1922d461387e360ba4e18466a0f7fafeb99f0f71
[deliverable/linux.git] / arch / arm / mach-davinci / dma.c
1 /*
2 * EDMA3 support for DaVinci
3 *
4 * Copyright (C) 2006-2009 Texas Instruments.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/platform_device.h>
25 #include <linux/io.h>
26 #include <linux/slab.h>
27
28 #include <mach/edma.h>
29
30 /* Offsets matching "struct edmacc_param" */
31 #define PARM_OPT 0x00
32 #define PARM_SRC 0x04
33 #define PARM_A_B_CNT 0x08
34 #define PARM_DST 0x0c
35 #define PARM_SRC_DST_BIDX 0x10
36 #define PARM_LINK_BCNTRLD 0x14
37 #define PARM_SRC_DST_CIDX 0x18
38 #define PARM_CCNT 0x1c
39
40 #define PARM_SIZE 0x20
41
42 /* Offsets for EDMA CC global channel registers and their shadows */
43 #define SH_ER 0x00 /* 64 bits */
44 #define SH_ECR 0x08 /* 64 bits */
45 #define SH_ESR 0x10 /* 64 bits */
46 #define SH_CER 0x18 /* 64 bits */
47 #define SH_EER 0x20 /* 64 bits */
48 #define SH_EECR 0x28 /* 64 bits */
49 #define SH_EESR 0x30 /* 64 bits */
50 #define SH_SER 0x38 /* 64 bits */
51 #define SH_SECR 0x40 /* 64 bits */
52 #define SH_IER 0x50 /* 64 bits */
53 #define SH_IECR 0x58 /* 64 bits */
54 #define SH_IESR 0x60 /* 64 bits */
55 #define SH_IPR 0x68 /* 64 bits */
56 #define SH_ICR 0x70 /* 64 bits */
57 #define SH_IEVAL 0x78
58 #define SH_QER 0x80
59 #define SH_QEER 0x84
60 #define SH_QEECR 0x88
61 #define SH_QEESR 0x8c
62 #define SH_QSER 0x90
63 #define SH_QSECR 0x94
64 #define SH_SIZE 0x200
65
66 /* Offsets for EDMA CC global registers */
67 #define EDMA_REV 0x0000
68 #define EDMA_CCCFG 0x0004
69 #define EDMA_QCHMAP 0x0200 /* 8 registers */
70 #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
71 #define EDMA_QDMAQNUM 0x0260
72 #define EDMA_QUETCMAP 0x0280
73 #define EDMA_QUEPRI 0x0284
74 #define EDMA_EMR 0x0300 /* 64 bits */
75 #define EDMA_EMCR 0x0308 /* 64 bits */
76 #define EDMA_QEMR 0x0310
77 #define EDMA_QEMCR 0x0314
78 #define EDMA_CCERR 0x0318
79 #define EDMA_CCERRCLR 0x031c
80 #define EDMA_EEVAL 0x0320
81 #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
82 #define EDMA_QRAE 0x0380 /* 4 registers */
83 #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
84 #define EDMA_QSTAT 0x0600 /* 2 registers */
85 #define EDMA_QWMTHRA 0x0620
86 #define EDMA_QWMTHRB 0x0624
87 #define EDMA_CCSTAT 0x0640
88
89 #define EDMA_M 0x1000 /* global channel registers */
90 #define EDMA_ECR 0x1008
91 #define EDMA_ECRH 0x100C
92 #define EDMA_SHADOW0 0x2000 /* 4 regions shadowing global channels */
93 #define EDMA_PARM 0x4000 /* 128 param entries */
94
95 #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
96
97 #define EDMA_DCHMAP 0x0100 /* 64 registers */
98 #define CHMAP_EXIST BIT(24)
99
100 #define EDMA_MAX_DMACH 64
101 #define EDMA_MAX_PARAMENTRY 512
102 #define EDMA_MAX_CC 2
103
104
105 /*****************************************************************************/
106
107 static void __iomem *edmacc_regs_base[EDMA_MAX_CC];
108
109 static inline unsigned int edma_read(unsigned ctlr, int offset)
110 {
111 return (unsigned int)__raw_readl(edmacc_regs_base[ctlr] + offset);
112 }
113
114 static inline void edma_write(unsigned ctlr, int offset, int val)
115 {
116 __raw_writel(val, edmacc_regs_base[ctlr] + offset);
117 }
118 static inline void edma_modify(unsigned ctlr, int offset, unsigned and,
119 unsigned or)
120 {
121 unsigned val = edma_read(ctlr, offset);
122 val &= and;
123 val |= or;
124 edma_write(ctlr, offset, val);
125 }
126 static inline void edma_and(unsigned ctlr, int offset, unsigned and)
127 {
128 unsigned val = edma_read(ctlr, offset);
129 val &= and;
130 edma_write(ctlr, offset, val);
131 }
132 static inline void edma_or(unsigned ctlr, int offset, unsigned or)
133 {
134 unsigned val = edma_read(ctlr, offset);
135 val |= or;
136 edma_write(ctlr, offset, val);
137 }
138 static inline unsigned int edma_read_array(unsigned ctlr, int offset, int i)
139 {
140 return edma_read(ctlr, offset + (i << 2));
141 }
142 static inline void edma_write_array(unsigned ctlr, int offset, int i,
143 unsigned val)
144 {
145 edma_write(ctlr, offset + (i << 2), val);
146 }
147 static inline void edma_modify_array(unsigned ctlr, int offset, int i,
148 unsigned and, unsigned or)
149 {
150 edma_modify(ctlr, offset + (i << 2), and, or);
151 }
152 static inline void edma_or_array(unsigned ctlr, int offset, int i, unsigned or)
153 {
154 edma_or(ctlr, offset + (i << 2), or);
155 }
156 static inline void edma_or_array2(unsigned ctlr, int offset, int i, int j,
157 unsigned or)
158 {
159 edma_or(ctlr, offset + ((i*2 + j) << 2), or);
160 }
161 static inline void edma_write_array2(unsigned ctlr, int offset, int i, int j,
162 unsigned val)
163 {
164 edma_write(ctlr, offset + ((i*2 + j) << 2), val);
165 }
166 static inline unsigned int edma_shadow0_read(unsigned ctlr, int offset)
167 {
168 return edma_read(ctlr, EDMA_SHADOW0 + offset);
169 }
170 static inline unsigned int edma_shadow0_read_array(unsigned ctlr, int offset,
171 int i)
172 {
173 return edma_read(ctlr, EDMA_SHADOW0 + offset + (i << 2));
174 }
175 static inline void edma_shadow0_write(unsigned ctlr, int offset, unsigned val)
176 {
177 edma_write(ctlr, EDMA_SHADOW0 + offset, val);
178 }
179 static inline void edma_shadow0_write_array(unsigned ctlr, int offset, int i,
180 unsigned val)
181 {
182 edma_write(ctlr, EDMA_SHADOW0 + offset + (i << 2), val);
183 }
184 static inline unsigned int edma_parm_read(unsigned ctlr, int offset,
185 int param_no)
186 {
187 return edma_read(ctlr, EDMA_PARM + offset + (param_no << 5));
188 }
189 static inline void edma_parm_write(unsigned ctlr, int offset, int param_no,
190 unsigned val)
191 {
192 edma_write(ctlr, EDMA_PARM + offset + (param_no << 5), val);
193 }
194 static inline void edma_parm_modify(unsigned ctlr, int offset, int param_no,
195 unsigned and, unsigned or)
196 {
197 edma_modify(ctlr, EDMA_PARM + offset + (param_no << 5), and, or);
198 }
199 static inline void edma_parm_and(unsigned ctlr, int offset, int param_no,
200 unsigned and)
201 {
202 edma_and(ctlr, EDMA_PARM + offset + (param_no << 5), and);
203 }
204 static inline void edma_parm_or(unsigned ctlr, int offset, int param_no,
205 unsigned or)
206 {
207 edma_or(ctlr, EDMA_PARM + offset + (param_no << 5), or);
208 }
209
210 /*****************************************************************************/
211
212 /* actual number of DMA channels and slots on this silicon */
213 struct edma {
214 /* how many dma resources of each type */
215 unsigned num_channels;
216 unsigned num_region;
217 unsigned num_slots;
218 unsigned num_tc;
219 unsigned num_cc;
220 enum dma_event_q default_queue;
221
222 /* list of channels with no even trigger; terminated by "-1" */
223 const s8 *noevent;
224
225 /* The edma_inuse bit for each PaRAM slot is clear unless the
226 * channel is in use ... by ARM or DSP, for QDMA, or whatever.
