Merge branch 'next/cleanup-samsung' into next/cleanup-samsung-2
[deliverable/linux.git] / arch / arm / mach-exynos / mct.c
1 /* linux/arch/arm/mach-exynos4/mct.c
2 *
3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4 * http://www.samsung.com
5 *
6 * EXYNOS4 MCT(Multi-Core Timer) support
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/sched.h>
14 #include <linux/interrupt.h>
15 #include <linux/irq.h>
16 #include <linux/err.h>
17 #include <linux/clk.h>
18 #include <linux/clockchips.h>
19 #include <linux/platform_device.h>
20 #include <linux/delay.h>
21 #include <linux/percpu.h>
22
23 #include <asm/hardware/gic.h>
24 #include <asm/localtimer.h>
25
26 #include <plat/cpu.h>
27
28 #include <mach/map.h>
29 #include <mach/irqs.h>
30 #include <mach/regs-mct.h>
31 #include <asm/mach/time.h>
32
33 #define TICK_BASE_CNT 1
34
35 enum {
36 MCT_INT_SPI,
37 MCT_INT_PPI
38 };
39
40 static unsigned long clk_rate;
41 static unsigned int mct_int_type;
42
43 struct mct_clock_event_device {
44 struct clock_event_device *evt;
45 void __iomem *base;
46 char name[10];
47 };
48
49 static void exynos4_mct_write(unsigned int value, void *addr)
50 {
51 void __iomem *stat_addr;
52 u32 mask;
53 u32 i;
54
55 __raw_writel(value, addr);
56
57 if (likely(addr >= EXYNOS4_MCT_L_BASE(0))) {
58 u32 base = (u32) addr & EXYNOS4_MCT_L_MASK;
59 switch ((u32) addr & ~EXYNOS4_MCT_L_MASK) {
60 case (u32) MCT_L_TCON_OFFSET:
61 stat_addr = (void __iomem *) base + MCT_L_WSTAT_OFFSET;
62 mask = 1 << 3; /* L_TCON write status */
63 break;
64 case (u32) MCT_L_ICNTB_OFFSET:
65 stat_addr = (void __iomem *) base + MCT_L_WSTAT_OFFSET;
66 mask = 1 << 1; /* L_ICNTB write status */
67 break;
68 case (u32) MCT_L_TCNTB_OFFSET:
69 stat_addr = (void __iomem *) base + MCT_L_WSTAT_OFFSET;
70 mask = 1 << 0; /* L_TCNTB write status */
71 break;
72 default:
73 return;
74 }
75 } else {
76 switch ((u32) addr) {
77 case (u32) EXYNOS4_MCT_G_TCON:
78 stat_addr = EXYNOS4_MCT_G_WSTAT;
79 mask = 1 << 16; /* G_TCON write status */
80 break;
81 case (u32) EXYNOS4_MCT_G_COMP0_L:
82 stat_addr = EXYNOS4_MCT_G_WSTAT;
83 mask = 1 << 0; /* G_COMP0_L write status */
84 break;
85 case (u32) EXYNOS4_MCT_G_COMP0_U:
86 stat_addr = EXYNOS4_MCT_G_WSTAT;
87 mask = 1 << 1; /* G_COMP0_U write status */
88 break;
89 case (u32) EXYNOS4_MCT_G_COMP0_ADD_INCR:
90 stat_addr = EXYNOS4_MCT_G_WSTAT;
91 mask = 1 << 2; /* G_COMP0_ADD_INCR w status */
92 break;
93 case (u32) EXYNOS4_MCT_G_CNT_L:
94 stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
95 mask = 1 << 0; /* G_CNT_L write status */
96 break;
97 case (u32) EXYNOS4_MCT_G_CNT_U:
98 stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
99 mask = 1 << 1; /* G_CNT_U write status */
100 break;
101 default:
102 return;
103 }
104 }
105
106 /* Wait maximum 1 ms until written values are applied */
107 for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
108 if (__raw_readl(stat_addr) & mask) {
109 __raw_writel(mask, stat_addr);
110 return;
111 }
112
113 panic("MCT hangs after writing %d (addr:0x%08x)\n", value, (u32)addr);
114 }
115
116 /* Clocksource handling */
117 static void exynos4_mct_frc_start(u32 hi, u32 lo)
118 {
119 u32 reg;
120
