arm/arm64: KVM: fix potential NULL dereference in user_mem_abort()
[deliverable/linux.git] / arch / arm / kvm / mmu.c
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/mman.h>
20 #include <linux/kvm_host.h>
21 #include <linux/io.h>
22 #include <linux/hugetlb.h>
23 #include <trace/events/kvm.h>
24 #include <asm/pgalloc.h>
25 #include <asm/cacheflush.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_mmu.h>
28 #include <asm/kvm_mmio.h>
29 #include <asm/kvm_asm.h>
30 #include <asm/kvm_emulate.h>
31
32 #include "trace.h"
33
34 extern char __hyp_idmap_text_start[], __hyp_idmap_text_end[];
35
36 static pgd_t *boot_hyp_pgd;
37 static pgd_t *hyp_pgd;
38 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
39
40 static void *init_bounce_page;
41 static unsigned long hyp_idmap_start;
42 static unsigned long hyp_idmap_end;
43 static phys_addr_t hyp_idmap_vector;
44
45 #define pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
46
47 #define kvm_pmd_huge(_x) (pmd_huge(_x) || pmd_trans_huge(_x))
48
49 static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
50 {
51 /*
52 * This function also gets called when dealing with HYP page
53 * tables. As HYP doesn't have an associated struct kvm (and
54 * the HYP page tables are fairly static), we don't do
55 * anything there.
56 */
57 if (kvm)
58 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
59 }
60
61 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
62 int min, int max)
63 {
64 void *page;
65
66 BUG_ON(max > KVM_NR_MEM_OBJS);
67 if (cache->nobjs >= min)
68 return 0;
69 while (cache->nobjs < max) {
70 page = (void *)__get_free_page(PGALLOC_GFP);
71 if (!page)
72 return -ENOMEM;
73 cache->objects[cache->nobjs++] = page;
74 }
75 return 0;
76 }
77
78 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
79 {
80 while (mc->nobjs)
81 free_page((unsigned long)mc->objects[--mc->nobjs]);
82 }
83
84 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
85 {
86 void *p;
87
88 BUG_ON(!mc || !mc->nobjs);
89 p = mc->objects[--mc->nobjs];
90 return p;
91 }
92
93 static void clear_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
94 {
95 pud_t *pud_table __maybe_unused = pud_offset(pgd, 0);
96 pgd_clear(pgd);
97 kvm_tlb_flush_vmid_ipa(kvm, addr);
98 pud_free(NULL, pud_table);
99 put_page(virt_to_page(pgd));
100 }
101
102 static void clear_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
103 {
104 pmd_t *pmd_table = pmd_offset(pud, 0);
105 VM_BUG_ON(pud_huge(*pud));
106 pud_clear(pud);
107 kvm_tlb_flush_vmid_ipa(kvm, addr);
108 pmd_free(NULL, pmd_table);
109 put_page(virt_to_page(pud));
110 }
111
112 static void clear_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
113 {
114 pte_t *pte_table = pte_offset_kernel(pmd, 0);
115 VM_BUG_ON(kvm_pmd_huge(*pmd));
116 pmd_clear(pmd);
117 kvm_tlb_flush_vmid_ipa(kvm, addr);
118 pte_free_kernel(NULL, pte_table);
119 put_page(virt_to_page(pmd));
120 }
121
122 static void unmap_ptes(struct kvm *kvm, pmd_t *pmd,
123 phys_addr_t addr, phys_addr_t end)
124 {
125 phys_addr_t start_addr = addr;
126 pte_t *pte, *start_pte;
127
128 start_pte = pte = pte_offset_kernel(pmd, addr);
129 do {
130 if (!pte_none(*pte)) {
131 kvm_set_pte(pte, __pte(0));
132 put_page(virt_to_page(pte));
133 kvm_tlb_flush_vmid_ipa(kvm, addr);
134 }
135 } while (pte++, addr += PAGE_SIZE, addr != end);
136
137 if (kvm_pte_table_empty(start_pte))
138 clear_pmd_entry(kvm, pmd, start_addr);
139 }
140
141 static void unmap_pmds(struct kvm *kvm, pud_t *pud,
142 phys_addr_t addr, phys_addr_t end)
143 {
144 phys_addr_t next, start_addr = addr;
145 pmd_t *pmd, *start_pmd;
146
147 start_pmd = pmd = pmd_offset(pud, addr);
148 do {
149 next = kvm_pmd_addr_end(addr, end);
150 if (!pmd_none(*pmd)) {
151 if (kvm_pmd_huge(*pmd)) {
152 pmd_clear(pmd);
153 kvm_tlb_flush_vmid_ipa(kvm, addr);
154 put_page(virt_to_page(pmd));
