Merge tag 'armsoc-drivers' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[deliverable/linux.git] / arch / arm / kvm / mmu.c
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/mman.h>
20 #include <linux/kvm_host.h>
21 #include <linux/io.h>
22 #include <linux/hugetlb.h>
23 #include <trace/events/kvm.h>
24 #include <asm/pgalloc.h>
25 #include <asm/cacheflush.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_mmu.h>
28 #include <asm/kvm_mmio.h>
29 #include <asm/kvm_asm.h>
30 #include <asm/kvm_emulate.h>
31
32 #include "trace.h"
33
34 extern char __hyp_idmap_text_start[], __hyp_idmap_text_end[];
35
36 static pgd_t *boot_hyp_pgd;
37 static pgd_t *hyp_pgd;
38 static pgd_t *merged_hyp_pgd;
39 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
40
41 static unsigned long hyp_idmap_start;
42 static unsigned long hyp_idmap_end;
43 static phys_addr_t hyp_idmap_vector;
44
45 #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
46
47 #define kvm_pmd_huge(_x) (pmd_huge(_x) || pmd_trans_huge(_x))
48 #define kvm_pud_huge(_x) pud_huge(_x)
49
50 #define KVM_S2PTE_FLAG_IS_IOMAP (1UL << 0)
51 #define KVM_S2_FLAG_LOGGING_ACTIVE (1UL << 1)
52
53 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
54 {
55 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
56 }
57
58 /**
59 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
60 * @kvm: pointer to kvm structure.
61 *
62 * Interface to HYP function to flush all VM TLB entries
63 */
64 void kvm_flush_remote_tlbs(struct kvm *kvm)
65 {
66 kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
67 }
68
69 static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
70 {
71 /*
72 * This function also gets called when dealing with HYP page
73 * tables. As HYP doesn't have an associated struct kvm (and
74 * the HYP page tables are fairly static), we don't do
75 * anything there.
76 */
77 if (kvm)
78 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
79 }
80
81 /*
82 * D-Cache management functions. They take the page table entries by
83 * value, as they are flushing the cache using the kernel mapping (or
84 * kmap on 32bit).
85 */
86 static void kvm_flush_dcache_pte(pte_t pte)
87 {
88 __kvm_flush_dcache_pte(pte);
89 }
90
91 static void kvm_flush_dcache_pmd(pmd_t pmd)
92 {
93 __kvm_flush_dcache_pmd(pmd);
94 }
95
96 static void kvm_flush_dcache_pud(pud_t pud)
97 {
98 __kvm_flush_dcache_pud(pud);
99 }
100
101 /**
102 * stage2_dissolve_pmd() - clear and flush huge PMD entry
103 * @kvm: pointer to kvm structure.
104 * @addr: IPA
105 * @pmd: pmd pointer for IPA
106 *
107 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
108 * pages in the range dirty.
109 */
110 static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
111 {
112 if (!kvm_pmd_huge(*pmd))
113 return;
114
115 pmd_clear(pmd);
116 kvm_tlb_flush_vmid_ipa(kvm, addr);
117 put_page(virt_to_page(pmd));
118 }
119
120 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
121 int min, int max)
122 {
123 void *page;
124
125 BUG_ON(max > KVM_NR_MEM_OBJS);
126 if (cache->nobjs >= min)
127 return 0;
128 while (cache->nobjs < max) {
129 page = (void *)__get_free_page(PGALLOC_GFP);
130 if (!page)
131 return -ENOMEM;
132 cache->objects[cache->nobjs++] = page;
133 }
134 return 0;
135 }
136
137 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
138 {
139 while (mc->nobjs)
140 free_page((unsigned long)mc->objects[--mc->nobjs]);
141 }
142
143 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
144 {
145 void *p;
146
147 BUG_ON(!mc || !mc->nobjs);
148 p = mc->objects[--mc->nobjs];
149 return p;
150 }
151
152 static void clear_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
153 {
154 pud_t *pud_table __maybe_unused = pud_offset(pgd, 0);
155 pgd_clear(pgd);
156 kvm_tlb_flush_vmid_ipa(kvm, addr);
157 pud_free(NULL, pud_table);
158 put_page(virt_to_page(pgd));
159 }
160
161 static void clear_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
162 {
163 pmd_t *pmd_table = pmd_offset(pud, 0);
164 VM_BUG_ON(pud_huge(*pud));
165 pud_clear(pud);
166 kvm_tlb_flush_vmid_ipa(kvm, addr);
167 pmd_free(NULL, pmd_table);
168 put_page(virt_to_page(pud));
169 }
170
171 static void clear_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
172 {
173 pte_t *pte_table = pte_offset_kernel(pmd, 0);
174 VM_BUG_ON(kvm_pmd_huge(*pmd));
175 pmd_clear(pmd);
176 kvm_tlb_flush_vmid_ipa(kvm, addr);
177 pte_free_kernel(NULL, pte_table);
178 put_page(virt_to_page(pmd));
179 }
180
181 /*
182 * Unmapping vs dcache management:
183 *
184 * If a guest maps certain memory pages as uncached, all writes will
185 * bypass the data cache and go directly to RAM. However, the CPUs
186 * can still speculate reads (not writes) and fill cache lines with
187 * data.
188 *
189 * Those cache lines will be *clean* cache lines though, so a
190 * clean+invalidate operation is equivalent to an invalidate
191 * operation, because no cache lines are marked dirty.
192 *
193 * Those clean cache lines could be filled prior to an uncached write
194 * by the guest, and the cache coherent IO subsystem would therefore
195 * end up writing old data to disk.
196 *
197 * This is why right after unmapping a page/section and invalidating
198 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
199 * the IO subsystem will never hit in the cache.