121 exynos4_mct_write(lo, EXYNOS4_MCT_G_CNT_L);
122 exynos4_mct_write(hi, EXYNOS4_MCT_G_CNT_U);
123
124 reg = __raw_readl(EXYNOS4_MCT_G_TCON);
125 reg |= MCT_G_TCON_START;
126 exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
127 }
128
129 static cycle_t exynos4_frc_read(struct clocksource *cs)
130 {
131 unsigned int lo, hi;
132 u32 hi2 = __raw_readl(EXYNOS4_MCT_G_CNT_U);
133
134 do {
135 hi = hi2;
136 lo = __raw_readl(EXYNOS4_MCT_G_CNT_L);
137 hi2 = __raw_readl(EXYNOS4_MCT_G_CNT_U);
138 } while (hi != hi2);
139
140 return ((cycle_t)hi << 32) | lo;
141 }
142
143 static void exynos4_frc_resume(struct clocksource *cs)
144 {
145 exynos4_mct_frc_start(0, 0);
146 }
147
148 struct clocksource mct_frc = {
149 .name = "mct-frc",
150 .rating = 400,
151 .read = exynos4_frc_read,
152 .mask = CLOCKSOURCE_MASK(64),
153 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
154 .resume = exynos4_frc_resume,
155 };
156
157 static void __init exynos4_clocksource_init(void)
158 {
159 exynos4_mct_frc_start(0, 0);
160
161 if (clocksource_register_hz(&mct_frc, clk_rate))
162 panic("%s: can't register clocksource\n", mct_frc.name);
163 }
164
165 static void exynos4_mct_comp0_stop(void)
166 {
167 unsigned int tcon;
168
169 tcon = __raw_readl(EXYNOS4_MCT_G_TCON);
170 tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
171
172 exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
173 exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
174 }
175
176 static void exynos4_mct_comp0_start(enum clock_event_mode mode,
177 unsigned long cycles)
178 {
179 unsigned int tcon;
180 cycle_t comp_cycle;
181
182 tcon = __raw_readl(EXYNOS4_MCT_G_TCON);
183
184 if (mode == CLOCK_EVT_MODE_PERIODIC) {
185 tcon |= MCT_G_TCON_COMP0_AUTO_INC;
186 exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
187 }
188
189 comp_cycle = exynos4_frc_read(&mct_frc) + cycles;
190 exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
191 exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
192
193 exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
194
195 tcon |= MCT_G_TCON_COMP0_ENABLE;
196 exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
197 }
198
199 static int exynos4_comp_set_next_event(unsigned long cycles,
200 struct clock_event_device *evt)
201 {
202 exynos4_mct_comp0_start(evt->mode, cycles);
203
204 return 0;
205 }
206
207 static void exynos4_comp_set_mode(enum clock_event_mode mode,
208 struct clock_event_device *evt)
209 {
210 unsigned long cycles_per_jiffy;
211 exynos4_mct_comp0_stop();
212
213 switch (mode) {
214 case CLOCK_EVT_MODE_PERIODIC:
215 cycles_per_jiffy =
216 (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
217 exynos4_mct_comp0_start(mode, cycles_per_jiffy);
218 break;
219
220 case CLOCK_EVT_MODE_ONESHOT:
221 case CLOCK_EVT_MODE_UNUSED:
222 case CLOCK_EVT_MODE_SHUTDOWN:
223 case CLOCK_EVT_MODE_RESUME:
224 break;
225 }
226 }
227
228 static struct clock_event_device mct_comp_device = {
229 .name = "mct-comp",
230 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
231 .rating = 250,
232 .set_next_event = exynos4_comp_set_next_event,
233 .set_mode = exynos4_comp_set_mode,
234 };
235
236 static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
