364 start = start & PAGE_MASK;
365 end = PAGE_ALIGN(end);
366
367 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
368 int err;
369
370 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
371 err = __create_hyp_mappings(hyp_pgd, virt_addr,
372 virt_addr + PAGE_SIZE,
373 __phys_to_pfn(phys_addr),
374 PAGE_HYP);
375 if (err)
376 return err;
377 }
378
379 return 0;
380 }
381
382 /**
383 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
384 * @from: The kernel start VA of the range
385 * @to: The kernel end VA of the range (exclusive)
386 * @phys_addr: The physical start address which gets mapped
387 *
388 * The resulting HYP VA is the same as the kernel VA, modulo
389 * HYP_PAGE_OFFSET.
390 */
391 int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
392 {
393 unsigned long start = KERN_TO_HYP((unsigned long)from);
394 unsigned long end = KERN_TO_HYP((unsigned long)to);
395
396 /* Check for a valid kernel IO mapping */
397 if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
398 return -EINVAL;
399
400 return __create_hyp_mappings(hyp_pgd, start, end,
401 __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
402 }
403
404 /**
405 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
406 * @kvm: The KVM struct pointer for the VM.
407 *
408 * Allocates the 1st level table only of size defined by S2_PGD_ORDER (can
409 * support either full 40-bit input addresses or limited to 32-bit input
410 * addresses). Clears the allocated pages.
411 *
412 * Note we don't need locking here as this is only called when the VM is
413 * created, which can only be done once.
414 */
415 int kvm_alloc_stage2_pgd(struct kvm *kvm)
416 {
417 pgd_t *pgd;
418
419 if (kvm->arch.pgd != NULL) {
420 kvm_err("kvm_arch already initialized?\n");
421 return -EINVAL;
422 }
423
424 pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, S2_PGD_ORDER);
425 if (!pgd)
426 return -ENOMEM;
427
428 memset(pgd, 0, PTRS_PER_S2_PGD * sizeof(pgd_t));
429 kvm_clean_pgd(pgd);
430 kvm->arch.pgd = pgd;
431
432 return 0;
433 }
434
435 /**
436 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
437 * @kvm: The VM pointer
438 * @start: The intermediate physical base address of the range to unmap
439 * @size: The size of the area to unmap
440 *
441 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
442 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
443 * destroying the VM), otherwise another faulting VCPU may come in and mess
444 * with things behind our backs.
445 */
446 static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
447 {
448 unmap_range(kvm, kvm->arch.pgd, start, size);
449 }
450
451 /**
452 * kvm_free_stage2_pgd - free all stage-2 tables
453 * @kvm: The KVM struct pointer for the VM.
454 *
455 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
456 * underlying level-2 and level-3 tables before freeing the actual level-1 table
457 * and setting the struct pointer to NULL.
458 *
459 * Note we don't need locking here as this is only called when the VM is
460 * destroyed, which can only be done once.
461 */
462 void kvm_free_stage2_pgd(struct kvm *kvm)
463 {
464 if (kvm->arch.pgd == NULL)
465 return;
466
467 unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
468 free_pages((unsigned long)kvm->arch.pgd, S2_PGD_ORDER);
469 kvm->arch.pgd = NULL;
470 }
471
472 static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
473 phys_addr_t addr)
474 {
475 pgd_t *pgd;
476 pud_t *pud;
477 pmd_t *pmd;
478
479 pgd = kvm->arch.pgd + pgd_index(addr);
480 pud = pud_offset(pgd, addr);
481 if (pud_none(*pud)) {
482 if (!cache)
483 return NULL;
484 pmd = mmu_memory_cache_alloc(cache);
485 pud_populate(NULL, pud, pmd);
486 get_page(virt_to_page(pud));
487 }
488
489 return pmd_offset(pud, addr);
490 }
491
492 static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
493 *cache, phys_addr_t addr, const pmd_t *new_pmd)
494 {
495 pmd_t *pmd, old_pmd;
496
497 pmd = stage2_get_pmd(kvm, cache, addr);
498 VM_BUG_ON(!pmd);
499
500 /*
501 * Mapping in huge pages should only happen through a fault. If a
502 * page is merged into a transparent huge page, the individual
503 * subpages of that huge page should be unmapped through MMU
504 * notifiers before we get here.
