Merge branch 'next/cleanup-samsung' into next/cleanup-samsung-2
[deliverable/linux.git] / arch / arm / mach-exynos / common.c
1 /*
2 * Copyright (c) 2010-2011 Samsung Electronics Co., Ltd.
3 * http://www.samsung.com
4 *
5 * Common Codes for EXYNOS
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #include <linux/kernel.h>
13 #include <linux/interrupt.h>
14 #include <linux/irq.h>
15 #include <linux/io.h>
16 #include <linux/device.h>
17 #include <linux/gpio.h>
18 #include <linux/sched.h>
19 #include <linux/serial_core.h>
20 #include <linux/of.h>
21 #include <linux/of_irq.h>
22 #include <linux/export.h>
23 #include <linux/irqdomain.h>
24 #include <linux/of_address.h>
25
26 #include <asm/proc-fns.h>
27 #include <asm/exception.h>
28 #include <asm/hardware/cache-l2x0.h>
29 #include <asm/hardware/gic.h>
30 #include <asm/mach/map.h>
31 #include <asm/mach/irq.h>
32 #include <asm/cacheflush.h>
33
34 #include <mach/regs-irq.h>
35 #include <mach/regs-pmu.h>
36 #include <mach/regs-gpio.h>
37 #include <mach/pmu.h>
38
39 #include <plat/cpu.h>
40 #include <plat/clock.h>
41 #include <plat/devs.h>
42 #include <plat/pm.h>
43 #include <plat/sdhci.h>
44 #include <plat/gpio-cfg.h>
45 #include <plat/adc-core.h>
46 #include <plat/fb-core.h>
47 #include <plat/fimc-core.h>
48 #include <plat/iic-core.h>
49 #include <plat/tv-core.h>
50 #include <plat/spi-core.h>
51 #include <plat/regs-serial.h>
52
53 #include "common.h"
54 #define L2_AUX_VAL 0x7C470001
55 #define L2_AUX_MASK 0xC200ffff
56
57 static const char name_exynos4210[] = "EXYNOS4210";
58 static const char name_exynos4212[] = "EXYNOS4212";
59 static const char name_exynos4412[] = "EXYNOS4412";
60 static const char name_exynos5250[] = "EXYNOS5250";
61
62 static void exynos4_map_io(void);
63 static void exynos5_map_io(void);
64 static void exynos4_init_clocks(int xtal);
65 static void exynos5_init_clocks(int xtal);
66 static void exynos4_init_uarts(struct s3c2410_uartcfg *cfg, int no);
67 static int exynos_init(void);
68
69 static struct cpu_table cpu_ids[] __initdata = {
70 {
71 .idcode = EXYNOS4210_CPU_ID,
72 .idmask = EXYNOS4_CPU_MASK,
73 .map_io = exynos4_map_io,
74 .init_clocks = exynos4_init_clocks,
75 .init_uarts = exynos4_init_uarts,
76 .init = exynos_init,
77 .name = name_exynos4210,
78 }, {
79 .idcode = EXYNOS4212_CPU_ID,
80 .idmask = EXYNOS4_CPU_MASK,
81 .map_io = exynos4_map_io,
82 .init_clocks = exynos4_init_clocks,
83 .init_uarts = exynos4_init_uarts,
84 .init = exynos_init,
85 .name = name_exynos4212,
86 }, {
87 .idcode = EXYNOS4412_CPU_ID,
88 .idmask = EXYNOS4_CPU_MASK,
89 .map_io = exynos4_map_io,
90 .init_clocks = exynos4_init_clocks,
91 .init_uarts = exynos4_init_uarts,
92 .init = exynos_init,
93 .name = name_exynos4412,
94 }, {
95 .idcode = EXYNOS5250_SOC_ID,
96 .idmask = EXYNOS5_SOC_MASK,
97 .map_io = exynos5_map_io,
98 .init_clocks = exynos5_init_clocks,
99 .init = exynos_init,
100 .name = name_exynos5250,
101 },
102 };
103
104 /* Initial IO mappings */
105
106 static struct map_desc exynos_iodesc[] __initdata = {
107 {
108 .virtual = (unsigned long)S5P_VA_CHIPID,
109 .pfn = __phys_to_pfn(EXYNOS_PA_CHIPID),
110 .length = SZ_4K,
111 .type = MT_DEVICE,
112 },
113 };
114
115 static struct map_desc exynos4_iodesc[] __initdata = {
116 {
117 .virtual = (unsigned long)S3C_VA_SYS,
118 .pfn = __phys_to_pfn(EXYNOS4_PA_SYSCON),
119 .length = SZ_64K,
120 .type = MT_DEVICE,
121 }, {
122 .virtual = (unsigned long)S3C_VA_TIMER,
123 .pfn = __phys_to_pfn(EXYNOS4_PA_TIMER),
124 .length = SZ_16K,
125 .type = MT_DEVICE,
126 }, {