155 } else {
156 unmap_ptes(kvm, pmd, addr, next);
157 }
158 }
159 } while (pmd++, addr = next, addr != end);
160
161 if (kvm_pmd_table_empty(start_pmd))
162 clear_pud_entry(kvm, pud, start_addr);
163 }
164
165 static void unmap_puds(struct kvm *kvm, pgd_t *pgd,
166 phys_addr_t addr, phys_addr_t end)
167 {
168 phys_addr_t next, start_addr = addr;
169 pud_t *pud, *start_pud;
170
171 start_pud = pud = pud_offset(pgd, addr);
172 do {
173 next = kvm_pud_addr_end(addr, end);
174 if (!pud_none(*pud)) {
175 if (pud_huge(*pud)) {
176 pud_clear(pud);
177 kvm_tlb_flush_vmid_ipa(kvm, addr);
178 put_page(virt_to_page(pud));
179 } else {
180 unmap_pmds(kvm, pud, addr, next);
181 }
182 }
183 } while (pud++, addr = next, addr != end);
184
185 if (kvm_pud_table_empty(start_pud))
186 clear_pgd_entry(kvm, pgd, start_addr);
187 }
188
189
190 static void unmap_range(struct kvm *kvm, pgd_t *pgdp,
191 phys_addr_t start, u64 size)
192 {
193 pgd_t *pgd;
194 phys_addr_t addr = start, end = start + size;
195 phys_addr_t next;
196
197 pgd = pgdp + pgd_index(addr);
198 do {
199 next = kvm_pgd_addr_end(addr, end);
200 unmap_puds(kvm, pgd, addr, next);
201 } while (pgd++, addr = next, addr != end);
202 }
203
204 static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
205 phys_addr_t addr, phys_addr_t end)
206 {
207 pte_t *pte;
208
209 pte = pte_offset_kernel(pmd, addr);
210 do {
211 if (!pte_none(*pte)) {
212 hva_t hva = gfn_to_hva(kvm, addr >> PAGE_SHIFT);
213 kvm_flush_dcache_to_poc((void*)hva, PAGE_SIZE);
214 }
215 } while (pte++, addr += PAGE_SIZE, addr != end);
216 }
217
218 static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
219 phys_addr_t addr, phys_addr_t end)
220 {
221 pmd_t *pmd;
222 phys_addr_t next;
223
224 pmd = pmd_offset(pud, addr);
225 do {
226 next = kvm_pmd_addr_end(addr, end);
227 if (!pmd_none(*pmd)) {
228 if (kvm_pmd_huge(*pmd)) {
229 hva_t hva = gfn_to_hva(kvm, addr >> PAGE_SHIFT);
230 kvm_flush_dcache_to_poc((void*)hva, PMD_SIZE);
231 } else {
232 stage2_flush_ptes(kvm, pmd, addr, next);
233 }
234 }
235 } while (pmd++, addr = next, addr != end);
236 }
237
238 static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
239 phys_addr_t addr, phys_addr_t end)
240 {
241 pud_t *pud;
242 phys_addr_t next;
243
244 pud = pud_offset(pgd, addr);
245 do {
246 next = kvm_pud_addr_end(addr, end);
247 if (!pud_none(*pud)) {
248 if (pud_huge(*pud)) {
249 hva_t hva = gfn_to_hva(kvm, addr >> PAGE_SHIFT);
250 kvm_flush_dcache_to_poc((void*)hva, PUD_SIZE);
251 } else {
252 stage2_flush_pmds(kvm, pud, addr, next);
253 }
254 }
255 } while (pud++, addr = next, addr != end);
256 }
257
258 static void stage2_flush_memslot(struct kvm *kvm,
259 struct kvm_memory_slot *memslot)
260 {
261 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
262 phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
263 phys_addr_t next;
264 pgd_t *pgd;
265
266 pgd = kvm->arch.pgd + pgd_index(addr);
267 do {
268 next = kvm_pgd_addr_end(addr, end);
269 stage2_flush_puds(kvm, pgd, addr, next);
270 } while (pgd++, addr = next, addr != end);
271 }
272
273 /**
274 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
275 * @kvm: The struct kvm pointer
276 *
277 * Go through the stage 2 page tables and invalidate any cache lines
278 * backing memory already mapped to the VM.
279 */
280 void stage2_flush_vm(struct kvm *kvm)
281 {
282 struct kvm_memslots *slots;
283 struct kvm_memory_slot *memslot;
284 int idx;
285
286 idx = srcu_read_lock(&kvm->srcu);
287 spin_lock(&kvm->mmu_lock);
288
289 slots = kvm_memslots(kvm);
290 kvm_for_each_memslot(memslot, slots)
291 stage2_flush_memslot(kvm, memslot);
292
293 spin_unlock(&kvm->mmu_lock);
294 srcu_read_unlock(&kvm->srcu, idx);
295 }
296
297 /**
298 * free_boot_hyp_pgd - free HYP boot page tables
299 *
300 * Free the HYP boot page tables. The bounce page is also freed.
