KVM: add "new" argument to kvm_arch_commit_memory_region
[deliverable/linux.git] / arch / arm / kvm / mmu.c
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/mman.h>
20 #include <linux/kvm_host.h>
21 #include <linux/io.h>
22 #include <linux/hugetlb.h>
23 #include <trace/events/kvm.h>
24 #include <asm/pgalloc.h>
25 #include <asm/cacheflush.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_mmu.h>
28 #include <asm/kvm_mmio.h>
29 #include <asm/kvm_asm.h>
30 #include <asm/kvm_emulate.h>
31
32 #include "trace.h"
33
34 extern char __hyp_idmap_text_start[], __hyp_idmap_text_end[];
35
36 static pgd_t *boot_hyp_pgd;
37 static pgd_t *hyp_pgd;
38 static pgd_t *merged_hyp_pgd;
39 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
40
41 static unsigned long hyp_idmap_start;
42 static unsigned long hyp_idmap_end;
43 static phys_addr_t hyp_idmap_vector;
44
45 #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
46
47 #define kvm_pmd_huge(_x) (pmd_huge(_x) || pmd_trans_huge(_x))
48 #define kvm_pud_huge(_x) pud_huge(_x)
49
50 #define KVM_S2PTE_FLAG_IS_IOMAP (1UL << 0)
51 #define KVM_S2_FLAG_LOGGING_ACTIVE (1UL << 1)
52
53 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
54 {
55 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
56 }
57
58 /**
59 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
60 * @kvm: pointer to kvm structure.
61 *
62 * Interface to HYP function to flush all VM TLB entries
63 */
64 void kvm_flush_remote_tlbs(struct kvm *kvm)
65 {
66 kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
67 }
68
69 static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
70 {
71 /*
72 * This function also gets called when dealing with HYP page
73 * tables. As HYP doesn't have an associated struct kvm (and
74 * the HYP page tables are fairly static), we don't do
75 * anything there.
76 */
77 if (kvm)
78 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
79 }
80
81 /*
82 * D-Cache management functions. They take the page table entries by
83 * value, as they are flushing the cache using the kernel mapping (or
84 * kmap on 32bit).
85 */
86 static void kvm_flush_dcache_pte(pte_t pte)
87 {
88 __kvm_flush_dcache_pte(pte);
89 }
90
91 static void kvm_flush_dcache_pmd(pmd_t pmd)
92 {
93 __kvm_flush_dcache_pmd(pmd);
94 }
95
96 static void kvm_flush_dcache_pud(pud_t pud)
97 {
98 __kvm_flush_dcache_pud(pud);
99 }
100
101 /**
102 * stage2_dissolve_pmd() - clear and flush huge PMD entry
103 * @kvm: pointer to kvm structure.
104 * @addr: IPA
105 * @pmd: pmd pointer for IPA
106 *
107 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
108 * pages in the range dirty.
109 */
110 static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
111 {
112 if (!kvm_pmd_huge(*pmd))
113 return;
114
115 pmd_clear(pmd);
116 kvm_tlb_flush_vmid_ipa(kvm, addr);
117 put_page(virt_to_page(pmd));
118 }
119
120 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
121 int min, int max)
122 {
123 void *page;
124
125 BUG_ON(max > KVM_NR_MEM_OBJS);
126 if (cache->nobjs >= min)
127 return 0;
128 while (cache->nobjs < max) {
129 page = (void *)__get_free_page(PGALLOC_GFP);
130 if (!page)
131 return -ENOMEM;
132 cache->objects[cache->nobjs++] = page;
133 }
134 return 0;
135 }
136
137 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
138 {
139 while (mc->nobjs)
140 free_page((unsigned long)mc->objects[--mc->nobjs]);
141 }
142
143 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
144 {
145 void *p;
146
147 BUG_ON(!mc || !mc->nobjs);
148 p = mc->objects[--mc->nobjs];
149 return p;
150 }
151
152 static void clear_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
153 {
154 pud_t *pud_table __maybe_unused = pud_offset(pgd, 0);
155 pgd_clear(pgd);
156 kvm_tlb_flush_vmid_ipa(kvm, addr);
157 pud_free(NULL, pud_table);
158 put_page(virt_to_page(pgd));
159 }
160
161 static void clear_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
162 {
163 pmd_t *pmd_table = pmd_offset(pud, 0);
164 VM_BUG_ON(pud_huge(*pud));
165 pud_clear(pud);
166 kvm_tlb_flush_vmid_ipa(kvm, addr);
167 pmd_free(NULL, pmd_table);
168 put_page(virt_to_page(pud));
169 }
170
171 static void clear_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
172 {
173 pte_t *pte_table = pte_offset_kernel(pmd, 0);
174 VM_BUG_ON(kvm_pmd_huge(*pmd));
175 pmd_clear(pmd);
176 kvm_tlb_flush_vmid_ipa(kvm, addr);
177 pte_free_kernel(NULL, pte_table);
178 put_page(virt_to_page(pmd));
179 }
180
181 /*
182 * Unmapping vs dcache management:
183 *
184 * If a guest maps certain memory pages as uncached, all writes will
185 * bypass the data cache and go directly to RAM. However, the CPUs
186 * can still speculate reads (not writes) and fill cache lines with
187 * data.
188 *
189 * Those cache lines will be *clean* cache lines though, so a
190 * clean+invalidate operation is equivalent to an invalidate
191 * operation, because no cache lines are marked dirty.
192 *
193 * Those clean cache lines could be filled prior to an uncached write
194 * by the guest, and the cache coherent IO subsystem would therefore
195 * end up writing old data to disk.
196 *
197 * This is why right after unmapping a page/section and invalidating
198 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
199 * the IO subsystem will never hit in the cache.