127 .virtual = (unsigned long)S3C_VA_WATCHDOG,
128 .pfn = __phys_to_pfn(EXYNOS4_PA_WATCHDOG),
129 .length = SZ_4K,
130 .type = MT_DEVICE,
131 }, {
132 .virtual = (unsigned long)S5P_VA_SROMC,
133 .pfn = __phys_to_pfn(EXYNOS4_PA_SROMC),
134 .length = SZ_4K,
135 .type = MT_DEVICE,
136 }, {
137 .virtual = (unsigned long)S5P_VA_SYSTIMER,
138 .pfn = __phys_to_pfn(EXYNOS4_PA_SYSTIMER),
139 .length = SZ_4K,
140 .type = MT_DEVICE,
141 }, {
142 .virtual = (unsigned long)S5P_VA_PMU,
143 .pfn = __phys_to_pfn(EXYNOS4_PA_PMU),
144 .length = SZ_64K,
145 .type = MT_DEVICE,
146 }, {
147 .virtual = (unsigned long)S5P_VA_COMBINER_BASE,
148 .pfn = __phys_to_pfn(EXYNOS4_PA_COMBINER),
149 .length = SZ_4K,
150 .type = MT_DEVICE,
151 }, {
152 .virtual = (unsigned long)S5P_VA_GIC_CPU,
153 .pfn = __phys_to_pfn(EXYNOS4_PA_GIC_CPU),
154 .length = SZ_64K,
155 .type = MT_DEVICE,
156 }, {
157 .virtual = (unsigned long)S5P_VA_GIC_DIST,
158 .pfn = __phys_to_pfn(EXYNOS4_PA_GIC_DIST),
159 .length = SZ_64K,
160 .type = MT_DEVICE,
161 }, {
162 .virtual = (unsigned long)S3C_VA_UART,
163 .pfn = __phys_to_pfn(EXYNOS4_PA_UART),
164 .length = SZ_512K,
165 .type = MT_DEVICE,
166 }, {
167 .virtual = (unsigned long)S5P_VA_CMU,
168 .pfn = __phys_to_pfn(EXYNOS4_PA_CMU),
169 .length = SZ_128K,
170 .type = MT_DEVICE,
171 }, {
172 .virtual = (unsigned long)S5P_VA_COREPERI_BASE,
173 .pfn = __phys_to_pfn(EXYNOS4_PA_COREPERI),
174 .length = SZ_8K,
175 .type = MT_DEVICE,
176 }, {
177 .virtual = (unsigned long)S5P_VA_L2CC,
178 .pfn = __phys_to_pfn(EXYNOS4_PA_L2CC),
179 .length = SZ_4K,
180 .type = MT_DEVICE,
181 }, {
182 .virtual = (unsigned long)S5P_VA_DMC0,
183 .pfn = __phys_to_pfn(EXYNOS4_PA_DMC0),
184 .length = SZ_64K,
185 .type = MT_DEVICE,
186 }, {
187 .virtual = (unsigned long)S5P_VA_DMC1,
188 .pfn = __phys_to_pfn(EXYNOS4_PA_DMC1),
189 .length = SZ_64K,
190 .type = MT_DEVICE,
191 }, {
192 .virtual = (unsigned long)S3C_VA_USB_HSPHY,
193 .pfn = __phys_to_pfn(EXYNOS4_PA_HSPHY),
194 .length = SZ_4K,
195 .type = MT_DEVICE,
196 },
197 };
198
199 static struct map_desc exynos4_iodesc0[] __initdata = {
200 {
201 .virtual = (unsigned long)S5P_VA_SYSRAM,
202 .pfn = __phys_to_pfn(EXYNOS4_PA_SYSRAM0),
203 .length = SZ_4K,
204 .type = MT_DEVICE,
205 },
206 };
207
208 static struct map_desc exynos4_iodesc1[] __initdata = {
209 {
210 .virtual = (unsigned long)S5P_VA_SYSRAM,
211 .pfn = __phys_to_pfn(EXYNOS4_PA_SYSRAM1),
212 .length = SZ_4K,
213 .type = MT_DEVICE,
214 },
215 };
216
217 static struct map_desc exynos5_iodesc[] __initdata = {
218 {
219 .virtual = (unsigned long)S3C_VA_SYS,
220 .pfn = __phys_to_pfn(EXYNOS5_PA_SYSCON),
221 .length = SZ_64K,
222 .type = MT_DEVICE,
223 }, {
224 .virtual = (unsigned long)S3C_VA_TIMER,
225 .pfn = __phys_to_pfn(EXYNOS5_PA_TIMER),
226 .length = SZ_16K,
227 .type = MT_DEVICE,
228 }, {
229 .virtual = (unsigned long)S3C_VA_WATCHDOG,
230 .pfn = __phys_to_pfn(EXYNOS5_PA_WATCHDOG),
231 .length = SZ_4K,
232 .type = MT_DEVICE,
233 }, {
234 .virtual = (unsigned long)S5P_VA_SROMC,
235 .pfn = __phys_to_pfn(EXYNOS5_PA_SROMC),
236 .length = SZ_4K,
237 .type = MT_DEVICE,
238 }, {
239 .virtual = (unsigned long)S5P_VA_SYSTIMER,
240 .pfn = __phys_to_pfn(EXYNOS5_PA_SYSTIMER),
241 .length = SZ_4K,
242 .type = MT_DEVICE,
243 }, {
244 .virtual = (unsigned long)S5P_VA_SYSRAM,
245 .pfn = __phys_to_pfn(EXYNOS5_PA_SYSRAM),
246 .length = SZ_4K,
247 .type = MT_DEVICE,
248 }, {
249 .virtual = (unsigned long)S5P_VA_CMU,
250 .pfn = __phys_to_pfn(EXYNOS5_PA_CMU),
251 .length = 144 * SZ_1K,
252 .type = MT_DEVICE,
253 }, {