301 */
302 void free_boot_hyp_pgd(void)
303 {
304 mutex_lock(&kvm_hyp_pgd_mutex);
305
306 if (boot_hyp_pgd) {
307 unmap_range(NULL, boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
308 unmap_range(NULL, boot_hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
309 free_pages((unsigned long)boot_hyp_pgd, pgd_order);
310 boot_hyp_pgd = NULL;
311 }
312
313 if (hyp_pgd)
314 unmap_range(NULL, hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
315
316 free_page((unsigned long)init_bounce_page);
317 init_bounce_page = NULL;
318
319 mutex_unlock(&kvm_hyp_pgd_mutex);
320 }
321
322 /**
323 * free_hyp_pgds - free Hyp-mode page tables
324 *
325 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
326 * therefore contains either mappings in the kernel memory area (above
327 * PAGE_OFFSET), or device mappings in the vmalloc range (from
328 * VMALLOC_START to VMALLOC_END).
329 *
330 * boot_hyp_pgd should only map two pages for the init code.
331 */
332 void free_hyp_pgds(void)
333 {
334 unsigned long addr;
335
336 free_boot_hyp_pgd();
337
338 mutex_lock(&kvm_hyp_pgd_mutex);
339
340 if (hyp_pgd) {
341 for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
342 unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
343 for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
344 unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
345
346 free_pages((unsigned long)hyp_pgd, pgd_order);
347 hyp_pgd = NULL;
348 }
349
350 mutex_unlock(&kvm_hyp_pgd_mutex);
351 }
352
353 static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
354 unsigned long end, unsigned long pfn,
355 pgprot_t prot)
356 {
357 pte_t *pte;
358 unsigned long addr;
359
360 addr = start;
361 do {
362 pte = pte_offset_kernel(pmd, addr);
363 kvm_set_pte(pte, pfn_pte(pfn, prot));
364 get_page(virt_to_page(pte));
365 kvm_flush_dcache_to_poc(pte, sizeof(*pte));
366 pfn++;
367 } while (addr += PAGE_SIZE, addr != end);
368 }
369
370 static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
371 unsigned long end, unsigned long pfn,
372 pgprot_t prot)
373 {
374 pmd_t *pmd;
375 pte_t *pte;
376 unsigned long addr, next;
377
378 addr = start;
379 do {
380 pmd = pmd_offset(pud, addr);
381
382 BUG_ON(pmd_sect(*pmd));
383
384 if (pmd_none(*pmd)) {
385 pte = pte_alloc_one_kernel(NULL, addr);
386 if (!pte) {
387 kvm_err("Cannot allocate Hyp pte\n");
388 return -ENOMEM;
389 }
390 pmd_populate_kernel(NULL, pmd, pte);
391 get_page(virt_to_page(pmd));
392 kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
393 }
394
395 next = pmd_addr_end(addr, end);
396
397 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
398 pfn += (next - addr) >> PAGE_SHIFT;
399 } while (addr = next, addr != end);
400
401 return 0;
402 }
403
404 static int __create_hyp_mappings(pgd_t *pgdp,
405 unsigned long start, unsigned long end,
406 unsigned long pfn, pgprot_t prot)
407 {
408 pgd_t *pgd;
409 pud_t *pud;
410 pmd_t *pmd;
411 unsigned long addr, next;
412 int err = 0;
413
414 mutex_lock(&kvm_hyp_pgd_mutex);
415 addr = start & PAGE_MASK;
416 end = PAGE_ALIGN(end);
417 do {
418 pgd = pgdp + pgd_index(addr);
419 pud = pud_offset(pgd, addr);
420
421 if (pud_none_or_clear_bad(pud)) {
422 pmd = pmd_alloc_one(NULL, addr);
423 if (!pmd) {
424 kvm_err("Cannot allocate Hyp pmd\n");
425 err = -ENOMEM;
426 goto out;
427 }
428 pud_populate(NULL, pud, pmd);
429 get_page(virt_to_page(pud));
430 kvm_flush_dcache_to_poc(pud, sizeof(*pud));
431 }
432
433 next = pgd_addr_end(addr, end);
434 err = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
435 if (err)
436 goto out;
437 pfn += (next - addr) >> PAGE_SHIFT;
438 } while (addr = next, addr != end);
439 out:
440 mutex_unlock(&kvm_hyp_pgd_mutex);
441 return err;
442 }
443
444 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
445 {
446 if (!is_vmalloc_addr(kaddr)) {
447 BUG_ON(!virt_addr_valid(kaddr));
448 return __pa(kaddr);
449 } else {
450 return page_to_phys(vmalloc_to_page(kaddr)) +
451 offset_in_page(kaddr);
452 }
453 }
454
455 /**
456 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
457 * @from: The virtual kernel start address of the range
458 * @to: The virtual kernel end address of the range (exclusive)
459 *
460 * The same virtual address as the kernel virtual address is also used
461 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
462 * physical pages.