200 */
201 static void unmap_ptes(struct kvm *kvm, pmd_t *pmd,
202 phys_addr_t addr, phys_addr_t end)
203 {
204 phys_addr_t start_addr = addr;
205 pte_t *pte, *start_pte;
206
207 start_pte = pte = pte_offset_kernel(pmd, addr);
208 do {
209 if (!pte_none(*pte)) {
210 pte_t old_pte = *pte;
211
212 kvm_set_pte(pte, __pte(0));
213 kvm_tlb_flush_vmid_ipa(kvm, addr);
214
215 /* No need to invalidate the cache for device mappings */
216 if ((pte_val(old_pte) & PAGE_S2_DEVICE) != PAGE_S2_DEVICE)
217 kvm_flush_dcache_pte(old_pte);
218
219 put_page(virt_to_page(pte));
220 }
221 } while (pte++, addr += PAGE_SIZE, addr != end);
222
223 if (kvm_pte_table_empty(kvm, start_pte))
224 clear_pmd_entry(kvm, pmd, start_addr);
225 }
226
227 static void unmap_pmds(struct kvm *kvm, pud_t *pud,
228 phys_addr_t addr, phys_addr_t end)
229 {
230 phys_addr_t next, start_addr = addr;
231 pmd_t *pmd, *start_pmd;
232
233 start_pmd = pmd = pmd_offset(pud, addr);
234 do {
235 next = kvm_pmd_addr_end(addr, end);
236 if (!pmd_none(*pmd)) {
237 if (kvm_pmd_huge(*pmd)) {
238 pmd_t old_pmd = *pmd;
239
240 pmd_clear(pmd);
241 kvm_tlb_flush_vmid_ipa(kvm, addr);
242
243 kvm_flush_dcache_pmd(old_pmd);
244
245 put_page(virt_to_page(pmd));
246 } else {
247 unmap_ptes(kvm, pmd, addr, next);
248 }
249 }
250 } while (pmd++, addr = next, addr != end);
251
252 if (kvm_pmd_table_empty(kvm, start_pmd))
253 clear_pud_entry(kvm, pud, start_addr);
254 }
255
256 static void unmap_puds(struct kvm *kvm, pgd_t *pgd,
257 phys_addr_t addr, phys_addr_t end)
258 {
259 phys_addr_t next, start_addr = addr;
260 pud_t *pud, *start_pud;
261
262 start_pud = pud = pud_offset(pgd, addr);
263 do {
264 next = kvm_pud_addr_end(addr, end);
265 if (!pud_none(*pud)) {
266 if (pud_huge(*pud)) {
267 pud_t old_pud = *pud;
268
269 pud_clear(pud);
270 kvm_tlb_flush_vmid_ipa(kvm, addr);
271
272 kvm_flush_dcache_pud(old_pud);
273
274 put_page(virt_to_page(pud));
275 } else {
276 unmap_pmds(kvm, pud, addr, next);
277 }
278 }
279 } while (pud++, addr = next, addr != end);
280
281 if (kvm_pud_table_empty(kvm, start_pud))
282 clear_pgd_entry(kvm, pgd, start_addr);
283 }
284
285
286 static void unmap_range(struct kvm *kvm, pgd_t *pgdp,
287 phys_addr_t start, u64 size)
288 {
289 pgd_t *pgd;
290 phys_addr_t addr = start, end = start + size;
291 phys_addr_t next;
292
293 pgd = pgdp + kvm_pgd_index(addr);
294 do {
295 next = kvm_pgd_addr_end(addr, end);
296 if (!pgd_none(*pgd))
297 unmap_puds(kvm, pgd, addr, next);
298 } while (pgd++, addr = next, addr != end);
299 }
300
301 static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
302 phys_addr_t addr, phys_addr_t end)
303 {
304 pte_t *pte;
305
306 pte = pte_offset_kernel(pmd, addr);
307 do {
308 if (!pte_none(*pte) &&
309 (pte_val(*pte) & PAGE_S2_DEVICE) != PAGE_S2_DEVICE)
310 kvm_flush_dcache_pte(*pte);
311 } while (pte++, addr += PAGE_SIZE, addr != end);
312 }
313
314 static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
315 phys_addr_t addr, phys_addr_t end)
316 {
317 pmd_t *pmd;
318 phys_addr_t next;
319
320 pmd = pmd_offset(pud, addr);
321 do {
322 next = kvm_pmd_addr_end(addr, end);
323 if (!pmd_none(*pmd)) {
324 if (kvm_pmd_huge(*pmd))
325 kvm_flush_dcache_pmd(*pmd);
326 else
327 stage2_flush_ptes(kvm, pmd, addr, next);
328 }
329 } while (pmd++, addr = next, addr != end);
330 }
331
332 static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
333 phys_addr_t addr, phys_addr_t end)
334 {
335 pud_t *pud;
336 phys_addr_t next;
337
338 pud = pud_offset(pgd, addr);
339 do {
340 next = kvm_pud_addr_end(addr, end);
341 if (!pud_none(*pud)) {
342 if (pud_huge(*pud))
343 kvm_flush_dcache_pud(*pud);
344 else
345 stage2_flush_pmds(kvm, pud, addr, next);
346 }
347 } while (pud++, addr = next, addr != end);
348 }
349
350 static void stage2_flush_memslot(struct kvm *kvm,
351 struct kvm_memory_slot *memslot)
352 {
353 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
354 phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
355 phys_addr_t next;
356 pgd_t *pgd;
357
358 pgd = kvm->arch.pgd + kvm_pgd_index(addr);
359 do {
360 next = kvm_pgd_addr_end(addr, end);
361 stage2_flush_puds(kvm, pgd, addr, next);
362 } while (pgd++, addr = next, addr != end);
363 }
364
365 /**
366 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
367 * @kvm: The struct kvm pointer
368 *
369 * Go through the stage 2 page tables and invalidate any cache lines
370 * backing memory already mapped to the VM.
371 */
372 static void stage2_flush_vm(struct kvm *kvm)
373 {
374 struct kvm_memslots *slots;
375 struct kvm_memory_slot *memslot;
376 int idx;
377
378 idx = srcu_read_lock(&kvm->srcu);
379 spin_lock(&kvm->mmu_lock);
380
381 slots = kvm_memslots(kvm);
382 kvm_for_each_memslot(memslot, slots)
383 stage2_flush_memslot(kvm, memslot);
384
385 spin_unlock(&kvm->mmu_lock);
386 srcu_read_unlock(&kvm->srcu, idx);
387 }
388
389 /**
390 * free_boot_hyp_pgd - free HYP boot page tables
391 *
392 * Free the HYP boot page tables. The bounce page is also freed.
393 */
394 void free_boot_hyp_pgd(void)
395 {
396 mutex_lock(&kvm_hyp_pgd_mutex);
397
398 if (boot_hyp_pgd) {
399 unmap_range(NULL, boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
400 unmap_range(NULL, boot_hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
401 free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
402 boot_hyp_pgd = NULL;
403 }
404
405 if (hyp_pgd)
406 unmap_range(NULL, hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
407
408 mutex_unlock(&kvm_hyp_pgd_mutex);
409 }
410
411 /**
412 * free_hyp_pgds - free Hyp-mode page tables
413 *
414 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
415 * therefore contains either mappings in the kernel memory area (above
416 * PAGE_OFFSET), or device mappings in the vmalloc range (from
417 * VMALLOC_START to VMALLOC_END).
418 *
419 * boot_hyp_pgd should only map two pages for the init code.