254 .virtual = (unsigned long)S5P_VA_PMU,
255 .pfn = __phys_to_pfn(EXYNOS5_PA_PMU),
256 .length = SZ_64K,
257 .type = MT_DEVICE,
258 }, {
259 .virtual = (unsigned long)S3C_VA_UART,
260 .pfn = __phys_to_pfn(EXYNOS5_PA_UART),
261 .length = SZ_512K,
262 .type = MT_DEVICE,
263 },
264 };
265
266 void exynos4_restart(char mode, const char *cmd)
267 {
268 __raw_writel(0x1, S5P_SWRESET);
269 }
270
271 void exynos5_restart(char mode, const char *cmd)
272 {
273 __raw_writel(0x1, EXYNOS_SWRESET);
274 }
275
276 void __init exynos_init_late(void)
277 {
278 exynos_pm_late_initcall();
279 }
280
281 /*
282 * exynos_map_io
283 *
284 * register the standard cpu IO areas
285 */
286
287 void __init exynos_init_io(struct map_desc *mach_desc, int size)
288 {
289 /* initialize the io descriptors we need for initialization */
290 iotable_init(exynos_iodesc, ARRAY_SIZE(exynos_iodesc));
291 if (mach_desc)
292 iotable_init(mach_desc, size);
293
294 /* detect cpu id and rev. */
295 s5p_init_cpu(S5P_VA_CHIPID);
296
297 s3c_init_cpu(samsung_cpu_id, cpu_ids, ARRAY_SIZE(cpu_ids));
298 }
299
300 static void __init exynos4_map_io(void)
301 {
302 iotable_init(exynos4_iodesc, ARRAY_SIZE(exynos4_iodesc));
303
304 if (soc_is_exynos4210() && samsung_rev() == EXYNOS4210_REV_0)
305 iotable_init(exynos4_iodesc0, ARRAY_SIZE(exynos4_iodesc0));
306 else
307 iotable_init(exynos4_iodesc1, ARRAY_SIZE(exynos4_iodesc1));
308
309 /* initialize device information early */
310 exynos4_default_sdhci0();
311 exynos4_default_sdhci1();
312 exynos4_default_sdhci2();
313 exynos4_default_sdhci3();
314
315 s3c_adc_setname("samsung-adc-v3");
316
317 s3c_fimc_setname(0, "exynos4-fimc");
318 s3c_fimc_setname(1, "exynos4-fimc");
319 s3c_fimc_setname(2, "exynos4-fimc");
320 s3c_fimc_setname(3, "exynos4-fimc");
321
322 s3c_sdhci_setname(0, "exynos4-sdhci");
323 s3c_sdhci_setname(1, "exynos4-sdhci");
324 s3c_sdhci_setname(2, "exynos4-sdhci");
325 s3c_sdhci_setname(3, "exynos4-sdhci");
326
327 /* The I2C bus controllers are directly compatible with s3c2440 */
328 s3c_i2c0_setname("s3c2440-i2c");
329 s3c_i2c1_setname("s3c2440-i2c");
330 s3c_i2c2_setname("s3c2440-i2c");
331
332 s5p_fb_setname(0, "exynos4-fb");
333 s5p_hdmi_setname("exynos4-hdmi");
334
335 s3c64xx_spi_setname("exynos4210-spi");
336 }
337
338 static void __init exynos5_map_io(void)
339 {
340 iotable_init(exynos5_iodesc, ARRAY_SIZE(exynos5_iodesc));
341
342 s3c_device_i2c0.resource[0].start = EXYNOS5_PA_IIC(0);
343 s3c_device_i2c0.resource[0].end = EXYNOS5_PA_IIC(0) + SZ_4K - 1;
344 s3c_device_i2c0.resource[1].start = EXYNOS5_IRQ_IIC;
345 s3c_device_i2c0.resource[1].end = EXYNOS5_IRQ_IIC;
346
347 s3c_sdhci_setname(0, "exynos4-sdhci");
348 s3c_sdhci_setname(1, "exynos4-sdhci");
349 s3c_sdhci_setname(2, "exynos4-sdhci");
350 s3c_sdhci_setname(3, "exynos4-sdhci");
351
352 /* The I2C bus controllers are directly compatible with s3c2440 */
353 s3c_i2c0_setname("s3c2440-i2c");
354 s3c_i2c1_setname("s3c2440-i2c");
355 s3c_i2c2_setname("s3c2440-i2c");
356
357 s3c64xx_spi_setname("exynos4210-spi");
358 }
359
360 static void __init exynos4_init_clocks(int xtal)
361 {
362 printk(KERN_DEBUG "%s: initializing clocks\n", __func__);
363
364 s3c24xx_register_baseclocks(xtal);
365 s5p_register_clocks(xtal);
366
367 if (soc_is_exynos4210())
368 exynos4210_register_clocks();
369 else if (soc_is_exynos4212() || soc_is_exynos4412())
370 exynos4212_register_clocks();
371
372 exynos4_register_clocks();
373 exynos4_setup_clocks();
374 }
375
376 static void __init exynos5_init_clocks(int xtal)
377 {
