ARM: OMAP2+: gpmc: Adapt to HWMOD
[deliverable/linux.git] / arch / arm / mach-omap2 / gpmc.c
1 /*
2 * GPMC support functions
3 *
4 * Copyright (C) 2005-2006 Nokia Corporation
5 *
6 * Author: Juha Yrjola
7 *
8 * Copyright (C) 2009 Texas Instruments
9 * Added OMAP4 support - Santosh Shilimkar <santosh.shilimkar@ti.com>
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License version 2 as
13 * published by the Free Software Foundation.
14 */
15 #undef DEBUG
16
17 #include <linux/irq.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/err.h>
21 #include <linux/clk.h>
22 #include <linux/ioport.h>
23 #include <linux/spinlock.h>
24 #include <linux/io.h>
25 #include <linux/module.h>
26 #include <linux/interrupt.h>
27
28 #include <asm/mach-types.h>
29 #include <plat/gpmc.h>
30
31 #include <plat/cpu.h>
32 #include <plat/gpmc.h>
33 #include <plat/sdrc.h>
34 #include <plat/omap_device.h>
35
36 #include "soc.h"
37 #include "common.h"
38
39 #define DEVICE_NAME "omap-gpmc"
40
41 /* GPMC register offsets */
42 #define GPMC_REVISION 0x00
43 #define GPMC_SYSCONFIG 0x10
44 #define GPMC_SYSSTATUS 0x14
45 #define GPMC_IRQSTATUS 0x18
46 #define GPMC_IRQENABLE 0x1c
47 #define GPMC_TIMEOUT_CONTROL 0x40
48 #define GPMC_ERR_ADDRESS 0x44
49 #define GPMC_ERR_TYPE 0x48
50 #define GPMC_CONFIG 0x50
51 #define GPMC_STATUS 0x54
52 #define GPMC_PREFETCH_CONFIG1 0x1e0
53 #define GPMC_PREFETCH_CONFIG2 0x1e4
54 #define GPMC_PREFETCH_CONTROL 0x1ec
55 #define GPMC_PREFETCH_STATUS 0x1f0
56 #define GPMC_ECC_CONFIG 0x1f4
57 #define GPMC_ECC_CONTROL 0x1f8
58 #define GPMC_ECC_SIZE_CONFIG 0x1fc
59 #define GPMC_ECC1_RESULT 0x200
60 #define GPMC_ECC_BCH_RESULT_0 0x240 /* not available on OMAP2 */
61
62 /* GPMC ECC control settings */
63 #define GPMC_ECC_CTRL_ECCCLEAR 0x100
64 #define GPMC_ECC_CTRL_ECCDISABLE 0x000
65 #define GPMC_ECC_CTRL_ECCREG1 0x001
66 #define GPMC_ECC_CTRL_ECCREG2 0x002
67 #define GPMC_ECC_CTRL_ECCREG3 0x003
68 #define GPMC_ECC_CTRL_ECCREG4 0x004
69 #define GPMC_ECC_CTRL_ECCREG5 0x005
70 #define GPMC_ECC_CTRL_ECCREG6 0x006
71 #define GPMC_ECC_CTRL_ECCREG7 0x007
72 #define GPMC_ECC_CTRL_ECCREG8 0x008
73 #define GPMC_ECC_CTRL_ECCREG9 0x009
74
75 #define GPMC_CS0_OFFSET 0x60
76 #define GPMC_CS_SIZE 0x30
77
78 #define GPMC_MEM_START 0x00000000
79 #define GPMC_MEM_END 0x3FFFFFFF
80 #define BOOT_ROM_SPACE 0x100000 /* 1MB */
81
82 #define GPMC_CHUNK_SHIFT 24 /* 16 MB */
83 #define GPMC_SECTION_SHIFT 28 /* 128 MB */
84
85 #define CS_NUM_SHIFT 24
86 #define ENABLE_PREFETCH (0x1 << 7)
87 #define DMA_MPU_MODE 2
88
89 /* XXX: Only NAND irq has been considered,currently these are the only ones used
90 */
91 #define GPMC_NR_IRQ 2
92
93 struct gpmc_client_irq {
94 unsigned irq;
95 u32 bitmask;
96 };
97