420 */
421 void free_hyp_pgds(void)
422 {
423 unsigned long addr;
424
425 free_boot_hyp_pgd();
426
427 mutex_lock(&kvm_hyp_pgd_mutex);
428
429 if (hyp_pgd) {
430 for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
431 unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
432 for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
433 unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
434
435 free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
436 hyp_pgd = NULL;
437 }
438 if (merged_hyp_pgd) {
439 clear_page(merged_hyp_pgd);
440 free_page((unsigned long)merged_hyp_pgd);
441 merged_hyp_pgd = NULL;
442 }
443
444 mutex_unlock(&kvm_hyp_pgd_mutex);
445 }
446
447 static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
448 unsigned long end, unsigned long pfn,
449 pgprot_t prot)
450 {
451 pte_t *pte;
452 unsigned long addr;
453
454 addr = start;
455 do {
456 pte = pte_offset_kernel(pmd, addr);
457 kvm_set_pte(pte, pfn_pte(pfn, prot));
458 get_page(virt_to_page(pte));
459 kvm_flush_dcache_to_poc(pte, sizeof(*pte));
460 pfn++;
461 } while (addr += PAGE_SIZE, addr != end);
462 }
463
464 static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
465 unsigned long end, unsigned long pfn,
466 pgprot_t prot)
467 {
468 pmd_t *pmd;
469 pte_t *pte;
470 unsigned long addr, next;
471
472 addr = start;
473 do {
474 pmd = pmd_offset(pud, addr);
475
476 BUG_ON(pmd_sect(*pmd));
477
478 if (pmd_none(*pmd)) {
479 pte = pte_alloc_one_kernel(NULL, addr);
480 if (!pte) {
481 kvm_err("Cannot allocate Hyp pte\n");
482 return -ENOMEM;
483 }
484 pmd_populate_kernel(NULL, pmd, pte);
485 get_page(virt_to_page(pmd));
486 kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
487 }
488
489 next = pmd_addr_end(addr, end);
490
491 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
492 pfn += (next - addr) >> PAGE_SHIFT;
493 } while (addr = next, addr != end);
494
495 return 0;
496 }
497
498 static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
499 unsigned long end, unsigned long pfn,
500 pgprot_t prot)
501 {
502 pud_t *pud;
503 pmd_t *pmd;
504 unsigned long addr, next;
505 int ret;
506
507 addr = start;
508 do {
509 pud = pud_offset(pgd, addr);
510
511 if (pud_none_or_clear_bad(pud)) {
512 pmd = pmd_alloc_one(NULL, addr);
513 if (!pmd) {
514 kvm_err("Cannot allocate Hyp pmd\n");
515 return -ENOMEM;
516 }
517 pud_populate(NULL, pud, pmd);
518 get_page(virt_to_page(pud));
519 kvm_flush_dcache_to_poc(pud, sizeof(*pud));
520 }
521
522 next = pud_addr_end(addr, end);
523 ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
524 if (ret)
525 return ret;
526 pfn += (next - addr) >> PAGE_SHIFT;
527 } while (addr = next, addr != end);
528
529 return 0;
530 }
531
532 static int __create_hyp_mappings(pgd_t *pgdp,
533 unsigned long start, unsigned long end,
534 unsigned long pfn, pgprot_t prot)
535 {
536 pgd_t *pgd;
537 pud_t *pud;
538 unsigned long addr, next;
539 int err = 0;
540
541 mutex_lock(&kvm_hyp_pgd_mutex);
542 addr = start & PAGE_MASK;
543 end = PAGE_ALIGN(end);
544 do {
545 pgd = pgdp + pgd_index(addr);
546
547 if (pgd_none(*pgd)) {
548 pud = pud_alloc_one(NULL, addr);
549 if (!pud) {
550 kvm_err("Cannot allocate Hyp pud\n");
551 err = -ENOMEM;
552 goto out;
553 }
554 pgd_populate(NULL, pgd, pud);
555 get_page(virt_to_page(pgd));
556 kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
557 }
558
559 next = pgd_addr_end(addr, end);
560 err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
561 if (err)
562 goto out;
563 pfn += (next - addr) >> PAGE_SHIFT;
564 } while (addr = next, addr != end);
565 out:
566 mutex_unlock(&kvm_hyp_pgd_mutex);
567 return err;
568 }
569
570 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
571 {
572 if (!is_vmalloc_addr(kaddr)) {
573 BUG_ON(!virt_addr_valid(kaddr));
574 return __pa(kaddr);
575 } else {
576 return page_to_phys(vmalloc_to_page(kaddr)) +
577 offset_in_page(kaddr);
578 }
579 }
580
581 /**
582 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
583 * @from: The virtual kernel start address of the range
584 * @to: The virtual kernel end address of the range (exclusive)
585 *
586 * The same virtual address as the kernel virtual address is also used
587 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
588 * physical pages.
589 */
590 int create_hyp_mappings(void *from, void *to)
591 {
592 phys_addr_t phys_addr;
593 unsigned long virt_addr;
594 unsigned long start = KERN_TO_HYP((unsigned long)from);
595 unsigned long end = KERN_TO_HYP((unsigned long)to);
596
597 start = start & PAGE_MASK;
598 end = PAGE_ALIGN(end);
599
600 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
601 int err;
602
603 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
604 err = __create_hyp_mappings(hyp_pgd, virt_addr,
605 virt_addr + PAGE_SIZE,
606 __phys_to_pfn(phys_addr),
607 PAGE_HYP);
608 if (err)
609 return err;
610 }
611
612 return 0;
613 }
614
615 /**
616 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
617 * @from: The kernel start VA of the range
618 * @to: The kernel end VA of the range (exclusive)
619 * @phys_addr: The physical start address which gets mapped
620 *
621 * The resulting HYP VA is the same as the kernel VA, modulo
622 * HYP_PAGE_OFFSET.
623 */
624 int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
625 {
626 unsigned long start = KERN_TO_HYP((unsigned long)from);
627 unsigned long end = KERN_TO_HYP((unsigned long)to);
628
629 /* Check for a valid kernel IO mapping */
630 if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
631 return -EINVAL;
632
633 return __create_hyp_mappings(hyp_pgd, start, end,
634 __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
635 }
636
637 /* Free the HW pgd, one page at a time */
638 static void kvm_free_hwpgd(void *hwpgd)
639 {
640 free_pages_exact(hwpgd, kvm_get_hwpgd_size());
641 }
642
643 /* Allocate the HW PGD, making sure that each page gets its own refcount */
644 static void *kvm_alloc_hwpgd(void)
645 {
646 unsigned int size = kvm_get_hwpgd_size();
647
648 return alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
649 }
650
651 /**
652 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
653 * @kvm: The KVM struct pointer for the VM.
654 *
655 * Allocates the 1st level table only of size defined by S2_PGD_ORDER (can
656 * support either full 40-bit input addresses or limited to 32-bit input
657 * addresses). Clears the allocated pages.
658 *
659 * Note we don't need locking here as this is only called when the VM is
660 * created, which can only be done once.
661 */
662 int kvm_alloc_stage2_pgd(struct kvm *kvm)
663 {
664 pgd_t *pgd;
665 void *hwpgd;
666
667 if (kvm->arch.pgd != NULL) {
668 kvm_err("kvm_arch already initialized?\n");
669 return -EINVAL;
670 }
671
672 hwpgd = kvm_alloc_hwpgd();
673 if (!hwpgd)
674 return -ENOMEM;
675
676 /* When the kernel uses more levels of page tables than the
677 * guest, we allocate a fake PGD and pre-populate it to point
678 * to the next-level page table, which will be the real
679 * initial page table pointed to by the VTTBR.
680 *
681 * When KVM_PREALLOC_LEVEL==2, we allocate a single page for
682 * the PMD and the kernel will use folded pud.
683 * When KVM_PREALLOC_LEVEL==1, we allocate 2 consecutive PUD
684 * pages.
685 */
686 if (KVM_PREALLOC_LEVEL > 0) {
687 int i;
688
689 /*
690 * Allocate fake pgd for the page table manipulation macros to
691 * work. This is not used by the hardware and we have no
692 * alignment requirement for this allocation.
693 */
694 pgd = (pgd_t *)kmalloc(PTRS_PER_S2_PGD * sizeof(pgd_t),
695 GFP_KERNEL | __GFP_ZERO);
696
697 if (!pgd) {
698 kvm_free_hwpgd(hwpgd);
699 return -ENOMEM;
700 }
701
702 /* Plug the HW PGD into the fake one. */
703 for (i = 0; i < PTRS_PER_S2_PGD; i++) {
704 if (KVM_PREALLOC_LEVEL == 1)
705 pgd_populate(NULL, pgd + i,
706 (pud_t *)hwpgd + i * PTRS_PER_PUD);
707 else if (KVM_PREALLOC_LEVEL == 2)
708 pud_populate(NULL, pud_offset(pgd, 0) + i,
709 (pmd_t *)hwpgd + i * PTRS_PER_PMD);
710 }
711 } else {
712 /*
713 * Allocate actual first-level Stage-2 page table used by the
714 * hardware for Stage-2 page table walks.
715 */
716 pgd = (pgd_t *)hwpgd;
717 }
718
719 kvm_clean_pgd(pgd);
720 kvm->arch.pgd = pgd;
721 return 0;
722 }
723
724 /**
725 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
726 * @kvm: The VM pointer
727 * @start: The intermediate physical base address of the range to unmap
728 * @size: The size of the area to unmap
729 *
730 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
731 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
732 * destroying the VM), otherwise another faulting VCPU may come in and mess
733 * with things behind our backs.