227 */
228 DECLARE_BITMAP(edma_inuse, EDMA_MAX_PARAMENTRY);
229
230 /* The edma_unused bit for each channel is clear unless
231 * it is not being used on this platform. It uses a bit
232 * of SOC-specific initialization code.
233 */
234 DECLARE_BITMAP(edma_unused, EDMA_MAX_DMACH);
235
236 unsigned irq_res_start;
237 unsigned irq_res_end;
238
239 struct dma_interrupt_data {
240 void (*callback)(unsigned channel, unsigned short ch_status,
241 void *data);
242 void *data;
243 } intr_data[EDMA_MAX_DMACH];
244 };
245
246 static struct edma *edma_cc[EDMA_MAX_CC];
247 static int arch_num_cc;
248
249 /* dummy param set used to (re)initialize parameter RAM slots */
250 static const struct edmacc_param dummy_paramset = {
251 .link_bcntrld = 0xffff,
252 .ccnt = 1,
253 };
254
255 /*****************************************************************************/
256
257 static void map_dmach_queue(unsigned ctlr, unsigned ch_no,
258 enum dma_event_q queue_no)
259 {
260 int bit = (ch_no & 0x7) * 4;
261
262 /* default to low priority queue */
263 if (queue_no == EVENTQ_DEFAULT)
264 queue_no = edma_cc[ctlr]->default_queue;
265
266 queue_no &= 7;
267 edma_modify_array(ctlr, EDMA_DMAQNUM, (ch_no >> 3),
268 ~(0x7 << bit), queue_no << bit);
269 }
270
271 static void __init map_queue_tc(unsigned ctlr, int queue_no, int tc_no)
272 {
273 int bit = queue_no * 4;
274 edma_modify(ctlr, EDMA_QUETCMAP, ~(0x7 << bit), ((tc_no & 0x7) << bit));
275 }
276
277 static void __init assign_priority_to_queue(unsigned ctlr, int queue_no,
278 int priority)
279 {
280 int bit = queue_no * 4;
281 edma_modify(ctlr, EDMA_QUEPRI, ~(0x7 << bit),
282 ((priority & 0x7) << bit));
283 }
284
285 /**
286 * map_dmach_param - Maps channel number to param entry number
287 *
288 * This maps the dma channel number to param entry numberter. In
289 * other words using the DMA channel mapping registers a param entry
290 * can be mapped to any channel
291 *
292 * Callers are responsible for ensuring the channel mapping logic is
293 * included in that particular EDMA variant (Eg : dm646x)
294 *
295 */
296 static void __init map_dmach_param(unsigned ctlr)
297 {
298 int i;
299 for (i = 0; i < EDMA_MAX_DMACH; i++)
300 edma_write_array(ctlr, EDMA_DCHMAP , i , (i << 5));
301 }
302
303 static inline void
304 setup_dma_interrupt(unsigned lch,
305 void (*callback)(unsigned channel, u16 ch_status, void *data),
306 void *data)
307 {
308 unsigned ctlr;
309
310 ctlr = EDMA_CTLR(lch);
311 lch = EDMA_CHAN_SLOT(lch);
312
313 if (!callback)
314 edma_shadow0_write_array(ctlr, SH_IECR, lch >> 5,
315 BIT(lch & 0x1f));
316
317 edma_cc[ctlr]->intr_data[lch].callback = callback;
318 edma_cc[ctlr]->intr_data[lch].data = data;
319
320 if (callback) {
321 edma_shadow0_write_array(ctlr, SH_ICR, lch >> 5,
322 BIT(lch & 0x1f));
323 edma_shadow0_write_array(ctlr, SH_IESR, lch >> 5,
324 BIT(lch & 0x1f));
325 }
326 }
327
328 static int irq2ctlr(int irq)
329 {
330 if (irq >= edma_cc[0]->irq_res_start && irq <= edma_cc[0]->irq_res_end)
331 return 0;
332 else if (irq >= edma_cc[1]->irq_res_start &&
333 irq <= edma_cc[1]->irq_res_end)
334 return 1;
335
336 return -1;
337 }
338
339 /******************************************************************************
340 *
341 * DMA interrupt handler
342 *
343 *****************************************************************************/
344 static irqreturn_t dma_irq_handler(int irq, void *data)
345 {
346 int i;
347 unsigned ctlr;
348 unsigned int cnt = 0;
349
350 ctlr = irq2ctlr(irq);
351
352 dev_dbg(data, "dma_irq_handler\n");
353
354 if ((edma_shadow0_read_array(ctlr, SH_IPR, 0) == 0)
355 && (edma_shadow0_read_array(ctlr, SH_IPR, 1) == 0))
356 return IRQ_NONE;
357
358 while (1) {
359 int j;
360 if (edma_shadow0_read_array(ctlr, SH_IPR, 0) &
361 edma_shadow0_read_array(ctlr, SH_IER, 0))
362 j = 0;
363 else if (edma_shadow0_read_array(ctlr, SH_IPR, 1) &
364 edma_shadow0_read_array(ctlr, SH_IER, 1))
365 j = 1;
366 else
367 break;
368 dev_dbg(data, "IPR%d %08x\n", j,
369 edma_shadow0_read_array(ctlr, SH_IPR, j));
370 for (i = 0; i < 32; i++) {
371 int k = (j << 5) + i;
372 if ((edma_shadow0_read_array(ctlr, SH_IPR, j) & BIT(i))
373 && (edma_shadow0_read_array(ctlr,
374 SH_IER, j) & BIT(i))) {
375 /* Clear the corresponding IPR bits */
376 edma_shadow0_write_array(ctlr, SH_ICR, j,
377 BIT(i));
378 if (edma_cc[ctlr]->intr_data[k].callback)
379 edma_cc[ctlr]->intr_data[k].callback(
380 k, DMA_COMPLETE,
381 edma_cc[ctlr]->intr_data[k].