200 */
201 static void unmap_ptes(struct kvm *kvm, pmd_t *pmd,
202 phys_addr_t addr, phys_addr_t end)
203 {
204 phys_addr_t start_addr = addr;
205 pte_t *pte, *start_pte;
206
207 start_pte = pte = pte_offset_kernel(pmd, addr);
208 do {
209 if (!pte_none(*pte)) {
210 pte_t old_pte = *pte;
211
212 kvm_set_pte(pte, __pte(0));
213 kvm_tlb_flush_vmid_ipa(kvm, addr);
214
215 /* No need to invalidate the cache for device mappings */
216 if ((pte_val(old_pte) & PAGE_S2_DEVICE) != PAGE_S2_DEVICE)
217 kvm_flush_dcache_pte(old_pte);
218
219 put_page(virt_to_page(pte));
220 }
221 } while (pte++, addr += PAGE_SIZE, addr != end);
222
223 if (kvm_pte_table_empty(kvm, start_pte))
224 clear_pmd_entry(kvm, pmd, start_addr);
225 }
226
227 static void unmap_pmds(struct kvm *kvm, pud_t *pud,
228 phys_addr_t addr, phys_addr_t end)
229 {
230 phys_addr_t next, start_addr = addr;
231 pmd_t *pmd, *start_pmd;
232
233 start_pmd = pmd = pmd_offset(pud, addr);
234 do {
235 next = kvm_pmd_addr_end(addr, end);
236 if (!pmd_none(*pmd)) {
237 if (kvm_pmd_huge(*pmd)) {
238 pmd_t old_pmd = *pmd;
239
240 pmd_clear(pmd);
241 kvm_tlb_flush_vmid_ipa(kvm, addr);
242
243 kvm_flush_dcache_pmd(old_pmd);
244
245 put_page(virt_to_page(pmd));
246 } else {
247 unmap_ptes(kvm, pmd, addr, next);
248 }
249 }
250 } while (pmd++, addr = next, addr != end);
251
252 if (kvm_pmd_table_empty(kvm, start_pmd))
253 clear_pud_entry(kvm, pud, start_addr);
254 }
255
256 static void unmap_puds(struct kvm *kvm, pgd_t *pgd,
257 phys_addr_t addr, phys_addr_t end)
258 {
259 phys_addr_t next, start_addr = addr;
260 pud_t *pud, *start_pud;
261
262 start_pud = pud = pud_offset(pgd, addr);
263 do {
264 next = kvm_pud_addr_end(addr, end);
265 if (!pud_none(*pud)) {
266 if (pud_huge(*pud)) {
267 pud_t old_pud = *pud;
268
269 pud_clear(pud);
270 kvm_tlb_flush_vmid_ipa(kvm, addr);
271
272 kvm_flush_dcache_pud(old_pud);
273
274 put_page(virt_to_page(pud));
275 } else {
276 unmap_pmds(kvm, pud, addr, next);
277 }
278 }
279 } while (pud++, addr = next, addr != end);
280
281 if (kvm_pud_table_empty(kvm, start_pud))
282 clear_pgd_entry(kvm, pgd, start_addr);
283 }
284
285
286 static void unmap_range(struct kvm *kvm, pgd_t *pgdp,
287 phys_addr_t start, u64 size)
288 {
289 pgd_t *pgd;
290 phys_addr_t addr = start, end = start + size;
291 phys_addr_t next;
292
293 pgd = pgdp + kvm_pgd_index(addr);
294 do {
295 next = kvm_pgd_addr_end(addr, end);
296 if (!pgd_none(*pgd))
297 unmap_puds(kvm, pgd, addr, next);
298 } while (pgd++, addr = next, addr != end);
299 }
300
301 static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
302 phys_addr_t addr, phys_addr_t end)
303 {
304 pte_t *pte;
305
306 pte = pte_offset_kernel(pmd, addr);
307 do {
308 if (!pte_none(*pte) &&
309 (pte_val(*pte) & PAGE_S2_DEVICE) != PAGE_S2_DEVICE)
310 kvm_flush_dcache_pte(*pte);
311 } while (pte++, addr += PAGE_SIZE, addr != end);
312 }
313
314 static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
315 phys_addr_t addr, phys_addr_t end)
316 {
317 pmd_t *pmd;
318 phys_addr_t next;
319
320 pmd = pmd_offset(pud, addr);
321 do {
322 next = kvm_pmd_addr_end(addr, end);
323 if (!pmd_none(*pmd)) {
324 if (kvm_pmd_huge(*pmd))
325 kvm_flush_dcache_pmd(*pmd);
326 else
327 stage2_flush_ptes(kvm, pmd, addr, next);
328 }
329 } while (pmd++, addr = next, addr != end);
330 }
331
332 static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
333 phys_addr_t addr, phys_addr_t end)
334 {
335 pud_t *pud;
336 phys_addr_t next;
337
338 pud = pud_offset(pgd, addr);
339 do {
340 next = kvm_pud_addr_end(addr, end);
341 if (!pud_none(*pud)) {
342 if (pud_huge(*pud))
343 kvm_flush_dcache_pud(*pud);
344 else
345 stage2_flush_pmds(kvm, pud, addr, next);
346 }
347 } while (pud++, addr = next, addr != end);
348 }
349
350 static void stage2_flush_memslot(struct kvm *kvm,
351 struct kvm_memory_slot *memslot)
352 {
353 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
354 phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
355 phys_addr_t next;
356 pgd_t *pgd;
357
358 pgd = kvm->arch.pgd + kvm_pgd_index(addr);
359 do {
360 next = kvm_pgd_addr_end(addr, end);
361 stage2_flush_puds(kvm, pgd, addr, next);
362 } while (pgd++, addr = next, addr != end);
363 }
364
365 /**
366 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
367 * @kvm: The struct kvm pointer
368 *
369 * Go through the stage 2 page tables and invalidate any cache lines
370 * backing memory already mapped to the VM.
371 */
372 static void stage2_flush_vm(struct kvm *kvm)
373 {
374 struct kvm_memslots *slots;
375 struct kvm_memory_slot *memslot;
376 int idx;
377
378 idx = srcu_read_lock(&kvm->srcu);
379 spin_lock(&kvm->mmu_lock);
380
381 slots = kvm_memslots(kvm);
382 kvm_for_each_memslot(memslot, slots)
383 stage2_flush_memslot(kvm, memslot);
384
385 spin_unlock(&kvm->mmu_lock);
386 srcu_read_unlock(&kvm->srcu, idx);
387 }
388
389 /**
390 * free_boot_hyp_pgd - free HYP boot page tables
391 *
392 * Free the HYP boot page tables. The bounce page is also freed.
393 */
394 void free_boot_hyp_pgd(void)
395 {
396 mutex_lock(&kvm_hyp_pgd_mutex);
397
398 if (boot_hyp_pgd) {
399 unmap_range(NULL, boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
400 unmap_range(NULL, boot_hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
401 free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
402 boot_hyp_pgd = NULL;
403 }
404
405 if (hyp_pgd)
406 unmap_range(NULL, hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
407
408 mutex_unlock(&kvm_hyp_pgd_mutex);
409 }
410
411 /**
412 * free_hyp_pgds - free Hyp-mode page tables
413 *
414 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
415 * therefore contains either mappings in the kernel memory area (above
416 * PAGE_OFFSET), or device mappings in the vmalloc range (from
417 * VMALLOC_START to VMALLOC_END).
418 *
419 * boot_hyp_pgd should only map two pages for the init code.