734 */
735 static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
736 {
737 unmap_range(kvm, kvm->arch.pgd, start, size);
738 }
739
740 static void stage2_unmap_memslot(struct kvm *kvm,
741 struct kvm_memory_slot *memslot)
742 {
743 hva_t hva = memslot->userspace_addr;
744 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
745 phys_addr_t size = PAGE_SIZE * memslot->npages;
746 hva_t reg_end = hva + size;
747
748 /*
749 * A memory region could potentially cover multiple VMAs, and any holes
750 * between them, so iterate over all of them to find out if we should
751 * unmap any of them.
752 *
753 * +--------------------------------------------+
754 * +---------------+----------------+ +----------------+
755 * | : VMA 1 | VMA 2 | | VMA 3 : |
756 * +---------------+----------------+ +----------------+
757 * | memory region |
758 * +--------------------------------------------+
759 */
760 do {
761 struct vm_area_struct *vma = find_vma(current->mm, hva);
762 hva_t vm_start, vm_end;
763
764 if (!vma || vma->vm_start >= reg_end)
765 break;
766
767 /*
768 * Take the intersection of this VMA with the memory region
769 */
770 vm_start = max(hva, vma->vm_start);
771 vm_end = min(reg_end, vma->vm_end);
772
773 if (!(vma->vm_flags & VM_PFNMAP)) {
774 gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
775 unmap_stage2_range(kvm, gpa, vm_end - vm_start);
776 }
777 hva = vm_end;
778 } while (hva < reg_end);
779 }
780
781 /**
782 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
783 * @kvm: The struct kvm pointer
784 *
785 * Go through the memregions and unmap any reguler RAM
786 * backing memory already mapped to the VM.
787 */
788 void stage2_unmap_vm(struct kvm *kvm)
789 {
790 struct kvm_memslots *slots;
791 struct kvm_memory_slot *memslot;
792 int idx;
793
794 idx = srcu_read_lock(&kvm->srcu);
795 spin_lock(&kvm->mmu_lock);
796
797 slots = kvm_memslots(kvm);
798 kvm_for_each_memslot(memslot, slots)
799 stage2_unmap_memslot(kvm, memslot);
800
801 spin_unlock(&kvm->mmu_lock);
802 srcu_read_unlock(&kvm->srcu, idx);
803 }
804
805 /**
806 * kvm_free_stage2_pgd - free all stage-2 tables
807 * @kvm: The KVM struct pointer for the VM.
808 *
809 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
810 * underlying level-2 and level-3 tables before freeing the actual level-1 table
811 * and setting the struct pointer to NULL.
812 *
813 * Note we don't need locking here as this is only called when the VM is
814 * destroyed, which can only be done once.
815 */
816 void kvm_free_stage2_pgd(struct kvm *kvm)
817 {
818 if (kvm->arch.pgd == NULL)
819 return;
820
821 unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
822 kvm_free_hwpgd(kvm_get_hwpgd(kvm));
823 if (KVM_PREALLOC_LEVEL > 0)
824 kfree(kvm->arch.pgd);
825
826 kvm->arch.pgd = NULL;
827 }
828
829 static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
830 phys_addr_t addr)
831 {
832 pgd_t *pgd;
833 pud_t *pud;
834
835 pgd = kvm->arch.pgd + kvm_pgd_index(addr);
836 if (WARN_ON(pgd_none(*pgd))) {
837 if (!cache)
838 return NULL;
839 pud = mmu_memory_cache_alloc(cache);
840 pgd_populate(NULL, pgd, pud);
841 get_page(virt_to_page(pgd));
842 }
843
844 return pud_offset(pgd, addr);
845 }
846
847 static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
848 phys_addr_t addr)
849 {
850 pud_t *pud;
851 pmd_t *pmd;
852
853 pud = stage2_get_pud(kvm, cache, addr);
854 if (pud_none(*pud)) {
855 if (!cache)
856 return NULL;
857 pmd = mmu_memory_cache_alloc(cache);
858 pud_populate(NULL, pud, pmd);
859 get_page(virt_to_page(pud));
860 }
861
862 return pmd_offset(pud, addr);
863 }
864
865 static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
866 *cache, phys_addr_t addr, const pmd_t *new_pmd)
867 {
868 pmd_t *pmd, old_pmd;
869
870 pmd = stage2_get_pmd(kvm, cache, addr);
871 VM_BUG_ON(!pmd);
872
873 /*
874 * Mapping in huge pages should only happen through a fault. If a
875 * page is merged into a transparent huge page, the individual
876 * subpages of that huge page should be unmapped through MMU
877 * notifiers before we get here.
878 *
879 * Merging of CompoundPages is not supported; they should become
880 * splitting first, unmapped, merged, and mapped back in on-demand.
881 */
882 VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
883
884 old_pmd = *pmd;
885 kvm_set_pmd(pmd, *new_pmd);
886 if (pmd_present(old_pmd))
887 kvm_tlb_flush_vmid_ipa(kvm, addr);
888 else
889 get_page(virt_to_page(pmd));
890 return 0;
891 }
892
893 static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
894 phys_addr_t addr, const pte_t *new_pte,
895 unsigned long flags)
896 {
897 pmd_t *pmd;
898 pte_t *pte, old_pte;
899 bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
900 bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
901
902 VM_BUG_ON(logging_active && !cache);
903
904 /* Create stage-2 page table mapping - Levels 0 and 1 */
905 pmd = stage2_get_pmd(kvm, cache, addr);
906 if (!pmd) {
907 /*
908 * Ignore calls from kvm_set_spte_hva for unallocated
909 * address ranges.
910 */
911 return 0;
912 }
913
914 /*
915 * While dirty page logging - dissolve huge PMD, then continue on to
916 * allocate page.
917 */
918 if (logging_active)
919 stage2_dissolve_pmd(kvm, addr, pmd);
920
921 /* Create stage-2 page mappings - Level 2 */
922 if (pmd_none(*pmd)) {
923 if (!cache)
924 return 0; /* ignore calls from kvm_set_spte_hva */
925 pte = mmu_memory_cache_alloc(cache);
926 kvm_clean_pte(pte);
927 pmd_populate_kernel(NULL, pmd, pte);
928 get_page(virt_to_page(pmd));
929 }
930
931 pte = pte_offset_kernel(pmd, addr);
932
933 if (iomap && pte_present(*pte))
934 return -EFAULT;
935
936 /* Create 2nd stage page table mapping - Level 3 */
937 old_pte = *pte;
938 kvm_set_pte(pte, *new_pte);
939 if (pte_present(old_pte))
940 kvm_tlb_flush_vmid_ipa(kvm, addr);
941 else
942 get_page(virt_to_page(pte));
943
944 return 0;
945 }
946
947 /**
948 * kvm_phys_addr_ioremap - map a device range to guest IPA
949 *
950 * @kvm: The KVM pointer
951 * @guest_ipa: The IPA at which to insert the mapping
952 * @pa: The physical address of the device
953 * @size: The size of the mapping
954 */
955 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
956 phys_addr_t pa, unsigned long size, bool writable)
957 {
958 phys_addr_t addr, end;
959 int ret = 0;
960 unsigned long pfn;
961 struct kvm_mmu_memory_cache cache = { 0, };
962
963 end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
964 pfn = __phys_to_pfn(pa);
965
966 for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
967 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
968
969 if (writable)
970 kvm_set_s2pte_writable(&pte);
971
972 ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
973 KVM_NR_MEM_OBJS);
974 if (ret)
975 goto out;
976 spin_lock(&kvm->mmu_lock);
977 ret = stage2_set_pte(kvm, &cache, addr, &pte,
978 KVM_S2PTE_FLAG_IS_IOMAP);
979 spin_unlock(&kvm->mmu_lock);
980 if (ret)
981 goto out;
982
983 pfn++;
984 }
985
986 out:
987 mmu_free_memory_cache(&cache);
988 return ret;
989 }
990
991 static bool transparent_hugepage_adjust(pfn_t *pfnp, phys_addr_t *ipap)
992 {
993 pfn_t pfn = *pfnp;
994 gfn_t gfn = *ipap >> PAGE_SHIFT;
995
996 if (PageTransCompound(pfn_to_page(pfn))) {
997 unsigned long mask;
998 /*
999 * The address we faulted on is backed by a transparent huge
1000 * page. However, because we map the compound huge page and
1001 * not the individual tail page, we need to transfer the
1002 * refcount to the head page. We have to be careful that the
1003 * THP doesn't start to split while we are adjusting the
1004 * refcounts.
