Merge branch 'v3.4/features' of git://gitorious.org/linux-davinci/linux-davinci into...
[deliverable/linux.git] / arch / arm / mach-davinci / dma.c
1 /*
2 * EDMA3 support for DaVinci
3 *
4 * Copyright (C) 2006-2009 Texas Instruments.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/platform_device.h>
25 #include <linux/io.h>
26 #include <linux/slab.h>
27
28 #include <mach/edma.h>
29
30 /* Offsets matching "struct edmacc_param" */
31 #define PARM_OPT 0x00
32 #define PARM_SRC 0x04
33 #define PARM_A_B_CNT 0x08
34 #define PARM_DST 0x0c
35 #define PARM_SRC_DST_BIDX 0x10
36 #define PARM_LINK_BCNTRLD 0x14
37 #define PARM_SRC_DST_CIDX 0x18
38 #define PARM_CCNT 0x1c
39
40 #define PARM_SIZE 0x20
41
42 /* Offsets for EDMA CC global channel registers and their shadows */
43 #define SH_ER 0x00 /* 64 bits */
44 #define SH_ECR 0x08 /* 64 bits */
45 #define SH_ESR 0x10 /* 64 bits */
46 #define SH_CER 0x18 /* 64 bits */
47 #define SH_EER 0x20 /* 64 bits */
48 #define SH_EECR 0x28 /* 64 bits */
49 #define SH_EESR 0x30 /* 64 bits */
50 #define SH_SER 0x38 /* 64 bits */
51 #define SH_SECR 0x40 /* 64 bits */
52 #define SH_IER 0x50 /* 64 bits */
53 #define SH_IECR 0x58 /* 64 bits */
54 #define SH_IESR 0x60 /* 64 bits */
55 #define SH_IPR 0x68 /* 64 bits */
56 #define SH_ICR 0x70 /* 64 bits */
57 #define SH_IEVAL 0x78
58 #define SH_QER 0x80
59 #define SH_QEER 0x84
60 #define SH_QEECR 0x88
61 #define SH_QEESR 0x8c
62 #define SH_QSER 0x90
63 #define SH_QSECR 0x94
64 #define SH_SIZE 0x200
65
66 /* Offsets for EDMA CC global registers */
67 #define EDMA_REV 0x0000
68 #define EDMA_CCCFG 0x0004
69 #define EDMA_QCHMAP 0x0200 /* 8 registers */
70 #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
71 #define EDMA_QDMAQNUM 0x0260
72 #define EDMA_QUETCMAP 0x0280
73 #define EDMA_QUEPRI 0x0284
74 #define EDMA_EMR 0x0300 /* 64 bits */
75 #define EDMA_EMCR 0x0308 /* 64 bits */
76 #define EDMA_QEMR 0x0310
77 #define EDMA_QEMCR 0x0314
78 #define EDMA_CCERR 0x0318
79 #define EDMA_CCERRCLR 0x031c
80 #define EDMA_EEVAL 0x0320
81 #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
82 #define EDMA_QRAE 0x0380 /* 4 registers */
83 #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
84 #define EDMA_QSTAT 0x0600 /* 2 registers */
85 #define EDMA_QWMTHRA 0x0620
86 #define EDMA_QWMTHRB 0x0624
87 #define EDMA_CCSTAT 0x0640
88
89 #define EDMA_M 0x1000 /* global channel registers */
90 #define EDMA_ECR 0x1008
91 #define EDMA_ECRH 0x100C
92 #define EDMA_SHADOW0 0x2000 /* 4 regions shadowing global channels */
93 #define EDMA_PARM 0x4000 /* 128 param entries */
94
95 #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
96
97 #define EDMA_DCHMAP 0x0100 /* 64 registers */
98 #define CHMAP_EXIST BIT(24)
99
100 #define EDMA_MAX_DMACH 64
101 #define EDMA_MAX_PARAMENTRY 512
102
103 /*****************************************************************************/
104
105 static void __iomem *edmacc_regs_base[EDMA_MAX_CC];
106
107 static inline unsigned int edma_read(unsigned ctlr, int offset)
108 {
109 return (unsigned int)__raw_readl(edmacc_regs_base[ctlr] + offset);
110 }
111
112 static inline void edma_write(unsigned ctlr, int offset, int val)
113 {
114 __raw_writel(val, edmacc_regs_base[ctlr] + offset);
115 }
116 static inline void edma_modify(unsigned ctlr, int offset, unsigned and,
117 unsigned or)
118 {
119 unsigned val = edma_read(ctlr, offset);
120 val &= and;
121 val |= or;
122 edma_write(ctlr, offset, val);
123 }
124 static inline void edma_and(unsigned ctlr, int offset, unsigned and)
125 {
126 unsigned val = edma_read(ctlr, offset);
127 val &= and;
128 edma_write(ctlr, offset, val);
129 }
130 static inline void edma_or(unsigned ctlr, int offset, unsigned or)
131 {
132 unsigned val = edma_read(ctlr, offset);
133 val |= or;
134 edma_write(ctlr, offset, val);
135 }
136 static inline unsigned int edma_read_array(unsigned ctlr, int offset, int i)
137 {
138 return edma_read(ctlr, offset + (i << 2));
139 }
140 static inline void edma_write_array(unsigned ctlr, int offset, int i,
141 unsigned val)
142 {
143 edma_write(ctlr, offset + (i << 2), val);
144 }
145 static inline void edma_modify_array(unsigned ctlr, int offset, int i,
146 unsigned and, unsigned or)
147 {
148 edma_modify(ctlr, offset + (i << 2), and, or);
149 }
150 static inline void edma_or_array(unsigned ctlr, int offset, int i, unsigned or)
151 {
152 edma_or(ctlr, offset + (i << 2), or);
153 }
154 static inline void edma_or_array2(unsigned ctlr, int offset, int i, int j,
155 unsigned or)
156 {
157 edma_or(ctlr, offset + ((i*2 + j) << 2), or);
158 }
159 static inline void edma_write_array2(unsigned ctlr, int offset, int i, int j,
160 unsigned val)
161 {
162 edma_write(ctlr, offset + ((i*2 + j) << 2), val);
163 }
164 static inline unsigned int edma_shadow0_read(unsigned ctlr, int offset)
165 {
166 return edma_read(ctlr, EDMA_SHADOW0 + offset);
167 }
168 static inline unsigned int edma_shadow0_read_array(unsigned ctlr, int offset,
169 int i)
170 {
171 return edma_read(ctlr, EDMA_SHADOW0 + offset + (i << 2));
172 }
173 static inline void edma_shadow0_write(unsigned ctlr, int offset, unsigned val)
174 {
175 edma_write(ctlr, EDMA_SHADOW0 + offset, val);
176 }
177 static inline void edma_shadow0_write_array(unsigned ctlr, int offset, int i,
178 unsigned val)
179 {
180 edma_write(ctlr, EDMA_SHADOW0 + offset + (i << 2), val);
181 }
182 static inline unsigned int edma_parm_read(unsigned ctlr, int offset,
183 int param_no)
184 {
185 return edma_read(ctlr, EDMA_PARM + offset + (param_no << 5));
186 }
187 static inline void edma_parm_write(unsigned ctlr, int offset, int param_no,
188 unsigned val)
189 {
190 edma_write(ctlr, EDMA_PARM + offset + (param_no << 5), val);
191 }
192 static inline void edma_parm_modify(unsigned ctlr, int offset, int param_no,
193 unsigned and, unsigned or)
194 {
195 edma_modify(ctlr, EDMA_PARM + offset + (param_no << 5), and, or);
196 }
197 static inline void edma_parm_and(unsigned ctlr, int offset, int param_no,
198 unsigned and)
199 {
200 edma_and(ctlr, EDMA_PARM + offset + (param_no << 5), and);
201 }
202 static inline void edma_parm_or(unsigned ctlr, int offset, int param_no,
203 unsigned or)
204 {
205 edma_or(ctlr, EDMA_PARM + offset + (param_no << 5), or);
206 }
207
208 static inline void set_bits(int offset, int len, unsigned long *p)
209 {
210 for (; len > 0; len--)
211 set_bit(offset + (len - 1), p);
212 }
213
214 static inline void clear_bits(int offset, int len, unsigned long *p)
215 {
216 for (; len > 0; len--)
217 clear_bit(offset + (len - 1), p);
218 }
219
220 /*****************************************************************************/
221
222 /* actual number of DMA channels and slots on this silicon */
223 struct edma {
224 /* how many dma resources of each type */
225 unsigned num_channels;
226 unsigned num_region;
227 unsigned num_slots;
228 unsigned num_tc;
229 unsigned num_cc;
230 enum dma_event_q default_queue;
231
232 /* list of channels with no even trigger; terminated by "-1" */
233 const s8 *noevent;
234
235 /* The edma_inuse bit for each PaRAM slot is clear unless the
236 * channel is in use ... by ARM or DSP, for QDMA, or whatever.