382 data);
383 }
384 }
385 cnt++;
386 if (cnt > 10)
387 break;
388 }
389 edma_shadow0_write(ctlr, SH_IEVAL, 1);
390 return IRQ_HANDLED;
391 }
392
393 /******************************************************************************
394 *
395 * DMA error interrupt handler
396 *
397 *****************************************************************************/
398 static irqreturn_t dma_ccerr_handler(int irq, void *data)
399 {
400 int i;
401 unsigned ctlr;
402 unsigned int cnt = 0;
403
404 ctlr = irq2ctlr(irq);
405
406 dev_dbg(data, "dma_ccerr_handler\n");
407
408 if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
409 (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
410 (edma_read(ctlr, EDMA_QEMR) == 0) &&
411 (edma_read(ctlr, EDMA_CCERR) == 0))
412 return IRQ_NONE;
413
414 while (1) {
415 int j = -1;
416 if (edma_read_array(ctlr, EDMA_EMR, 0))
417 j = 0;
418 else if (edma_read_array(ctlr, EDMA_EMR, 1))
419 j = 1;
420 if (j >= 0) {
421 dev_dbg(data, "EMR%d %08x\n", j,
422 edma_read_array(ctlr, EDMA_EMR, j));
423 for (i = 0; i < 32; i++) {
424 int k = (j << 5) + i;
425 if (edma_read_array(ctlr, EDMA_EMR, j) &
426 BIT(i)) {
427 /* Clear the corresponding EMR bits */
428 edma_write_array(ctlr, EDMA_EMCR, j,
429 BIT(i));
430 /* Clear any SER */
431 edma_shadow0_write_array(ctlr, SH_SECR,
432 j, BIT(i));
433 if (edma_cc[ctlr]->intr_data[k].
434 callback) {
435 edma_cc[ctlr]->intr_data[k].
436 callback(k,
437 DMA_CC_ERROR,
438 edma_cc[ctlr]->intr_data
439 [k].data);
440 }
441 }
442 }
443 } else if (edma_read(ctlr, EDMA_QEMR)) {
444 dev_dbg(data, "QEMR %02x\n",
445 edma_read(ctlr, EDMA_QEMR));
446 for (i = 0; i < 8; i++) {
447 if (edma_read(ctlr, EDMA_QEMR) & BIT(i)) {
448 /* Clear the corresponding IPR bits */
449 edma_write(ctlr, EDMA_QEMCR, BIT(i));
450 edma_shadow0_write(ctlr, SH_QSECR,
451 BIT(i));
452
453 /* NOTE: not reported!! */
454 }
455 }
456 } else if (edma_read(ctlr, EDMA_CCERR)) {
457 dev_dbg(data, "CCERR %08x\n",
458 edma_read(ctlr, EDMA_CCERR));
459 /* FIXME: CCERR.BIT(16) ignored! much better
460 * to just write CCERRCLR with CCERR value...
461 */
462 for (i = 0; i < 8; i++) {
463 if (edma_read(ctlr, EDMA_CCERR) & BIT(i)) {
464 /* Clear the corresponding IPR bits */
465 edma_write(ctlr, EDMA_CCERRCLR, BIT(i));
466
467 /* NOTE: not reported!! */
468 }
469 }
470 }
471 if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0)
472 && (edma_read_array(ctlr, EDMA_EMR, 1) == 0)
473 && (edma_read(ctlr, EDMA_QEMR) == 0)
474 && (edma_read(ctlr, EDMA_CCERR) == 0))
475 break;
476 cnt++;
477 if (cnt > 10)
478 break;
479 }
480 edma_write(ctlr, EDMA_EEVAL, 1);
481 return IRQ_HANDLED;
482 }
483
484 /******************************************************************************
485 *
486 * Transfer controller error interrupt handlers
487 *
488 *****************************************************************************/
489
490 #define tc_errs_handled false /* disabled as long as they're NOPs */
491
492 static irqreturn_t dma_tc0err_handler(int irq, void *data)
493 {
494 dev_dbg(data, "dma_tc0err_handler\n");
495 return IRQ_HANDLED;
496 }
497
498 static irqreturn_t dma_tc1err_handler(int irq, void *data)
499 {
500 dev_dbg(data, "dma_tc1err_handler\n");
501 return IRQ_HANDLED;
502 }
503
504 static int reserve_contiguous_slots(int ctlr, unsigned int id,
505 unsigned int num_slots,
506 unsigned int start_slot)
507 {
508 int i, j;
509 unsigned int count = num_slots;
510 int stop_slot = start_slot;
511 DECLARE_BITMAP(tmp_inuse, EDMA_MAX_PARAMENTRY);
512
513 for (i = start_slot; i < edma_cc[ctlr]->num_slots; ++i) {
514 j = EDMA_CHAN_SLOT(i);
515 if (!test_and_set_bit(j, edma_cc[ctlr]->edma_inuse)) {
516 /* Record our current beginning slot */
517 if (count == num_slots)
518 stop_slot = i;
519
520 count--;
521 set_bit(j, tmp_inuse);
522
523 if (count == 0)
524 break;
525 } else {
526 clear_bit(j, tmp_inuse);
527
528 if (id == EDMA_CONT_PARAMS_FIXED_EXACT) {
529 stop_slot = i;
530 break;
531 } else {
532 count = num_slots;
533 }
534 }
535 }
536
537 /*
538 * We have to clear any bits that we set
539 * if we run out parameter RAM slots, i.e we do find a set
540 * of contiguous parameter RAM slots but do not find the exact number
541 * requested as we may reach the total number of parameter RAM slots
542 */
543 if (i == edma_cc[ctlr]->num_slots)
544 stop_slot = i;
545
546 for (j = start_slot; j < stop_slot; j++)
547 if (test_bit(j, tmp_inuse))
548 clear_bit(j, edma_cc[ctlr]->edma_inuse);
549
550 if (count)
551 return -EBUSY;
552
553 for (j = i - num_slots + 1; j <= i; ++j)
554 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(j),
555 &dummy_paramset, PARM_SIZE);
556
557 return EDMA_CTLR_CHAN(ctlr, i - num_slots + 1);
558 }
559
560 static int prepare_unused_channel_list(struct device *dev, void *data)
561 {
562 struct platform_device *pdev = to_platform_device(dev);
563 int i, ctlr;
564
565 for (i = 0; i < pdev->num_resources; i++) {
566 if ((pdev->resource[i].flags & IORESOURCE_DMA) &&
567 (int)pdev->resource[i].start >= 0) {
568 ctlr = EDMA_CTLR(pdev->resource[i].start);
569 clear_bit(EDMA_CHAN_SLOT(pdev->resource[i].start),
570 edma_cc[ctlr]->edma_unused);
571 }
572 }
573
574 return 0;
575 }
576
577 /*-----------------------------------------------------------------------*/
578
579 static bool unused_chan_list_done;
580
581 /* Resource alloc/free: dma channels, parameter RAM slots */
582
583 /**
584 * edma_alloc_channel - allocate DMA channel and paired parameter RAM
585 * @channel: specific channel to allocate; negative for "any unmapped channel"
586 * @callback: optional; to be issued on DMA completion or errors
587 * @data: passed to callback
588 * @eventq_no: an EVENTQ_* constant, used to choose which Transfer
589 * Controller (TC) executes requests using this channel. Use
590 * EVENTQ_DEFAULT unless you really need a high priority queue.
591 *
592 * This allocates a DMA channel and its associated parameter RAM slot.
593 * The parameter RAM is initialized to hold a dummy transfer.