1005 *
1006 * We are sure this doesn't happen, because mmu_notifier_retry
1007 * was successful and we are holding the mmu_lock, so if this
1008 * THP is trying to split, it will be blocked in the mmu
1009 * notifier before touching any of the pages, specifically
1010 * before being able to call __split_huge_page_refcount().
1011 *
1012 * We can therefore safely transfer the refcount from PG_tail
1013 * to PG_head and switch the pfn from a tail page to the head
1014 * page accordingly.
1015 */
1016 mask = PTRS_PER_PMD - 1;
1017 VM_BUG_ON((gfn & mask) != (pfn & mask));
1018 if (pfn & mask) {
1019 *ipap &= PMD_MASK;
1020 kvm_release_pfn_clean(pfn);
1021 pfn &= ~mask;
1022 kvm_get_pfn(pfn);
1023 *pfnp = pfn;
1024 }
1025
1026 return true;
1027 }
1028
1029 return false;
1030 }
1031
1032 static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
1033 {
1034 if (kvm_vcpu_trap_is_iabt(vcpu))
1035 return false;
1036
1037 return kvm_vcpu_dabt_iswrite(vcpu);
1038 }
1039
1040 static bool kvm_is_device_pfn(unsigned long pfn)
1041 {
1042 return !pfn_valid(pfn);
1043 }
1044
1045 /**
1046 * stage2_wp_ptes - write protect PMD range
1047 * @pmd: pointer to pmd entry
1048 * @addr: range start address
1049 * @end: range end address
1050 */
1051 static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1052 {
1053 pte_t *pte;
1054
1055 pte = pte_offset_kernel(pmd, addr);
1056 do {
1057 if (!pte_none(*pte)) {
1058 if (!kvm_s2pte_readonly(pte))
1059 kvm_set_s2pte_readonly(pte);
1060 }
1061 } while (pte++, addr += PAGE_SIZE, addr != end);
1062 }
1063
1064 /**
1065 * stage2_wp_pmds - write protect PUD range
1066 * @pud: pointer to pud entry
1067 * @addr: range start address
1068 * @end: range end address
1069 */
1070 static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
1071 {
1072 pmd_t *pmd;
1073 phys_addr_t next;
1074
1075 pmd = pmd_offset(pud, addr);
1076
1077 do {
1078 next = kvm_pmd_addr_end(addr, end);
1079 if (!pmd_none(*pmd)) {
1080 if (kvm_pmd_huge(*pmd)) {
1081 if (!kvm_s2pmd_readonly(pmd))
1082 kvm_set_s2pmd_readonly(pmd);
1083 } else {
1084 stage2_wp_ptes(pmd, addr, next);
1085 }
1086 }
1087 } while (pmd++, addr = next, addr != end);
1088 }
1089
1090 /**
1091 * stage2_wp_puds - write protect PGD range
1092 * @pgd: pointer to pgd entry
1093 * @addr: range start address
1094 * @end: range end address
1095 *
1096 * Process PUD entries, for a huge PUD we cause a panic.
1097 */
1098 static void stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
1099 {
1100 pud_t *pud;
1101 phys_addr_t next;
1102
1103 pud = pud_offset(pgd, addr);
1104 do {
1105 next = kvm_pud_addr_end(addr, end);
1106 if (!pud_none(*pud)) {
1107 /* TODO:PUD not supported, revisit later if supported */
1108 BUG_ON(kvm_pud_huge(*pud));
1109 stage2_wp_pmds(pud, addr, next);
1110 }
1111 } while (pud++, addr = next, addr != end);
1112 }
1113
1114 /**
1115 * stage2_wp_range() - write protect stage2 memory region range
1116 * @kvm: The KVM pointer
1117 * @addr: Start address of range
1118 * @end: End address of range
1119 */
1120 static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1121 {
1122 pgd_t *pgd;
1123 phys_addr_t next;
1124
1125 pgd = kvm->arch.pgd + kvm_pgd_index(addr);
1126 do {
1127 /*
1128 * Release kvm_mmu_lock periodically if the memory region is
1129 * large. Otherwise, we may see kernel panics with
1130 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1131 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1132 * will also starve other vCPUs.
1133 */
1134 if (need_resched() || spin_needbreak(&kvm->mmu_lock))
1135 cond_resched_lock(&kvm->mmu_lock);
1136
1137 next = kvm_pgd_addr_end(addr, end);
1138 if (pgd_present(*pgd))
1139 stage2_wp_puds(pgd, addr, next);
1140 } while (pgd++, addr = next, addr != end);
1141 }
1142
1143 /**
1144 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1145 * @kvm: The KVM pointer
1146 * @slot: The memory slot to write protect
1147 *
1148 * Called to start logging dirty pages after memory region
1149 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1150 * all present PMD and PTEs are write protected in the memory region.
1151 * Afterwards read of dirty page log can be called.
1152 *
1153 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1154 * serializing operations for VM memory regions.
1155 */
1156 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1157 {
1158 struct kvm_memory_slot *memslot = id_to_memslot(kvm->memslots, slot);
1159 phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
1160 phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1161
1162 spin_lock(&kvm->mmu_lock);
1163 stage2_wp_range(kvm, start, end);
1164 spin_unlock(&kvm->mmu_lock);
1165 kvm_flush_remote_tlbs(kvm);
1166 }
1167
1168 /**
1169 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1170 * @kvm: The KVM pointer
1171 * @slot: The memory slot associated with mask
1172 * @gfn_offset: The gfn offset in memory slot
1173 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
1174 * slot to be write protected
1175 *
1176 * Walks bits set in mask write protects the associated pte's. Caller must
1177 * acquire kvm_mmu_lock.
1178 */
1179 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1180 struct kvm_memory_slot *slot,
1181 gfn_t gfn_offset, unsigned long mask)
1182 {
1183 phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1184 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
1185 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1186
1187 stage2_wp_range(kvm, start, end);
1188 }
1189
1190 /*
1191 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1192 * dirty pages.
1193 *
1194 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1195 * enable dirty logging for them.