505 *
506 * Merging of CompoundPages is not supported; they should become
507 * splitting first, unmapped, merged, and mapped back in on-demand.
508 */
509 VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
510
511 old_pmd = *pmd;
512 kvm_set_pmd(pmd, *new_pmd);
513 if (pmd_present(old_pmd))
514 kvm_tlb_flush_vmid_ipa(kvm, addr);
515 else
516 get_page(virt_to_page(pmd));
517 return 0;
518 }
519
520 static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
521 phys_addr_t addr, const pte_t *new_pte, bool iomap)
522 {
523 pmd_t *pmd;
524 pte_t *pte, old_pte;
525
526 /* Create stage-2 page table mapping - Level 1 */
527 pmd = stage2_get_pmd(kvm, cache, addr);
528 if (!pmd) {
529 /*
530 * Ignore calls from kvm_set_spte_hva for unallocated
531 * address ranges.
532 */
533 return 0;
534 }
535
536 /* Create stage-2 page mappings - Level 2 */
537 if (pmd_none(*pmd)) {
538 if (!cache)
539 return 0; /* ignore calls from kvm_set_spte_hva */
540 pte = mmu_memory_cache_alloc(cache);
541 kvm_clean_pte(pte);
542 pmd_populate_kernel(NULL, pmd, pte);
543 get_page(virt_to_page(pmd));
544 }
545
546 pte = pte_offset_kernel(pmd, addr);
547
548 if (iomap && pte_present(*pte))
549 return -EFAULT;
550
551 /* Create 2nd stage page table mapping - Level 3 */
552 old_pte = *pte;
553 kvm_set_pte(pte, *new_pte);
554 if (pte_present(old_pte))
555 kvm_tlb_flush_vmid_ipa(kvm, addr);
556 else
557 get_page(virt_to_page(pte));
558
559 return 0;
560 }
561
562 /**
563 * kvm_phys_addr_ioremap - map a device range to guest IPA
564 *
565 * @kvm: The KVM pointer
566 * @guest_ipa: The IPA at which to insert the mapping
567 * @pa: The physical address of the device
568 * @size: The size of the mapping
569 */
570 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
571 phys_addr_t pa, unsigned long size)
572 {
573 phys_addr_t addr, end;
574 int ret = 0;
575 unsigned long pfn;
576 struct kvm_mmu_memory_cache cache = { 0, };
577
578 end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
579 pfn = __phys_to_pfn(pa);
580
581 for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
582 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
583
584 ret = mmu_topup_memory_cache(&cache, 2, 2);
585 if (ret)
586 goto out;
587 spin_lock(&kvm->mmu_lock);
588 ret = stage2_set_pte(kvm, &cache, addr, &pte, true);
589 spin_unlock(&kvm->mmu_lock);
590 if (ret)
591 goto out;
592
593 pfn++;
594 }
595
596 out:
597 mmu_free_memory_cache(&cache);
598 return ret;
599 }
600
601 static bool transparent_hugepage_adjust(pfn_t *pfnp, phys_addr_t *ipap)
602 {
603 pfn_t pfn = *pfnp;
604 gfn_t gfn = *ipap >> PAGE_SHIFT;
605
606 if (PageTransCompound(pfn_to_page(pfn))) {
607 unsigned long mask;
608 /*
609 * The address we faulted on is backed by a transparent huge
610 * page. However, because we map the compound huge page and
611 * not the individual tail page, we need to transfer the
612 * refcount to the head page. We have to be careful that the
613 * THP doesn't start to split while we are adjusting the
614 * refcounts.
615 *
616 * We are sure this doesn't happen, because mmu_notifier_retry
617 * was successful and we are holding the mmu_lock, so if this
618 * THP is trying to split, it will be blocked in the mmu
619 * notifier before touching any of the pages, specifically
620 * before being able to call __split_huge_page_refcount().
621 *
622 * We can therefore safely transfer the refcount from PG_tail
623 * to PG_head and switch the pfn from a tail page to the head
624 * page accordingly.