594 *
595 * Normal use is to pass a specific channel number as @channel, to make
596 * use of hardware events mapped to that channel. When the channel will
597 * be used only for software triggering or event chaining, channels not
598 * mapped to hardware events (or mapped to unused events) are preferable.
599 *
600 * DMA transfers start from a channel using edma_start(), or by
601 * chaining. When the transfer described in that channel's parameter RAM
602 * slot completes, that slot's data may be reloaded through a link.
603 *
604 * DMA errors are only reported to the @callback associated with the
605 * channel driving that transfer, but transfer completion callbacks can
606 * be sent to another channel under control of the TCC field in
607 * the option word of the transfer's parameter RAM set. Drivers must not
608 * use DMA transfer completion callbacks for channels they did not allocate.
609 * (The same applies to TCC codes used in transfer chaining.)
610 *
611 * Returns the number of the channel, else negative errno.
612 */
613 int edma_alloc_channel(int channel,
614 void (*callback)(unsigned channel, u16 ch_status, void *data),
615 void *data,
616 enum dma_event_q eventq_no)
617 {
618 unsigned i, done = 0, ctlr = 0;
619 int ret = 0;
620
621 if (!unused_chan_list_done) {
622 /*
623 * Scan all the platform devices to find out the EDMA channels
624 * used and clear them in the unused list, making the rest
625 * available for ARM usage.
626 */
627 ret = bus_for_each_dev(&platform_bus_type, NULL, NULL,
628 prepare_unused_channel_list);
629 if (ret < 0)
630 return ret;
631
632 unused_chan_list_done = true;
633 }
634
635 if (channel >= 0) {
636 ctlr = EDMA_CTLR(channel);
637 channel = EDMA_CHAN_SLOT(channel);
638 }
639
640 if (channel < 0) {
641 for (i = 0; i < arch_num_cc; i++) {
642 channel = 0;
643 for (;;) {
644 channel = find_next_bit(edma_cc[i]->edma_unused,
645 edma_cc[i]->num_channels,
646 channel);
647 if (channel == edma_cc[i]->num_channels)
648 break;
649 if (!test_and_set_bit(channel,
650 edma_cc[i]->edma_inuse)) {
651 done = 1;
652 ctlr = i;
653 break;
654 }
655 channel++;
656 }
657 if (done)
658 break;
659 }
660 if (!done)
661 return -ENOMEM;
662 } else if (channel >= edma_cc[ctlr]->num_channels) {
663 return -EINVAL;
664 } else if (test_and_set_bit(channel, edma_cc[ctlr]->edma_inuse)) {
665 return -EBUSY;
666 }
667
668 /* ensure access through shadow region 0 */
669 edma_or_array2(ctlr, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
670
671 /* ensure no events are pending */
672 edma_stop(EDMA_CTLR_CHAN(ctlr, channel));
673 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
674 &dummy_paramset, PARM_SIZE);
675
676 if (callback)
677 setup_dma_interrupt(EDMA_CTLR_CHAN(ctlr, channel),
678 callback, data);
679
680 map_dmach_queue(ctlr, channel, eventq_no);
681
682 return EDMA_CTLR_CHAN(ctlr, channel);
683 }
684 EXPORT_SYMBOL(edma_alloc_channel);
685
686
687 /**
688 * edma_free_channel - deallocate DMA channel
689 * @channel: dma channel returned from edma_alloc_channel()
690 *
691 * This deallocates the DMA channel and associated parameter RAM slot
692 * allocated by edma_alloc_channel().
693 *
694 * Callers are responsible for ensuring the channel is inactive, and
695 * will not be reactivated by linking, chaining, or software calls to
696 * edma_start().
697 */
698 void edma_free_channel(unsigned channel)
699 {
700 unsigned ctlr;
701
702 ctlr = EDMA_CTLR(channel);
703 channel = EDMA_CHAN_SLOT(channel);
704
705 if (channel >= edma_cc[ctlr]->num_channels)
706 return;
707
708 setup_dma_interrupt(channel, NULL, NULL);
709 /* REVISIT should probably take out of shadow region 0 */
710
711 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
712 &dummy_paramset, PARM_SIZE);
713 clear_bit(channel, edma_cc[ctlr]->edma_inuse);
714 }
715 EXPORT_SYMBOL(edma_free_channel);
716
717 /**
718 * edma_alloc_slot - allocate DMA parameter RAM
719 * @slot: specific slot to allocate; negative for "any unused slot"
720 *
721 * This allocates a parameter RAM slot, initializing it to hold a
722 * dummy transfer. Slots allocated using this routine have not been
723 * mapped to a hardware DMA channel, and will normally be used by
724 * linking to them from a slot associated with a DMA channel.
725 *
726 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
727 * slots may be allocated on behalf of DSP firmware.
728 *
729 * Returns the number of the slot, else negative errno.
730 */
731 int edma_alloc_slot(unsigned ctlr, int slot)
732 {
733 if (slot >= 0)
734 slot = EDMA_CHAN_SLOT(slot);
735
736 if (slot < 0) {
737 slot = edma_cc[ctlr]->num_channels;
738 for (;;) {
739 slot = find_next_zero_bit(edma_cc[ctlr]->edma_inuse,
740 edma_cc[ctlr]->num_slots, slot);
741 if (slot == edma_cc[ctlr]->num_slots)
742 return -ENOMEM;
743 if (!test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse))
744 break;
745 }
746 } else if (slot < edma_cc[ctlr]->num_channels ||
747 slot >= edma_cc[ctlr]->num_slots) {
748 return -EINVAL;
749 } else if (test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse)) {
750 return -EBUSY;
751 }
752
753 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
754 &dummy_paramset, PARM_SIZE);
755
756 return EDMA_CTLR_CHAN(ctlr, slot);
757 }
758 EXPORT_SYMBOL(edma_alloc_slot);
759
760 /**
761 * edma_free_slot - deallocate DMA parameter RAM
762 * @slot: parameter RAM slot returned from edma_alloc_slot()
763 *
764 * This deallocates the parameter RAM slot allocated by edma_alloc_slot().
765 * Callers are responsible for ensuring the slot is inactive, and will
766 * not be activated.
767 */
768 void edma_free_slot(unsigned slot)
769 {
770 unsigned ctlr;
771
772 ctlr = EDMA_CTLR(slot);
773 slot = EDMA_CHAN_SLOT(slot);
774
775 if (slot < edma_cc[ctlr]->num_channels ||
776 slot >= edma_cc[ctlr]->num_slots)
777 return;
778
779 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
780 &dummy_paramset, PARM_SIZE);
781 clear_bit(slot, edma_cc[ctlr]->edma_inuse);
782 }
783 EXPORT_SYMBOL(edma_free_slot);
784
785
786 /**
787 * edma_alloc_cont_slots- alloc contiguous parameter RAM slots
788 * The API will return the starting point of a set of
789 * contiguous parameter RAM slots that have been requested
790 *
791 * @id: can only be EDMA_CONT_PARAMS_ANY or EDMA_CONT_PARAMS_FIXED_EXACT
792 * or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
793 * @count: number of contiguous Paramter RAM slots
794 * @slot - the start value of Parameter RAM slot that should be passed if id
795 * is EDMA_CONT_PARAMS_FIXED_EXACT or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
796 *
797 * If id is EDMA_CONT_PARAMS_ANY then the API starts looking for a set of
798 * contiguous Parameter RAM slots from parameter RAM 64 in the case of
799 * DaVinci SOCs and 32 in the case of DA8xx SOCs.