1196 */
1197 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1198 struct kvm_memory_slot *slot,
1199 gfn_t gfn_offset, unsigned long mask)
1200 {
1201 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1202 }
1203
1204 static void coherent_cache_guest_page(struct kvm_vcpu *vcpu, pfn_t pfn,
1205 unsigned long size, bool uncached)
1206 {
1207 __coherent_cache_guest_page(vcpu, pfn, size, uncached);
1208 }
1209
1210 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1211 struct kvm_memory_slot *memslot, unsigned long hva,
1212 unsigned long fault_status)
1213 {
1214 int ret;
1215 bool write_fault, writable, hugetlb = false, force_pte = false;
1216 unsigned long mmu_seq;
1217 gfn_t gfn = fault_ipa >> PAGE_SHIFT;
1218 struct kvm *kvm = vcpu->kvm;
1219 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1220 struct vm_area_struct *vma;
1221 pfn_t pfn;
1222 pgprot_t mem_type = PAGE_S2;
1223 bool fault_ipa_uncached;
1224 bool logging_active = memslot_is_logging(memslot);
1225 unsigned long flags = 0;
1226
1227 write_fault = kvm_is_write_fault(vcpu);
1228 if (fault_status == FSC_PERM && !write_fault) {
1229 kvm_err("Unexpected L2 read permission error\n");
1230 return -EFAULT;
1231 }
1232
1233 /* Let's check if we will get back a huge page backed by hugetlbfs */
1234 down_read(&current->mm->mmap_sem);
1235 vma = find_vma_intersection(current->mm, hva, hva + 1);
1236 if (unlikely(!vma)) {
1237 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1238 up_read(&current->mm->mmap_sem);
1239 return -EFAULT;
1240 }
1241
1242 if (is_vm_hugetlb_page(vma) && !logging_active) {
1243 hugetlb = true;
1244 gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
1245 } else {
1246 /*
1247 * Pages belonging to memslots that don't have the same
1248 * alignment for userspace and IPA cannot be mapped using
1249 * block descriptors even if the pages belong to a THP for
1250 * the process, because the stage-2 block descriptor will
1251 * cover more than a single THP and we loose atomicity for
1252 * unmapping, updates, and splits of the THP or other pages
1253 * in the stage-2 block range.
1254 */
1255 if ((memslot->userspace_addr & ~PMD_MASK) !=
1256 ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
1257 force_pte = true;
1258 }
1259 up_read(&current->mm->mmap_sem);
1260
1261 /* We need minimum second+third level pages */
1262 ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
1263 KVM_NR_MEM_OBJS);
1264 if (ret)
1265 return ret;
1266
1267 mmu_seq = vcpu->kvm->mmu_notifier_seq;
1268 /*
1269 * Ensure the read of mmu_notifier_seq happens before we call
1270 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1271 * the page we just got a reference to gets unmapped before we have a
1272 * chance to grab the mmu_lock, which ensure that if the page gets
1273 * unmapped afterwards, the call to kvm_unmap_hva will take it away
1274 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1275 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1276 */
1277 smp_rmb();
1278
1279 pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1280 if (is_error_pfn(pfn))
1281 return -EFAULT;
1282
1283 if (kvm_is_device_pfn(pfn)) {
1284 mem_type = PAGE_S2_DEVICE;
1285 flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1286 } else if (logging_active) {
1287 /*
1288 * Faults on pages in a memslot with logging enabled
1289 * should not be mapped with huge pages (it introduces churn
1290 * and performance degradation), so force a pte mapping.
1291 */
1292 force_pte = true;
1293 flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1294
1295 /*
1296 * Only actually map the page as writable if this was a write
1297 * fault.
1298 */
1299 if (!write_fault)
1300 writable = false;
1301 }
1302
1303 spin_lock(&kvm->mmu_lock);
1304 if (mmu_notifier_retry(kvm, mmu_seq))
1305 goto out_unlock;
1306
1307 if (!hugetlb && !force_pte)
1308 hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
1309
1310 fault_ipa_uncached = memslot->flags & KVM_MEMSLOT_INCOHERENT;
1311
1312 if (hugetlb) {
1313 pmd_t new_pmd = pfn_pmd(pfn, mem_type);
1314 new_pmd = pmd_mkhuge(new_pmd);
1315 if (writable) {
1316 kvm_set_s2pmd_writable(&new_pmd);
1317 kvm_set_pfn_dirty(pfn);
1318 }
1319 coherent_cache_guest_page(vcpu, pfn, PMD_SIZE, fault_ipa_uncached);
1320 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1321 } else {
1322 pte_t new_pte = pfn_pte(pfn, mem_type);
1323
1324 if (writable) {
1325 kvm_set_s2pte_writable(&new_pte);
1326 kvm_set_pfn_dirty(pfn);
1327 mark_page_dirty(kvm, gfn);
1328 }
1329 coherent_cache_guest_page(vcpu, pfn, PAGE_SIZE, fault_ipa_uncached);
1330 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1331 }
1332
1333 out_unlock:
1334 spin_unlock(&kvm->mmu_lock);
1335 kvm_set_pfn_accessed(pfn);
1336 kvm_release_pfn_clean(pfn);
1337 return ret;
1338 }
1339
1340 /*
1341 * Resolve the access fault by making the page young again.
1342 * Note that because the faulting entry is guaranteed not to be
1343 * cached in the TLB, we don't need to invalidate anything.
1344 */
1345 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1346 {
1347 pmd_t *pmd;
1348 pte_t *pte;
1349 pfn_t pfn;
1350 bool pfn_valid = false;
1351
1352 trace_kvm_access_fault(fault_ipa);
1353
1354 spin_lock(&vcpu->kvm->mmu_lock);
1355
1356 pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
1357 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1358 goto out;
1359
1360 if (kvm_pmd_huge(*pmd)) { /* THP, HugeTLB */
1361 *pmd = pmd_mkyoung(*pmd);
1362 pfn = pmd_pfn(*pmd);
1363 pfn_valid = true;
1364 goto out;
1365 }
1366
1367 pte = pte_offset_kernel(pmd, fault_ipa);
1368 if (pte_none(*pte)) /* Nothing there either */
1369 goto out;
1370
1371 *pte = pte_mkyoung(*pte); /* Just a page... */
1372 pfn = pte_pfn(*pte);
1373 pfn_valid = true;
1374 out:
1375 spin_unlock(&vcpu->kvm->mmu_lock);
1376 if (pfn_valid)
1377 kvm_set_pfn_accessed(pfn);
1378 }
1379
1380 /**
1381 * kvm_handle_guest_abort - handles all 2nd stage aborts
1382 * @vcpu: the VCPU pointer
1383 * @run: the kvm_run structure
1384 *
1385 * Any abort that gets to the host is almost guaranteed to be caused by a
1386 * missing second stage translation table entry, which can mean that either the
1387 * guest simply needs more memory and we must allocate an appropriate page or it
1388 * can mean that the guest tried to access I/O memory, which is emulated by user
1389 * space. The distinction is based on the IPA causing the fault and whether this
1390 * memory region has been registered as standard RAM by user space.
1391 */
1392 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
1393 {
1394 unsigned long fault_status;
1395 phys_addr_t fault_ipa;
1396 struct kvm_memory_slot *memslot;
1397 unsigned long hva;
1398 bool is_iabt, write_fault, writable;
1399 gfn_t gfn;
1400 int ret, idx;
1401
1402 is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1403 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1404
1405 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
1406 kvm_vcpu_get_hfar(vcpu), fault_ipa);
1407
1408 /* Check the stage-2 fault is trans. fault or write fault */
1409 fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1410 if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1411 fault_status != FSC_ACCESS) {
1412 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1413 kvm_vcpu_trap_get_class(vcpu),
1414 (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1415 (unsigned long)kvm_vcpu_get_hsr(vcpu));
1416 return -EFAULT;
1417 }
1418
1419 idx = srcu_read_lock(&vcpu->kvm->srcu);
1420
1421 gfn = fault_ipa >> PAGE_SHIFT;
1422 memslot = gfn_to_memslot(vcpu->kvm, gfn);
1423 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1424 write_fault = kvm_is_write_fault(vcpu);
1425 if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1426 if (is_iabt) {
1427 /* Prefetch Abort on I/O address */
1428 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1429 ret = 1;
1430 goto out_unlock;
1431 }
1432
1433 /*
1434 * The IPA is reported as [MAX:12], so we need to
1435 * complement it with the bottom 12 bits from the
1436 * faulting VA. This is always 12 bits, irrespective
1437 * of the page size.