625 */
626 mask = PTRS_PER_PMD - 1;
627 VM_BUG_ON((gfn & mask) != (pfn & mask));
628 if (pfn & mask) {
629 *ipap &= PMD_MASK;
630 kvm_release_pfn_clean(pfn);
631 pfn &= ~mask;
632 kvm_get_pfn(pfn);
633 *pfnp = pfn;
634 }
635
636 return true;
637 }
638
639 return false;
640 }
641
642 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
643 struct kvm_memory_slot *memslot,
644 unsigned long fault_status)
645 {
646 int ret;
647 bool write_fault, writable, hugetlb = false, force_pte = false;
648 unsigned long mmu_seq;
649 gfn_t gfn = fault_ipa >> PAGE_SHIFT;
650 unsigned long hva = gfn_to_hva(vcpu->kvm, gfn);
651 struct kvm *kvm = vcpu->kvm;
652 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
653 struct vm_area_struct *vma;
654 pfn_t pfn;
655
656 write_fault = kvm_is_write_fault(kvm_vcpu_get_hsr(vcpu));
657 if (fault_status == FSC_PERM && !write_fault) {
658 kvm_err("Unexpected L2 read permission error\n");
659 return -EFAULT;
660 }
661
662 /* Let's check if we will get back a huge page backed by hugetlbfs */
663 down_read(&current->mm->mmap_sem);
664 vma = find_vma_intersection(current->mm, hva, hva + 1);
665 if (is_vm_hugetlb_page(vma)) {
666 hugetlb = true;
667 gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
668 } else {
669 /*
670 * Pages belonging to VMAs not aligned to the PMD mapping
671 * granularity cannot be mapped using block descriptors even
672 * if the pages belong to a THP for the process, because the
673 * stage-2 block descriptor will cover more than a single THP
674 * and we loose atomicity for unmapping, updates, and splits
675 * of the THP or other pages in the stage-2 block range.
676 */
677 if (vma->vm_start & ~PMD_MASK)
678 force_pte = true;
679 }
680 up_read(&current->mm->mmap_sem);
681
682 /* We need minimum second+third level pages */
683 ret = mmu_topup_memory_cache(memcache, 2, KVM_NR_MEM_OBJS);
684 if (ret)
685 return ret;
686
687 mmu_seq = vcpu->kvm->mmu_notifier_seq;
688 /*
689 * Ensure the read of mmu_notifier_seq happens before we call
690 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
691 * the page we just got a reference to gets unmapped before we have a
692 * chance to grab the mmu_lock, which ensure that if the page gets
693 * unmapped afterwards, the call to kvm_unmap_hva will take it away
694 * from us again properly. This smp_rmb() interacts with the smp_wmb()
695 * in kvm_mmu_notifier_invalidate_<page|range_end>.
696 */
697 smp_rmb();
698
699 pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
700 if (is_error_pfn(pfn))
701 return -EFAULT;
702
703 spin_lock(&kvm->mmu_lock);
704 if (mmu_notifier_retry(kvm, mmu_seq))
705 goto out_unlock;
706 if (!hugetlb && !force_pte)
707 hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
708
709 if (hugetlb) {
710 pmd_t new_pmd = pfn_pmd(pfn, PAGE_S2);
711 new_pmd = pmd_mkhuge(new_pmd);
712 if (writable) {
713 kvm_set_s2pmd_writable(&new_pmd);
714 kvm_set_pfn_dirty(pfn);
715 }
716 coherent_icache_guest_page(kvm, hva & PMD_MASK, PMD_SIZE);
717 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
718 } else {
719 pte_t new_pte = pfn_pte(pfn, PAGE_S2);
720 if (writable) {
721 kvm_set_s2pte_writable(&new_pte);
722 kvm_set_pfn_dirty(pfn);
723 }
724 coherent_icache_guest_page(kvm, hva, PAGE_SIZE);
725 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, false);
726 }
727
728
729 out_unlock:
730 spin_unlock(&kvm->mmu_lock);
731 kvm_release_pfn_clean(pfn);
732 return ret;
733 }
734
735 /**
736 * kvm_handle_guest_abort - handles all 2nd stage aborts
737 * @vcpu: the VCPU pointer
738 * @run: the kvm_run structure
739 *
740 * Any abort that gets to the host is almost guaranteed to be caused by a
741 * missing second stage translation table entry, which can mean that either the
742 * guest simply needs more memory and we must allocate an appropriate page or it
743 * can mean that the guest tried to access I/O memory, which is emulated by user
744 * space. The distinction is based on the IPA causing the fault and whether this
745 * memory region has been registered as standard RAM by user space.