800 *
801 * If id is EDMA_CONT_PARAMS_FIXED_EXACT then the API starts looking for a
802 * set of contiguous parameter RAM slots from the "slot" that is passed as an
803 * argument to the API.
804 *
805 * If id is EDMA_CONT_PARAMS_FIXED_NOT_EXACT then the API initially tries
806 * starts looking for a set of contiguous parameter RAMs from the "slot"
807 * that is passed as an argument to the API. On failure the API will try to
808 * find a set of contiguous Parameter RAM slots from the remaining Parameter
809 * RAM slots
810 */
811 int edma_alloc_cont_slots(unsigned ctlr, unsigned int id, int slot, int count)
812 {
813 /*
814 * The start slot requested should be greater than
815 * the number of channels and lesser than the total number
816 * of slots
817 */
818 if ((id != EDMA_CONT_PARAMS_ANY) &&
819 (slot < edma_cc[ctlr]->num_channels ||
820 slot >= edma_cc[ctlr]->num_slots))
821 return -EINVAL;
822
823 /*
824 * The number of parameter RAM slots requested cannot be less than 1
825 * and cannot be more than the number of slots minus the number of
826 * channels
827 */
828 if (count < 1 || count >
829 (edma_cc[ctlr]->num_slots - edma_cc[ctlr]->num_channels))
830 return -EINVAL;
831
832 switch (id) {
833 case EDMA_CONT_PARAMS_ANY:
834 return reserve_contiguous_slots(ctlr, id, count,
835 edma_cc[ctlr]->num_channels);
836 case EDMA_CONT_PARAMS_FIXED_EXACT:
837 case EDMA_CONT_PARAMS_FIXED_NOT_EXACT:
838 return reserve_contiguous_slots(ctlr, id, count, slot);
839 default:
840 return -EINVAL;
841 }
842
843 }
844 EXPORT_SYMBOL(edma_alloc_cont_slots);
845
846 /**
847 * edma_free_cont_slots - deallocate DMA parameter RAM slots
848 * @slot: first parameter RAM of a set of parameter RAM slots to be freed
849 * @count: the number of contiguous parameter RAM slots to be freed
850 *
851 * This deallocates the parameter RAM slots allocated by
852 * edma_alloc_cont_slots.
853 * Callers/applications need to keep track of sets of contiguous
854 * parameter RAM slots that have been allocated using the edma_alloc_cont_slots
855 * API.
856 * Callers are responsible for ensuring the slots are inactive, and will
857 * not be activated.
858 */
859 int edma_free_cont_slots(unsigned slot, int count)
860 {
861 unsigned ctlr, slot_to_free;
862 int i;
863
864 ctlr = EDMA_CTLR(slot);
865 slot = EDMA_CHAN_SLOT(slot);
866
867 if (slot < edma_cc[ctlr]->num_channels ||
868 slot >= edma_cc[ctlr]->num_slots ||
869 count < 1)
870 return -EINVAL;
871
872 for (i = slot; i < slot + count; ++i) {
873 ctlr = EDMA_CTLR(i);
874 slot_to_free = EDMA_CHAN_SLOT(i);
875
876 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot_to_free),
877 &dummy_paramset, PARM_SIZE);
878 clear_bit(slot_to_free, edma_cc[ctlr]->edma_inuse);
879 }
880
881 return 0;
882 }
883 EXPORT_SYMBOL(edma_free_cont_slots);
884
885 /*-----------------------------------------------------------------------*/
886
887 /* Parameter RAM operations (i) -- read/write partial slots */
888
889 /**
890 * edma_set_src - set initial DMA source address in parameter RAM slot
891 * @slot: parameter RAM slot being configured
892 * @src_port: physical address of source (memory, controller FIFO, etc)
893 * @addressMode: INCR, except in very rare cases
894 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
895 * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
896 *
897 * Note that the source address is modified during the DMA transfer
898 * according to edma_set_src_index().
899 */
900 void edma_set_src(unsigned slot, dma_addr_t src_port,
901 enum address_mode mode, enum fifo_width width)
902 {
903 unsigned ctlr;
904
905 ctlr = EDMA_CTLR(slot);
906 slot = EDMA_CHAN_SLOT(slot);
907
908 if (slot < edma_cc[ctlr]->num_slots) {
909 unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
910
911 if (mode) {
912 /* set SAM and program FWID */
913 i = (i & ~(EDMA_FWID)) | (SAM | ((width & 0x7) << 8));
914 } else {
915 /* clear SAM */
916 i &= ~SAM;
917 }
918 edma_parm_write(ctlr, PARM_OPT, slot, i);
919
920 /* set the source port address
921 in source register of param structure */
922 edma_parm_write(ctlr, PARM_SRC, slot, src_port);
923 }
924 }
925 EXPORT_SYMBOL(edma_set_src);
926
927 /**
928 * edma_set_dest - set initial DMA destination address in parameter RAM slot
929 * @slot: parameter RAM slot being configured
930 * @dest_port: physical address of destination (memory, controller FIFO, etc)
931 * @addressMode: INCR, except in very rare cases
932 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
933 * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
934 *
935 * Note that the destination address is modified during the DMA transfer
936 * according to edma_set_dest_index().
937 */
938 void edma_set_dest(unsigned slot, dma_addr_t dest_port,
939 enum address_mode mode, enum fifo_width width)
940 {
941 unsigned ctlr;
942
943 ctlr = EDMA_CTLR(slot);
944 slot = EDMA_CHAN_SLOT(slot);
945
946 if (slot < edma_cc[ctlr]->num_slots) {
947 unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
948
949 if (mode) {
950 /* set DAM and program FWID */
951 i = (i & ~(EDMA_FWID)) | (DAM | ((width & 0x7) << 8));
952 } else {
953 /* clear DAM */
954 i &= ~DAM;
955 }
956 edma_parm_write(ctlr, PARM_OPT, slot, i);
957 /* set the destination port address
958 in dest register of param structure */
959 edma_parm_write(ctlr, PARM_DST, slot, dest_port);
960 }
961 }
962 EXPORT_SYMBOL(edma_set_dest);
963
964 /**
965 * edma_get_position - returns the current transfer points
966 * @slot: parameter RAM slot being examined
967 * @src: pointer to source port position
968 * @dst: pointer to destination port position
969 *
970 * Returns current source and destination addresses for a particular
971 * parameter RAM slot. Its channel should not be active when this is called.
972 */
973 void edma_get_position(unsigned slot, dma_addr_t *src, dma_addr_t *dst)
974 {
975 struct edmacc_param temp;
976 unsigned ctlr;
977
978 ctlr = EDMA_CTLR(slot);
979 slot = EDMA_CHAN_SLOT(slot);
980
981 edma_read_slot(EDMA_CTLR_CHAN(ctlr, slot), &temp);
982 if (src != NULL)
983 *src = temp.src;
984 if (dst != NULL)
985 *dst = temp.dst;
986 }
987 EXPORT_SYMBOL(edma_get_position);
988
989 /**
990 * edma_set_src_index - configure DMA source address indexing
991 * @slot: parameter RAM slot being configured
992 * @src_bidx: byte offset between source arrays in a frame
993 * @src_cidx: byte offset between source frames in a block
994 *
995 * Offsets are specified to support either contiguous or discontiguous
996 * memory transfers, or repeated access to a hardware register, as needed.