237 */
238 DECLARE_BITMAP(edma_inuse, EDMA_MAX_PARAMENTRY);
239
240 /* The edma_unused bit for each channel is clear unless
241 * it is not being used on this platform. It uses a bit
242 * of SOC-specific initialization code.
243 */
244 DECLARE_BITMAP(edma_unused, EDMA_MAX_DMACH);
245
246 unsigned irq_res_start;
247 unsigned irq_res_end;
248
249 struct dma_interrupt_data {
250 void (*callback)(unsigned channel, unsigned short ch_status,
251 void *data);
252 void *data;
253 } intr_data[EDMA_MAX_DMACH];
254 };
255
256 static struct edma *edma_cc[EDMA_MAX_CC];
257 static int arch_num_cc;
258
259 /* dummy param set used to (re)initialize parameter RAM slots */
260 static const struct edmacc_param dummy_paramset = {
261 .link_bcntrld = 0xffff,
262 .ccnt = 1,
263 };
264
265 /*****************************************************************************/
266
267 static void map_dmach_queue(unsigned ctlr, unsigned ch_no,
268 enum dma_event_q queue_no)
269 {
270 int bit = (ch_no & 0x7) * 4;
271
272 /* default to low priority queue */
273 if (queue_no == EVENTQ_DEFAULT)
274 queue_no = edma_cc[ctlr]->default_queue;
275
276 queue_no &= 7;
277 edma_modify_array(ctlr, EDMA_DMAQNUM, (ch_no >> 3),
278 ~(0x7 << bit), queue_no << bit);
279 }
280
281 static void __init map_queue_tc(unsigned ctlr, int queue_no, int tc_no)
282 {
283 int bit = queue_no * 4;
284 edma_modify(ctlr, EDMA_QUETCMAP, ~(0x7 << bit), ((tc_no & 0x7) << bit));
285 }
286
287 static void __init assign_priority_to_queue(unsigned ctlr, int queue_no,
288 int priority)
289 {
290 int bit = queue_no * 4;
291 edma_modify(ctlr, EDMA_QUEPRI, ~(0x7 << bit),
292 ((priority & 0x7) << bit));
293 }
294
295 /**
296 * map_dmach_param - Maps channel number to param entry number
297 *
298 * This maps the dma channel number to param entry numberter. In
299 * other words using the DMA channel mapping registers a param entry
300 * can be mapped to any channel
301 *
302 * Callers are responsible for ensuring the channel mapping logic is
303 * included in that particular EDMA variant (Eg : dm646x)
304 *
305 */
306 static void __init map_dmach_param(unsigned ctlr)
307 {
308 int i;
309 for (i = 0; i < EDMA_MAX_DMACH; i++)
310 edma_write_array(ctlr, EDMA_DCHMAP , i , (i << 5));
311 }
312
313 static inline void
314 setup_dma_interrupt(unsigned lch,
315 void (*callback)(unsigned channel, u16 ch_status, void *data),
316 void *data)
317 {
318 unsigned ctlr;
319
320 ctlr = EDMA_CTLR(lch);
321 lch = EDMA_CHAN_SLOT(lch);
322
323 if (!callback)
324 edma_shadow0_write_array(ctlr, SH_IECR, lch >> 5,
325 BIT(lch & 0x1f));
326
327 edma_cc[ctlr]->intr_data[lch].callback = callback;
328 edma_cc[ctlr]->intr_data[lch].data = data;
329
330 if (callback) {
331 edma_shadow0_write_array(ctlr, SH_ICR, lch >> 5,
332 BIT(lch & 0x1f));
333 edma_shadow0_write_array(ctlr, SH_IESR, lch >> 5,
334 BIT(lch & 0x1f));
335 }
336 }
337
338 static int irq2ctlr(int irq)
339 {
340 if (irq >= edma_cc[0]->irq_res_start && irq <= edma_cc[0]->irq_res_end)
341 return 0;
342 else if (irq >= edma_cc[1]->irq_res_start &&
343 irq <= edma_cc[1]->irq_res_end)
344 return 1;
345
346 return -1;
347 }
348
349 /******************************************************************************
350 *
351 * DMA interrupt handler
352 *
353 *****************************************************************************/
354 static irqreturn_t dma_irq_handler(int irq, void *data)
355 {
356 int i;
357 int ctlr;
358 unsigned int cnt = 0;
359
360 ctlr = irq2ctlr(irq);
361 if (ctlr < 0)
362 return IRQ_NONE;
363
364 dev_dbg(data, "dma_irq_handler\n");
365
366 if ((edma_shadow0_read_array(ctlr, SH_IPR, 0) == 0) &&
367 (edma_shadow0_read_array(ctlr, SH_IPR, 1) == 0))
368 return IRQ_NONE;
369
370 while (1) {
371 int j;
372 if (edma_shadow0_read_array(ctlr, SH_IPR, 0) &
373 edma_shadow0_read_array(ctlr, SH_IER, 0))
374 j = 0;
375 else if (edma_shadow0_read_array(ctlr, SH_IPR, 1) &
376 edma_shadow0_read_array(ctlr, SH_IER, 1))
377 j = 1;
378 else
379 break;
380 dev_dbg(data, "IPR%d %08x\n", j,
381 edma_shadow0_read_array(ctlr, SH_IPR, j));
382 for (i = 0; i < 32; i++) {
383 int k = (j << 5) + i;
384 if ((edma_shadow0_read_array(ctlr, SH_IPR, j) & BIT(i))
385 && (edma_shadow0_read_array(ctlr,
386 SH_IER, j) & BIT(i))) {
387 /* Clear the corresponding IPR bits */
388 edma_shadow0_write_array(ctlr, SH_ICR, j,
389 BIT(i));
390 if (edma_cc[ctlr]->intr_data[k].callback)
391 edma_cc[ctlr]->intr_data[k].callback(
392 k, DMA_COMPLETE,
393 edma_cc[ctlr]->intr_data[k].