1438 */
1439 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1440 ret = io_mem_abort(vcpu, run, fault_ipa);
1441 goto out_unlock;
1442 }
1443
1444 /* Userspace should not be able to register out-of-bounds IPAs */
1445 VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);
1446
1447 if (fault_status == FSC_ACCESS) {
1448 handle_access_fault(vcpu, fault_ipa);
1449 ret = 1;
1450 goto out_unlock;
1451 }
1452
1453 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1454 if (ret == 0)
1455 ret = 1;
1456 out_unlock:
1457 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1458 return ret;
1459 }
1460
1461 static int handle_hva_to_gpa(struct kvm *kvm,
1462 unsigned long start,
1463 unsigned long end,
1464 int (*handler)(struct kvm *kvm,
1465 gpa_t gpa, void *data),
1466 void *data)
1467 {
1468 struct kvm_memslots *slots;
1469 struct kvm_memory_slot *memslot;
1470 int ret = 0;
1471
1472 slots = kvm_memslots(kvm);
1473
1474 /* we only care about the pages that the guest sees */
1475 kvm_for_each_memslot(memslot, slots) {
1476 unsigned long hva_start, hva_end;
1477 gfn_t gfn, gfn_end;
1478
1479 hva_start = max(start, memslot->userspace_addr);
1480 hva_end = min(end, memslot->userspace_addr +
1481 (memslot->npages << PAGE_SHIFT));
1482 if (hva_start >= hva_end)
1483 continue;
1484
1485 /*
1486 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1487 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1488 */
1489 gfn = hva_to_gfn_memslot(hva_start, memslot);
1490 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1491
1492 for (; gfn < gfn_end; ++gfn) {
1493 gpa_t gpa = gfn << PAGE_SHIFT;
1494 ret |= handler(kvm, gpa, data);
1495 }
1496 }
1497
1498 return ret;
1499 }
1500
1501 static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1502 {
1503 unmap_stage2_range(kvm, gpa, PAGE_SIZE);
1504 return 0;
1505 }
1506
1507 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1508 {
1509 unsigned long end = hva + PAGE_SIZE;
1510
1511 if (!kvm->arch.pgd)
1512 return 0;
1513
1514 trace_kvm_unmap_hva(hva);
1515 handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
1516 return 0;
1517 }
1518
1519 int kvm_unmap_hva_range(struct kvm *kvm,
1520 unsigned long start, unsigned long end)
1521 {
1522 if (!kvm->arch.pgd)
1523 return 0;
1524
1525 trace_kvm_unmap_hva_range(start, end);
1526 handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
1527 return 0;
1528 }
1529
1530 static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
1531 {
1532 pte_t *pte = (pte_t *)data;
1533
1534 /*
1535 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
1536 * flag clear because MMU notifiers will have unmapped a huge PMD before
1537 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1538 * therefore stage2_set_pte() never needs to clear out a huge PMD
1539 * through this calling path.
1540 */
1541 stage2_set_pte(kvm, NULL, gpa, pte, 0);
1542 return 0;
1543 }
1544
1545
1546 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1547 {
1548 unsigned long end = hva + PAGE_SIZE;
1549 pte_t stage2_pte;
1550
1551 if (!kvm->arch.pgd)
1552 return;
1553
1554 trace_kvm_set_spte_hva(hva);
1555 stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
1556 handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
1557 }
1558
1559 static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1560 {
1561 pmd_t *pmd;
1562 pte_t *pte;
1563
1564 pmd = stage2_get_pmd(kvm, NULL, gpa);
1565 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1566 return 0;
1567
1568 if (kvm_pmd_huge(*pmd)) { /* THP, HugeTLB */
1569 if (pmd_young(*pmd)) {
1570 *pmd = pmd_mkold(*pmd);
1571 return 1;
1572 }
1573
1574 return 0;
1575 }
1576
1577 pte = pte_offset_kernel(pmd, gpa);
1578 if (pte_none(*pte))
1579 return 0;
1580
1581 if (pte_young(*pte)) {
1582 *pte = pte_mkold(*pte); /* Just a page... */
1583 return 1;
1584 }
1585
1586 return 0;
1587 }
1588
1589 static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1590 {
1591 pmd_t *pmd;
1592 pte_t *pte;
1593
1594 pmd = stage2_get_pmd(kvm, NULL, gpa);
1595 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1596 return 0;
1597
1598 if (kvm_pmd_huge(*pmd)) /* THP, HugeTLB */
1599 return pmd_young(*pmd);
1600
1601 pte = pte_offset_kernel(pmd, gpa);
1602 if (!pte_none(*pte)) /* Just a page... */
1603 return pte_young(*pte);
1604
1605 return 0;
1606 }
1607
1608 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1609 {
1610 trace_kvm_age_hva(start, end);
1611 return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
1612 }
1613
1614 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1615 {
1616 trace_kvm_test_age_hva(hva);
1617 return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
1618 }
1619
1620 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1621 {
1622 mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
1623 }
1624
1625 phys_addr_t kvm_mmu_get_httbr(void)
1626 {
1627 if (__kvm_cpu_uses_extended_idmap())
1628 return virt_to_phys(merged_hyp_pgd);
1629 else
1630 return virt_to_phys(hyp_pgd);
1631 }
1632
1633 phys_addr_t kvm_mmu_get_boot_httbr(void)
1634 {
1635 if (__kvm_cpu_uses_extended_idmap())
1636 return virt_to_phys(merged_hyp_pgd);
1637 else
1638 return virt_to_phys(boot_hyp_pgd);
1639 }
1640
1641 phys_addr_t kvm_get_idmap_vector(void)
1642 {
1643 return hyp_idmap_vector;
1644 }
1645
1646 int kvm_mmu_init(void)
1647 {
1648 int err;
1649
1650 hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1651 hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1652 hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1653
1654 /*
1655 * We rely on the linker script to ensure at build time that the HYP
1656 * init code does not cross a page boundary.
1657 */
1658 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1659
1660 hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1661 boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1662
1663 if (!hyp_pgd || !boot_hyp_pgd) {
1664 kvm_err("Hyp mode PGD not allocated\n");
1665 err = -ENOMEM;
1666 goto out;
1667 }
1668
1669 /* Create the idmap in the boot page tables */
1670 err = __create_hyp_mappings(boot_hyp_pgd,
1671 hyp_idmap_start, hyp_idmap_end,
1672 __phys_to_pfn(hyp_idmap_start),
1673 PAGE_HYP);
1674
1675 if (err) {
1676 kvm_err("Failed to idmap %lx-%lx\n",
1677 hyp_idmap_start, hyp_idmap_end);
1678 goto out;
1679 }
1680
1681 if (__kvm_cpu_uses_extended_idmap()) {
1682 merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1683 if (!merged_hyp_pgd) {
1684 kvm_err("Failed to allocate extra HYP pgd\n");
1685 goto out;
1686 }
1687 __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
1688 hyp_idmap_start);
1689 return 0;
1690 }
1691
1692 /* Map the very same page at the trampoline VA */
1693 err = __create_hyp_mappings(boot_hyp_pgd,
1694 TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1695 __phys_to_pfn(hyp_idmap_start),
1696 PAGE_HYP);
1697 if (err) {
1698 kvm_err("Failed to map trampoline @%lx into boot HYP pgd\n",
1699 TRAMPOLINE_VA);
1700 goto out;
1701 }
1702
1703 /* Map the same page again into the runtime page tables */
1704 err = __create_hyp_mappings(hyp_pgd,
1705 TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1706 __phys_to_pfn(hyp_idmap_start),
1707 PAGE_HYP);
1708 if (err) {
1709 kvm_err("Failed to map trampoline @%lx into runtime HYP pgd\n",
1710 TRAMPOLINE_VA);
1711 goto out;
1712 }
1713
1714 return 0;
1715 out:
1716 free_hyp_pgds();
1717 return err;
1718 }
1719
1720 void kvm_arch_commit_memory_region(struct kvm *kvm,
1721 struct kvm_userspace_memory_region *mem,
1722 const struct kvm_memory_slot *old,
1723 enum kvm_mr_change change)
1724 {
1725 /*
1726 * At this point memslot has been committed and there is an
1727 * allocated dirty_bitmap[], dirty pages will be be tracked while the
1728 * memory slot is write protected.