463 */
464 int create_hyp_mappings(void *from, void *to)
465 {
466 phys_addr_t phys_addr;
467 unsigned long virt_addr;
468 unsigned long start = KERN_TO_HYP((unsigned long)from);
469 unsigned long end = KERN_TO_HYP((unsigned long)to);
470
471 start = start & PAGE_MASK;
472 end = PAGE_ALIGN(end);
473
474 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
475 int err;
476
477 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
478 err = __create_hyp_mappings(hyp_pgd, virt_addr,
479 virt_addr + PAGE_SIZE,
480 __phys_to_pfn(phys_addr),
481 PAGE_HYP);
482 if (err)
483 return err;
484 }
485
486 return 0;
487 }
488
489 /**
490 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
491 * @from: The kernel start VA of the range
492 * @to: The kernel end VA of the range (exclusive)
493 * @phys_addr: The physical start address which gets mapped
494 *
495 * The resulting HYP VA is the same as the kernel VA, modulo
496 * HYP_PAGE_OFFSET.
497 */
498 int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
499 {
500 unsigned long start = KERN_TO_HYP((unsigned long)from);
501 unsigned long end = KERN_TO_HYP((unsigned long)to);
502
503 /* Check for a valid kernel IO mapping */
504 if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
505 return -EINVAL;
506
507 return __create_hyp_mappings(hyp_pgd, start, end,
508 __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
509 }
510
511 /**
512 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
513 * @kvm: The KVM struct pointer for the VM.
514 *
515 * Allocates the 1st level table only of size defined by S2_PGD_ORDER (can
516 * support either full 40-bit input addresses or limited to 32-bit input
517 * addresses). Clears the allocated pages.
518 *
519 * Note we don't need locking here as this is only called when the VM is
520 * created, which can only be done once.
521 */
522 int kvm_alloc_stage2_pgd(struct kvm *kvm)
523 {
524 pgd_t *pgd;
525
526 if (kvm->arch.pgd != NULL) {
527 kvm_err("kvm_arch already initialized?\n");
528 return -EINVAL;
529 }
530
531 pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, S2_PGD_ORDER);
532 if (!pgd)
533 return -ENOMEM;
534
535 kvm_clean_pgd(pgd);
536 kvm->arch.pgd = pgd;
537
538 return 0;
539 }
540
541 /**
542 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
543 * @kvm: The VM pointer
544 * @start: The intermediate physical base address of the range to unmap
545 * @size: The size of the area to unmap
546 *
547 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
548 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
549 * destroying the VM), otherwise another faulting VCPU may come in and mess
550 * with things behind our backs.
551 */
552 static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
553 {
554 unmap_range(kvm, kvm->arch.pgd, start, size);
555 }
556
557 /**
558 * kvm_free_stage2_pgd - free all stage-2 tables
559 * @kvm: The KVM struct pointer for the VM.
560 *
561 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
562 * underlying level-2 and level-3 tables before freeing the actual level-1 table
563 * and setting the struct pointer to NULL.
564 *
565 * Note we don't need locking here as this is only called when the VM is
566 * destroyed, which can only be done once.
567 */
568 void kvm_free_stage2_pgd(struct kvm *kvm)
569 {
570 if (kvm->arch.pgd == NULL)
571 return;
572
573 unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
574 free_pages((unsigned long)kvm->arch.pgd, S2_PGD_ORDER);
575 kvm->arch.pgd = NULL;
576 }
577
578 static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
579 phys_addr_t addr)
580 {
581 pgd_t *pgd;
582 pud_t *pud;
583 pmd_t *pmd;
584
585 pgd = kvm->arch.pgd + pgd_index(addr);
586 pud = pud_offset(pgd, addr);
587 if (pud_none(*pud)) {
588 if (!cache)
589 return NULL;
590 pmd = mmu_memory_cache_alloc(cache);
591 pud_populate(NULL, pud, pmd);
592 get_page(virt_to_page(pud));
593 }
594
595 return pmd_offset(pud, addr);
596 }
597
598 static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
599 *cache, phys_addr_t addr, const pmd_t *new_pmd)
600 {
601 pmd_t *pmd, old_pmd;
602
603 pmd = stage2_get_pmd(kvm, cache, addr);
604 VM_BUG_ON(!pmd);
605
606 /*
607 * Mapping in huge pages should only happen through a fault. If a
608 * page is merged into a transparent huge page, the individual
609 * subpages of that huge page should be unmapped through MMU
610 * notifiers before we get here.