98 /* Structure to save gpmc cs context */
99 struct gpmc_cs_config {
100 u32 config1;
101 u32 config2;
102 u32 config3;
103 u32 config4;
104 u32 config5;
105 u32 config6;
106 u32 config7;
107 int is_valid;
108 };
109
110 /*
111 * Structure to save/restore gpmc context
112 * to support core off on OMAP3
113 */
114 struct omap3_gpmc_regs {
115 u32 sysconfig;
116 u32 irqenable;
117 u32 timeout_ctrl;
118 u32 config;
119 u32 prefetch_config1;
120 u32 prefetch_config2;
121 u32 prefetch_control;
122 struct gpmc_cs_config cs_context[GPMC_CS_NUM];
123 };
124
125 static struct gpmc_client_irq gpmc_client_irq[GPMC_NR_IRQ];
126 static struct irq_chip gpmc_irq_chip;
127 static unsigned gpmc_irq_start;
128
129 static struct resource gpmc_mem_root;
130 static struct resource gpmc_cs_mem[GPMC_CS_NUM];
131 static DEFINE_SPINLOCK(gpmc_mem_lock);
132 static unsigned int gpmc_cs_map; /* flag for cs which are initialized */
133 static int gpmc_ecc_used = -EINVAL; /* cs using ecc engine */
134
135 static void __iomem *gpmc_base;
136
137 static struct clk *gpmc_l3_clk;
138
139 static irqreturn_t gpmc_handle_irq(int irq, void *dev);
140
141 static void gpmc_write_reg(int idx, u32 val)
142 {
143 __raw_writel(val, gpmc_base + idx);
144 }
145
146 static u32 gpmc_read_reg(int idx)
147 {
148 return __raw_readl(gpmc_base + idx);
149 }
150
151 static void gpmc_cs_write_byte(int cs, int idx, u8 val)
152 {
153 void __iomem *reg_addr;
154
155 reg_addr = gpmc_base + GPMC_CS0_OFFSET + (cs * GPMC_CS_SIZE) + idx;
156 __raw_writeb(val, reg_addr);
157 }
158
159 static u8 gpmc_cs_read_byte(int cs, int idx)
160 {
161 void __iomem *reg_addr;
162
163 reg_addr = gpmc_base + GPMC_CS0_OFFSET + (cs * GPMC_CS_SIZE) + idx;
164 return __raw_readb(reg_addr);
165 }
166
167 void gpmc_cs_write_reg(int cs, int idx, u32 val)
168 {
169 void __iomem *reg_addr;
170
171 reg_addr = gpmc_base + GPMC_CS0_OFFSET + (cs * GPMC_CS_SIZE) + idx;
172 __raw_writel(val, reg_addr);
173 }
174
175 u32 gpmc_cs_read_reg(int cs, int idx)
176 {
177 void __iomem *reg_addr;
178
179 reg_addr = gpmc_base + GPMC_CS0_OFFSET + (cs * GPMC_CS_SIZE) + idx;
180 return __raw_readl(reg_addr);
181 }
182
183 /* TODO: Add support for gpmc_fck to clock framework and use it */
184 unsigned long gpmc_get_fclk_period(void)
185 {
186 unsigned long rate = clk_get_rate(gpmc_l3_clk);
187
188 if (rate == 0) {
189 printk(KERN_WARNING "gpmc_l3_clk not enabled\n");
190 return 0;
191 }
192
193 rate /= 1000;
194 rate = 1000000000 / rate; /* In picoseconds */
195
196 return rate;
197 }
198
199 unsigned int gpmc_ns_to_ticks(unsigned int time_ns)
200 {
201 unsigned long tick_ps;
202
203 /* Calculate in picosecs to yield more exact results */
204 tick_ps = gpmc_get_fclk_period();
205