237 {
238 struct clock_event_device *evt = dev_id;
239
240 exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
241
242 evt->event_handler(evt);
243
244 return IRQ_HANDLED;
245 }
246
247 static struct irqaction mct_comp_event_irq = {
248 .name = "mct_comp_irq",
249 .flags = IRQF_TIMER | IRQF_IRQPOLL,
250 .handler = exynos4_mct_comp_isr,
251 .dev_id = &mct_comp_device,
252 };
253
254 static void exynos4_clockevent_init(void)
255 {
256 clockevents_calc_mult_shift(&mct_comp_device, clk_rate, 5);
257 mct_comp_device.max_delta_ns =
258 clockevent_delta2ns(0xffffffff, &mct_comp_device);
259 mct_comp_device.min_delta_ns =
260 clockevent_delta2ns(0xf, &mct_comp_device);
261 mct_comp_device.cpumask = cpumask_of(0);
262 clockevents_register_device(&mct_comp_device);
263
264 if (soc_is_exynos5250())
265 setup_irq(EXYNOS5_IRQ_MCT_G0, &mct_comp_event_irq);
266 else
267 setup_irq(EXYNOS4_IRQ_MCT_G0, &mct_comp_event_irq);
268 }
269
270 #ifdef CONFIG_LOCAL_TIMERS
271
272 static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
273
274 /* Clock event handling */
275 static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
276 {
277 unsigned long tmp;
278 unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
279 void __iomem *addr = mevt->base + MCT_L_TCON_OFFSET;
280
281 tmp = __raw_readl(addr);
282 if (tmp & mask) {
283 tmp &= ~mask;
284 exynos4_mct_write(tmp, addr);
285 }
286 }
287
288 static void exynos4_mct_tick_start(unsigned long cycles,
289 struct mct_clock_event_device *mevt)
290 {
291 unsigned long tmp;
292
293 exynos4_mct_tick_stop(mevt);
294
295 tmp = (1 << 31) | cycles; /* MCT_L_UPDATE_ICNTB */
296
297 /* update interrupt count buffer */
298 exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
299
300 /* enable MCT tick interrupt */
301 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
302
303 tmp = __raw_readl(mevt->base + MCT_L_TCON_OFFSET);
304 tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
305 MCT_L_TCON_INTERVAL_MODE;
306 exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
307 }
308
309 static int exynos4_tick_set_next_event(unsigned long cycles,
310 struct clock_event_device *evt)
311 {
312 struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
313
314 exynos4_mct_tick_start(cycles, mevt);
315
316 return 0;
317 }
318
319 static inline void exynos4_tick_set_mode(enum clock_event_mode mode,
320 struct clock_event_device *evt)
321 {
322 struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
323 unsigned long cycles_per_jiffy;
324
325 exynos4_mct_tick_stop(mevt);
326
327 switch (mode) {
328 case CLOCK_EVT_MODE_PERIODIC:
329 cycles_per_jiffy =
330 (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
331 exynos4_mct_tick_start(cycles_per_jiffy, mevt);
332 break;
333
334 case CLOCK_EVT_MODE_ONESHOT:
335 case CLOCK_EVT_MODE_UNUSED:
336 case CLOCK_EVT_MODE_SHUTDOWN:
337 case CLOCK_EVT_MODE_RESUME:
338 break;
339 }
340 }
341
342 static int exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
343 {
344 struct clock_event_device *evt = mevt->evt;
345
346 /*
347 * This is for supporting oneshot mode.
348 * Mct would generate interrupt periodically
349 * without explicit stopping.