611 *
612 * Merging of CompoundPages is not supported; they should become
613 * splitting first, unmapped, merged, and mapped back in on-demand.
614 */
615 VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
616
617 old_pmd = *pmd;
618 kvm_set_pmd(pmd, *new_pmd);
619 if (pmd_present(old_pmd))
620 kvm_tlb_flush_vmid_ipa(kvm, addr);
621 else
622 get_page(virt_to_page(pmd));
623 return 0;
624 }
625
626 static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
627 phys_addr_t addr, const pte_t *new_pte, bool iomap)
628 {
629 pmd_t *pmd;
630 pte_t *pte, old_pte;
631
632 /* Create stage-2 page table mapping - Level 1 */
633 pmd = stage2_get_pmd(kvm, cache, addr);
634 if (!pmd) {
635 /*
636 * Ignore calls from kvm_set_spte_hva for unallocated
637 * address ranges.
638 */
639 return 0;
640 }
641
642 /* Create stage-2 page mappings - Level 2 */
643 if (pmd_none(*pmd)) {
644 if (!cache)
645 return 0; /* ignore calls from kvm_set_spte_hva */
646 pte = mmu_memory_cache_alloc(cache);
647 kvm_clean_pte(pte);
648 pmd_populate_kernel(NULL, pmd, pte);
649 get_page(virt_to_page(pmd));
650 }
651
652 pte = pte_offset_kernel(pmd, addr);
653
654 if (iomap && pte_present(*pte))
655 return -EFAULT;
656
657 /* Create 2nd stage page table mapping - Level 3 */
658 old_pte = *pte;
659 kvm_set_pte(pte, *new_pte);
660 if (pte_present(old_pte))
661 kvm_tlb_flush_vmid_ipa(kvm, addr);
662 else
663 get_page(virt_to_page(pte));
664
665 return 0;
666 }
667
668 /**
669 * kvm_phys_addr_ioremap - map a device range to guest IPA
670 *
671 * @kvm: The KVM pointer
672 * @guest_ipa: The IPA at which to insert the mapping
673 * @pa: The physical address of the device
674 * @size: The size of the mapping
675 */
676 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
677 phys_addr_t pa, unsigned long size)
678 {
679 phys_addr_t addr, end;
680 int ret = 0;
681 unsigned long pfn;
682 struct kvm_mmu_memory_cache cache = { 0, };
683
684 end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
685 pfn = __phys_to_pfn(pa);
686
687 for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
688 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
689
690 ret = mmu_topup_memory_cache(&cache, 2, 2);
691 if (ret)
692 goto out;
693 spin_lock(&kvm->mmu_lock);
694 ret = stage2_set_pte(kvm, &cache, addr, &pte, true);
695 spin_unlock(&kvm->mmu_lock);
696 if (ret)
697 goto out;
698
699 pfn++;
700 }
701
702 out:
703 mmu_free_memory_cache(&cache);
704 return ret;
705 }
706
707 static bool transparent_hugepage_adjust(pfn_t *pfnp, phys_addr_t *ipap)
708 {
709 pfn_t pfn = *pfnp;
710 gfn_t gfn = *ipap >> PAGE_SHIFT;
711
712 if (PageTransCompound(pfn_to_page(pfn))) {
713 unsigned long mask;
714 /*
715 * The address we faulted on is backed by a transparent huge
716 * page. However, because we map the compound huge page and
717 * not the individual tail page, we need to transfer the
718 * refcount to the head page. We have to be careful that the
719 * THP doesn't start to split while we are adjusting the
720 * refcounts.
721 *
722 * We are sure this doesn't happen, because mmu_notifier_retry
723 * was successful and we are holding the mmu_lock, so if this
724 * THP is trying to split, it will be blocked in the mmu
725 * notifier before touching any of the pages, specifically
726 * before being able to call __split_huge_page_refcount().
727 *
728 * We can therefore safely transfer the refcount from PG_tail
729 * to PG_head and switch the pfn from a tail page to the head
730 * page accordingly.