394 data);
395 }
396 }
397 cnt++;
398 if (cnt > 10)
399 break;
400 }
401 edma_shadow0_write(ctlr, SH_IEVAL, 1);
402 return IRQ_HANDLED;
403 }
404
405 /******************************************************************************
406 *
407 * DMA error interrupt handler
408 *
409 *****************************************************************************/
410 static irqreturn_t dma_ccerr_handler(int irq, void *data)
411 {
412 int i;
413 int ctlr;
414 unsigned int cnt = 0;
415
416 ctlr = irq2ctlr(irq);
417 if (ctlr < 0)
418 return IRQ_NONE;
419
420 dev_dbg(data, "dma_ccerr_handler\n");
421
422 if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
423 (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
424 (edma_read(ctlr, EDMA_QEMR) == 0) &&
425 (edma_read(ctlr, EDMA_CCERR) == 0))
426 return IRQ_NONE;
427
428 while (1) {
429 int j = -1;
430 if (edma_read_array(ctlr, EDMA_EMR, 0))
431 j = 0;
432 else if (edma_read_array(ctlr, EDMA_EMR, 1))
433 j = 1;
434 if (j >= 0) {
435 dev_dbg(data, "EMR%d %08x\n", j,
436 edma_read_array(ctlr, EDMA_EMR, j));
437 for (i = 0; i < 32; i++) {
438 int k = (j << 5) + i;
439 if (edma_read_array(ctlr, EDMA_EMR, j) &
440 BIT(i)) {
441 /* Clear the corresponding EMR bits */
442 edma_write_array(ctlr, EDMA_EMCR, j,
443 BIT(i));
444 /* Clear any SER */
445 edma_shadow0_write_array(ctlr, SH_SECR,
446 j, BIT(i));
447 if (edma_cc[ctlr]->intr_data[k].
448 callback) {
449 edma_cc[ctlr]->intr_data[k].
450 callback(k,
451 DMA_CC_ERROR,
452 edma_cc[ctlr]->intr_data
453 [k].data);
454 }
455 }
456 }
457 } else if (edma_read(ctlr, EDMA_QEMR)) {
458 dev_dbg(data, "QEMR %02x\n",
459 edma_read(ctlr, EDMA_QEMR));
460 for (i = 0; i < 8; i++) {
461 if (edma_read(ctlr, EDMA_QEMR) & BIT(i)) {
462 /* Clear the corresponding IPR bits */
463 edma_write(ctlr, EDMA_QEMCR, BIT(i));
464 edma_shadow0_write(ctlr, SH_QSECR,
465 BIT(i));
466
467 /* NOTE: not reported!! */
468 }
469 }
470 } else if (edma_read(ctlr, EDMA_CCERR)) {
471 dev_dbg(data, "CCERR %08x\n",
472 edma_read(ctlr, EDMA_CCERR));
473 /* FIXME: CCERR.BIT(16) ignored! much better
474 * to just write CCERRCLR with CCERR value...
475 */
476 for (i = 0; i < 8; i++) {
477 if (edma_read(ctlr, EDMA_CCERR) & BIT(i)) {
478 /* Clear the corresponding IPR bits */
479 edma_write(ctlr, EDMA_CCERRCLR, BIT(i));
480
481 /* NOTE: not reported!! */
482 }
483 }
484 }
485 if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
486 (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
487 (edma_read(ctlr, EDMA_QEMR) == 0) &&
488 (edma_read(ctlr, EDMA_CCERR) == 0))
489 break;
490 cnt++;
491 if (cnt > 10)
492 break;
493 }
494 edma_write(ctlr, EDMA_EEVAL, 1);
495 return IRQ_HANDLED;
496 }
497
498 /******************************************************************************
499 *
500 * Transfer controller error interrupt handlers
501 *
502 *****************************************************************************/
503
504 #define tc_errs_handled false /* disabled as long as they're NOPs */
505
506 static irqreturn_t dma_tc0err_handler(int irq, void *data)
507 {
508 dev_dbg(data, "dma_tc0err_handler\n");
509 return IRQ_HANDLED;
510 }
511
512 static irqreturn_t dma_tc1err_handler(int irq, void *data)
513 {
514 dev_dbg(data, "dma_tc1err_handler\n");
515 return IRQ_HANDLED;
516 }
517
518 static int reserve_contiguous_slots(int ctlr, unsigned int id,
519 unsigned int num_slots,
520 unsigned int start_slot)
521 {
522 int i, j;
523 unsigned int count = num_slots;
524 int stop_slot = start_slot;
525 DECLARE_BITMAP(tmp_inuse, EDMA_MAX_PARAMENTRY);
526
527 for (i = start_slot; i < edma_cc[ctlr]->num_slots; ++i) {
528 j = EDMA_CHAN_SLOT(i);
529 if (!test_and_set_bit(j, edma_cc[ctlr]->edma_inuse)) {
530 /* Record our current beginning slot */
531 if (count == num_slots)
532 stop_slot = i;
533
534 count--;
535 set_bit(j, tmp_inuse);
536
537 if (count == 0)
538 break;
539 } else {
540 clear_bit(j, tmp_inuse);
541
542 if (id == EDMA_CONT_PARAMS_FIXED_EXACT) {
543 stop_slot = i;
544 break;
545 } else {
546 count = num_slots;
547 }
548 }
549 }
550
551 /*
552 * We have to clear any bits that we set
553 * if we run out parameter RAM slots, i.e we do find a set
554 * of contiguous parameter RAM slots but do not find the exact number
555 * requested as we may reach the total number of parameter RAM slots
556 */
557 if (i == edma_cc[ctlr]->num_slots)
558 stop_slot = i;
559
560 for (j = start_slot; j < stop_slot; j++)
561 if (test_bit(j, tmp_inuse))
562 clear_bit(j, edma_cc[ctlr]->edma_inuse);
563
564 if (count)
565 return -EBUSY;
566
567 for (j = i - num_slots + 1; j <= i; ++j)
568 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(j),
569 &dummy_paramset, PARM_SIZE);
570
571 return EDMA_CTLR_CHAN(ctlr, i - num_slots + 1);
572 }
573
574 static int prepare_unused_channel_list(struct device *dev, void *data)
575 {
576 struct platform_device *pdev = to_platform_device(dev);
577 int i, ctlr;
578
579 for (i = 0; i < pdev->num_resources; i++) {
580 if ((pdev->resource[i].flags & IORESOURCE_DMA) &&
581 (int)pdev->resource[i].start >= 0) {
582 ctlr = EDMA_CTLR(pdev->resource[i].start);
583 clear_bit(EDMA_CHAN_SLOT(pdev->resource[i].start),
584 edma_cc[ctlr]->edma_unused);
585 }
586 }
587
588 return 0;
589 }
590
591 /*-----------------------------------------------------------------------*/
592
593 static bool unused_chan_list_done;
594
595 /* Resource alloc/free: dma channels, parameter RAM slots */
596
597 /**
598 * edma_alloc_channel - allocate DMA channel and paired parameter RAM
599 * @channel: specific channel to allocate; negative for "any unmapped channel"
600 * @callback: optional; to be issued on DMA completion or errors
601 * @data: passed to callback
602 * @eventq_no: an EVENTQ_* constant, used to choose which Transfer
603 * Controller (TC) executes requests using this channel. Use
604 * EVENTQ_DEFAULT unless you really need a high priority queue.
605 *
606 * This allocates a DMA channel and its associated parameter RAM slot.
607 * The parameter RAM is initialized to hold a dummy transfer.
608 *
609 * Normal use is to pass a specific channel number as @channel, to make
610 * use of hardware events mapped to that channel. When the channel will
611 * be used only for software triggering or event chaining, channels not
612 * mapped to hardware events (or mapped to unused events) are preferable.