746 */
747 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
748 {
749 unsigned long fault_status;
750 phys_addr_t fault_ipa;
751 struct kvm_memory_slot *memslot;
752 bool is_iabt;
753 gfn_t gfn;
754 int ret, idx;
755
756 is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
757 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
758
759 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
760 kvm_vcpu_get_hfar(vcpu), fault_ipa);
761
762 /* Check the stage-2 fault is trans. fault or write fault */
763 fault_status = kvm_vcpu_trap_get_fault(vcpu);
764 if (fault_status != FSC_FAULT && fault_status != FSC_PERM) {
765 kvm_err("Unsupported fault status: EC=%#x DFCS=%#lx\n",
766 kvm_vcpu_trap_get_class(vcpu), fault_status);
767 return -EFAULT;
768 }
769
770 idx = srcu_read_lock(&vcpu->kvm->srcu);
771
772 gfn = fault_ipa >> PAGE_SHIFT;
773 if (!kvm_is_visible_gfn(vcpu->kvm, gfn)) {
774 if (is_iabt) {
775 /* Prefetch Abort on I/O address */
776 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
777 ret = 1;
778 goto out_unlock;
779 }
780
781 if (fault_status != FSC_FAULT) {
782 kvm_err("Unsupported fault status on io memory: %#lx\n",
783 fault_status);
784 ret = -EFAULT;
785 goto out_unlock;
786 }
787
788 /*
789 * The IPA is reported as [MAX:12], so we need to
790 * complement it with the bottom 12 bits from the
791 * faulting VA. This is always 12 bits, irrespective
792 * of the page size.
793 */
794 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
795 ret = io_mem_abort(vcpu, run, fault_ipa);
796 goto out_unlock;
797 }
798
799 memslot = gfn_to_memslot(vcpu->kvm, gfn);
800
801 ret = user_mem_abort(vcpu, fault_ipa, memslot, fault_status);
802 if (ret == 0)
803 ret = 1;
804 out_unlock:
805 srcu_read_unlock(&vcpu->kvm->srcu, idx);
806 return ret;
807 }
808
809 static void handle_hva_to_gpa(struct kvm *kvm,
810 unsigned long start,
811 unsigned long end,
812 void (*handler)(struct kvm *kvm,
813 gpa_t gpa, void *data),
814 void *data)
815 {
816 struct kvm_memslots *slots;
817 struct kvm_memory_slot *memslot;
818
819 slots = kvm_memslots(kvm);
820
821 /* we only care about the pages that the guest sees */
822 kvm_for_each_memslot(memslot, slots) {
823 unsigned long hva_start, hva_end;
824 gfn_t gfn, gfn_end;
825
826 hva_start = max(start, memslot->userspace_addr);
827 hva_end = min(end, memslot->userspace_addr +
828 (memslot->npages << PAGE_SHIFT));
829 if (hva_start >= hva_end)
830 continue;
831
832 /*
833 * {gfn(page) | page intersects with [hva_start, hva_end)} =
834 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
835 */
836 gfn = hva_to_gfn_memslot(hva_start, memslot);
837 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
838
839 for (; gfn < gfn_end; ++gfn) {
840 gpa_t gpa = gfn << PAGE_SHIFT;
841 handler(kvm, gpa, data);
842 }
843 }
844 }
845
846 static void kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
847 {
848 unmap_stage2_range(kvm, gpa, PAGE_SIZE);
849 }
850
851 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
852 {
853 unsigned long end = hva + PAGE_SIZE;
854
855 if (!kvm->arch.pgd)
856 return 0;
857
858 trace_kvm_unmap_hva(hva);
859 handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
860 return 0;
861 }
862
863 int kvm_unmap_hva_range(struct kvm *kvm,
864 unsigned long start, unsigned long end)
865 {
866 if (!kvm->arch.pgd)
867 return 0;
868
869 trace_kvm_unmap_hva_range(start, end);
870 handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
871 return 0;
872 }
873
874 static void kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
875 {
876 pte_t *pte = (pte_t *)data;
877
878 stage2_set_pte(kvm, NULL, gpa, pte, false);
879 }
880
881
882 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
883 {
884 unsigned long end = hva + PAGE_SIZE;
885 pte_t stage2_pte;
886
887 if (!kvm->arch.pgd)
888 return;
889
890 trace_kvm_set_spte_hva(hva);
891 stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
892 handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
893 }
894
895 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
896 {
897 mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
898 }
899
900 phys_addr_t kvm_mmu_get_httbr(void)
901 {
902 return virt_to_phys(hyp_pgd);
903 }
904
905 phys_addr_t kvm_mmu_get_boot_httbr(void)
906 {
907 return virt_to_phys(boot_hyp_pgd);
908 }
909
910 phys_addr_t kvm_get_idmap_vector(void)
911 {
912 return hyp_idmap_vector;
913 }
914
915 int kvm_mmu_init(void)
916 {
917 int err;
918
919 hyp_idmap_start = virt_to_phys(__hyp_idmap_text_start);
920 hyp_idmap_end = virt_to_phys(__hyp_idmap_text_end);
921 hyp_idmap_vector = virt_to_phys(__kvm_hyp_init);
922
923 if ((hyp_idmap_start ^ hyp_idmap_end) & PAGE_MASK) {
924 /*
925 * Our init code is crossing a page boundary. Allocate
926 * a bounce page, copy the code over and use that.