997 * When accessing hardware registers, both offsets are normally zero.
998 */
999 void edma_set_src_index(unsigned slot, s16 src_bidx, s16 src_cidx)
1000 {
1001 unsigned ctlr;
1002
1003 ctlr = EDMA_CTLR(slot);
1004 slot = EDMA_CHAN_SLOT(slot);
1005
1006 if (slot < edma_cc[ctlr]->num_slots) {
1007 edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
1008 0xffff0000, src_bidx);
1009 edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
1010 0xffff0000, src_cidx);
1011 }
1012 }
1013 EXPORT_SYMBOL(edma_set_src_index);
1014
1015 /**
1016 * edma_set_dest_index - configure DMA destination address indexing
1017 * @slot: parameter RAM slot being configured
1018 * @dest_bidx: byte offset between destination arrays in a frame
1019 * @dest_cidx: byte offset between destination frames in a block
1020 *
1021 * Offsets are specified to support either contiguous or discontiguous
1022 * memory transfers, or repeated access to a hardware register, as needed.
1023 * When accessing hardware registers, both offsets are normally zero.
1024 */
1025 void edma_set_dest_index(unsigned slot, s16 dest_bidx, s16 dest_cidx)
1026 {
1027 unsigned ctlr;
1028
1029 ctlr = EDMA_CTLR(slot);
1030 slot = EDMA_CHAN_SLOT(slot);
1031
1032 if (slot < edma_cc[ctlr]->num_slots) {
1033 edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
1034 0x0000ffff, dest_bidx << 16);
1035 edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
1036 0x0000ffff, dest_cidx << 16);
1037 }
1038 }
1039 EXPORT_SYMBOL(edma_set_dest_index);
1040
1041 /**
1042 * edma_set_transfer_params - configure DMA transfer parameters
1043 * @slot: parameter RAM slot being configured
1044 * @acnt: how many bytes per array (at least one)
1045 * @bcnt: how many arrays per frame (at least one)
1046 * @ccnt: how many frames per block (at least one)
1047 * @bcnt_rld: used only for A-Synchronized transfers; this specifies
1048 * the value to reload into bcnt when it decrements to zero
1049 * @sync_mode: ASYNC or ABSYNC
1050 *
1051 * See the EDMA3 documentation to understand how to configure and link
1052 * transfers using the fields in PaRAM slots. If you are not doing it
1053 * all at once with edma_write_slot(), you will use this routine
1054 * plus two calls each for source and destination, setting the initial
1055 * address and saying how to index that address.
1056 *
1057 * An example of an A-Synchronized transfer is a serial link using a
1058 * single word shift register. In that case, @acnt would be equal to
1059 * that word size; the serial controller issues a DMA synchronization
1060 * event to transfer each word, and memory access by the DMA transfer
1061 * controller will be word-at-a-time.
1062 *
1063 * An example of an AB-Synchronized transfer is a device using a FIFO.
1064 * In that case, @acnt equals the FIFO width and @bcnt equals its depth.
1065 * The controller with the FIFO issues DMA synchronization events when
1066 * the FIFO threshold is reached, and the DMA transfer controller will
1067 * transfer one frame to (or from) the FIFO. It will probably use
1068 * efficient burst modes to access memory.
1069 */
1070 void edma_set_transfer_params(unsigned slot,
1071 u16 acnt, u16 bcnt, u16 ccnt,
1072 u16 bcnt_rld, enum sync_dimension sync_mode)
1073 {
1074 unsigned ctlr;
1075
1076 ctlr = EDMA_CTLR(slot);
1077 slot = EDMA_CHAN_SLOT(slot);
1078
1079 if (slot < edma_cc[ctlr]->num_slots) {
1080 edma_parm_modify(ctlr, PARM_LINK_BCNTRLD, slot,
1081 0x0000ffff, bcnt_rld << 16);
1082 if (sync_mode == ASYNC)
1083 edma_parm_and(ctlr, PARM_OPT, slot, ~SYNCDIM);
1084 else
1085 edma_parm_or(ctlr, PARM_OPT, slot, SYNCDIM);
1086 /* Set the acount, bcount, ccount registers */
1087 edma_parm_write(ctlr, PARM_A_B_CNT, slot, (bcnt << 16) | acnt);
1088 edma_parm_write(ctlr, PARM_CCNT, slot, ccnt);
1089 }
1090 }
1091 EXPORT_SYMBOL(edma_set_transfer_params);
1092
1093 /**
1094 * edma_link - link one parameter RAM slot to another
1095 * @from: parameter RAM slot originating the link
1096 * @to: parameter RAM slot which is the link target
1097 *
1098 * The originating slot should not be part of any active DMA transfer.
1099 */
1100 void edma_link(unsigned from, unsigned to)
1101 {
1102 unsigned ctlr_from, ctlr_to;
1103
1104 ctlr_from = EDMA_CTLR(from);
1105 from = EDMA_CHAN_SLOT(from);
1106 ctlr_to = EDMA_CTLR(to);
1107 to = EDMA_CHAN_SLOT(to);
1108
1109 if (from >= edma_cc[ctlr_from]->num_slots)
1110 return;
1111 if (to >= edma_cc[ctlr_to]->num_slots)
1112 return;
1113 edma_parm_modify(ctlr_from, PARM_LINK_BCNTRLD, from, 0xffff0000,
1114 PARM_OFFSET(to));
1115 }
1116 EXPORT_SYMBOL(edma_link);
1117
1118 /**
1119 * edma_unlink - cut link from one parameter RAM slot
1120 * @from: parameter RAM slot originating the link
1121 *
1122 * The originating slot should not be part of any active DMA transfer.
1123 * Its link is set to 0xffff.
1124 */
1125 void edma_unlink(unsigned from)
1126 {
1127 unsigned ctlr;
1128
1129 ctlr = EDMA_CTLR(from);
1130 from = EDMA_CHAN_SLOT(from);
1131
1132 if (from >= edma_cc[ctlr]->num_slots)
1133 return;
1134 edma_parm_or(ctlr, PARM_LINK_BCNTRLD, from, 0xffff);
1135 }
1136 EXPORT_SYMBOL(edma_unlink);
1137
1138 /*-----------------------------------------------------------------------*/
1139
1140 /* Parameter RAM operations (ii) -- read/write whole parameter sets */
1141
1142 /**
1143 * edma_write_slot - write parameter RAM data for slot
1144 * @slot: number of parameter RAM slot being modified
1145 * @param: data to be written into parameter RAM slot
1146 *
1147 * Use this to assign all parameters of a transfer at once. This
1148 * allows more efficient setup of transfers than issuing multiple
1149 * calls to set up those parameters in small pieces, and provides
1150 * complete control over all transfer options.
1151 */
1152 void edma_write_slot(unsigned slot, const struct edmacc_param *param)
1153 {
1154 unsigned ctlr;
1155
1156 ctlr = EDMA_CTLR(slot);
1157 slot = EDMA_CHAN_SLOT(slot);
1158
1159 if (slot >= edma_cc[ctlr]->num_slots)
1160 return;
1161 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot), param,
1162 PARM_SIZE);
1163 }
1164 EXPORT_SYMBOL(edma_write_slot);
1165
1166 /**
1167 * edma_read_slot - read parameter RAM data from slot
1168 * @slot: number of parameter RAM slot being copied
1169 * @param: where to store copy of parameter RAM data
1170 *
1171 * Use this to read data from a parameter RAM slot, perhaps to
1172 * save them as a template for later reuse.