420 */
421 void free_hyp_pgds(void)
422 {
423 unsigned long addr;
424
425 free_boot_hyp_pgd();
426
427 mutex_lock(&kvm_hyp_pgd_mutex);
428
429 if (hyp_pgd) {
430 for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
431 unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
432 for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
433 unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
434
435 free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
436 hyp_pgd = NULL;
437 }
438 if (merged_hyp_pgd) {
439 clear_page(merged_hyp_pgd);
440 free_page((unsigned long)merged_hyp_pgd);
441 merged_hyp_pgd = NULL;
442 }
443
444 mutex_unlock(&kvm_hyp_pgd_mutex);
445 }
446
447 static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
448 unsigned long end, unsigned long pfn,
449 pgprot_t prot)
450 {
451 pte_t *pte;
452 unsigned long addr;
453
454 addr = start;
455 do {
456 pte = pte_offset_kernel(pmd, addr);
457 kvm_set_pte(pte, pfn_pte(pfn, prot));
458 get_page(virt_to_page(pte));
459 kvm_flush_dcache_to_poc(pte, sizeof(*pte));
460 pfn++;
461 } while (addr += PAGE_SIZE, addr != end);
462 }
463
464 static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
465 unsigned long end, unsigned long pfn,
466 pgprot_t prot)
467 {
468 pmd_t *pmd;
469 pte_t *pte;
470 unsigned long addr, next;
471
472 addr = start;
473 do {
474 pmd = pmd_offset(pud, addr);
475
476 BUG_ON(pmd_sect(*pmd));
477
478 if (pmd_none(*pmd)) {
479 pte = pte_alloc_one_kernel(NULL, addr);
480 if (!pte) {
481 kvm_err("Cannot allocate Hyp pte\n");
482 return -ENOMEM;
483 }
484 pmd_populate_kernel(NULL, pmd, pte);
485 get_page(virt_to_page(pmd));
486 kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
487 }
488
489 next = pmd_addr_end(addr, end);
490
491 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
492 pfn += (next - addr) >> PAGE_SHIFT;
493 } while (addr = next, addr != end);
494
495 return 0;
496 }
497
498 static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
499 unsigned long end, unsigned long pfn,
500 pgprot_t prot)
501 {
502 pud_t *pud;
503 pmd_t *pmd;
504 unsigned long addr, next;
505 int ret;
506
507 addr = start;
508 do {
509 pud = pud_offset(pgd, addr);
510
511 if (pud_none_or_clear_bad(pud)) {
512 pmd = pmd_alloc_one(NULL, addr);
513 if (!pmd) {
514 kvm_err("Cannot allocate Hyp pmd\n");
515 return -ENOMEM;
516 }
517 pud_populate(NULL, pud, pmd);
518 get_page(virt_to_page(pud));
519 kvm_flush_dcache_to_poc(pud, sizeof(*pud));
520 }
521
522 next = pud_addr_end(addr, end);
523 ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
524 if (ret)
525 return ret;
526 pfn += (next - addr) >> PAGE_SHIFT;
527 } while (addr = next, addr != end);
528
529 return 0;
530 }
531
532 static int __create_hyp_mappings(pgd_t *pgdp,
533 unsigned long start, unsigned long end,
534 unsigned long pfn, pgprot_t prot)
535 {
536 pgd_t *pgd;
537 pud_t *pud;
538 unsigned long addr, next;
539 int err = 0;
540
541 mutex_lock(&kvm_hyp_pgd_mutex);
542 addr = start & PAGE_MASK;
543 end = PAGE_ALIGN(end);
544 do {
545 pgd = pgdp + pgd_index(addr);
546
547 if (pgd_none(*pgd)) {
548 pud = pud_alloc_one(NULL, addr);
549 if (!pud) {
550 kvm_err("Cannot allocate Hyp pud\n");
551 err = -ENOMEM;
552 goto out;
553 }
554 pgd_populate(NULL, pgd, pud);
555 get_page(virt_to_page(pgd));
556 kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
557 }
558
559 next = pgd_addr_end(addr, end);
560 err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
561 if (err)
562 goto out;
563 pfn += (next - addr) >> PAGE_SHIFT;
564 } while (addr = next, addr != end);
565 out:
566 mutex_unlock(&kvm_hyp_pgd_mutex);
567 return err;
568 }
569
570 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
571 {
572 if (!is_vmalloc_addr(kaddr)) {
573 BUG_ON(!virt_addr_valid(kaddr));
574 return __pa(kaddr);
575 } else {
576 return page_to_phys(vmalloc_to_page(kaddr)) +
577 offset_in_page(kaddr);
578 }
579 }
580
581 /**
582 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
583 * @from: The virtual kernel start address of the range
584 * @to: The virtual kernel end address of the range (exclusive)
585 *
586 * The same virtual address as the kernel virtual address is also used
587 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
588 * physical pages.
589 */
590 int create_hyp_mappings(void *from, void *to)
591 {
592 phys_addr_t phys_addr;
593 unsigned long virt_addr;
594 unsigned long start = KERN_TO_HYP((unsigned long)from);
595 unsigned long end = KERN_TO_HYP((unsigned long)to);
596
597 start = start & PAGE_MASK;
598 end = PAGE_ALIGN(end);
599
600 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
601 int err;
602
603 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
604 err = __create_hyp_mappings(hyp_pgd, virt_addr,
605 virt_addr + PAGE_SIZE,
606 __phys_to_pfn(phys_addr),
607 PAGE_HYP);
608 if (err)
609 return err;
610 }
611
612 return 0;
613 }
614
615 /**
616 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
617 * @from: The kernel start VA of the range
618 * @to: The kernel end VA of the range (exclusive)
619 * @phys_addr: The physical start address which gets mapped
620 *
621 * The resulting HYP VA is the same as the kernel VA, modulo
622 * HYP_PAGE_OFFSET.
623 */
624 int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
625 {
626 unsigned long start = KERN_TO_HYP((unsigned long)from);
627 unsigned long end = KERN_TO_HYP((unsigned long)to);
628
629 /* Check for a valid kernel IO mapping */
630 if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
631 return -EINVAL;
632
633 return __create_hyp_mappings(hyp_pgd, start, end,
634 __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
635 }
636
637 /* Free the HW pgd, one page at a time */
638 static void kvm_free_hwpgd(void *hwpgd)
639 {
640 free_pages_exact(hwpgd, kvm_get_hwpgd_size());
641 }
642
643 /* Allocate the HW PGD, making sure that each page gets its own refcount */
644 static void *kvm_alloc_hwpgd(void)
645 {
646 unsigned int size = kvm_get_hwpgd_size();
647
648 return alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
649 }
650
651 /**
652 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
653 * @kvm: The KVM struct pointer for the VM.
654 *
655 * Allocates the 1st level table only of size defined by S2_PGD_ORDER (can
656 * support either full 40-bit input addresses or limited to 32-bit input
657 * addresses). Clears the allocated pages.
658 *
659 * Note we don't need locking here as this is only called when the VM is
660 * created, which can only be done once.
661 */
662 int kvm_alloc_stage2_pgd(struct kvm *kvm)
663 {
664 pgd_t *pgd;
665 void *hwpgd;
666
667 if (kvm->arch.pgd != NULL) {
668 kvm_err("kvm_arch already initialized?\n");
669 return -EINVAL;
670 }
671
672 hwpgd = kvm_alloc_hwpgd();
673 if (!hwpgd)
674 return -ENOMEM;
675
676 /* When the kernel uses more levels of page tables than the
677 * guest, we allocate a fake PGD and pre-populate it to point
678 * to the next-level page table, which will be the real
679 * initial page table pointed to by the VTTBR.
680 *
681 * When KVM_PREALLOC_LEVEL==2, we allocate a single page for
682 * the PMD and the kernel will use folded pud.
683 * When KVM_PREALLOC_LEVEL==1, we allocate 2 consecutive PUD
684 * pages.
685 */
686 if (KVM_PREALLOC_LEVEL > 0) {
687 int i;
688
689 /*
690 * Allocate fake pgd for the page table manipulation macros to
691 * work. This is not used by the hardware and we have no
692 * alignment requirement for this allocation.
693 */
694 pgd = (pgd_t *)kmalloc(PTRS_PER_S2_PGD * sizeof(pgd_t),
695 GFP_KERNEL | __GFP_ZERO);
696
697 if (!pgd) {
698 kvm_free_hwpgd(hwpgd);
699 return -ENOMEM;
700 }
701
702 /* Plug the HW PGD into the fake one. */
703 for (i = 0; i < PTRS_PER_S2_PGD; i++) {
704 if (KVM_PREALLOC_LEVEL == 1)
705 pgd_populate(NULL, pgd + i,
706 (pud_t *)hwpgd + i * PTRS_PER_PUD);
707 else if (KVM_PREALLOC_LEVEL == 2)
708 pud_populate(NULL, pud_offset(pgd, 0) + i,
709 (pmd_t *)hwpgd + i * PTRS_PER_PMD);
710 }
711 } else {
712 /*
713 * Allocate actual first-level Stage-2 page table used by the
714 * hardware for Stage-2 page table walks.
715 */
716 pgd = (pgd_t *)hwpgd;
717 }
718
719 kvm_clean_pgd(pgd);
720 kvm->arch.pgd = pgd;
721 return 0;
722 }
723
724 /**
725 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
726 * @kvm: The VM pointer
727 * @start: The intermediate physical base address of the range to unmap
728 * @size: The size of the area to unmap
729 *
730 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
731 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
732 * destroying the VM), otherwise another faulting VCPU may come in and mess
733 * with things behind our backs.