378 printk(KERN_DEBUG "%s: initializing clocks\n", __func__);
379
380 s3c24xx_register_baseclocks(xtal);
381 s5p_register_clocks(xtal);
382
383 exynos5_register_clocks();
384 exynos5_setup_clocks();
385 }
386
387 #define COMBINER_ENABLE_SET 0x0
388 #define COMBINER_ENABLE_CLEAR 0x4
389 #define COMBINER_INT_STATUS 0xC
390
391 static DEFINE_SPINLOCK(irq_controller_lock);
392
393 struct combiner_chip_data {
394 unsigned int irq_offset;
395 unsigned int irq_mask;
396 void __iomem *base;
397 };
398
399 static struct irq_domain *combiner_irq_domain;
400 static struct combiner_chip_data combiner_data[MAX_COMBINER_NR];
401
402 static inline void __iomem *combiner_base(struct irq_data *data)
403 {
404 struct combiner_chip_data *combiner_data =
405 irq_data_get_irq_chip_data(data);
406
407 return combiner_data->base;
408 }
409
410 static void combiner_mask_irq(struct irq_data *data)
411 {
412 u32 mask = 1 << (data->hwirq % 32);
413
414 __raw_writel(mask, combiner_base(data) + COMBINER_ENABLE_CLEAR);
415 }
416
417 static void combiner_unmask_irq(struct irq_data *data)
418 {
419 u32 mask = 1 << (data->hwirq % 32);
420
421 __raw_writel(mask, combiner_base(data) + COMBINER_ENABLE_SET);
422 }
423
424 static void combiner_handle_cascade_irq(unsigned int irq, struct irq_desc *desc)
425 {
426 struct combiner_chip_data *chip_data = irq_get_handler_data(irq);
427 struct irq_chip *chip = irq_get_chip(irq);
428 unsigned int cascade_irq, combiner_irq;
429 unsigned long status;
430
431 chained_irq_enter(chip, desc);
432
433 spin_lock(&irq_controller_lock);
434 status = __raw_readl(chip_data->base + COMBINER_INT_STATUS);
435 spin_unlock(&irq_controller_lock);
436 status &= chip_data->irq_mask;
437
438 if (status == 0)
439 goto out;
440
441 combiner_irq = __ffs(status);
442
443 cascade_irq = combiner_irq + (chip_data->irq_offset & ~31);
444 if (unlikely(cascade_irq >= NR_IRQS))
445 do_bad_IRQ(cascade_irq, desc);
446 else
447 generic_handle_irq(cascade_irq);
448
449 out:
450 chained_irq_exit(chip, desc);
451 }
452
453 static struct irq_chip combiner_chip = {
454 .name = "COMBINER",
455 .irq_mask = combiner_mask_irq,
456 .irq_unmask = combiner_unmask_irq,
457 };
458
459 static void __init combiner_cascade_irq(unsigned int combiner_nr, unsigned int irq)
460 {
461 unsigned int max_nr;
462
463 if (soc_is_exynos5250())
464 max_nr = EXYNOS5_MAX_COMBINER_NR;
465 else
466 max_nr = EXYNOS4_MAX_COMBINER_NR;
467
468 if (combiner_nr >= max_nr)
469 BUG();
470 if (irq_set_handler_data(irq, &combiner_data[combiner_nr]) != 0)
471 BUG();
472 irq_set_chained_handler(irq, combiner_handle_cascade_irq);
473 }
474
475 static void __init combiner_init_one(unsigned int combiner_nr,
476 void __iomem *base)
477 {
478 combiner_data[combiner_nr].base = base;
479 combiner_data[combiner_nr].irq_offset = irq_find_mapping(
480 combiner_irq_domain, combiner_nr * MAX_IRQ_IN_COMBINER);
481 combiner_data[combiner_nr].irq_mask = 0xff << ((combiner_nr % 4) << 3);
482
483 /* Disable all interrupts */
484 __raw_writel(combiner_data[combiner_nr].irq_mask,
485 base + COMBINER_ENABLE_CLEAR);
486 }
487
488 #ifdef CONFIG_OF
489 static int combiner_irq_domain_xlate(struct irq_domain *d,
490 struct device_node *controller,
491 const u32 *intspec, unsigned int intsize,
492 unsigned long *out_hwirq,
493 unsigned int *out_type)
494 {
495 if (d->of_node != controller)
496 return -EINVAL;
497
498 if (intsize < 2)
499 return -EINVAL;
500
501 *out_hwirq = intspec[0] * MAX_IRQ_IN_COMBINER + intspec[1];
502 *out_type = 0;
503
504 return 0;
505 }
506 #else