613 *
614 * DMA transfers start from a channel using edma_start(), or by
615 * chaining. When the transfer described in that channel's parameter RAM
616 * slot completes, that slot's data may be reloaded through a link.
617 *
618 * DMA errors are only reported to the @callback associated with the
619 * channel driving that transfer, but transfer completion callbacks can
620 * be sent to another channel under control of the TCC field in
621 * the option word of the transfer's parameter RAM set. Drivers must not
622 * use DMA transfer completion callbacks for channels they did not allocate.
623 * (The same applies to TCC codes used in transfer chaining.)
624 *
625 * Returns the number of the channel, else negative errno.
626 */
627 int edma_alloc_channel(int channel,
628 void (*callback)(unsigned channel, u16 ch_status, void *data),
629 void *data,
630 enum dma_event_q eventq_no)
631 {
632 unsigned i, done = 0, ctlr = 0;
633 int ret = 0;
634
635 if (!unused_chan_list_done) {
636 /*
637 * Scan all the platform devices to find out the EDMA channels
638 * used and clear them in the unused list, making the rest
639 * available for ARM usage.
640 */
641 ret = bus_for_each_dev(&platform_bus_type, NULL, NULL,
642 prepare_unused_channel_list);
643 if (ret < 0)
644 return ret;
645
646 unused_chan_list_done = true;
647 }
648
649 if (channel >= 0) {
650 ctlr = EDMA_CTLR(channel);
651 channel = EDMA_CHAN_SLOT(channel);
652 }
653
654 if (channel < 0) {
655 for (i = 0; i < arch_num_cc; i++) {
656 channel = 0;
657 for (;;) {
658 channel = find_next_bit(edma_cc[i]->edma_unused,
659 edma_cc[i]->num_channels,
660 channel);
661 if (channel == edma_cc[i]->num_channels)
662 break;
663 if (!test_and_set_bit(channel,
664 edma_cc[i]->edma_inuse)) {
665 done = 1;
666 ctlr = i;
667 break;
668 }
669 channel++;
670 }
671 if (done)
672 break;
673 }
674 if (!done)
675 return -ENOMEM;
676 } else if (channel >= edma_cc[ctlr]->num_channels) {
677 return -EINVAL;
678 } else if (test_and_set_bit(channel, edma_cc[ctlr]->edma_inuse)) {
679 return -EBUSY;
680 }
681
682 /* ensure access through shadow region 0 */
683 edma_or_array2(ctlr, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
684
685 /* ensure no events are pending */
686 edma_stop(EDMA_CTLR_CHAN(ctlr, channel));
687 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
688 &dummy_paramset, PARM_SIZE);
689
690 if (callback)
691 setup_dma_interrupt(EDMA_CTLR_CHAN(ctlr, channel),
692 callback, data);
693
694 map_dmach_queue(ctlr, channel, eventq_no);
695
696 return EDMA_CTLR_CHAN(ctlr, channel);
697 }
698 EXPORT_SYMBOL(edma_alloc_channel);
699
700
701 /**
702 * edma_free_channel - deallocate DMA channel
703 * @channel: dma channel returned from edma_alloc_channel()
704 *
705 * This deallocates the DMA channel and associated parameter RAM slot
706 * allocated by edma_alloc_channel().
707 *
708 * Callers are responsible for ensuring the channel is inactive, and
709 * will not be reactivated by linking, chaining, or software calls to
710 * edma_start().
711 */
712 void edma_free_channel(unsigned channel)
713 {
714 unsigned ctlr;
715
716 ctlr = EDMA_CTLR(channel);
717 channel = EDMA_CHAN_SLOT(channel);
718
719 if (channel >= edma_cc[ctlr]->num_channels)
720 return;
721
722 setup_dma_interrupt(channel, NULL, NULL);
723 /* REVISIT should probably take out of shadow region 0 */
724
725 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
726 &dummy_paramset, PARM_SIZE);
727 clear_bit(channel, edma_cc[ctlr]->edma_inuse);
728 }
729 EXPORT_SYMBOL(edma_free_channel);
730
731 /**
732 * edma_alloc_slot - allocate DMA parameter RAM
733 * @slot: specific slot to allocate; negative for "any unused slot"
734 *
735 * This allocates a parameter RAM slot, initializing it to hold a
736 * dummy transfer. Slots allocated using this routine have not been
737 * mapped to a hardware DMA channel, and will normally be used by
738 * linking to them from a slot associated with a DMA channel.
739 *
740 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
741 * slots may be allocated on behalf of DSP firmware.
742 *
743 * Returns the number of the slot, else negative errno.
744 */
745 int edma_alloc_slot(unsigned ctlr, int slot)
746 {
747 if (slot >= 0)
748 slot = EDMA_CHAN_SLOT(slot);
749
750 if (slot < 0) {
751 slot = edma_cc[ctlr]->num_channels;
752 for (;;) {
753 slot = find_next_zero_bit(edma_cc[ctlr]->edma_inuse,
754 edma_cc[ctlr]->num_slots, slot);
755 if (slot == edma_cc[ctlr]->num_slots)
756 return -ENOMEM;
757 if (!test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse))
758 break;
759 }
760 } else if (slot < edma_cc[ctlr]->num_channels ||
761 slot >= edma_cc[ctlr]->num_slots) {
762 return -EINVAL;
763 } else if (test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse)) {
764 return -EBUSY;
765 }
766
767 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
768 &dummy_paramset, PARM_SIZE);
769
770 return EDMA_CTLR_CHAN(ctlr, slot);
771 }
772 EXPORT_SYMBOL(edma_alloc_slot);
773
774 /**
775 * edma_free_slot - deallocate DMA parameter RAM
776 * @slot: parameter RAM slot returned from edma_alloc_slot()
777 *
778 * This deallocates the parameter RAM slot allocated by edma_alloc_slot().
779 * Callers are responsible for ensuring the slot is inactive, and will
780 * not be activated.
781 */
782 void edma_free_slot(unsigned slot)
783 {
784 unsigned ctlr;
785
786 ctlr = EDMA_CTLR(slot);
787 slot = EDMA_CHAN_SLOT(slot);
788
789 if (slot < edma_cc[ctlr]->num_channels ||
790 slot >= edma_cc[ctlr]->num_slots)
791 return;
792
793 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
794 &dummy_paramset, PARM_SIZE);
795 clear_bit(slot, edma_cc[ctlr]->edma_inuse);
796 }
797 EXPORT_SYMBOL(edma_free_slot);
798
799
800 /**
801 * edma_alloc_cont_slots- alloc contiguous parameter RAM slots
802 * The API will return the starting point of a set of
803 * contiguous parameter RAM slots that have been requested
804 *
805 * @id: can only be EDMA_CONT_PARAMS_ANY or EDMA_CONT_PARAMS_FIXED_EXACT
806 * or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
807 * @count: number of contiguous Paramter RAM slots
808 * @slot - the start value of Parameter RAM slot that should be passed if id
809 * is EDMA_CONT_PARAMS_FIXED_EXACT or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
810 *
811 * If id is EDMA_CONT_PARAMS_ANY then the API starts looking for a set of
812 * contiguous Parameter RAM slots from parameter RAM 64 in the case of
813 * DaVinci SOCs and 32 in the case of DA8xx SOCs.
814 *
815 * If id is EDMA_CONT_PARAMS_FIXED_EXACT then the API starts looking for a
816 * set of contiguous parameter RAM slots from the "slot" that is passed as an
817 * argument to the API.