734 */
735 static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
736 {
737 unmap_range(kvm, kvm->arch.pgd, start, size);
738 }
739
740 static void stage2_unmap_memslot(struct kvm *kvm,
741 struct kvm_memory_slot *memslot)
742 {
743 hva_t hva = memslot->userspace_addr;
744 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
745 phys_addr_t size = PAGE_SIZE * memslot->npages;
746 hva_t reg_end = hva + size;
747
748 /*
749 * A memory region could potentially cover multiple VMAs, and any holes
750 * between them, so iterate over all of them to find out if we should
751 * unmap any of them.
752 *
753 * +--------------------------------------------+
754 * +---------------+----------------+ +----------------+
755 * | : VMA 1 | VMA 2 | | VMA 3 : |
756 * +---------------+----------------+ +----------------+
757 * | memory region |
758 * +--------------------------------------------+
759 */
760 do {
761 struct vm_area_struct *vma = find_vma(current->mm, hva);
762 hva_t vm_start, vm_end;
763
764 if (!vma || vma->vm_start >= reg_end)
765 break;
766
767 /*
768 * Take the intersection of this VMA with the memory region
769 */
770 vm_start = max(hva, vma->vm_start);
771 vm_end = min(reg_end, vma->vm_end);
772
773 if (!(vma->vm_flags & VM_PFNMAP)) {
774 gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
775 unmap_stage2_range(kvm, gpa, vm_end - vm_start);
776 }
777 hva = vm_end;
778 } while (hva < reg_end);
779 }
780
781 /**
782 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
783 * @kvm: The struct kvm pointer
784 *
785 * Go through the memregions and unmap any reguler RAM
786 * backing memory already mapped to the VM.
787 */
788 void stage2_unmap_vm(struct kvm *kvm)
789 {
790 struct kvm_memslots *slots;
791 struct kvm_memory_slot *memslot;
792 int idx;
793
794 idx = srcu_read_lock(&kvm->srcu);
795 spin_lock(&kvm->mmu_lock);
796
797 slots = kvm_memslots(kvm);
798 kvm_for_each_memslot(memslot, slots)
799 stage2_unmap_memslot(kvm, memslot);
800
801 spin_unlock(&kvm->mmu_lock);
802 srcu_read_unlock(&kvm->srcu, idx);
803 }
804
805 /**
806 * kvm_free_stage2_pgd - free all stage-2 tables
807 * @kvm: The KVM struct pointer for the VM.
808 *
809 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
810 * underlying level-2 and level-3 tables before freeing the actual level-1 table
811 * and setting the struct pointer to NULL.
812 *
813 * Note we don't need locking here as this is only called when the VM is
814 * destroyed, which can only be done once.
815 */
816 void kvm_free_stage2_pgd(struct kvm *kvm)
817 {
818 if (kvm->arch.pgd == NULL)
819 return;
820
821 unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
822 kvm_free_hwpgd(kvm_get_hwpgd(kvm));
823 if (KVM_PREALLOC_LEVEL > 0)
824 kfree(kvm->arch.pgd);
825
826 kvm->arch.pgd = NULL;
827 }
828
829 static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
830 phys_addr_t addr)
831 {
832 pgd_t *pgd;
833 pud_t *pud;
834
835 pgd = kvm->arch.pgd + kvm_pgd_index(addr);
836 if (WARN_ON(pgd_none(*pgd))) {
837 if (!cache)
838 return NULL;
839 pud = mmu_memory_cache_alloc(cache);
840 pgd_populate(NULL, pgd, pud);
841 get_page(virt_to_page(pgd));
842 }
843
844 return pud_offset(pgd, addr);
845 }
846
847 static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
848 phys_addr_t addr)
849 {
850 pud_t *pud;
851 pmd_t *pmd;
852
853 pud = stage2_get_pud(kvm, cache, addr);
854 if (pud_none(*pud)) {
855 if (!cache)
856 return NULL;
857 pmd = mmu_memory_cache_alloc(cache);
858 pud_populate(NULL, pud, pmd);
859 get_page(virt_to_page(pud));
860 }
861
862 return pmd_offset(pud, addr);
863 }
864
865 static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
866 *cache, phys_addr_t addr, const pmd_t *new_pmd)
867 {
868 pmd_t *pmd, old_pmd;
869
870 pmd = stage2_get_pmd(kvm, cache, addr);
871 VM_BUG_ON(!pmd);
872
873 /*
874 * Mapping in huge pages should only happen through a fault. If a
875 * page is merged into a transparent huge page, the individual
876 * subpages of that huge page should be unmapped through MMU
877 * notifiers before we get here.
878 *
879 * Merging of CompoundPages is not supported; they should become
880 * splitting first, unmapped, merged, and mapped back in on-demand.
881 */
882 VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
883
884 old_pmd = *pmd;
885 kvm_set_pmd(pmd, *new_pmd);
886 if (pmd_present(old_pmd))
887 kvm_tlb_flush_vmid_ipa(kvm, addr);
888 else
889 get_page(virt_to_page(pmd));
890 return 0;
891 }
892
893 static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
894 phys_addr_t addr, const pte_t *new_pte,
895 unsigned long flags)
896 {
897 pmd_t *pmd;
898 pte_t *pte, old_pte;
899 bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
900 bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
901
902 VM_BUG_ON(logging_active && !cache);
903
904 /* Create stage-2 page table mapping - Levels 0 and 1 */
905 pmd = stage2_get_pmd(kvm, cache, addr);
906 if (!pmd) {
907 /*
908 * Ignore calls from kvm_set_spte_hva for unallocated
909 * address ranges.
910 */
911 return 0;
912 }
913
914 /*
915 * While dirty page logging - dissolve huge PMD, then continue on to
916 * allocate page.
917 */
918 if (logging_active)
919 stage2_dissolve_pmd(kvm, addr, pmd);
920
921 /* Create stage-2 page mappings - Level 2 */
922 if (pmd_none(*pmd)) {
923 if (!cache)
924 return 0; /* ignore calls from kvm_set_spte_hva */
925 pte = mmu_memory_cache_alloc(cache);
926 kvm_clean_pte(pte);
927 pmd_populate_kernel(NULL, pmd, pte);
928 get_page(virt_to_page(pmd));
929 }
930
931 pte = pte_offset_kernel(pmd, addr);
932
933 if (iomap && pte_present(*pte))
934 return -EFAULT;
935
936 /* Create 2nd stage page table mapping - Level 3 */
937 old_pte = *pte;
938 kvm_set_pte(pte, *new_pte);
939 if (pte_present(old_pte))
940 kvm_tlb_flush_vmid_ipa(kvm, addr);
941 else
942 get_page(virt_to_page(pte));
943
944 return 0;
945 }
946
947 /**
948 * kvm_phys_addr_ioremap - map a device range to guest IPA
949 *
950 * @kvm: The KVM pointer
951 * @guest_ipa: The IPA at which to insert the mapping
952 * @pa: The physical address of the device
953 * @size: The size of the mapping
954 */
955 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
956 phys_addr_t pa, unsigned long size, bool writable)
957 {
958 phys_addr_t addr, end;
959 int ret = 0;
960 unsigned long pfn;
961 struct kvm_mmu_memory_cache cache = { 0, };
962
963 end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
964 pfn = __phys_to_pfn(pa);
965
966 for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
967 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
968
969 if (writable)
970 kvm_set_s2pte_writable(&pte);
971
972 ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
973 KVM_NR_MEM_OBJS);
974 if (ret)
975 goto out;
976 spin_lock(&kvm->mmu_lock);
977 ret = stage2_set_pte(kvm, &cache, addr, &pte,
978 KVM_S2PTE_FLAG_IS_IOMAP);
979 spin_unlock(&kvm->mmu_lock);
980 if (ret)
981 goto out;
982
983 pfn++;
984 }
985
986 out:
987 mmu_free_memory_cache(&cache);
988 return ret;
989 }
990
991 static bool transparent_hugepage_adjust(pfn_t *pfnp, phys_addr_t *ipap)
992 {
993 pfn_t pfn = *pfnp;
994 gfn_t gfn = *ipap >> PAGE_SHIFT;
995
996 if (PageTransCompound(pfn_to_page(pfn))) {
997 unsigned long mask;
998 /*
999 * The address we faulted on is backed by a transparent huge
1000 * page. However, because we map the compound huge page and
1001 * not the individual tail page, we need to transfer the
1002 * refcount to the head page. We have to be careful that the
1003 * THP doesn't start to split while we are adjusting the
1004 * refcounts.