507 static int combiner_irq_domain_xlate(struct irq_domain *d,
508 struct device_node *controller,
509 const u32 *intspec, unsigned int intsize,
510 unsigned long *out_hwirq,
511 unsigned int *out_type)
512 {
513 return -EINVAL;
514 }
515 #endif
516
517 static int combiner_irq_domain_map(struct irq_domain *d, unsigned int irq,
518 irq_hw_number_t hw)
519 {
520 irq_set_chip_and_handler(irq, &combiner_chip, handle_level_irq);
521 irq_set_chip_data(irq, &combiner_data[hw >> 3]);
522 set_irq_flags(irq, IRQF_VALID | IRQF_PROBE);
523
524 return 0;
525 }
526
527 static struct irq_domain_ops combiner_irq_domain_ops = {
528 .xlate = combiner_irq_domain_xlate,
529 .map = combiner_irq_domain_map,
530 };
531
532 static void __init combiner_init(void __iomem *combiner_base,
533 struct device_node *np)
534 {
535 int i, irq, irq_base;
536 unsigned int max_nr, nr_irq;
537
538 if (np) {
539 if (of_property_read_u32(np, "samsung,combiner-nr", &max_nr)) {
540 pr_warning("%s: number of combiners not specified, "
541 "setting default as %d.\n",
542 __func__, EXYNOS4_MAX_COMBINER_NR);
543 max_nr = EXYNOS4_MAX_COMBINER_NR;
544 }
545 } else {
546 max_nr = soc_is_exynos5250() ? EXYNOS5_MAX_COMBINER_NR :
547 EXYNOS4_MAX_COMBINER_NR;
548 }
549 nr_irq = max_nr * MAX_IRQ_IN_COMBINER;
550
551 irq_base = irq_alloc_descs(COMBINER_IRQ(0, 0), 1, nr_irq, 0);
552 if (IS_ERR_VALUE(irq_base)) {
553 irq_base = COMBINER_IRQ(0, 0);
554 pr_warning("%s: irq desc alloc failed. Continuing with %d as linux irq base\n", __func__, irq_base);
555 }
556
557 combiner_irq_domain = irq_domain_add_legacy(np, nr_irq, irq_base, 0,
558 &combiner_irq_domain_ops, &combiner_data);
559 if (WARN_ON(!combiner_irq_domain)) {
560 pr_warning("%s: irq domain init failed\n", __func__);
561 return;
562 }
563
564 for (i = 0; i < max_nr; i++) {
565 combiner_init_one(i, combiner_base + (i >> 2) * 0x10);
566 irq = IRQ_SPI(i);
567 #ifdef CONFIG_OF
568 if (np)
569 irq = irq_of_parse_and_map(np, i);
570 #endif
571 combiner_cascade_irq(i, irq);
572 }
573 }
574
575 #ifdef CONFIG_OF
576 int __init combiner_of_init(struct device_node *np, struct device_node *parent)
577 {
578 void __iomem *combiner_base;
579
580 combiner_base = of_iomap(np, 0);
581 if (!combiner_base) {
582 pr_err("%s: failed to map combiner registers\n", __func__);
583 return -ENXIO;
584 }
585
586 combiner_init(combiner_base, np);
587
588 return 0;
589 }
590
591 static const struct of_device_id exynos4_dt_irq_match[] = {
592 { .compatible = "arm,cortex-a9-gic", .data = gic_of_init, },
593 { .compatible = "samsung,exynos4210-combiner",
594 .data = combiner_of_init, },
595 {},
596 };
597 #endif
598
599 void __init exynos4_init_irq(void)
600 {
601 unsigned int gic_bank_offset;
602
603 gic_bank_offset = soc_is_exynos4412() ? 0x4000 : 0x8000;
604
605 if (!of_have_populated_dt())
606 gic_init_bases(0, IRQ_PPI(0), S5P_VA_GIC_DIST, S5P_VA_GIC_CPU, gic_bank_offset, NULL);
607 #ifdef CONFIG_OF
608 else
609 of_irq_init(exynos4_dt_irq_match);
610 #endif
611
612 if (!of_have_populated_dt())
613 combiner_init(S5P_VA_COMBINER_BASE, NULL);
614
615 /*
616 * The parameters of s5p_init_irq() are for VIC init.
617 * Theses parameters should be NULL and 0 because EXYNOS4
618 * uses GIC instead of VIC.
619 */
620 s5p_init_irq(NULL, 0);
621 }
622
623 void __init exynos5_init_irq(void)
624 {
625 #ifdef CONFIG_OF
626 of_irq_init(exynos4_dt_irq_match);
627 #endif
628 /*
629 * The parameters of s5p_init_irq() are for VIC init.
630 * Theses parameters should be NULL and 0 because EXYNOS4
631 * uses GIC instead of VIC.