731 */
732 mask = PTRS_PER_PMD - 1;
733 VM_BUG_ON((gfn & mask) != (pfn & mask));
734 if (pfn & mask) {
735 *ipap &= PMD_MASK;
736 kvm_release_pfn_clean(pfn);
737 pfn &= ~mask;
738 kvm_get_pfn(pfn);
739 *pfnp = pfn;
740 }
741
742 return true;
743 }
744
745 return false;
746 }
747
748 static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
749 {
750 if (kvm_vcpu_trap_is_iabt(vcpu))
751 return false;
752
753 return kvm_vcpu_dabt_iswrite(vcpu);
754 }
755
756 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
757 struct kvm_memory_slot *memslot, unsigned long hva,
758 unsigned long fault_status)
759 {
760 int ret;
761 bool write_fault, writable, hugetlb = false, force_pte = false;
762 unsigned long mmu_seq;
763 gfn_t gfn = fault_ipa >> PAGE_SHIFT;
764 struct kvm *kvm = vcpu->kvm;
765 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
766 struct vm_area_struct *vma;
767 pfn_t pfn;
768 pgprot_t mem_type = PAGE_S2;
769
770 write_fault = kvm_is_write_fault(vcpu);
771 if (fault_status == FSC_PERM && !write_fault) {
772 kvm_err("Unexpected L2 read permission error\n");
773 return -EFAULT;
774 }
775
776 /* Let's check if we will get back a huge page backed by hugetlbfs */
777 down_read(&current->mm->mmap_sem);
778 vma = find_vma_intersection(current->mm, hva, hva + 1);
779 if (unlikely(!vma)) {
780 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
781 up_read(&current->mm->mmap_sem);
782 return -EFAULT;
783 }
784
785 if (is_vm_hugetlb_page(vma)) {
786 hugetlb = true;
787 gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
788 } else {
789 /*
790 * Pages belonging to memslots that don't have the same
791 * alignment for userspace and IPA cannot be mapped using
792 * block descriptors even if the pages belong to a THP for
793 * the process, because the stage-2 block descriptor will
794 * cover more than a single THP and we loose atomicity for
795 * unmapping, updates, and splits of the THP or other pages
796 * in the stage-2 block range.
797 */
798 if ((memslot->userspace_addr & ~PMD_MASK) !=
799 ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
800 force_pte = true;
801 }
802 up_read(&current->mm->mmap_sem);
803
804 /* We need minimum second+third level pages */
805 ret = mmu_topup_memory_cache(memcache, 2, KVM_NR_MEM_OBJS);
806 if (ret)
807 return ret;
808
809 mmu_seq = vcpu->kvm->mmu_notifier_seq;
810 /*
811 * Ensure the read of mmu_notifier_seq happens before we call
812 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
813 * the page we just got a reference to gets unmapped before we have a
814 * chance to grab the mmu_lock, which ensure that if the page gets
815 * unmapped afterwards, the call to kvm_unmap_hva will take it away
816 * from us again properly. This smp_rmb() interacts with the smp_wmb()
817 * in kvm_mmu_notifier_invalidate_<page|range_end>.
818 */
819 smp_rmb();
820
821 pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
822 if (is_error_pfn(pfn))
823 return -EFAULT;
824
825 if (kvm_is_mmio_pfn(pfn))
826 mem_type = PAGE_S2_DEVICE;
827
828 spin_lock(&kvm->mmu_lock);
829 if (mmu_notifier_retry(kvm, mmu_seq))
830 goto out_unlock;
831 if (!hugetlb && !force_pte)
832 hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
833
834 if (hugetlb) {
835 pmd_t new_pmd = pfn_pmd(pfn, mem_type);
836 new_pmd = pmd_mkhuge(new_pmd);
837 if (writable) {
838 kvm_set_s2pmd_writable(&new_pmd);
839 kvm_set_pfn_dirty(pfn);
840 }
841 coherent_cache_guest_page(vcpu, hva & PMD_MASK, PMD_SIZE);
842 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
843 } else {
844 pte_t new_pte = pfn_pte(pfn, mem_type);
845 if (writable) {
846 kvm_set_s2pte_writable(&new_pte);
847 kvm_set_pfn_dirty(pfn);
848 }
849 coherent_cache_guest_page(vcpu, hva, PAGE_SIZE);
850 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte,
851 mem_type == PAGE_S2_DEVICE);
852 }
853
854
855 out_unlock:
856 spin_unlock(&kvm->mmu_lock);
857 kvm_release_pfn_clean(pfn);
858 return ret;
859 }
860
861 /**
862 * kvm_handle_guest_abort - handles all 2nd stage aborts
863 * @vcpu: the VCPU pointer
864 * @run: the kvm_run structure
865 *
866 * Any abort that gets to the host is almost guaranteed to be caused by a
867 * missing second stage translation table entry, which can mean that either the
868 * guest simply needs more memory and we must allocate an appropriate page or it
869 * can mean that the guest tried to access I/O memory, which is emulated by user
870 * space. The distinction is based on the IPA causing the fault and whether this
871 * memory region has been registered as standard RAM by user space.