1005 *
1006 * We are sure this doesn't happen, because mmu_notifier_retry
1007 * was successful and we are holding the mmu_lock, so if this
1008 * THP is trying to split, it will be blocked in the mmu
1009 * notifier before touching any of the pages, specifically
1010 * before being able to call __split_huge_page_refcount().
1011 *
1012 * We can therefore safely transfer the refcount from PG_tail
1013 * to PG_head and switch the pfn from a tail page to the head
1014 * page accordingly.
1015 */
1016 mask = PTRS_PER_PMD - 1;
1017 VM_BUG_ON((gfn & mask) != (pfn & mask));
1018 if (pfn & mask) {
1019 *ipap &= PMD_MASK;
1020 kvm_release_pfn_clean(pfn);
1021 pfn &= ~mask;
1022 kvm_get_pfn(pfn);
1023 *pfnp = pfn;
1024 }
1025
1026 return true;
1027 }
1028
1029 return false;
1030 }
1031
1032 static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
1033 {
1034 if (kvm_vcpu_trap_is_iabt(vcpu))
1035 return false;
1036
1037 return kvm_vcpu_dabt_iswrite(vcpu);
1038 }
1039
1040 static bool kvm_is_device_pfn(unsigned long pfn)
1041 {
1042 return !pfn_valid(pfn);
1043 }
1044
1045 /**
1046 * stage2_wp_ptes - write protect PMD range
1047 * @pmd: pointer to pmd entry
1048 * @addr: range start address
1049 * @end: range end address
1050 */
1051 static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1052 {
1053 pte_t *pte;
1054
1055 pte = pte_offset_kernel(pmd, addr);
1056 do {
1057 if (!pte_none(*pte)) {
1058 if (!kvm_s2pte_readonly(pte))
1059 kvm_set_s2pte_readonly(pte);
1060 }
1061 } while (pte++, addr += PAGE_SIZE, addr != end);
1062 }
1063
1064 /**
1065 * stage2_wp_pmds - write protect PUD range
1066 * @pud: pointer to pud entry
1067 * @addr: range start address
1068 * @end: range end address
1069 */
1070 static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
1071 {
1072 pmd_t *pmd;
1073 phys_addr_t next;
1074
1075 pmd = pmd_offset(pud, addr);
1076
1077 do {
1078 next = kvm_pmd_addr_end(addr, end);
1079 if (!pmd_none(*pmd)) {
1080 if (kvm_pmd_huge(*pmd)) {
1081 if (!kvm_s2pmd_readonly(pmd))
1082 kvm_set_s2pmd_readonly(pmd);
1083 } else {
1084 stage2_wp_ptes(pmd, addr, next);
1085 }
1086 }
1087 } while (pmd++, addr = next, addr != end);
1088 }
1089
1090 /**
1091 * stage2_wp_puds - write protect PGD range
1092 * @pgd: pointer to pgd entry
1093 * @addr: range start address
1094 * @end: range end address
1095 *
1096 * Process PUD entries, for a huge PUD we cause a panic.
1097 */
1098 static void stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
1099 {
1100 pud_t *pud;
1101 phys_addr_t next;
1102
1103 pud = pud_offset(pgd, addr);
1104 do {
1105 next = kvm_pud_addr_end(addr, end);
1106 if (!pud_none(*pud)) {
1107 /* TODO:PUD not supported, revisit later if supported */
1108 BUG_ON(kvm_pud_huge(*pud));
1109 stage2_wp_pmds(pud, addr, next);
1110 }
1111 } while (pud++, addr = next, addr != end);
1112 }
1113
1114 /**
1115 * stage2_wp_range() - write protect stage2 memory region range
1116 * @kvm: The KVM pointer
1117 * @addr: Start address of range
1118 * @end: End address of range
1119 */
1120 static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1121 {
1122 pgd_t *pgd;
1123 phys_addr_t next;
1124
1125 pgd = kvm->arch.pgd + kvm_pgd_index(addr);
1126 do {
1127 /*
1128 * Release kvm_mmu_lock periodically if the memory region is
1129 * large. Otherwise, we may see kernel panics with
1130 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1131 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1132 * will also starve other vCPUs.
1133 */
1134 if (need_resched() || spin_needbreak(&kvm->mmu_lock))
1135 cond_resched_lock(&kvm->mmu_lock);
1136
1137 next = kvm_pgd_addr_end(addr, end);
1138 if (pgd_present(*pgd))
1139 stage2_wp_puds(pgd, addr, next);
1140 } while (pgd++, addr = next, addr != end);
1141 }
1142
1143 /**
1144 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1145 * @kvm: The KVM pointer
1146 * @slot: The memory slot to write protect
1147 *
1148 * Called to start logging dirty pages after memory region
1149 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1150 * all present PMD and PTEs are write protected in the memory region.
1151 * Afterwards read of dirty page log can be called.
1152 *
1153 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1154 * serializing operations for VM memory regions.
1155 */
1156 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1157 {
1158 struct kvm_memslots *slots = kvm_memslots(kvm);
1159 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1160 phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
1161 phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1162
1163 spin_lock(&kvm->mmu_lock);
1164 stage2_wp_range(kvm, start, end);
1165 spin_unlock(&kvm->mmu_lock);
1166 kvm_flush_remote_tlbs(kvm);
1167 }
1168
1169 /**
1170 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1171 * @kvm: The KVM pointer
1172 * @slot: The memory slot associated with mask
1173 * @gfn_offset: The gfn offset in memory slot
1174 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
1175 * slot to be write protected
1176 *
1177 * Walks bits set in mask write protects the associated pte's. Caller must
1178 * acquire kvm_mmu_lock.
1179 */
1180 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1181 struct kvm_memory_slot *slot,
1182 gfn_t gfn_offset, unsigned long mask)
1183 {
1184 phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1185 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
1186 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1187
1188 stage2_wp_range(kvm, start, end);
1189 }
1190
1191 /*
1192 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1193 * dirty pages.
1194 *
1195 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1196 * enable dirty logging for them.