632 */
633 s5p_init_irq(NULL, 0);
634 }
635
636 struct bus_type exynos_subsys = {
637 .name = "exynos-core",
638 .dev_name = "exynos-core",
639 };
640
641 static struct device exynos4_dev = {
642 .bus = &exynos_subsys,
643 };
644
645 static int __init exynos_core_init(void)
646 {
647 return subsys_system_register(&exynos_subsys, NULL);
648 }
649 core_initcall(exynos_core_init);
650
651 #ifdef CONFIG_CACHE_L2X0
652 static int __init exynos4_l2x0_cache_init(void)
653 {
654 int ret;
655
656 if (soc_is_exynos5250())
657 return 0;
658
659 ret = l2x0_of_init(L2_AUX_VAL, L2_AUX_MASK);
660 if (!ret) {
661 l2x0_regs_phys = virt_to_phys(&l2x0_saved_regs);
662 clean_dcache_area(&l2x0_regs_phys, sizeof(unsigned long));
663 return 0;
664 }
665
666 if (!(__raw_readl(S5P_VA_L2CC + L2X0_CTRL) & 0x1)) {
667 l2x0_saved_regs.phy_base = EXYNOS4_PA_L2CC;
668 /* TAG, Data Latency Control: 2 cycles */
669 l2x0_saved_regs.tag_latency = 0x110;
670
671 if (soc_is_exynos4212() || soc_is_exynos4412())
672 l2x0_saved_regs.data_latency = 0x120;
673 else
674 l2x0_saved_regs.data_latency = 0x110;
675
676 l2x0_saved_regs.prefetch_ctrl = 0x30000007;
677 l2x0_saved_regs.pwr_ctrl =
678 (L2X0_DYNAMIC_CLK_GATING_EN | L2X0_STNDBY_MODE_EN);
679
680 l2x0_regs_phys = virt_to_phys(&l2x0_saved_regs);
681
682 __raw_writel(l2x0_saved_regs.tag_latency,
683 S5P_VA_L2CC + L2X0_TAG_LATENCY_CTRL);
684 __raw_writel(l2x0_saved_regs.data_latency,
685 S5P_VA_L2CC + L2X0_DATA_LATENCY_CTRL);
686
687 /* L2X0 Prefetch Control */
688 __raw_writel(l2x0_saved_regs.prefetch_ctrl,
689 S5P_VA_L2CC + L2X0_PREFETCH_CTRL);
690
691 /* L2X0 Power Control */
692 __raw_writel(l2x0_saved_regs.pwr_ctrl,
693 S5P_VA_L2CC + L2X0_POWER_CTRL);
694
695 clean_dcache_area(&l2x0_regs_phys, sizeof(unsigned long));
696 clean_dcache_area(&l2x0_saved_regs, sizeof(struct l2x0_regs));
697 }
698
699 l2x0_init(S5P_VA_L2CC, L2_AUX_VAL, L2_AUX_MASK);
700 return 0;
701 }
702 early_initcall(exynos4_l2x0_cache_init);
703 #endif
704
705 static int __init exynos_init(void)
706 {
707 printk(KERN_INFO "EXYNOS: Initializing architecture\n");
708
709 return device_register(&exynos4_dev);
710 }
711
712 /* uart registration process */
713
714 static void __init exynos4_init_uarts(struct s3c2410_uartcfg *cfg, int no)
715 {
716 struct s3c2410_uartcfg *tcfg = cfg;
717 u32 ucnt;
718
719 for (ucnt = 0; ucnt < no; ucnt++, tcfg++)
720 tcfg->has_fracval = 1;
721
722 s3c24xx_init_uartdevs("exynos4210-uart", exynos4_uart_resources, cfg, no);
723 }
724
725 static void __iomem *exynos_eint_base;
726
727 static DEFINE_SPINLOCK(eint_lock);
728
729 static unsigned int eint0_15_data[16];
730
731 static inline int exynos4_irq_to_gpio(unsigned int irq)
732 {
733 if (irq < IRQ_EINT(0))
734 return -EINVAL;
735
736 irq -= IRQ_EINT(0);
737 if (irq < 8)
738 return EXYNOS4_GPX0(irq);
739
740 irq -= 8;
741 if (irq < 8)
742 return EXYNOS4_GPX1(irq);
743
744 irq -= 8;
745 if (irq < 8)
746 return EXYNOS4_GPX2(irq);
747
748 irq -= 8;
749 if (irq < 8)
750 return EXYNOS4_GPX3(irq);
751
752 return -EINVAL;
753 }
754
755 static inline int exynos5_irq_to_gpio(unsigned int irq)
756 {
757 if (irq < IRQ_EINT(0))
758 return -EINVAL;
759
760 irq -= IRQ_EINT(0);
761 if (irq < 8)
762 return EXYNOS5_GPX0(irq);
763
764 irq -= 8;
765 if (irq < 8)
766 return EXYNOS5_GPX1(irq);
767
768 irq -= 8;
769 if (irq < 8)
770 return EXYNOS5_GPX2(irq);
771
772 irq -= 8;
773 if (irq < 8)
774 return EXYNOS5_GPX3(irq);
775
776 return -EINVAL;
777 }
778
779 static unsigned int exynos4_eint0_15_src_int[16] = {