818 *
819 * If id is EDMA_CONT_PARAMS_FIXED_NOT_EXACT then the API initially tries
820 * starts looking for a set of contiguous parameter RAMs from the "slot"
821 * that is passed as an argument to the API. On failure the API will try to
822 * find a set of contiguous Parameter RAM slots from the remaining Parameter
823 * RAM slots
824 */
825 int edma_alloc_cont_slots(unsigned ctlr, unsigned int id, int slot, int count)
826 {
827 /*
828 * The start slot requested should be greater than
829 * the number of channels and lesser than the total number
830 * of slots
831 */
832 if ((id != EDMA_CONT_PARAMS_ANY) &&
833 (slot < edma_cc[ctlr]->num_channels ||
834 slot >= edma_cc[ctlr]->num_slots))
835 return -EINVAL;
836
837 /*
838 * The number of parameter RAM slots requested cannot be less than 1
839 * and cannot be more than the number of slots minus the number of
840 * channels
841 */
842 if (count < 1 || count >
843 (edma_cc[ctlr]->num_slots - edma_cc[ctlr]->num_channels))
844 return -EINVAL;
845
846 switch (id) {
847 case EDMA_CONT_PARAMS_ANY:
848 return reserve_contiguous_slots(ctlr, id, count,
849 edma_cc[ctlr]->num_channels);
850 case EDMA_CONT_PARAMS_FIXED_EXACT:
851 case EDMA_CONT_PARAMS_FIXED_NOT_EXACT:
852 return reserve_contiguous_slots(ctlr, id, count, slot);
853 default:
854 return -EINVAL;
855 }
856
857 }
858 EXPORT_SYMBOL(edma_alloc_cont_slots);
859
860 /**
861 * edma_free_cont_slots - deallocate DMA parameter RAM slots
862 * @slot: first parameter RAM of a set of parameter RAM slots to be freed
863 * @count: the number of contiguous parameter RAM slots to be freed
864 *
865 * This deallocates the parameter RAM slots allocated by
866 * edma_alloc_cont_slots.
867 * Callers/applications need to keep track of sets of contiguous
868 * parameter RAM slots that have been allocated using the edma_alloc_cont_slots
869 * API.
870 * Callers are responsible for ensuring the slots are inactive, and will
871 * not be activated.
872 */
873 int edma_free_cont_slots(unsigned slot, int count)
874 {
875 unsigned ctlr, slot_to_free;
876 int i;
877
878 ctlr = EDMA_CTLR(slot);
879 slot = EDMA_CHAN_SLOT(slot);
880
881 if (slot < edma_cc[ctlr]->num_channels ||
882 slot >= edma_cc[ctlr]->num_slots ||
883 count < 1)
884 return -EINVAL;
885
886 for (i = slot; i < slot + count; ++i) {
887 ctlr = EDMA_CTLR(i);
888 slot_to_free = EDMA_CHAN_SLOT(i);
889
890 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot_to_free),
891 &dummy_paramset, PARM_SIZE);
892 clear_bit(slot_to_free, edma_cc[ctlr]->edma_inuse);
893 }
894
895 return 0;
896 }
897 EXPORT_SYMBOL(edma_free_cont_slots);
898
899 /*-----------------------------------------------------------------------*/
900
901 /* Parameter RAM operations (i) -- read/write partial slots */
902
903 /**
904 * edma_set_src - set initial DMA source address in parameter RAM slot
905 * @slot: parameter RAM slot being configured
906 * @src_port: physical address of source (memory, controller FIFO, etc)
907 * @addressMode: INCR, except in very rare cases
908 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
909 * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
910 *
911 * Note that the source address is modified during the DMA transfer
912 * according to edma_set_src_index().
913 */
914 void edma_set_src(unsigned slot, dma_addr_t src_port,
915 enum address_mode mode, enum fifo_width width)
916 {
917 unsigned ctlr;
918
919 ctlr = EDMA_CTLR(slot);
920 slot = EDMA_CHAN_SLOT(slot);
921
922 if (slot < edma_cc[ctlr]->num_slots) {
923 unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
924
925 if (mode) {
926 /* set SAM and program FWID */
927 i = (i & ~(EDMA_FWID)) | (SAM | ((width & 0x7) << 8));
928 } else {
929 /* clear SAM */
930 i &= ~SAM;
931 }
932 edma_parm_write(ctlr, PARM_OPT, slot, i);
933
934 /* set the source port address
935 in source register of param structure */
936 edma_parm_write(ctlr, PARM_SRC, slot, src_port);
937 }
938 }
939 EXPORT_SYMBOL(edma_set_src);
940
941 /**
942 * edma_set_dest - set initial DMA destination address in parameter RAM slot
943 * @slot: parameter RAM slot being configured
944 * @dest_port: physical address of destination (memory, controller FIFO, etc)
945 * @addressMode: INCR, except in very rare cases
946 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
947 * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
948 *
949 * Note that the destination address is modified during the DMA transfer
950 * according to edma_set_dest_index().
951 */
952 void edma_set_dest(unsigned slot, dma_addr_t dest_port,
953 enum address_mode mode, enum fifo_width width)
954 {
955 unsigned ctlr;
956
957 ctlr = EDMA_CTLR(slot);
958 slot = EDMA_CHAN_SLOT(slot);
959
960 if (slot < edma_cc[ctlr]->num_slots) {
961 unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
962
963 if (mode) {
964 /* set DAM and program FWID */
965 i = (i & ~(EDMA_FWID)) | (DAM | ((width & 0x7) << 8));
966 } else {
967 /* clear DAM */
968 i &= ~DAM;
969 }
970 edma_parm_write(ctlr, PARM_OPT, slot, i);
971 /* set the destination port address
972 in dest register of param structure */
973 edma_parm_write(ctlr, PARM_DST, slot, dest_port);
974 }
975 }
976 EXPORT_SYMBOL(edma_set_dest);
977
978 /**
979 * edma_get_position - returns the current transfer points
980 * @slot: parameter RAM slot being examined
981 * @src: pointer to source port position
982 * @dst: pointer to destination port position
983 *
984 * Returns current source and destination addresses for a particular
985 * parameter RAM slot. Its channel should not be active when this is called.
986 */
987 void edma_get_position(unsigned slot, dma_addr_t *src, dma_addr_t *dst)
988 {
989 struct edmacc_param temp;
990 unsigned ctlr;
991
992 ctlr = EDMA_CTLR(slot);
993 slot = EDMA_CHAN_SLOT(slot);
994
995 edma_read_slot(EDMA_CTLR_CHAN(ctlr, slot), &temp);
996 if (src != NULL)
997 *src = temp.src;
998 if (dst != NULL)
999 *dst = temp.dst;
1000 }
1001 EXPORT_SYMBOL(edma_get_position);
1002
1003 /**
1004 * edma_set_src_index - configure DMA source address indexing
1005 * @slot: parameter RAM slot being configured
1006 * @src_bidx: byte offset between source arrays in a frame
1007 * @src_cidx: byte offset between source frames in a block
1008 *
1009 * Offsets are specified to support either contiguous or discontiguous
1010 * memory transfers, or repeated access to a hardware register, as needed.
1011 * When accessing hardware registers, both offsets are normally zero.