1197 */
1198 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1199 struct kvm_memory_slot *slot,
1200 gfn_t gfn_offset, unsigned long mask)
1201 {
1202 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1203 }
1204
1205 static void coherent_cache_guest_page(struct kvm_vcpu *vcpu, pfn_t pfn,
1206 unsigned long size, bool uncached)
1207 {
1208 __coherent_cache_guest_page(vcpu, pfn, size, uncached);
1209 }
1210
1211 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1212 struct kvm_memory_slot *memslot, unsigned long hva,
1213 unsigned long fault_status)
1214 {
1215 int ret;
1216 bool write_fault, writable, hugetlb = false, force_pte = false;
1217 unsigned long mmu_seq;
1218 gfn_t gfn = fault_ipa >> PAGE_SHIFT;
1219 struct kvm *kvm = vcpu->kvm;
1220 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1221 struct vm_area_struct *vma;
1222 pfn_t pfn;
1223 pgprot_t mem_type = PAGE_S2;
1224 bool fault_ipa_uncached;
1225 bool logging_active = memslot_is_logging(memslot);
1226 unsigned long flags = 0;
1227
1228 write_fault = kvm_is_write_fault(vcpu);
1229 if (fault_status == FSC_PERM && !write_fault) {
1230 kvm_err("Unexpected L2 read permission error\n");
1231 return -EFAULT;
1232 }
1233
1234 /* Let's check if we will get back a huge page backed by hugetlbfs */
1235 down_read(&current->mm->mmap_sem);
1236 vma = find_vma_intersection(current->mm, hva, hva + 1);
1237 if (unlikely(!vma)) {
1238 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1239 up_read(&current->mm->mmap_sem);
1240 return -EFAULT;
1241 }
1242
1243 if (is_vm_hugetlb_page(vma) && !logging_active) {
1244 hugetlb = true;
1245 gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
1246 } else {
1247 /*
1248 * Pages belonging to memslots that don't have the same
1249 * alignment for userspace and IPA cannot be mapped using
1250 * block descriptors even if the pages belong to a THP for
1251 * the process, because the stage-2 block descriptor will
1252 * cover more than a single THP and we loose atomicity for
1253 * unmapping, updates, and splits of the THP or other pages
1254 * in the stage-2 block range.
1255 */
1256 if ((memslot->userspace_addr & ~PMD_MASK) !=
1257 ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
1258 force_pte = true;
1259 }
1260 up_read(&current->mm->mmap_sem);
1261
1262 /* We need minimum second+third level pages */
1263 ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
1264 KVM_NR_MEM_OBJS);
1265 if (ret)
1266 return ret;
1267
1268 mmu_seq = vcpu->kvm->mmu_notifier_seq;
1269 /*
1270 * Ensure the read of mmu_notifier_seq happens before we call
1271 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1272 * the page we just got a reference to gets unmapped before we have a
1273 * chance to grab the mmu_lock, which ensure that if the page gets
1274 * unmapped afterwards, the call to kvm_unmap_hva will take it away
1275 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1276 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1277 */
1278 smp_rmb();
1279
1280 pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1281 if (is_error_pfn(pfn))
1282 return -EFAULT;
1283
1284 if (kvm_is_device_pfn(pfn)) {
1285 mem_type = PAGE_S2_DEVICE;
1286 flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1287 } else if (logging_active) {
1288 /*
1289 * Faults on pages in a memslot with logging enabled
1290 * should not be mapped with huge pages (it introduces churn
1291 * and performance degradation), so force a pte mapping.
1292 */
1293 force_pte = true;
1294 flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1295
1296 /*
1297 * Only actually map the page as writable if this was a write
1298 * fault.
1299 */
1300 if (!write_fault)
1301 writable = false;
1302 }
1303
1304 spin_lock(&kvm->mmu_lock);
1305 if (mmu_notifier_retry(kvm, mmu_seq))
1306 goto out_unlock;
1307
1308 if (!hugetlb && !force_pte)
1309 hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
1310
1311 fault_ipa_uncached = memslot->flags & KVM_MEMSLOT_INCOHERENT;
1312
1313 if (hugetlb) {
1314 pmd_t new_pmd = pfn_pmd(pfn, mem_type);
1315 new_pmd = pmd_mkhuge(new_pmd);
1316 if (writable) {
1317 kvm_set_s2pmd_writable(&new_pmd);
1318 kvm_set_pfn_dirty(pfn);
1319 }
1320 coherent_cache_guest_page(vcpu, pfn, PMD_SIZE, fault_ipa_uncached);
1321 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1322 } else {
1323 pte_t new_pte = pfn_pte(pfn, mem_type);
1324
1325 if (writable) {
1326 kvm_set_s2pte_writable(&new_pte);
1327 kvm_set_pfn_dirty(pfn);
1328 mark_page_dirty(kvm, gfn);
1329 }
1330 coherent_cache_guest_page(vcpu, pfn, PAGE_SIZE, fault_ipa_uncached);
1331 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1332 }
1333
1334 out_unlock:
1335 spin_unlock(&kvm->mmu_lock);
1336 kvm_set_pfn_accessed(pfn);
1337 kvm_release_pfn_clean(pfn);
1338 return ret;
1339 }
1340
1341 /*
1342 * Resolve the access fault by making the page young again.
1343 * Note that because the faulting entry is guaranteed not to be
1344 * cached in the TLB, we don't need to invalidate anything.
1345 */
1346 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1347 {
1348 pmd_t *pmd;
1349 pte_t *pte;
1350 pfn_t pfn;
1351 bool pfn_valid = false;
1352
1353 trace_kvm_access_fault(fault_ipa);
1354
1355 spin_lock(&vcpu->kvm->mmu_lock);
1356
1357 pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
1358 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1359 goto out;
1360
1361 if (kvm_pmd_huge(*pmd)) { /* THP, HugeTLB */
1362 *pmd = pmd_mkyoung(*pmd);
1363 pfn = pmd_pfn(*pmd);
1364 pfn_valid = true;
1365 goto out;
1366 }
1367
1368 pte = pte_offset_kernel(pmd, fault_ipa);
1369 if (pte_none(*pte)) /* Nothing there either */
1370 goto out;
1371
1372 *pte = pte_mkyoung(*pte); /* Just a page... */
1373 pfn = pte_pfn(*pte);
1374 pfn_valid = true;
1375 out:
1376 spin_unlock(&vcpu->kvm->mmu_lock);
1377 if (pfn_valid)
1378 kvm_set_pfn_accessed(pfn);
1379 }
1380
1381 /**
1382 * kvm_handle_guest_abort - handles all 2nd stage aborts
1383 * @vcpu: the VCPU pointer
1384 * @run: the kvm_run structure
1385 *
1386 * Any abort that gets to the host is almost guaranteed to be caused by a
1387 * missing second stage translation table entry, which can mean that either the
1388 * guest simply needs more memory and we must allocate an appropriate page or it
1389 * can mean that the guest tried to access I/O memory, which is emulated by user
1390 * space. The distinction is based on the IPA causing the fault and whether this
1391 * memory region has been registered as standard RAM by user space.
1392 */
1393 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
1394 {
1395 unsigned long fault_status;
1396 phys_addr_t fault_ipa;
1397 struct kvm_memory_slot *memslot;
1398 unsigned long hva;
1399 bool is_iabt, write_fault, writable;
1400 gfn_t gfn;
1401 int ret, idx;
1402
1403 is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1404 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1405
1406 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
1407 kvm_vcpu_get_hfar(vcpu), fault_ipa);
1408
1409 /* Check the stage-2 fault is trans. fault or write fault */
1410 fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1411 if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1412 fault_status != FSC_ACCESS) {
1413 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1414 kvm_vcpu_trap_get_class(vcpu),
1415 (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1416 (unsigned long)kvm_vcpu_get_hsr(vcpu));
1417 return -EFAULT;
1418 }
1419
1420 idx = srcu_read_lock(&vcpu->kvm->srcu);
1421
1422 gfn = fault_ipa >> PAGE_SHIFT;
1423 memslot = gfn_to_memslot(vcpu->kvm, gfn);
1424 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1425 write_fault = kvm_is_write_fault(vcpu);
1426 if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1427 if (is_iabt) {
1428 /* Prefetch Abort on I/O address */
1429 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1430 ret = 1;
1431 goto out_unlock;
1432 }
1433
1434 /*
1435 * The IPA is reported as [MAX:12], so we need to
1436 * complement it with the bottom 12 bits from the
1437 * faulting VA. This is always 12 bits, irrespective
1438 * of the page size.