872 */
873 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
874 {
875 unsigned long fault_status;
876 phys_addr_t fault_ipa;
877 struct kvm_memory_slot *memslot;
878 unsigned long hva;
879 bool is_iabt, write_fault, writable;
880 gfn_t gfn;
881 int ret, idx;
882
883 is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
884 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
885
886 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
887 kvm_vcpu_get_hfar(vcpu), fault_ipa);
888
889 /* Check the stage-2 fault is trans. fault or write fault */
890 fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
891 if (fault_status != FSC_FAULT && fault_status != FSC_PERM) {
892 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
893 kvm_vcpu_trap_get_class(vcpu),
894 (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
895 (unsigned long)kvm_vcpu_get_hsr(vcpu));
896 return -EFAULT;
897 }
898
899 idx = srcu_read_lock(&vcpu->kvm->srcu);
900
901 gfn = fault_ipa >> PAGE_SHIFT;
902 memslot = gfn_to_memslot(vcpu->kvm, gfn);
903 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
904 write_fault = kvm_is_write_fault(vcpu);
905 if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
906 if (is_iabt) {
907 /* Prefetch Abort on I/O address */
908 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
909 ret = 1;
910 goto out_unlock;
911 }
912
913 /*
914 * The IPA is reported as [MAX:12], so we need to
915 * complement it with the bottom 12 bits from the
916 * faulting VA. This is always 12 bits, irrespective
917 * of the page size.
918 */
919 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
920 ret = io_mem_abort(vcpu, run, fault_ipa);
921 goto out_unlock;
922 }
923
924 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
925 if (ret == 0)
926 ret = 1;
927 out_unlock:
928 srcu_read_unlock(&vcpu->kvm->srcu, idx);
929 return ret;
930 }
931
932 static void handle_hva_to_gpa(struct kvm *kvm,
933 unsigned long start,
934 unsigned long end,
935 void (*handler)(struct kvm *kvm,
936 gpa_t gpa, void *data),
937 void *data)
938 {
939 struct kvm_memslots *slots;
940 struct kvm_memory_slot *memslot;
941
942 slots = kvm_memslots(kvm);
943
944 /* we only care about the pages that the guest sees */
945 kvm_for_each_memslot(memslot, slots) {
946 unsigned long hva_start, hva_end;
947 gfn_t gfn, gfn_end;
948
949 hva_start = max(start, memslot->userspace_addr);
950 hva_end = min(end, memslot->userspace_addr +
951 (memslot->npages << PAGE_SHIFT));
952 if (hva_start >= hva_end)
953 continue;
954
955 /*
956 * {gfn(page) | page intersects with [hva_start, hva_end)} =
957 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
958 */
959 gfn = hva_to_gfn_memslot(hva_start, memslot);
960 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
961
962 for (; gfn < gfn_end; ++gfn) {
963 gpa_t gpa = gfn << PAGE_SHIFT;
964 handler(kvm, gpa, data);
965 }
966 }
967 }
968
969 static void kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
970 {
971 unmap_stage2_range(kvm, gpa, PAGE_SIZE);
972 }
973
974 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
975 {
976 unsigned long end = hva + PAGE_SIZE;
977
978 if (!kvm->arch.pgd)
979 return 0;
980
981 trace_kvm_unmap_hva(hva);
982 handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
983 return 0;
984 }
985
986 int kvm_unmap_hva_range(struct kvm *kvm,
987 unsigned long start, unsigned long end)
988 {
989 if (!kvm->arch.pgd)
990 return 0;
991
992 trace_kvm_unmap_hva_range(start, end);
993 handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
994 return 0;
995 }
996
997 static void kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
998 {
999 pte_t *pte = (pte_t *)data;
1000
1001 stage2_set_pte(kvm, NULL, gpa, pte, false);
1002 }
1003
1004
1005 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1006 {
1007 unsigned long end = hva + PAGE_SIZE;
1008 pte_t stage2_pte;
1009
1010 if (!kvm->arch.pgd)
1011 return;
1012
1013 trace_kvm_set_spte_hva(hva);
1014 stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
1015 handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
1016 }
1017
1018 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1019 {
1020 mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
1021 }
1022
1023 phys_addr_t kvm_mmu_get_httbr(void)
1024 {
1025 return virt_to_phys(hyp_pgd);
1026 }
1027
1028 phys_addr_t kvm_mmu_get_boot_httbr(void)
1029 {
1030 return virt_to_phys(boot_hyp_pgd);
1031 }
1032
1033 phys_addr_t kvm_get_idmap_vector(void)
1034 {
1035 return hyp_idmap_vector;
1036 }
1037
1038 int kvm_mmu_init(void)
1039 {
1040 int err;
1041
1042 hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1043 hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1044 hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1045
1046 if ((hyp_idmap_start ^ hyp_idmap_end) & PAGE_MASK) {
1047 /*
1048 * Our init code is crossing a page boundary. Allocate
1049 * a bounce page, copy the code over and use that.