350 */
351 if (evt->mode != CLOCK_EVT_MODE_PERIODIC)
352 exynos4_mct_tick_stop(mevt);
353
354 /* Clear the MCT tick interrupt */
355 if (__raw_readl(mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1) {
356 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
357 return 1;
358 } else {
359 return 0;
360 }
361 }
362
363 static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
364 {
365 struct mct_clock_event_device *mevt = dev_id;
366 struct clock_event_device *evt = mevt->evt;
367
368 exynos4_mct_tick_clear(mevt);
369
370 evt->event_handler(evt);
371
372 return IRQ_HANDLED;
373 }
374
375 static struct irqaction mct_tick0_event_irq = {
376 .name = "mct_tick0_irq",
377 .flags = IRQF_TIMER | IRQF_NOBALANCING,
378 .handler = exynos4_mct_tick_isr,
379 };
380
381 static struct irqaction mct_tick1_event_irq = {
382 .name = "mct_tick1_irq",
383 .flags = IRQF_TIMER | IRQF_NOBALANCING,
384 .handler = exynos4_mct_tick_isr,
385 };
386
387 static int __cpuinit exynos4_local_timer_setup(struct clock_event_device *evt)
388 {
389 struct mct_clock_event_device *mevt;
390 unsigned int cpu = smp_processor_id();
391 int mct_lx_irq;
392
393 mevt = this_cpu_ptr(&percpu_mct_tick);
394 mevt->evt = evt;
395
396 mevt->base = EXYNOS4_MCT_L_BASE(cpu);
397 sprintf(mevt->name, "mct_tick%d", cpu);
398
399 evt->name = mevt->name;
400 evt->cpumask = cpumask_of(cpu);
401 evt->set_next_event = exynos4_tick_set_next_event;
402 evt->set_mode = exynos4_tick_set_mode;
403 evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
404 evt->rating = 450;
405
406 clockevents_calc_mult_shift(evt, clk_rate / (TICK_BASE_CNT + 1), 5);
407 evt->max_delta_ns =
408 clockevent_delta2ns(0x7fffffff, evt);
409 evt->min_delta_ns =
410 clockevent_delta2ns(0xf, evt);
411
412 clockevents_register_device(evt);
413
414 exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
415
416 if (mct_int_type == MCT_INT_SPI) {
417 if (cpu == 0) {
418 mct_lx_irq = soc_is_exynos4210() ? EXYNOS4_IRQ_MCT_L0 :
419 EXYNOS5_IRQ_MCT_L0;
420 mct_tick0_event_irq.dev_id = mevt;
421 evt->irq = mct_lx_irq;
422 setup_irq(mct_lx_irq, &mct_tick0_event_irq);
423 } else {
424 mct_lx_irq = soc_is_exynos4210() ? EXYNOS4_IRQ_MCT_L1 :
425 EXYNOS5_IRQ_MCT_L1;
426 mct_tick1_event_irq.dev_id = mevt;
427 evt->irq = mct_lx_irq;
428 setup_irq(mct_lx_irq, &mct_tick1_event_irq);
429 irq_set_affinity(mct_lx_irq, cpumask_of(1));
430 }
431 } else {
432 enable_percpu_irq(EXYNOS_IRQ_MCT_LOCALTIMER, 0);
433 }
434
435 return 0;
436 }
437
438 static void exynos4_local_timer_stop(struct clock_event_device *evt)
439 {
440 unsigned int cpu = smp_processor_id();
441 evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
442 if (mct_int_type == MCT_INT_SPI)
443 if (cpu == 0)
444 remove_irq(evt->irq, &mct_tick0_event_irq);
445 else
446 remove_irq(evt->irq, &mct_tick1_event_irq);
447 else
448 disable_percpu_irq(EXYNOS_IRQ_MCT_LOCALTIMER);
449 }
450
451 static struct local_timer_ops exynos4_mct_tick_ops __cpuinitdata = {
452 .setup = exynos4_local_timer_setup,
453 .stop = exynos4_local_timer_stop,
454 };
455 #endif /* CONFIG_LOCAL_TIMERS */
456
457 static void __init exynos4_timer_resources(void)
458 {
459 struct clk *mct_clk;
460 mct_clk = clk_get(NULL, "xtal");
461
462 clk_rate = clk_get_rate(mct_clk);
463
464 #ifdef CONFIG_LOCAL_TIMERS
465 if (mct_int_type == MCT_INT_PPI) {
466 int err;
467
468 err = request_percpu_irq(EXYNOS_IRQ_MCT_LOCALTIMER,
469 exynos4_mct_tick_isr, "MCT",
470 &percpu_mct_tick);
471 WARN(err, "MCT: can't request IRQ %d (%d)\n",
472 EXYNOS_IRQ_MCT_LOCALTIMER, err);
473 }
474
475 local_timer_register(&exynos4_mct_tick_ops);
476 #endif /* CONFIG_LOCAL_TIMERS */
477 }
478
479 static void __init exynos4_timer_init(void)
480 {
481 if ((soc_is_exynos4210()) || (soc_is_exynos5250()))
482 mct_int_type = MCT_INT_SPI;
483 else
484 mct_int_type = MCT_INT_PPI;
485
486 exynos4_timer_resources();
487 exynos4_clocksource_init();
488 exynos4_clockevent_init();
489 }
490
491 struct sys_timer exynos4_timer = {
492 .init = exynos4_timer_init,
493 };
This page took 0.076 seconds and 5 git commands to generate.