780 EXYNOS4_IRQ_EINT0,
781 EXYNOS4_IRQ_EINT1,
782 EXYNOS4_IRQ_EINT2,
783 EXYNOS4_IRQ_EINT3,
784 EXYNOS4_IRQ_EINT4,
785 EXYNOS4_IRQ_EINT5,
786 EXYNOS4_IRQ_EINT6,
787 EXYNOS4_IRQ_EINT7,
788 EXYNOS4_IRQ_EINT8,
789 EXYNOS4_IRQ_EINT9,
790 EXYNOS4_IRQ_EINT10,
791 EXYNOS4_IRQ_EINT11,
792 EXYNOS4_IRQ_EINT12,
793 EXYNOS4_IRQ_EINT13,
794 EXYNOS4_IRQ_EINT14,
795 EXYNOS4_IRQ_EINT15,
796 };
797
798 static unsigned int exynos5_eint0_15_src_int[16] = {
799 EXYNOS5_IRQ_EINT0,
800 EXYNOS5_IRQ_EINT1,
801 EXYNOS5_IRQ_EINT2,
802 EXYNOS5_IRQ_EINT3,
803 EXYNOS5_IRQ_EINT4,
804 EXYNOS5_IRQ_EINT5,
805 EXYNOS5_IRQ_EINT6,
806 EXYNOS5_IRQ_EINT7,
807 EXYNOS5_IRQ_EINT8,
808 EXYNOS5_IRQ_EINT9,
809 EXYNOS5_IRQ_EINT10,
810 EXYNOS5_IRQ_EINT11,
811 EXYNOS5_IRQ_EINT12,
812 EXYNOS5_IRQ_EINT13,
813 EXYNOS5_IRQ_EINT14,
814 EXYNOS5_IRQ_EINT15,
815 };
816 static inline void exynos_irq_eint_mask(struct irq_data *data)
817 {
818 u32 mask;
819
820 spin_lock(&eint_lock);
821 mask = __raw_readl(EINT_MASK(exynos_eint_base, data->irq));
822 mask |= EINT_OFFSET_BIT(data->irq);
823 __raw_writel(mask, EINT_MASK(exynos_eint_base, data->irq));
824 spin_unlock(&eint_lock);
825 }
826
827 static void exynos_irq_eint_unmask(struct irq_data *data)
828 {
829 u32 mask;
830
831 spin_lock(&eint_lock);
832 mask = __raw_readl(EINT_MASK(exynos_eint_base, data->irq));
833 mask &= ~(EINT_OFFSET_BIT(data->irq));
834 __raw_writel(mask, EINT_MASK(exynos_eint_base, data->irq));
835 spin_unlock(&eint_lock);
836 }
837
838 static inline void exynos_irq_eint_ack(struct irq_data *data)
839 {
840 __raw_writel(EINT_OFFSET_BIT(data->irq),
841 EINT_PEND(exynos_eint_base, data->irq));
842 }
843
844 static void exynos_irq_eint_maskack(struct irq_data *data)
845 {
846 exynos_irq_eint_mask(data);
847 exynos_irq_eint_ack(data);
848 }
849
850 static int exynos_irq_eint_set_type(struct irq_data *data, unsigned int type)
851 {
852 int offs = EINT_OFFSET(data->irq);
853 int shift;
854 u32 ctrl, mask;
855 u32 newvalue = 0;
856
857 switch (type) {
858 case IRQ_TYPE_EDGE_RISING:
859 newvalue = S5P_IRQ_TYPE_EDGE_RISING;
860 break;
861
862 case IRQ_TYPE_EDGE_FALLING:
863 newvalue = S5P_IRQ_TYPE_EDGE_FALLING;
864 break;
865
866 case IRQ_TYPE_EDGE_BOTH:
867 newvalue = S5P_IRQ_TYPE_EDGE_BOTH;
868 break;
869
870 case IRQ_TYPE_LEVEL_LOW:
871 newvalue = S5P_IRQ_TYPE_LEVEL_LOW;
872 break;
873
874 case IRQ_TYPE_LEVEL_HIGH:
875 newvalue = S5P_IRQ_TYPE_LEVEL_HIGH;
876 break;
877
878 default:
879 printk(KERN_ERR "No such irq type %d", type);
880 return -EINVAL;
881 }
882
883 shift = (offs & 0x7) * 4;
884 mask = 0x7 << shift;
885
886 spin_lock(&eint_lock);
887 ctrl = __raw_readl(EINT_CON(exynos_eint_base, data->irq));
888 ctrl &= ~mask;
889 ctrl |= newvalue << shift;
890 __raw_writel(ctrl, EINT_CON(exynos_eint_base, data->irq));
891 spin_unlock(&eint_lock);
892
893 if (soc_is_exynos5250())
894 s3c_gpio_cfgpin(exynos5_irq_to_gpio(data->irq), S3C_GPIO_SFN(0xf));
895 else
896 s3c_gpio_cfgpin(exynos4_irq_to_gpio(data->irq), S3C_GPIO_SFN(0xf));
897
898 return 0;
899 }
900
901 static struct irq_chip exynos_irq_eint = {
902 .name = "exynos-eint",
903 .irq_mask = exynos_irq_eint_mask,
904 .irq_unmask = exynos_irq_eint_unmask,
905 .irq_mask_ack = exynos_irq_eint_maskack,
906 .irq_ack = exynos_irq_eint_ack,
907 .irq_set_type = exynos_irq_eint_set_type,
908 #ifdef CONFIG_PM
909 .irq_set_wake = s3c_irqext_wake,
910 #endif
911 };
912
913 /*
914 * exynos4_irq_demux_eint
915 *
916 * This function demuxes the IRQ from from EINTs 16 to 31.