1012 */
1013 void edma_set_src_index(unsigned slot, s16 src_bidx, s16 src_cidx)
1014 {
1015 unsigned ctlr;
1016
1017 ctlr = EDMA_CTLR(slot);
1018 slot = EDMA_CHAN_SLOT(slot);
1019
1020 if (slot < edma_cc[ctlr]->num_slots) {
1021 edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
1022 0xffff0000, src_bidx);
1023 edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
1024 0xffff0000, src_cidx);
1025 }
1026 }
1027 EXPORT_SYMBOL(edma_set_src_index);
1028
1029 /**
1030 * edma_set_dest_index - configure DMA destination address indexing
1031 * @slot: parameter RAM slot being configured
1032 * @dest_bidx: byte offset between destination arrays in a frame
1033 * @dest_cidx: byte offset between destination frames in a block
1034 *
1035 * Offsets are specified to support either contiguous or discontiguous
1036 * memory transfers, or repeated access to a hardware register, as needed.
1037 * When accessing hardware registers, both offsets are normally zero.
1038 */
1039 void edma_set_dest_index(unsigned slot, s16 dest_bidx, s16 dest_cidx)
1040 {
1041 unsigned ctlr;
1042
1043 ctlr = EDMA_CTLR(slot);
1044 slot = EDMA_CHAN_SLOT(slot);
1045
1046 if (slot < edma_cc[ctlr]->num_slots) {
1047 edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
1048 0x0000ffff, dest_bidx << 16);
1049 edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
1050 0x0000ffff, dest_cidx << 16);
1051 }
1052 }
1053 EXPORT_SYMBOL(edma_set_dest_index);
1054
1055 /**
1056 * edma_set_transfer_params - configure DMA transfer parameters
1057 * @slot: parameter RAM slot being configured
1058 * @acnt: how many bytes per array (at least one)
1059 * @bcnt: how many arrays per frame (at least one)
1060 * @ccnt: how many frames per block (at least one)
1061 * @bcnt_rld: used only for A-Synchronized transfers; this specifies
1062 * the value to reload into bcnt when it decrements to zero
1063 * @sync_mode: ASYNC or ABSYNC
1064 *
1065 * See the EDMA3 documentation to understand how to configure and link
1066 * transfers using the fields in PaRAM slots. If you are not doing it
1067 * all at once with edma_write_slot(), you will use this routine
1068 * plus two calls each for source and destination, setting the initial
1069 * address and saying how to index that address.
1070 *
1071 * An example of an A-Synchronized transfer is a serial link using a
1072 * single word shift register. In that case, @acnt would be equal to
1073 * that word size; the serial controller issues a DMA synchronization
1074 * event to transfer each word, and memory access by the DMA transfer
1075 * controller will be word-at-a-time.
1076 *
1077 * An example of an AB-Synchronized transfer is a device using a FIFO.
1078 * In that case, @acnt equals the FIFO width and @bcnt equals its depth.
1079 * The controller with the FIFO issues DMA synchronization events when
1080 * the FIFO threshold is reached, and the DMA transfer controller will
1081 * transfer one frame to (or from) the FIFO. It will probably use
1082 * efficient burst modes to access memory.
1083 */
1084 void edma_set_transfer_params(unsigned slot,
1085 u16 acnt, u16 bcnt, u16 ccnt,
1086 u16 bcnt_rld, enum sync_dimension sync_mode)
1087 {
1088 unsigned ctlr;
1089
1090 ctlr = EDMA_CTLR(slot);
1091 slot = EDMA_CHAN_SLOT(slot);
1092
1093 if (slot < edma_cc[ctlr]->num_slots) {
1094 edma_parm_modify(ctlr, PARM_LINK_BCNTRLD, slot,
1095 0x0000ffff, bcnt_rld << 16);
1096 if (sync_mode == ASYNC)
1097 edma_parm_and(ctlr, PARM_OPT, slot, ~SYNCDIM);
1098 else
1099 edma_parm_or(ctlr, PARM_OPT, slot, SYNCDIM);
1100 /* Set the acount, bcount, ccount registers */
1101 edma_parm_write(ctlr, PARM_A_B_CNT, slot, (bcnt << 16) | acnt);
1102 edma_parm_write(ctlr, PARM_CCNT, slot, ccnt);
1103 }
1104 }
1105 EXPORT_SYMBOL(edma_set_transfer_params);
1106
1107 /**
1108 * edma_link - link one parameter RAM slot to another
1109 * @from: parameter RAM slot originating the link
1110 * @to: parameter RAM slot which is the link target
1111 *
1112 * The originating slot should not be part of any active DMA transfer.
1113 */
1114 void edma_link(unsigned from, unsigned to)
1115 {
1116 unsigned ctlr_from, ctlr_to;
1117
1118 ctlr_from = EDMA_CTLR(from);
1119 from = EDMA_CHAN_SLOT(from);
1120 ctlr_to = EDMA_CTLR(to);
1121 to = EDMA_CHAN_SLOT(to);
1122
1123 if (from >= edma_cc[ctlr_from]->num_slots)
1124 return;
1125 if (to >= edma_cc[ctlr_to]->num_slots)
1126 return;
1127 edma_parm_modify(ctlr_from, PARM_LINK_BCNTRLD, from, 0xffff0000,
1128 PARM_OFFSET(to));
1129 }
1130 EXPORT_SYMBOL(edma_link);
1131
1132 /**
1133 * edma_unlink - cut link from one parameter RAM slot
1134 * @from: parameter RAM slot originating the link
1135 *
1136 * The originating slot should not be part of any active DMA transfer.
1137 * Its link is set to 0xffff.
1138 */
1139 void edma_unlink(unsigned from)
1140 {
1141 unsigned ctlr;
1142
1143 ctlr = EDMA_CTLR(from);
1144 from = EDMA_CHAN_SLOT(from);
1145
1146 if (from >= edma_cc[ctlr]->num_slots)
1147 return;
1148 edma_parm_or(ctlr, PARM_LINK_BCNTRLD, from, 0xffff);
1149 }
1150 EXPORT_SYMBOL(edma_unlink);
1151
1152 /*-----------------------------------------------------------------------*/
1153
1154 /* Parameter RAM operations (ii) -- read/write whole parameter sets */
1155
1156 /**
1157 * edma_write_slot - write parameter RAM data for slot
1158 * @slot: number of parameter RAM slot being modified
1159 * @param: data to be written into parameter RAM slot
1160 *
1161 * Use this to assign all parameters of a transfer at once. This
1162 * allows more efficient setup of transfers than issuing multiple
1163 * calls to set up those parameters in small pieces, and provides
1164 * complete control over all transfer options.
1165 */
1166 void edma_write_slot(unsigned slot, const struct edmacc_param *param)
1167 {
1168 unsigned ctlr;
1169
1170 ctlr = EDMA_CTLR(slot);
1171 slot = EDMA_CHAN_SLOT(slot);
1172
1173 if (slot >= edma_cc[ctlr]->num_slots)
1174 return;
1175 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot), param,
1176 PARM_SIZE);
1177 }
1178 EXPORT_SYMBOL(edma_write_slot);
1179
1180 /**
1181 * edma_read_slot - read parameter RAM data from slot
1182 * @slot: number of parameter RAM slot being copied
1183 * @param: where to store copy of parameter RAM data
1184 *
1185 * Use this to read data from a parameter RAM slot, perhaps to
1186 * save them as a template for later reuse.