1050 */
1051 size_t len = __hyp_idmap_text_end - __hyp_idmap_text_start;
1052 phys_addr_t phys_base;
1053
1054 init_bounce_page = (void *)__get_free_page(GFP_KERNEL);
1055 if (!init_bounce_page) {
1056 kvm_err("Couldn't allocate HYP init bounce page\n");
1057 err = -ENOMEM;
1058 goto out;
1059 }
1060
1061 memcpy(init_bounce_page, __hyp_idmap_text_start, len);
1062 /*
1063 * Warning: the code we just copied to the bounce page
1064 * must be flushed to the point of coherency.
1065 * Otherwise, the data may be sitting in L2, and HYP
1066 * mode won't be able to observe it as it runs with
1067 * caches off at that point.
1068 */
1069 kvm_flush_dcache_to_poc(init_bounce_page, len);
1070
1071 phys_base = kvm_virt_to_phys(init_bounce_page);
1072 hyp_idmap_vector += phys_base - hyp_idmap_start;
1073 hyp_idmap_start = phys_base;
1074 hyp_idmap_end = phys_base + len;
1075
1076 kvm_info("Using HYP init bounce page @%lx\n",
1077 (unsigned long)phys_base);
1078 }
1079
1080 hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, pgd_order);
1081 boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, pgd_order);
1082
1083 if (!hyp_pgd || !boot_hyp_pgd) {
1084 kvm_err("Hyp mode PGD not allocated\n");
1085 err = -ENOMEM;
1086 goto out;
1087 }
1088
1089 /* Create the idmap in the boot page tables */
1090 err = __create_hyp_mappings(boot_hyp_pgd,
1091 hyp_idmap_start, hyp_idmap_end,
1092 __phys_to_pfn(hyp_idmap_start),
1093 PAGE_HYP);
1094
1095 if (err) {
1096 kvm_err("Failed to idmap %lx-%lx\n",
1097 hyp_idmap_start, hyp_idmap_end);
1098 goto out;
1099 }
1100
1101 /* Map the very same page at the trampoline VA */
1102 err = __create_hyp_mappings(boot_hyp_pgd,
1103 TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1104 __phys_to_pfn(hyp_idmap_start),
1105 PAGE_HYP);
1106 if (err) {
1107 kvm_err("Failed to map trampoline @%lx into boot HYP pgd\n",
1108 TRAMPOLINE_VA);
1109 goto out;
1110 }
1111
1112 /* Map the same page again into the runtime page tables */
1113 err = __create_hyp_mappings(hyp_pgd,
1114 TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1115 __phys_to_pfn(hyp_idmap_start),
1116 PAGE_HYP);
1117 if (err) {
1118 kvm_err("Failed to map trampoline @%lx into runtime HYP pgd\n",
1119 TRAMPOLINE_VA);
1120 goto out;
1121 }
1122
1123 return 0;
1124 out:
1125 free_hyp_pgds();
1126 return err;
1127 }
1128
1129 void kvm_arch_commit_memory_region(struct kvm *kvm,
1130 struct kvm_userspace_memory_region *mem,
1131 const struct kvm_memory_slot *old,
1132 enum kvm_mr_change change)
1133 {
1134 gpa_t gpa = old->base_gfn << PAGE_SHIFT;
1135 phys_addr_t size = old->npages << PAGE_SHIFT;
1136 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1137 spin_lock(&kvm->mmu_lock);
1138 unmap_stage2_range(kvm, gpa, size);
1139 spin_unlock(&kvm->mmu_lock);
1140 }
1141 }
1142
1143 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1144 struct kvm_memory_slot *memslot,
1145 struct kvm_userspace_memory_region *mem,
1146 enum kvm_mr_change change)
1147 {
1148 return 0;
1149 }
1150
1151 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
1152 struct kvm_memory_slot *dont)
1153 {
1154 }
1155
1156 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
1157 unsigned long npages)
1158 {
1159 return 0;
1160 }
1161
1162 void kvm_arch_memslots_updated(struct kvm *kvm)
1163 {
1164 }
1165
1166 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1167 {
1168 }
1169
1170 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1171 struct kvm_memory_slot *slot)
1172 {
1173 }
This page took 0.055365 seconds and 6 git commands to generate.