917 * It is designed to be inlined into the specific handler
918 * s5p_irq_demux_eintX_Y.
919 *
920 * Each EINT pend/mask registers handle eight of them.
921 */
922 static inline void exynos_irq_demux_eint(unsigned int start)
923 {
924 unsigned int irq;
925
926 u32 status = __raw_readl(EINT_PEND(exynos_eint_base, start));
927 u32 mask = __raw_readl(EINT_MASK(exynos_eint_base, start));
928
929 status &= ~mask;
930 status &= 0xff;
931
932 while (status) {
933 irq = fls(status) - 1;
934 generic_handle_irq(irq + start);
935 status &= ~(1 << irq);
936 }
937 }
938
939 static void exynos_irq_demux_eint16_31(unsigned int irq, struct irq_desc *desc)
940 {
941 struct irq_chip *chip = irq_get_chip(irq);
942 chained_irq_enter(chip, desc);
943 exynos_irq_demux_eint(IRQ_EINT(16));
944 exynos_irq_demux_eint(IRQ_EINT(24));
945 chained_irq_exit(chip, desc);
946 }
947
948 static void exynos_irq_eint0_15(unsigned int irq, struct irq_desc *desc)
949 {
950 u32 *irq_data = irq_get_handler_data(irq);
951 struct irq_chip *chip = irq_get_chip(irq);
952
953 chained_irq_enter(chip, desc);
954 chip->irq_mask(&desc->irq_data);
955
956 if (chip->irq_ack)
957 chip->irq_ack(&desc->irq_data);
958
959 generic_handle_irq(*irq_data);
960
961 chip->irq_unmask(&desc->irq_data);
962 chained_irq_exit(chip, desc);
963 }
964
965 static int __init exynos_init_irq_eint(void)
966 {
967 int irq;
968
969 #ifdef CONFIG_PINCTRL_SAMSUNG
970 /*
971 * The Samsung pinctrl driver provides an integrated gpio/pinmux/pinconf
972 * functionality along with support for external gpio and wakeup
973 * interrupts. If the samsung pinctrl driver is enabled and includes
974 * the wakeup interrupt support, then the setting up external wakeup
975 * interrupts here can be skipped. This check here is temporary to
976 * allow exynos4 platforms that do not use Samsung pinctrl driver to
977 * co-exist with platforms that do. When all of the Samsung Exynos4
978 * platforms switch over to using the pinctrl driver, the wakeup
979 * interrupt support code here can be completely removed.
980 */
981 struct device_node *pctrl_np, *wkup_np;
982 const char *pctrl_compat = "samsung,pinctrl-exynos4210";
983 const char *wkup_compat = "samsung,exynos4210-wakeup-eint";
984
985 for_each_compatible_node(pctrl_np, NULL, pctrl_compat) {
986 if (of_device_is_available(pctrl_np)) {
987 wkup_np = of_find_compatible_node(pctrl_np, NULL,
988 wkup_compat);
989 if (wkup_np)
990 return -ENODEV;
991 }
992 }
993 #endif
994
995 if (soc_is_exynos5250())
996 exynos_eint_base = ioremap(EXYNOS5_PA_GPIO1, SZ_4K);
997 else
998 exynos_eint_base = ioremap(EXYNOS4_PA_GPIO2, SZ_4K);
999
1000 if (exynos_eint_base == NULL) {
1001 pr_err("unable to ioremap for EINT base address\n");
1002 return -ENOMEM;
1003 }
1004
1005 for (irq = 0 ; irq <= 31 ; irq++) {
1006 irq_set_chip_and_handler(IRQ_EINT(irq), &exynos_irq_eint,
1007 handle_level_irq);
1008 set_irq_flags(IRQ_EINT(irq), IRQF_VALID);
1009 }
1010
1011 irq_set_chained_handler(EXYNOS_IRQ_EINT16_31, exynos_irq_demux_eint16_31);
1012
1013 for (irq = 0 ; irq <= 15 ; irq++) {
1014 eint0_15_data[irq] = IRQ_EINT(irq);
1015
1016 if (soc_is_exynos5250()) {
1017 irq_set_handler_data(exynos5_eint0_15_src_int[irq],
1018 &eint0_15_data[irq]);
1019 irq_set_chained_handler(exynos5_eint0_15_src_int[irq],
1020 exynos_irq_eint0_15);
1021 } else {
1022 irq_set_handler_data(exynos4_eint0_15_src_int[irq],
1023 &eint0_15_data[irq]);
1024 irq_set_chained_handler(exynos4_eint0_15_src_int[irq],
1025 exynos_irq_eint0_15);
1026 }
1027 }
1028
1029 return 0;
1030 }
1031 arch_initcall(exynos_init_irq_eint);
This page took 0.140824 seconds and 5 git commands to generate.