206 return (time_ns * 1000 + tick_ps - 1) / tick_ps;
207 }
208
209 unsigned int gpmc_ps_to_ticks(unsigned int time_ps)
210 {
211 unsigned long tick_ps;
212
213 /* Calculate in picosecs to yield more exact results */
214 tick_ps = gpmc_get_fclk_period();
215
216 return (time_ps + tick_ps - 1) / tick_ps;
217 }
218
219 unsigned int gpmc_ticks_to_ns(unsigned int ticks)
220 {
221 return ticks * gpmc_get_fclk_period() / 1000;
222 }
223
224 unsigned int gpmc_round_ns_to_ticks(unsigned int time_ns)
225 {
226 unsigned long ticks = gpmc_ns_to_ticks(time_ns);
227
228 return ticks * gpmc_get_fclk_period() / 1000;
229 }
230
231 #ifdef DEBUG
232 static int set_gpmc_timing_reg(int cs, int reg, int st_bit, int end_bit,
233 int time, const char *name)
234 #else
235 static int set_gpmc_timing_reg(int cs, int reg, int st_bit, int end_bit,
236 int time)
237 #endif
238 {
239 u32 l;
240 int ticks, mask, nr_bits;
241
242 if (time == 0)
243 ticks = 0;
244 else
245 ticks = gpmc_ns_to_ticks(time);
246 nr_bits = end_bit - st_bit + 1;
247 if (ticks >= 1 << nr_bits) {
248 #ifdef DEBUG
249 printk(KERN_INFO "GPMC CS%d: %-10s* %3d ns, %3d ticks >= %d\n",
250 cs, name, time, ticks, 1 << nr_bits);
251 #endif
252 return -1;
253 }
254
255 mask = (1 << nr_bits) - 1;
256 l = gpmc_cs_read_reg(cs, reg);
257 #ifdef DEBUG
258 printk(KERN_INFO
259 "GPMC CS%d: %-10s: %3d ticks, %3lu ns (was %3i ticks) %3d ns\n",
260 cs, name, ticks, gpmc_get_fclk_period() * ticks / 1000,
261 (l >> st_bit) & mask, time);
262 #endif
263 l &= ~(mask << st_bit);
264 l |= ticks << st_bit;
265 gpmc_cs_write_reg(cs, reg, l);
266
267 return 0;
268 }
269
270 #ifdef DEBUG
271 #define GPMC_SET_ONE(reg, st, end, field) \
272 if (set_gpmc_timing_reg(cs, (reg), (st), (end), \
273 t->field, #field) < 0) \
274 return -1
275 #else
276 #define GPMC_SET_ONE(reg, st, end, field) \
277 if (set_gpmc_timing_reg(cs, (reg), (st), (end), t->field) < 0) \
278 return -1
279 #endif
280
281 int gpmc_cs_calc_divider(int cs, unsigned int sync_clk)
282 {
283 int div;
284 u32 l;
285
286 l = sync_clk + (gpmc_get_fclk_period() - 1);
287 div = l / gpmc_get_fclk_period();
288 if (div > 4)
289 return -1;
290 if (div <= 0)
291 div = 1;
292
293 return div;
294 }
295
296 int gpmc_cs_set_timings(int cs, const struct gpmc_timings *t)
297 {
298 int div;
299 u32 l;
300
301 div = gpmc_cs_calc_divider(cs, t->sync_clk);
302 if (div < 0)
303 return div;
304
305 GPMC_SET_ONE(GPMC_CS_CONFIG2, 0, 3, cs_on);
306 GPMC_SET_ONE(GPMC_CS_CONFIG2, 8, 12, cs_rd_off);
307 GPMC_SET_ONE(GPMC_CS_CONFIG2, 16, 20, cs_wr_off);
308
309 GPMC_SET_ONE(GPMC_CS_CONFIG3, 0, 3, adv_on);
310 GPMC_SET_ONE(GPMC_CS_CONFIG3, 8, 12, adv_rd_off);
311 GPMC_SET_ONE(GPMC_CS_CONFIG3, 16, 20, adv_wr_off);
312
313 GPMC_SET_ONE(GPMC_CS_CONFIG4, 0, 3, oe_on);