1729 */
1730 if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
1731 kvm_mmu_wp_memory_region(kvm, mem->slot);
1732 }
1733
1734 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1735 struct kvm_memory_slot *memslot,
1736 struct kvm_userspace_memory_region *mem,
1737 enum kvm_mr_change change)
1738 {
1739 hva_t hva = mem->userspace_addr;
1740 hva_t reg_end = hva + mem->memory_size;
1741 bool writable = !(mem->flags & KVM_MEM_READONLY);
1742 int ret = 0;
1743
1744 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1745 change != KVM_MR_FLAGS_ONLY)
1746 return 0;
1747
1748 /*
1749 * Prevent userspace from creating a memory region outside of the IPA
1750 * space addressable by the KVM guest IPA space.
1751 */
1752 if (memslot->base_gfn + memslot->npages >=
1753 (KVM_PHYS_SIZE >> PAGE_SHIFT))
1754 return -EFAULT;
1755
1756 /*
1757 * A memory region could potentially cover multiple VMAs, and any holes
1758 * between them, so iterate over all of them to find out if we can map
1759 * any of them right now.
1760 *
1761 * +--------------------------------------------+
1762 * +---------------+----------------+ +----------------+
1763 * | : VMA 1 | VMA 2 | | VMA 3 : |
1764 * +---------------+----------------+ +----------------+
1765 * | memory region |
1766 * +--------------------------------------------+
1767 */
1768 do {
1769 struct vm_area_struct *vma = find_vma(current->mm, hva);
1770 hva_t vm_start, vm_end;
1771
1772 if (!vma || vma->vm_start >= reg_end)
1773 break;
1774
1775 /*
1776 * Mapping a read-only VMA is only allowed if the
1777 * memory region is configured as read-only.
1778 */
1779 if (writable && !(vma->vm_flags & VM_WRITE)) {
1780 ret = -EPERM;
1781 break;
1782 }
1783
1784 /*
1785 * Take the intersection of this VMA with the memory region
1786 */
1787 vm_start = max(hva, vma->vm_start);
1788 vm_end = min(reg_end, vma->vm_end);
1789
1790 if (vma->vm_flags & VM_PFNMAP) {
1791 gpa_t gpa = mem->guest_phys_addr +
1792 (vm_start - mem->userspace_addr);
1793 phys_addr_t pa = (vma->vm_pgoff << PAGE_SHIFT) +
1794 vm_start - vma->vm_start;
1795
1796 /* IO region dirty page logging not allowed */
1797 if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES)
1798 return -EINVAL;
1799
1800 ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
1801 vm_end - vm_start,
1802 writable);
1803 if (ret)
1804 break;
1805 }
1806 hva = vm_end;
1807 } while (hva < reg_end);
1808
1809 if (change == KVM_MR_FLAGS_ONLY)
1810 return ret;
1811
1812 spin_lock(&kvm->mmu_lock);
1813 if (ret)
1814 unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
1815 else
1816 stage2_flush_memslot(kvm, memslot);
1817 spin_unlock(&kvm->mmu_lock);
1818 return ret;
1819 }
1820
1821 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
1822 struct kvm_memory_slot *dont)
1823 {
1824 }
1825
1826 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
1827 unsigned long npages)
1828 {
1829 /*
1830 * Readonly memslots are not incoherent with the caches by definition,
1831 * but in practice, they are used mostly to emulate ROMs or NOR flashes
1832 * that the guest may consider devices and hence map as uncached.
1833 * To prevent incoherency issues in these cases, tag all readonly
1834 * regions as incoherent.
1835 */
1836 if (slot->flags & KVM_MEM_READONLY)
1837 slot->flags |= KVM_MEMSLOT_INCOHERENT;
1838 return 0;
1839 }
1840
1841 void kvm_arch_memslots_updated(struct kvm *kvm)
1842 {
1843 }
1844
1845 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1846 {
1847 }
1848
1849 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1850 struct kvm_memory_slot *slot)
1851 {
1852 gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1853 phys_addr_t size = slot->npages << PAGE_SHIFT;
1854
1855 spin_lock(&kvm->mmu_lock);
1856 unmap_stage2_range(kvm, gpa, size);
1857 spin_unlock(&kvm->mmu_lock);
1858 }
1859
1860 /*
1861 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1862 *
1863 * Main problems:
1864 * - S/W ops are local to a CPU (not broadcast)
1865 * - We have line migration behind our back (speculation)
1866 * - System caches don't support S/W at all (damn!)
1867 *
1868 * In the face of the above, the best we can do is to try and convert
1869 * S/W ops to VA ops. Because the guest is not allowed to infer the
1870 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1871 * which is a rather good thing for us.
1872 *
1873 * Also, it is only used when turning caches on/off ("The expected
1874 * usage of the cache maintenance instructions that operate by set/way
1875 * is associated with the cache maintenance instructions associated
1876 * with the powerdown and powerup of caches, if this is required by
1877 * the implementation.").
1878 *
1879 * We use the following policy:
1880 *
1881 * - If we trap a S/W operation, we enable VM trapping to detect
1882 * caches being turned on/off, and do a full clean.
1883 *
1884 * - We flush the caches on both caches being turned on and off.
1885 *
1886 * - Once the caches are enabled, we stop trapping VM ops.
1887 */
1888 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
1889 {
1890 unsigned long hcr = vcpu_get_hcr(vcpu);
1891
1892 /*
1893 * If this is the first time we do a S/W operation
1894 * (i.e. HCR_TVM not set) flush the whole memory, and set the
1895 * VM trapping.
1896 *
1897 * Otherwise, rely on the VM trapping to wait for the MMU +
1898 * Caches to be turned off. At that point, we'll be able to
1899 * clean the caches again.
1900 */
1901 if (!(hcr & HCR_TVM)) {
1902 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
1903 vcpu_has_cache_enabled(vcpu));
1904 stage2_flush_vm(vcpu->kvm);
1905 vcpu_set_hcr(vcpu, hcr | HCR_TVM);
1906 }
1907 }
1908
1909 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
1910 {
1911 bool now_enabled = vcpu_has_cache_enabled(vcpu);
1912
1913 /*
1914 * If switching the MMU+caches on, need to invalidate the caches.
1915 * If switching it off, need to clean the caches.
1916 * Clean + invalidate does the trick always.
1917 */
1918 if (now_enabled != was_enabled)
1919 stage2_flush_vm(vcpu->kvm);
1920
1921 /* Caches are now on, stop trapping VM ops (until a S/W op) */
1922 if (now_enabled)
1923 vcpu_set_hcr(vcpu, vcpu_get_hcr(vcpu) & ~HCR_TVM);
1924
1925 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
1926 }
This page took 0.069986 seconds and 6 git commands to generate.