1173 */
1174 void edma_read_slot(unsigned slot, struct edmacc_param *param)
1175 {
1176 unsigned ctlr;
1177
1178 ctlr = EDMA_CTLR(slot);
1179 slot = EDMA_CHAN_SLOT(slot);
1180
1181 if (slot >= edma_cc[ctlr]->num_slots)
1182 return;
1183 memcpy_fromio(param, edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
1184 PARM_SIZE);
1185 }
1186 EXPORT_SYMBOL(edma_read_slot);
1187
1188 /*-----------------------------------------------------------------------*/
1189
1190 /* Various EDMA channel control operations */
1191
1192 /**
1193 * edma_pause - pause dma on a channel
1194 * @channel: on which edma_start() has been called
1195 *
1196 * This temporarily disables EDMA hardware events on the specified channel,
1197 * preventing them from triggering new transfers on its behalf
1198 */
1199 void edma_pause(unsigned channel)
1200 {
1201 unsigned ctlr;
1202
1203 ctlr = EDMA_CTLR(channel);
1204 channel = EDMA_CHAN_SLOT(channel);
1205
1206 if (channel < edma_cc[ctlr]->num_channels) {
1207 unsigned int mask = BIT(channel & 0x1f);
1208
1209 edma_shadow0_write_array(ctlr, SH_EECR, channel >> 5, mask);
1210 }
1211 }
1212 EXPORT_SYMBOL(edma_pause);
1213
1214 /**
1215 * edma_resume - resumes dma on a paused channel
1216 * @channel: on which edma_pause() has been called
1217 *
1218 * This re-enables EDMA hardware events on the specified channel.
1219 */
1220 void edma_resume(unsigned channel)
1221 {
1222 unsigned ctlr;
1223
1224 ctlr = EDMA_CTLR(channel);
1225 channel = EDMA_CHAN_SLOT(channel);
1226
1227 if (channel < edma_cc[ctlr]->num_channels) {
1228 unsigned int mask = BIT(channel & 0x1f);
1229
1230 edma_shadow0_write_array(ctlr, SH_EESR, channel >> 5, mask);
1231 }
1232 }
1233 EXPORT_SYMBOL(edma_resume);
1234
1235 /**
1236 * edma_start - start dma on a channel
1237 * @channel: channel being activated
1238 *
1239 * Channels with event associations will be triggered by their hardware
1240 * events, and channels without such associations will be triggered by
1241 * software. (At this writing there is no interface for using software
1242 * triggers except with channels that don't support hardware triggers.)
1243 *
1244 * Returns zero on success, else negative errno.
1245 */
1246 int edma_start(unsigned channel)
1247 {
1248 unsigned ctlr;
1249
1250 ctlr = EDMA_CTLR(channel);
1251 channel = EDMA_CHAN_SLOT(channel);
1252
1253 if (channel < edma_cc[ctlr]->num_channels) {
1254 int j = channel >> 5;
1255 unsigned int mask = BIT(channel & 0x1f);
1256
1257 /* EDMA channels without event association */
1258 if (test_bit(channel, edma_cc[ctlr]->edma_unused)) {
1259 pr_debug("EDMA: ESR%d %08x\n", j,
1260 edma_shadow0_read_array(ctlr, SH_ESR, j));
1261 edma_shadow0_write_array(ctlr, SH_ESR, j, mask);
1262 return 0;
1263 }
1264
1265 /* EDMA channel with event association */
1266 pr_debug("EDMA: ER%d %08x\n", j,
1267 edma_shadow0_read_array(ctlr, SH_ER, j));
1268 /* Clear any pending event or error */
1269 edma_write_array(ctlr, EDMA_ECR, j, mask);
1270 edma_write_array(ctlr, EDMA_EMCR, j, mask);
1271 /* Clear any SER */
1272 edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1273 edma_shadow0_write_array(ctlr, SH_EESR, j, mask);
1274 pr_debug("EDMA: EER%d %08x\n", j,
1275 edma_shadow0_read_array(ctlr, SH_EER, j));
1276 return 0;
1277 }
1278
1279 return -EINVAL;
1280 }
1281 EXPORT_SYMBOL(edma_start);
1282
1283 /**
1284 * edma_stop - stops dma on the channel passed
1285 * @channel: channel being deactivated
1286 *
1287 * When @lch is a channel, any active transfer is paused and
1288 * all pending hardware events are cleared. The current transfer
1289 * may not be resumed, and the channel's Parameter RAM should be
1290 * reinitialized before being reused.
1291 */
1292 void edma_stop(unsigned channel)
1293 {
1294 unsigned ctlr;
1295
1296 ctlr = EDMA_CTLR(channel);
1297 channel = EDMA_CHAN_SLOT(channel);
1298
1299 if (channel < edma_cc[ctlr]->num_channels) {
1300 int j = channel >> 5;
1301 unsigned int mask = BIT(channel & 0x1f);
1302
1303 edma_shadow0_write_array(ctlr, SH_EECR, j, mask);
1304 edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
1305 edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1306 edma_write_array(ctlr, EDMA_EMCR, j, mask);
1307
1308 pr_debug("EDMA: EER%d %08x\n", j,
1309 edma_shadow0_read_array(ctlr, SH_EER, j));
1310
1311 /* REVISIT: consider guarding against inappropriate event
1312 * chaining by overwriting with dummy_paramset.
1313 */
1314 }
1315 }
1316 EXPORT_SYMBOL(edma_stop);
1317
1318 /******************************************************************************
1319 *
1320 * It cleans ParamEntry qand bring back EDMA to initial state if media has
1321 * been removed before EDMA has finished.It is usedful for removable media.
1322 * Arguments:
1323 * ch_no - channel no
1324 *
1325 * Return: zero on success, or corresponding error no on failure
1326 *
1327 * FIXME this should not be needed ... edma_stop() should suffice.