1187 */
1188 void edma_read_slot(unsigned slot, struct edmacc_param *param)
1189 {
1190 unsigned ctlr;
1191
1192 ctlr = EDMA_CTLR(slot);
1193 slot = EDMA_CHAN_SLOT(slot);
1194
1195 if (slot >= edma_cc[ctlr]->num_slots)
1196 return;
1197 memcpy_fromio(param, edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
1198 PARM_SIZE);
1199 }
1200 EXPORT_SYMBOL(edma_read_slot);
1201
1202 /*-----------------------------------------------------------------------*/
1203
1204 /* Various EDMA channel control operations */
1205
1206 /**
1207 * edma_pause - pause dma on a channel
1208 * @channel: on which edma_start() has been called
1209 *
1210 * This temporarily disables EDMA hardware events on the specified channel,
1211 * preventing them from triggering new transfers on its behalf
1212 */
1213 void edma_pause(unsigned channel)
1214 {
1215 unsigned ctlr;
1216
1217 ctlr = EDMA_CTLR(channel);
1218 channel = EDMA_CHAN_SLOT(channel);
1219
1220 if (channel < edma_cc[ctlr]->num_channels) {
1221 unsigned int mask = BIT(channel & 0x1f);
1222
1223 edma_shadow0_write_array(ctlr, SH_EECR, channel >> 5, mask);
1224 }
1225 }
1226 EXPORT_SYMBOL(edma_pause);
1227
1228 /**
1229 * edma_resume - resumes dma on a paused channel
1230 * @channel: on which edma_pause() has been called
1231 *
1232 * This re-enables EDMA hardware events on the specified channel.
1233 */
1234 void edma_resume(unsigned channel)
1235 {
1236 unsigned ctlr;
1237
1238 ctlr = EDMA_CTLR(channel);
1239 channel = EDMA_CHAN_SLOT(channel);
1240
1241 if (channel < edma_cc[ctlr]->num_channels) {
1242 unsigned int mask = BIT(channel & 0x1f);
1243
1244 edma_shadow0_write_array(ctlr, SH_EESR, channel >> 5, mask);
1245 }
1246 }
1247 EXPORT_SYMBOL(edma_resume);
1248
1249 /**
1250 * edma_start - start dma on a channel
1251 * @channel: channel being activated
1252 *
1253 * Channels with event associations will be triggered by their hardware
1254 * events, and channels without such associations will be triggered by
1255 * software. (At this writing there is no interface for using software
1256 * triggers except with channels that don't support hardware triggers.)
1257 *
1258 * Returns zero on success, else negative errno.
1259 */
1260 int edma_start(unsigned channel)
1261 {
1262 unsigned ctlr;
1263
1264 ctlr = EDMA_CTLR(channel);
1265 channel = EDMA_CHAN_SLOT(channel);
1266
1267 if (channel < edma_cc[ctlr]->num_channels) {
1268 int j = channel >> 5;
1269 unsigned int mask = BIT(channel & 0x1f);
1270
1271 /* EDMA channels without event association */
1272 if (test_bit(channel, edma_cc[ctlr]->edma_unused)) {
1273 pr_debug("EDMA: ESR%d %08x\n", j,
1274 edma_shadow0_read_array(ctlr, SH_ESR, j));
1275 edma_shadow0_write_array(ctlr, SH_ESR, j, mask);
1276 return 0;
1277 }
1278
1279 /* EDMA channel with event association */
1280 pr_debug("EDMA: ER%d %08x\n", j,
1281 edma_shadow0_read_array(ctlr, SH_ER, j));
1282 /* Clear any pending event or error */
1283 edma_write_array(ctlr, EDMA_ECR, j, mask);
1284 edma_write_array(ctlr, EDMA_EMCR, j, mask);
1285 /* Clear any SER */
1286 edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1287 edma_shadow0_write_array(ctlr, SH_EESR, j, mask);
1288 pr_debug("EDMA: EER%d %08x\n", j,
1289 edma_shadow0_read_array(ctlr, SH_EER, j));
1290 return 0;
1291 }
1292
1293 return -EINVAL;
1294 }
1295 EXPORT_SYMBOL(edma_start);
1296
1297 /**
1298 * edma_stop - stops dma on the channel passed
1299 * @channel: channel being deactivated
1300 *
1301 * When @lch is a channel, any active transfer is paused and
1302 * all pending hardware events are cleared. The current transfer
1303 * may not be resumed, and the channel's Parameter RAM should be
1304 * reinitialized before being reused.
1305 */
1306 void edma_stop(unsigned channel)
1307 {
1308 unsigned ctlr;
1309
1310 ctlr = EDMA_CTLR(channel);
1311 channel = EDMA_CHAN_SLOT(channel);
1312
1313 if (channel < edma_cc[ctlr]->num_channels) {
1314 int j = channel >> 5;
1315 unsigned int mask = BIT(channel & 0x1f);
1316
1317 edma_shadow0_write_array(ctlr, SH_EECR, j, mask);
1318 edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
1319 edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1320 edma_write_array(ctlr, EDMA_EMCR, j, mask);
1321
1322 pr_debug("EDMA: EER%d %08x\n", j,
1323 edma_shadow0_read_array(ctlr, SH_EER, j));
1324
1325 /* REVISIT: consider guarding against inappropriate event
1326 * chaining by overwriting with dummy_paramset.
1327 */
1328 }
1329 }
1330 EXPORT_SYMBOL(edma_stop);
1331
1332 /******************************************************************************
1333 *
1334 * It cleans ParamEntry qand bring back EDMA to initial state if media has
1335 * been removed before EDMA has finished.It is usedful for removable media.
1336 * Arguments:
1337 * ch_no - channel no
1338 *
1339 * Return: zero on success, or corresponding error no on failure
1340 *
1341 * FIXME this should not be needed ... edma_stop() should suffice.