1439 */
1440 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1441 ret = io_mem_abort(vcpu, run, fault_ipa);
1442 goto out_unlock;
1443 }
1444
1445 /* Userspace should not be able to register out-of-bounds IPAs */
1446 VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);
1447
1448 if (fault_status == FSC_ACCESS) {
1449 handle_access_fault(vcpu, fault_ipa);
1450 ret = 1;
1451 goto out_unlock;
1452 }
1453
1454 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1455 if (ret == 0)
1456 ret = 1;
1457 out_unlock:
1458 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1459 return ret;
1460 }
1461
1462 static int handle_hva_to_gpa(struct kvm *kvm,
1463 unsigned long start,
1464 unsigned long end,
1465 int (*handler)(struct kvm *kvm,
1466 gpa_t gpa, void *data),
1467 void *data)
1468 {
1469 struct kvm_memslots *slots;
1470 struct kvm_memory_slot *memslot;
1471 int ret = 0;
1472
1473 slots = kvm_memslots(kvm);
1474
1475 /* we only care about the pages that the guest sees */
1476 kvm_for_each_memslot(memslot, slots) {
1477 unsigned long hva_start, hva_end;
1478 gfn_t gfn, gfn_end;
1479
1480 hva_start = max(start, memslot->userspace_addr);
1481 hva_end = min(end, memslot->userspace_addr +
1482 (memslot->npages << PAGE_SHIFT));
1483 if (hva_start >= hva_end)
1484 continue;
1485
1486 /*
1487 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1488 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1489 */
1490 gfn = hva_to_gfn_memslot(hva_start, memslot);
1491 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1492
1493 for (; gfn < gfn_end; ++gfn) {
1494 gpa_t gpa = gfn << PAGE_SHIFT;
1495 ret |= handler(kvm, gpa, data);
1496 }
1497 }
1498
1499 return ret;
1500 }
1501
1502 static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1503 {
1504 unmap_stage2_range(kvm, gpa, PAGE_SIZE);
1505 return 0;
1506 }
1507
1508 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1509 {
1510 unsigned long end = hva + PAGE_SIZE;
1511
1512 if (!kvm->arch.pgd)
1513 return 0;
1514
1515 trace_kvm_unmap_hva(hva);
1516 handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
1517 return 0;
1518 }
1519
1520 int kvm_unmap_hva_range(struct kvm *kvm,
1521 unsigned long start, unsigned long end)
1522 {
1523 if (!kvm->arch.pgd)
1524 return 0;
1525
1526 trace_kvm_unmap_hva_range(start, end);
1527 handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
1528 return 0;
1529 }
1530
1531 static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
1532 {
1533 pte_t *pte = (pte_t *)data;
1534
1535 /*
1536 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
1537 * flag clear because MMU notifiers will have unmapped a huge PMD before
1538 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1539 * therefore stage2_set_pte() never needs to clear out a huge PMD
1540 * through this calling path.
1541 */
1542 stage2_set_pte(kvm, NULL, gpa, pte, 0);
1543 return 0;
1544 }
1545
1546
1547 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1548 {
1549 unsigned long end = hva + PAGE_SIZE;
1550 pte_t stage2_pte;
1551
1552 if (!kvm->arch.pgd)
1553 return;
1554
1555 trace_kvm_set_spte_hva(hva);
1556 stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
1557 handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
1558 }
1559
1560 static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1561 {
1562 pmd_t *pmd;
1563 pte_t *pte;
1564
1565 pmd = stage2_get_pmd(kvm, NULL, gpa);
1566 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1567 return 0;
1568
1569 if (kvm_pmd_huge(*pmd)) { /* THP, HugeTLB */
1570 if (pmd_young(*pmd)) {
1571 *pmd = pmd_mkold(*pmd);
1572 return 1;
1573 }
1574
1575 return 0;
1576 }
1577
1578 pte = pte_offset_kernel(pmd, gpa);
1579 if (pte_none(*pte))
1580 return 0;
1581
1582 if (pte_young(*pte)) {
1583 *pte = pte_mkold(*pte); /* Just a page... */
1584 return 1;
1585 }
1586
1587 return 0;
1588 }
1589
1590 static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1591 {
1592 pmd_t *pmd;
1593 pte_t *pte;
1594
1595 pmd = stage2_get_pmd(kvm, NULL, gpa);
1596 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1597 return 0;
1598
1599 if (kvm_pmd_huge(*pmd)) /* THP, HugeTLB */
1600 return pmd_young(*pmd);
1601
1602 pte = pte_offset_kernel(pmd, gpa);
1603 if (!pte_none(*pte)) /* Just a page... */
1604 return pte_young(*pte);
1605
1606 return 0;
1607 }
1608
1609 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1610 {
1611 trace_kvm_age_hva(start, end);
1612 return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
1613 }
1614
1615 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1616 {
1617 trace_kvm_test_age_hva(hva);
1618 return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
1619 }
1620
1621 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1622 {
1623 mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
1624 }
1625
1626 phys_addr_t kvm_mmu_get_httbr(void)
1627 {
1628 if (__kvm_cpu_uses_extended_idmap())
1629 return virt_to_phys(merged_hyp_pgd);
1630 else
1631 return virt_to_phys(hyp_pgd);
1632 }
1633
1634 phys_addr_t kvm_mmu_get_boot_httbr(void)
1635 {
1636 if (__kvm_cpu_uses_extended_idmap())
1637 return virt_to_phys(merged_hyp_pgd);
1638 else
1639 return virt_to_phys(boot_hyp_pgd);
1640 }
1641
1642 phys_addr_t kvm_get_idmap_vector(void)
1643 {
1644 return hyp_idmap_vector;
1645 }
1646
1647 int kvm_mmu_init(void)
1648 {
1649 int err;
1650
1651 hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1652 hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1653 hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1654
1655 /*
1656 * We rely on the linker script to ensure at build time that the HYP
1657 * init code does not cross a page boundary.
1658 */
1659 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1660
1661 hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1662 boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1663
1664 if (!hyp_pgd || !boot_hyp_pgd) {
1665 kvm_err("Hyp mode PGD not allocated\n");
1666 err = -ENOMEM;
1667 goto out;
1668 }
1669
1670 /* Create the idmap in the boot page tables */
1671 err = __create_hyp_mappings(boot_hyp_pgd,
1672 hyp_idmap_start, hyp_idmap_end,
1673 __phys_to_pfn(hyp_idmap_start),
1674 PAGE_HYP);
1675
1676 if (err) {
1677 kvm_err("Failed to idmap %lx-%lx\n",
1678 hyp_idmap_start, hyp_idmap_end);
1679 goto out;
1680 }
1681
1682 if (__kvm_cpu_uses_extended_idmap()) {
1683 merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1684 if (!merged_hyp_pgd) {
1685 kvm_err("Failed to allocate extra HYP pgd\n");
1686 goto out;
1687 }
1688 __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
1689 hyp_idmap_start);
1690 return 0;
1691 }
1692
1693 /* Map the very same page at the trampoline VA */
1694 err = __create_hyp_mappings(boot_hyp_pgd,
1695 TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1696 __phys_to_pfn(hyp_idmap_start),
1697 PAGE_HYP);
1698 if (err) {
1699 kvm_err("Failed to map trampoline @%lx into boot HYP pgd\n",
1700 TRAMPOLINE_VA);
1701 goto out;
1702 }
1703
1704 /* Map the same page again into the runtime page tables */
1705 err = __create_hyp_mappings(hyp_pgd,
1706 TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1707 __phys_to_pfn(hyp_idmap_start),
1708 PAGE_HYP);
1709 if (err) {
1710 kvm_err("Failed to map trampoline @%lx into runtime HYP pgd\n",
1711 TRAMPOLINE_VA);
1712 goto out;
1713 }
1714
1715 return 0;
1716 out:
1717 free_hyp_pgds();
1718 return err;
1719 }
1720
1721 void kvm_arch_commit_memory_region(struct kvm *kvm,
1722 const struct kvm_userspace_memory_region *mem,
1723 const struct kvm_memory_slot *old,
1724 const struct kvm_memory_slot *new,
1725 enum kvm_mr_change change)
1726 {
1727 /*
1728 * At this point memslot has been committed and there is an
1729 * allocated dirty_bitmap[], dirty pages will be be tracked while the
1730 * memory slot is write protected.