927 */
928 size_t len = __hyp_idmap_text_end - __hyp_idmap_text_start;
929 phys_addr_t phys_base;
930
931 init_bounce_page = kmalloc(PAGE_SIZE, GFP_KERNEL);
932 if (!init_bounce_page) {
933 kvm_err("Couldn't allocate HYP init bounce page\n");
934 err = -ENOMEM;
935 goto out;
936 }
937
938 memcpy(init_bounce_page, __hyp_idmap_text_start, len);
939 /*
940 * Warning: the code we just copied to the bounce page
941 * must be flushed to the point of coherency.
942 * Otherwise, the data may be sitting in L2, and HYP
943 * mode won't be able to observe it as it runs with
944 * caches off at that point.
945 */
946 kvm_flush_dcache_to_poc(init_bounce_page, len);
947
948 phys_base = virt_to_phys(init_bounce_page);
949 hyp_idmap_vector += phys_base - hyp_idmap_start;
950 hyp_idmap_start = phys_base;
951 hyp_idmap_end = phys_base + len;
952
953 kvm_info("Using HYP init bounce page @%lx\n",
954 (unsigned long)phys_base);
955 }
956
957 hyp_pgd = kzalloc(PTRS_PER_PGD * sizeof(pgd_t), GFP_KERNEL);
958 boot_hyp_pgd = kzalloc(PTRS_PER_PGD * sizeof(pgd_t), GFP_KERNEL);
959 if (!hyp_pgd || !boot_hyp_pgd) {
960 kvm_err("Hyp mode PGD not allocated\n");
961 err = -ENOMEM;
962 goto out;
963 }
964
965 /* Create the idmap in the boot page tables */
966 err = __create_hyp_mappings(boot_hyp_pgd,
967 hyp_idmap_start, hyp_idmap_end,
968 __phys_to_pfn(hyp_idmap_start),
969 PAGE_HYP);
970
971 if (err) {
972 kvm_err("Failed to idmap %lx-%lx\n",
973 hyp_idmap_start, hyp_idmap_end);
974 goto out;
975 }
976
977 /* Map the very same page at the trampoline VA */
978 err = __create_hyp_mappings(boot_hyp_pgd,
979 TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
980 __phys_to_pfn(hyp_idmap_start),
981 PAGE_HYP);
982 if (err) {
983 kvm_err("Failed to map trampoline @%lx into boot HYP pgd\n",
984 TRAMPOLINE_VA);
985 goto out;
986 }
987
988 /* Map the same page again into the runtime page tables */
989 err = __create_hyp_mappings(hyp_pgd,
990 TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
991 __phys_to_pfn(hyp_idmap_start),
992 PAGE_HYP);
993 if (err) {
994 kvm_err("Failed to map trampoline @%lx into runtime HYP pgd\n",
995 TRAMPOLINE_VA);
996 goto out;
997 }
998
999 return 0;
1000 out:
1001 free_hyp_pgds();
1002 return err;
1003 }
This page took 0.094941 seconds and 5 git commands to generate.