1342 *
1343 *****************************************************************************/
1344
1345 void edma_clean_channel(unsigned channel)
1346 {
1347 unsigned ctlr;
1348
1349 ctlr = EDMA_CTLR(channel);
1350 channel = EDMA_CHAN_SLOT(channel);
1351
1352 if (channel < edma_cc[ctlr]->num_channels) {
1353 int j = (channel >> 5);
1354 unsigned int mask = BIT(channel & 0x1f);
1355
1356 pr_debug("EDMA: EMR%d %08x\n", j,
1357 edma_read_array(ctlr, EDMA_EMR, j));
1358 edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
1359 /* Clear the corresponding EMR bits */
1360 edma_write_array(ctlr, EDMA_EMCR, j, mask);
1361 /* Clear any SER */
1362 edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1363 edma_write(ctlr, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
1364 }
1365 }
1366 EXPORT_SYMBOL(edma_clean_channel);
1367
1368 /*
1369 * edma_clear_event - clear an outstanding event on the DMA channel
1370 * Arguments:
1371 * channel - channel number
1372 */
1373 void edma_clear_event(unsigned channel)
1374 {
1375 unsigned ctlr;
1376
1377 ctlr = EDMA_CTLR(channel);
1378 channel = EDMA_CHAN_SLOT(channel);
1379
1380 if (channel >= edma_cc[ctlr]->num_channels)
1381 return;
1382 if (channel < 32)
1383 edma_write(ctlr, EDMA_ECR, BIT(channel));
1384 else
1385 edma_write(ctlr, EDMA_ECRH, BIT(channel - 32));
1386 }
1387 EXPORT_SYMBOL(edma_clear_event);
1388
1389 /*-----------------------------------------------------------------------*/
1390
1391 static int __init edma_probe(struct platform_device *pdev)
1392 {
1393 struct edma_soc_info **info = pdev->dev.platform_data;
1394 const s8 (*queue_priority_mapping)[2];
1395 const s8 (*queue_tc_mapping)[2];
1396 int i, j, off, ln, found = 0;
1397 int status = -1;
1398 const s16 (*rsv_chans)[2];
1399 const s16 (*rsv_slots)[2];
1400 int irq[EDMA_MAX_CC] = {0, 0};
1401 int err_irq[EDMA_MAX_CC] = {0, 0};
1402 struct resource *r[EDMA_MAX_CC] = {NULL};
1403 resource_size_t len[EDMA_MAX_CC];
1404 char res_name[10];
1405 char irq_name[10];
1406
1407 if (!info)
1408 return -ENODEV;
1409
1410 for (j = 0; j < EDMA_MAX_CC; j++) {
1411 sprintf(res_name, "edma_cc%d", j);
1412 r[j] = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1413 res_name);
1414 if (!r[j] || !info[j]) {
1415 if (found)
1416 break;
1417 else
1418 return -ENODEV;
1419 } else {
1420 found = 1;
1421 }
1422
1423 len[j] = resource_size(r[j]);
1424
1425 r[j] = request_mem_region(r[j]->start, len[j],
1426 dev_name(&pdev->dev));
1427 if (!r[j]) {
1428 status = -EBUSY;
1429 goto fail1;
1430 }
1431
1432 edmacc_regs_base[j] = ioremap(r[j]->start, len[j]);
1433 if (!edmacc_regs_base[j]) {
1434 status = -EBUSY;
1435 goto fail1;
1436 }
1437
1438 edma_cc[j] = kzalloc(sizeof(struct edma), GFP_KERNEL);
1439 if (!edma_cc[j]) {
1440 status = -ENOMEM;
1441 goto fail1;
1442 }
1443
1444 edma_cc[j]->num_channels = min_t(unsigned, info[j]->n_channel,
1445 EDMA_MAX_DMACH);
1446 edma_cc[j]->num_slots = min_t(unsigned, info[j]->n_slot,
1447 EDMA_MAX_PARAMENTRY);
1448 edma_cc[j]->num_cc = min_t(unsigned, info[j]->n_cc,
1449 EDMA_MAX_CC);
1450
1451 edma_cc[j]->default_queue = info[j]->default_queue;
1452
1453 dev_dbg(&pdev->dev, "DMA REG BASE ADDR=%p\n",
1454 edmacc_regs_base[j]);
1455
1456 for (i = 0; i < edma_cc[j]->num_slots; i++)
1457 memcpy_toio(edmacc_regs_base[j] + PARM_OFFSET(i),
1458 &dummy_paramset, PARM_SIZE);
1459
1460 /* Mark all channels as unused */
1461 memset(edma_cc[j]->edma_unused, 0xff,
1462 sizeof(edma_cc[j]->edma_unused));
1463
1464 if (info[j]->rsv) {
1465
1466 /* Clear the reserved channels in unused list */
1467 rsv_chans = info[j]->rsv->rsv_chans;
1468 if (rsv_chans) {
1469 for (i = 0; rsv_chans[i][0] != -1; i++) {
1470 off = rsv_chans[i][0];
1471 ln = rsv_chans[i][1];
1472 clear_bits(off, ln,
1473 edma_cc[j]->edma_unused);
1474 }
1475 }
1476
1477 /* Set the reserved slots in inuse list */
1478 rsv_slots = info[j]->rsv->rsv_slots;
1479 if (rsv_slots) {
1480 for (i = 0; rsv_slots[i][0] != -1; i++) {
1481 off = rsv_slots[i][0];
1482 ln = rsv_slots[i][1];
1483 set_bits(off, ln,
1484 edma_cc[j]->edma_inuse);
1485 }
1486 }
1487 }
1488
1489 sprintf(irq_name, "edma%d", j);
1490 irq[j] = platform_get_irq_byname(pdev, irq_name);
1491 edma_cc[j]->irq_res_start = irq[j];
1492 status = request_irq(irq[j], dma_irq_handler, 0, "edma",
1493 &pdev->dev);
1494 if (status < 0) {
1495 dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
1496 irq[j], status);
1497 goto fail;
1498 }
1499
1500 sprintf(irq_name, "edma%d_err", j);
1501 err_irq[j] = platform_get_irq_byname(pdev, irq_name);
1502 edma_cc[j]->irq_res_end = err_irq[j];
1503 status = request_irq(err_irq[j], dma_ccerr_handler, 0,
1504 "edma_error", &pdev->dev);
1505 if (status < 0) {
1506 dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
1507 err_irq[j], status);
1508 goto fail;
1509 }
1510
1511 /* Everything lives on transfer controller 1 until otherwise
1512 * specified. This way, long transfers on the low priority queue
1513 * started by the codec engine will not cause audio defects.
1514 */
1515 for (i = 0; i < edma_cc[j]->num_channels; i++)
1516 map_dmach_queue(j, i, EVENTQ_1);
1517
1518 queue_tc_mapping = info[j]->queue_tc_mapping;
1519 queue_priority_mapping = info[j]->queue_priority_mapping;
1520
1521 /* Event queue to TC mapping */
1522 for (i = 0; queue_tc_mapping[i][0] != -1; i++)
1523 map_queue_tc(j, queue_tc_mapping[i][0],
1524 queue_tc_mapping[i][1]);
1525
1526 /* Event queue priority mapping */
1527 for (i = 0; queue_priority_mapping[i][0] != -1; i++)
1528 assign_priority_to_queue(j,
1529 queue_priority_mapping[i][0],
1530 queue_priority_mapping[i][1]);
1531
1532 /* Map the channel to param entry if channel mapping logic
1533 * exist
1534 */
1535 if (edma_read(j, EDMA_CCCFG) & CHMAP_EXIST)
1536 map_dmach_param(j);
1537
1538 for (i = 0; i < info[j]->n_region; i++) {
1539 edma_write_array2(j, EDMA_DRAE, i, 0, 0x0);
1540 edma_write_array2(j, EDMA_DRAE, i, 1, 0x0);
1541 edma_write_array(j, EDMA_QRAE, i, 0x0);
1542 }
1543 arch_num_cc++;
1544 }
1545
1546 if (tc_errs_handled) {
1547 status = request_irq(IRQ_TCERRINT0, dma_tc0err_handler, 0,
1548 "edma_tc0", &pdev->dev);
1549 if (status < 0) {
1550 dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
1551 IRQ_TCERRINT0, status);
1552 return status;
1553 }
1554 status = request_irq(IRQ_TCERRINT, dma_tc1err_handler, 0,
1555 "edma_tc1", &pdev->dev);
1556 if (status < 0) {
1557 dev_dbg(&pdev->dev, "request_irq %d --> %d\n",
1558 IRQ_TCERRINT, status);
1559 return status;
1560 }
1561 }
1562
1563 return 0;
1564
1565 fail:
1566 for (i = 0; i < EDMA_MAX_CC; i++) {
1567 if (err_irq[i])
1568 free_irq(err_irq[i], &pdev->dev);
1569 if (irq[i])
1570 free_irq(irq[i], &pdev->dev);
1571 }
1572 fail1:
1573 for (i = 0; i < EDMA_MAX_CC; i++) {
1574 if (r[i])
1575 release_mem_region(r[i]->start, len[i]);
1576 if (edmacc_regs_base[i])
1577 iounmap(edmacc_regs_base[i]);
1578 kfree(edma_cc[i]);
1579 }
1580 return status;
1581 }
1582
1583
1584 static struct platform_driver edma_driver = {
1585 .driver.name = "edma",
1586 };
1587
1588 static int __init edma_init(void)
1589 {
1590 return platform_driver_probe(&edma_driver, edma_probe);
1591 }
1592 arch_initcall(edma_init);
1593
This page took 0.097149 seconds and 5 git commands to generate.