314 GPMC_SET_ONE(GPMC_CS_CONFIG4, 8, 12, oe_off);
315 GPMC_SET_ONE(GPMC_CS_CONFIG4, 16, 19, we_on);
316 GPMC_SET_ONE(GPMC_CS_CONFIG4, 24, 28, we_off);
317
318 GPMC_SET_ONE(GPMC_CS_CONFIG5, 0, 4, rd_cycle);
319 GPMC_SET_ONE(GPMC_CS_CONFIG5, 8, 12, wr_cycle);
320 GPMC_SET_ONE(GPMC_CS_CONFIG5, 16, 20, access);
321
322 GPMC_SET_ONE(GPMC_CS_CONFIG5, 24, 27, page_burst_access);
323
324 if (cpu_is_omap34xx()) {
325 GPMC_SET_ONE(GPMC_CS_CONFIG6, 16, 19, wr_data_mux_bus);
326 GPMC_SET_ONE(GPMC_CS_CONFIG6, 24, 28, wr_access);
327 }
328
329 /* caller is expected to have initialized CONFIG1 to cover
330 * at least sync vs async
331 */
332 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG1);
333 if (l & (GPMC_CONFIG1_READTYPE_SYNC | GPMC_CONFIG1_WRITETYPE_SYNC)) {
334 #ifdef DEBUG
335 printk(KERN_INFO "GPMC CS%d CLK period is %lu ns (div %d)\n",
336 cs, (div * gpmc_get_fclk_period()) / 1000, div);
337 #endif
338 l &= ~0x03;
339 l |= (div - 1);
340 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1, l);
341 }
342
343 return 0;
344 }
345
346 static void gpmc_cs_enable_mem(int cs, u32 base, u32 size)
347 {
348 u32 l;
349 u32 mask;
350
351 mask = (1 << GPMC_SECTION_SHIFT) - size;
352 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
353 l &= ~0x3f;
354 l = (base >> GPMC_CHUNK_SHIFT) & 0x3f;
355 l &= ~(0x0f << 8);
356 l |= ((mask >> GPMC_CHUNK_SHIFT) & 0x0f) << 8;
357 l |= GPMC_CONFIG7_CSVALID;
358 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l);
359 }
360
361 static void gpmc_cs_disable_mem(int cs)
362 {
363 u32 l;
364
365 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
366 l &= ~GPMC_CONFIG7_CSVALID;
367 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l);
368 }
369
370 static void gpmc_cs_get_memconf(int cs, u32 *base, u32 *size)
371 {
372 u32 l;
373 u32 mask;
374
375 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
376 *base = (l & 0x3f) << GPMC_CHUNK_SHIFT;
377 mask = (l >> 8) & 0x0f;
378 *size = (1 << GPMC_SECTION_SHIFT) - (mask << GPMC_CHUNK_SHIFT);
379 }
380
381 static int gpmc_cs_mem_enabled(int cs)
382 {
383 u32 l;
384
385 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
386 return l & GPMC_CONFIG7_CSVALID;
387 }
388
389 int gpmc_cs_set_reserved(int cs, int reserved)
390 {
391 if (cs > GPMC_CS_NUM)
392 return -ENODEV;
393
394 gpmc_cs_map &= ~(1 << cs);
395 gpmc_cs_map |= (reserved ? 1 : 0) << cs;
396
397 return 0;
398 }
399
400 int gpmc_cs_reserved(int cs)
401 {
402 if (cs > GPMC_CS_NUM)
403 return -ENODEV;
404
405 return gpmc_cs_map & (1 << cs);
406 }
407
408 static unsigned long gpmc_mem_align(unsigned long size)
409 {
410 int order;
411
412 size = (size - 1) >> (GPMC_CHUNK_SHIFT - 1);
413 order = GPMC_CHUNK_SHIFT - 1;
414 do {