1328 *
1329 *****************************************************************************/
1330
1331 void edma_clean_channel(unsigned channel)
1332 {
1333 unsigned ctlr;
1334
1335 ctlr = EDMA_CTLR(channel);
1336 channel = EDMA_CHAN_SLOT(channel);
1337
1338 if (channel < edma_cc[ctlr]->num_channels) {
1339 int j = (channel >> 5);
1340 unsigned int mask = BIT(channel & 0x1f);
1341
1342 pr_debug("EDMA: EMR%d %08x\n", j,
1343 edma_read_array(ctlr, EDMA_EMR, j));
1344 edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
1345 /* Clear the corresponding EMR bits */
1346 edma_write_array(ctlr, EDMA_EMCR, j, mask);
1347 /* Clear any SER */
1348 edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1349 edma_write(ctlr, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
1350 }
1351 }
1352 EXPORT_SYMBOL(edma_clean_channel);
1353
1354 /*
1355 * edma_clear_event - clear an outstanding event on the DMA channel
1356 * Arguments:
1357 * channel - channel number
1358 */
1359 void edma_clear_event(unsigned channel)
1360 {
1361 unsigned ctlr;
1362
1363 ctlr = EDMA_CTLR(channel);
1364 channel = EDMA_CHAN_SLOT(channel);
1365
1366 if (channel >= edma_cc[ctlr]->num_channels)
1367 return;
1368 if (channel < 32)
1369 edma_write(ctlr, EDMA_ECR, BIT(channel));
1370 else
1371 edma_write(ctlr, EDMA_ECRH, BIT(channel - 32));
1372 }
1373 EXPORT_SYMBOL(edma_clear_event);
1374
1375 /*-----------------------------------------------------------------------*/
1376
1377 static int __init edma_probe(struct platform_device *pdev)
1378 {
1379 struct edma_soc_info *info = pdev->dev.platform_data;
1380 const s8 (*queue_priority_mapping)[2];
1381 const s8 (*queue_tc_mapping)[2];
1382 int i, j, found = 0;
1383 int status = -1;
1384 int irq[EDMA_MAX_CC] = {0, 0};
1385 int err_irq[EDMA_MAX_CC] = {0, 0};
1386 struct resource *r[EDMA_MAX_CC] = {NULL};
1387 resource_size_t len[EDMA_MAX_CC];
1388 char res_name[10];
1389 char irq_name[10];
1390
1391 if (!info)
1392 return -ENODEV;
1393
1394 for (j = 0; j < EDMA_MAX_CC; j++) {
1395 sprintf(res_name, "edma_cc%d", j);
1396 r[j] = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1397 res_name);
1398 if (!r[j]) {
1399 if (found)
1400 break;
1401 else
1402 return -ENODEV;
1403 } else {
1404 found = 1;
1405 }
1406
1407 len[j] = resource_size(r[j]);
1408
1409 r[j] = request_mem_region(r[j]->start, len[j],
1410 dev_name(&pdev->dev));
1411 if (!r[j]) {
1412 status = -EBUSY;
1413 goto fail1;
1414 }
1415
1416 edmacc_regs_base[j] = ioremap(r[j]->start, len[j]);
1417 if (!edmacc_regs_base[j]) {
1418 status = -EBUSY;
1419 goto fail1;
1420 }
1421
1422 edma_cc[j] = kmalloc(sizeof(struct edma), GFP_KERNEL);
1423 if (!edma_cc[j]) {
1424 status = -ENOMEM;
1425 goto fail1;
1426 }
1427 memset(edma_cc[j], 0, sizeof(struct edma));
1428
1429 edma_cc[j]->num_channels = min_t(unsigned, info[j].n_channel,
1430 EDMA_MAX_DMACH);
1431 edma_cc[j]->num_slots = min_t(unsigned, info[j].n_slot,
1432 EDMA_MAX_PARAMENTRY);
1433 edma_cc[j]->num_cc = min_t(unsigned, info[j].n_cc, EDMA_MAX_CC);
1434
1435 edma_cc[j]->default_queue = info[j].default_queue;
1436 if (!edma_cc[j]->default_queue)
1437 edma_cc[j]->default_queue = EVENTQ_1;
1438
1439 dev_dbg(&pdev->dev, "DMA REG BASE ADDR=%p\n",
1440 edmacc_regs_base[j]);
1441
1442 for (i = 0; i < edma_cc[j]->num_slots; i++)
1443 memcpy_toio(edmacc_regs_base[j] + PARM_OFFSET(i),
1444 &dummy_paramset, PARM_SIZE);
1445
1446 /* Mark all channels as unused */
1447 memset(edma_cc[j]->edma_unused, 0xff,
1448 sizeof(edma_cc[j]->edma_unused));
1449
1450 sprintf(irq_name, "edma%d", j);
1451 irq[j] = platform_get_irq_byname(pdev, irq_name);
1452 edma_cc[j]->irq_res_start = irq[j];
1453 status = request_irq(irq[j], dma_irq_handler, 0, "edma",
1454 &pdev->dev);
1455 if (status < 0) {
1456 dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
1457 irq[j], status);
1458 goto fail;
1459 }
1460
1461 sprintf(irq_name, "edma%d_err", j);
1462 err_irq[j] = platform_get_irq_byname(pdev, irq_name);
1463 edma_cc[j]->irq_res_end = err_irq[j];
1464 status = request_irq(err_irq[j], dma_ccerr_handler, 0,
1465 "edma_error", &pdev->dev);
1466 if (status < 0) {
1467 dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
1468 err_irq[j], status);
1469 goto fail;
1470 }
1471
1472 /* Everything lives on transfer controller 1 until otherwise
1473 * specified. This way, long transfers on the low priority queue
1474 * started by the codec engine will not cause audio defects.
1475 */
1476 for (i = 0; i < edma_cc[j]->num_channels; i++)
1477 map_dmach_queue(j, i, EVENTQ_1);
1478
1479 queue_tc_mapping = info[j].queue_tc_mapping;
1480 queue_priority_mapping = info[j].queue_priority_mapping;
1481
1482 /* Event queue to TC mapping */
1483 for (i = 0; queue_tc_mapping[i][0] != -1; i++)
1484 map_queue_tc(j, queue_tc_mapping[i][0],
1485 queue_tc_mapping[i][1]);
1486
1487 /* Event queue priority mapping */
1488 for (i = 0; queue_priority_mapping[i][0] != -1; i++)
1489 assign_priority_to_queue(j,
1490 queue_priority_mapping[i][0],
1491 queue_priority_mapping[i][1]);
1492
1493 /* Map the channel to param entry if channel mapping logic
1494 * exist
1495 */
1496 if (edma_read(j, EDMA_CCCFG) & CHMAP_EXIST)
1497 map_dmach_param(j);
1498
1499 for (i = 0; i < info[j].n_region; i++) {
1500 edma_write_array2(j, EDMA_DRAE, i, 0, 0x0);
1501 edma_write_array2(j, EDMA_DRAE, i, 1, 0x0);
1502 edma_write_array(j, EDMA_QRAE, i, 0x0);
1503 }
1504 arch_num_cc++;
1505 }
1506
1507 if (tc_errs_handled) {
1508 status = request_irq(IRQ_TCERRINT0, dma_tc0err_handler, 0,
1509 "edma_tc0", &pdev->dev);
1510 if (status < 0) {
1511 dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
1512 IRQ_TCERRINT0, status);
1513 return status;
1514 }
1515 status = request_irq(IRQ_TCERRINT, dma_tc1err_handler, 0,
1516 "edma_tc1", &pdev->dev);
1517 if (status < 0) {
1518 dev_dbg(&pdev->dev, "request_irq %d --> %d\n",
1519 IRQ_TCERRINT, status);
1520 return status;
1521 }
1522 }
1523
1524 return 0;
1525
1526 fail:
1527 for (i = 0; i < EDMA_MAX_CC; i++) {
1528 if (err_irq[i])
1529 free_irq(err_irq[i], &pdev->dev);
1530 if (irq[i])
1531 free_irq(irq[i], &pdev->dev);
1532 }
1533 fail1:
1534 for (i = 0; i < EDMA_MAX_CC; i++) {
1535 if (r[i])
1536 release_mem_region(r[i]->start, len[i]);
1537 if (edmacc_regs_base[i])
1538 iounmap(edmacc_regs_base[i]);
1539 kfree(edma_cc[i]);
1540 }
1541 return status;
1542 }
1543
1544
1545 static struct platform_driver edma_driver = {
1546 .driver.name = "edma",
1547 };
1548
1549 static int __init edma_init(void)
1550 {
1551 return platform_driver_probe(&edma_driver, edma_probe);
1552 }
1553 arch_initcall(edma_init);
1554
This page took 0.082743 seconds and 4 git commands to generate.