1731 */
1732 if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
1733 kvm_mmu_wp_memory_region(kvm, mem->slot);
1734 }
1735
1736 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1737 struct kvm_memory_slot *memslot,
1738 const struct kvm_userspace_memory_region *mem,
1739 enum kvm_mr_change change)
1740 {
1741 hva_t hva = mem->userspace_addr;
1742 hva_t reg_end = hva + mem->memory_size;
1743 bool writable = !(mem->flags & KVM_MEM_READONLY);
1744 int ret = 0;
1745
1746 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1747 change != KVM_MR_FLAGS_ONLY)
1748 return 0;
1749
1750 /*
1751 * Prevent userspace from creating a memory region outside of the IPA
1752 * space addressable by the KVM guest IPA space.
1753 */
1754 if (memslot->base_gfn + memslot->npages >=
1755 (KVM_PHYS_SIZE >> PAGE_SHIFT))
1756 return -EFAULT;
1757
1758 /*
1759 * A memory region could potentially cover multiple VMAs, and any holes
1760 * between them, so iterate over all of them to find out if we can map
1761 * any of them right now.
1762 *
1763 * +--------------------------------------------+
1764 * +---------------+----------------+ +----------------+
1765 * | : VMA 1 | VMA 2 | | VMA 3 : |
1766 * +---------------+----------------+ +----------------+
1767 * | memory region |
1768 * +--------------------------------------------+
1769 */
1770 do {
1771 struct vm_area_struct *vma = find_vma(current->mm, hva);
1772 hva_t vm_start, vm_end;
1773
1774 if (!vma || vma->vm_start >= reg_end)
1775 break;
1776
1777 /*
1778 * Mapping a read-only VMA is only allowed if the
1779 * memory region is configured as read-only.
1780 */
1781 if (writable && !(vma->vm_flags & VM_WRITE)) {
1782 ret = -EPERM;
1783 break;
1784 }
1785
1786 /*
1787 * Take the intersection of this VMA with the memory region
1788 */
1789 vm_start = max(hva, vma->vm_start);
1790 vm_end = min(reg_end, vma->vm_end);
1791
1792 if (vma->vm_flags & VM_PFNMAP) {
1793 gpa_t gpa = mem->guest_phys_addr +
1794 (vm_start - mem->userspace_addr);
1795 phys_addr_t pa = (vma->vm_pgoff << PAGE_SHIFT) +
1796 vm_start - vma->vm_start;
1797
1798 /* IO region dirty page logging not allowed */
1799 if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES)
1800 return -EINVAL;
1801
1802 ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
1803 vm_end - vm_start,
1804 writable);
1805 if (ret)
1806 break;
1807 }
1808 hva = vm_end;
1809 } while (hva < reg_end);
1810
1811 if (change == KVM_MR_FLAGS_ONLY)
1812 return ret;
1813
1814 spin_lock(&kvm->mmu_lock);
1815 if (ret)
1816 unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
1817 else
1818 stage2_flush_memslot(kvm, memslot);
1819 spin_unlock(&kvm->mmu_lock);
1820 return ret;
1821 }
1822
1823 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
1824 struct kvm_memory_slot *dont)
1825 {
1826 }
1827
1828 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
1829 unsigned long npages)
1830 {
1831 /*
1832 * Readonly memslots are not incoherent with the caches by definition,
1833 * but in practice, they are used mostly to emulate ROMs or NOR flashes
1834 * that the guest may consider devices and hence map as uncached.
1835 * To prevent incoherency issues in these cases, tag all readonly
1836 * regions as incoherent.
1837 */
1838 if (slot->flags & KVM_MEM_READONLY)
1839 slot->flags |= KVM_MEMSLOT_INCOHERENT;
1840 return 0;
1841 }
1842
1843 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
1844 {
1845 }
1846
1847 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1848 {
1849 }
1850
1851 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1852 struct kvm_memory_slot *slot)
1853 {
1854 gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1855 phys_addr_t size = slot->npages << PAGE_SHIFT;
1856
1857 spin_lock(&kvm->mmu_lock);
1858 unmap_stage2_range(kvm, gpa, size);
1859 spin_unlock(&kvm->mmu_lock);
1860 }
1861
1862 /*
1863 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1864 *
1865 * Main problems:
1866 * - S/W ops are local to a CPU (not broadcast)
1867 * - We have line migration behind our back (speculation)
1868 * - System caches don't support S/W at all (damn!)
1869 *
1870 * In the face of the above, the best we can do is to try and convert
1871 * S/W ops to VA ops. Because the guest is not allowed to infer the
1872 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1873 * which is a rather good thing for us.
1874 *
1875 * Also, it is only used when turning caches on/off ("The expected
1876 * usage of the cache maintenance instructions that operate by set/way
1877 * is associated with the cache maintenance instructions associated
1878 * with the powerdown and powerup of caches, if this is required by
1879 * the implementation.").
1880 *
1881 * We use the following policy:
1882 *
1883 * - If we trap a S/W operation, we enable VM trapping to detect
1884 * caches being turned on/off, and do a full clean.
1885 *
1886 * - We flush the caches on both caches being turned on and off.
1887 *
1888 * - Once the caches are enabled, we stop trapping VM ops.
1889 */
1890 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
1891 {
1892 unsigned long hcr = vcpu_get_hcr(vcpu);
1893
1894 /*
1895 * If this is the first time we do a S/W operation
1896 * (i.e. HCR_TVM not set) flush the whole memory, and set the
1897 * VM trapping.
1898 *
1899 * Otherwise, rely on the VM trapping to wait for the MMU +
1900 * Caches to be turned off. At that point, we'll be able to
1901 * clean the caches again.
1902 */
1903 if (!(hcr & HCR_TVM)) {
1904 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
1905 vcpu_has_cache_enabled(vcpu));
1906 stage2_flush_vm(vcpu->kvm);
1907 vcpu_set_hcr(vcpu, hcr | HCR_TVM);
1908 }
1909 }
1910
1911 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
1912 {
1913 bool now_enabled = vcpu_has_cache_enabled(vcpu);
1914
1915 /*
1916 * If switching the MMU+caches on, need to invalidate the caches.
1917 * If switching it off, need to clean the caches.
1918 * Clean + invalidate does the trick always.
1919 */
1920 if (now_enabled != was_enabled)
1921 stage2_flush_vm(vcpu->kvm);
1922
1923 /* Caches are now on, stop trapping VM ops (until a S/W op) */
1924 if (now_enabled)
1925 vcpu_set_hcr(vcpu, vcpu_get_hcr(vcpu) & ~HCR_TVM);
1926
1927 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
1928 }
This page took 0.070219 seconds and 5 git commands to generate.