415 size >>= 1;
416 order++;
417 } while (size);
418 size = 1 << order;
419 return size;
420 }
421
422 static int gpmc_cs_insert_mem(int cs, unsigned long base, unsigned long size)
423 {
424 struct resource *res = &gpmc_cs_mem[cs];
425 int r;
426
427 size = gpmc_mem_align(size);
428 spin_lock(&gpmc_mem_lock);
429 res->start = base;
430 res->end = base + size - 1;
431 r = request_resource(&gpmc_mem_root, res);
432 spin_unlock(&gpmc_mem_lock);
433
434 return r;
435 }
436
437 int gpmc_cs_request(int cs, unsigned long size, unsigned long *base)
438 {
439 struct resource *res = &gpmc_cs_mem[cs];
440 int r = -1;
441
442 if (cs > GPMC_CS_NUM)
443 return -ENODEV;
444
445 size = gpmc_mem_align(size);
446 if (size > (1 << GPMC_SECTION_SHIFT))
447 return -ENOMEM;
448
449 spin_lock(&gpmc_mem_lock);
450 if (gpmc_cs_reserved(cs)) {
451 r = -EBUSY;
452 goto out;
453 }
454 if (gpmc_cs_mem_enabled(cs))
455 r = adjust_resource(res, res->start & ~(size - 1), size);
456 if (r < 0)
457 r = allocate_resource(&gpmc_mem_root, res, size, 0, ~0,
458 size, NULL, NULL);
459 if (r < 0)
460 goto out;
461
462 gpmc_cs_enable_mem(cs, res->start, resource_size(res));
463 *base = res->start;
464 gpmc_cs_set_reserved(cs, 1);
465 out:
466 spin_unlock(&gpmc_mem_lock);
467 return r;
468 }
469 EXPORT_SYMBOL(gpmc_cs_request);
470
471 void gpmc_cs_free(int cs)
472 {
473 spin_lock(&gpmc_mem_lock);
474 if (cs >= GPMC_CS_NUM || cs < 0 || !gpmc_cs_reserved(cs)) {
475 printk(KERN_ERR "Trying to free non-reserved GPMC CS%d\n", cs);
476 BUG();
477 spin_unlock(&gpmc_mem_lock);
478 return;
479 }
480 gpmc_cs_disable_mem(cs);
481 release_resource(&gpmc_cs_mem[cs]);
482 gpmc_cs_set_reserved(cs, 0);
483 spin_unlock(&gpmc_mem_lock);
484 }
485 EXPORT_SYMBOL(gpmc_cs_free);
486
487 /**
488 * gpmc_read_status - read access request to get the different gpmc status
489 * @cmd: command type
490 * @return status
491 */
492 int gpmc_read_status(int cmd)
493 {
494 int status = -EINVAL;
495 u32 regval = 0;
496
497 switch (cmd) {
498 case GPMC_GET_IRQ_STATUS:
499 status = gpmc_read_reg(GPMC_IRQSTATUS);
500 break;
501
502 case GPMC_PREFETCH_FIFO_CNT:
503 regval = gpmc_read_reg(GPMC_PREFETCH_STATUS);
504 status = GPMC_PREFETCH_STATUS_FIFO_CNT(regval);
505 break;
506
507 case GPMC_PREFETCH_COUNT:
508 regval = gpmc_read_reg(GPMC_PREFETCH_STATUS);
509 status = GPMC_PREFETCH_STATUS_COUNT(regval);
510 break;
511
512 case GPMC_STATUS_BUFFER:
513 regval = gpmc_read_reg(GPMC_STATUS);
514 /* 1 : buffer is available to write */
515 status = regval & GPMC_STATUS_BUFF_EMPTY;
516 break;
517
518 default:
519 printk(KERN_ERR "gpmc_read_status: Not supported\n");
520 }
521 return status;
522 }
523 EXPORT_SYMBOL(gpmc_read_status);
524
525 /**
526 * gpmc_cs_configure - write request to configure gpmc
527 * @cs: chip select number
528 * @cmd: command type
529 * @wval: value to write
530 * @return status of the operation
531 */
532 int gpmc_cs_configure(int cs, int cmd, int wval)
533 {
534 int err = 0;
535 u32 regval = 0;
536
537 switch (cmd) {
538 case GPMC_ENABLE_IRQ:
539 gpmc_write_reg(GPMC_IRQENABLE, wval);
540 break;
541
542 case GPMC_SET_IRQ_STATUS:
543 gpmc_write_reg(GPMC_IRQSTATUS, wval);
544 break;
545
546 case GPMC_CONFIG_WP:
547 regval = gpmc_read_reg(GPMC_CONFIG);
548 if (wval)
549 regval &= ~GPMC_CONFIG_WRITEPROTECT; /* WP is ON */
550 else
551 regval |= GPMC_CONFIG_WRITEPROTECT; /* WP is OFF */
552 gpmc_write_reg(GPMC_CONFIG, regval);
553 break;
554
555 case GPMC_CONFIG_RDY_BSY:
556 regval = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG1);
557 if (wval)
558 regval |= WR_RD_PIN_MONITORING;
559 else
560 regval &= ~WR_RD_PIN_MONITORING;
561 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1, regval);
562 break;
563
564 case GPMC_CONFIG_DEV_SIZE:
565 regval = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG1);
566
567 /* clear 2 target bits */
568 regval &= ~GPMC_CONFIG1_DEVICESIZE(3);
569
570 /* set the proper value */
571 regval |= GPMC_CONFIG1_DEVICESIZE(wval);
572
573 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1, regval);
574 break;
575
576 case GPMC_CONFIG_DEV_TYPE:
577 regval = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG1);
578 regval |= GPMC_CONFIG1_DEVICETYPE(wval);
579 if (wval == GPMC_DEVICETYPE_NOR)
580 regval |= GPMC_CONFIG1_MUXADDDATA;
581 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1, regval);
582 break;
583
584 default:
585 printk(KERN_ERR "gpmc_configure_cs: Not supported\n");
586 err = -EINVAL;
587 }
588
589 return err;
590 }
591 EXPORT_SYMBOL(gpmc_cs_configure);
592
593 /**
594 * gpmc_nand_read - nand specific read access request
595 * @cs: chip select number
596 * @cmd: command type
597 */
598 int gpmc_nand_read(int cs, int cmd)
599 {
600 int rval = -EINVAL;
601
602 switch (cmd) {
603 case GPMC_NAND_DATA:
604 rval = gpmc_cs_read_byte(cs, GPMC_CS_NAND_DATA);
605 break;
606
607 default:
608 printk(KERN_ERR "gpmc_read_nand_ctrl: Not supported\n");
609 }
610 return rval;
611 }
612 EXPORT_SYMBOL(gpmc_nand_read);
613
614 /**
615 * gpmc_nand_write - nand specific write request
616 * @cs: chip select number
617 * @cmd: command type
618 * @wval: value to write
619 */
620 int gpmc_nand_write(int cs, int cmd, int wval)
621 {
622 int err = 0;
623
624 switch (cmd) {
625 case GPMC_NAND_COMMAND:
626 gpmc_cs_write_byte(cs, GPMC_CS_NAND_COMMAND, wval);
627 break;
628
629 case GPMC_NAND_ADDRESS:
630 gpmc_cs_write_byte(cs, GPMC_CS_NAND_ADDRESS, wval);
631 break;
632
633 case GPMC_NAND_DATA:
634 gpmc_cs_write_byte(cs, GPMC_CS_NAND_DATA, wval);
635
636 default:
637 printk(KERN_ERR "gpmc_write_nand_ctrl: Not supported\n");
638 err = -EINVAL;
639 }
640 return err;
641 }
642 EXPORT_SYMBOL(gpmc_nand_write);
643
644
645
646 /**
647 * gpmc_prefetch_enable - configures and starts prefetch transfer
648 * @cs: cs (chip select) number
649 * @fifo_th: fifo threshold to be used for read/ write
650 * @dma_mode: dma mode enable (1) or disable (0)
651 * @u32_count: number of bytes to be transferred
652 * @is_write: prefetch read(0) or write post(1) mode
653 */
654 int gpmc_prefetch_enable(int cs, int fifo_th, int dma_mode,
655 unsigned int u32_count, int is_write)
656 {
657
658 if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX) {
659 pr_err("gpmc: fifo threshold is not supported\n");
660 return -1;
661 } else if (!(gpmc_read_reg(GPMC_PREFETCH_CONTROL))) {
662 /* Set the amount of bytes to be prefetched */
663 gpmc_write_reg(GPMC_PREFETCH_CONFIG2, u32_count);
664
665 /* Set dma/mpu mode, the prefetch read / post write and
666 * enable the engine. Set which cs is has requested for.
667 */
668 gpmc_write_reg(GPMC_PREFETCH_CONFIG1, ((cs << CS_NUM_SHIFT) |
669 PREFETCH_FIFOTHRESHOLD(fifo_th) |
670 ENABLE_PREFETCH |
671 (dma_mode << DMA_MPU_MODE) |
672 (0x1 & is_write)));
673
674 /* Start the prefetch engine */
675 gpmc_write_reg(GPMC_PREFETCH_CONTROL, 0x1);
676 } else {
677 return -EBUSY;
678 }
679
680 return 0;
681 }
682 EXPORT_SYMBOL(gpmc_prefetch_enable);
683
684 /**
685 * gpmc_prefetch_reset - disables and stops the prefetch engine
686 */
687 int gpmc_prefetch_reset(int cs)
688 {
689 u32 config1;
690
691 /* check if the same module/cs is trying to reset */
692 config1 = gpmc_read_reg(GPMC_PREFETCH_CONFIG1);
693 if (((config1 >> CS_NUM_SHIFT) & 0x7) != cs)
694 return -EINVAL;
695
696 /* Stop the PFPW engine */
697 gpmc_write_reg(GPMC_PREFETCH_CONTROL, 0x0);
698
699 /* Reset/disable the PFPW engine */
700 gpmc_write_reg(GPMC_PREFETCH_CONFIG1, 0x0);
701
702 return 0;
703 }
704 EXPORT_SYMBOL(gpmc_prefetch_reset);
705
706 void gpmc_update_nand_reg(struct gpmc_nand_regs *reg, int cs)
707 {
708 reg->gpmc_status = gpmc_base + GPMC_STATUS;
709 reg->gpmc_nand_command = gpmc_base + GPMC_CS0_OFFSET +
710 GPMC_CS_NAND_COMMAND + GPMC_CS_SIZE * cs;
711 reg->gpmc_nand_address = gpmc_base + GPMC_CS0_OFFSET +
712 GPMC_CS_NAND_ADDRESS + GPMC_CS_SIZE * cs;
713 reg->gpmc_nand_data = gpmc_base + GPMC_CS0_OFFSET +
714 GPMC_CS_NAND_DATA + GPMC_CS_SIZE * cs;
715 reg->gpmc_prefetch_config1 = gpmc_base + GPMC_PREFETCH_CONFIG1;
716 reg->gpmc_prefetch_config2 = gpmc_base + GPMC_PREFETCH_CONFIG2;
717 reg->gpmc_prefetch_control = gpmc_base + GPMC_PREFETCH_CONTROL;
718 reg->gpmc_prefetch_status = gpmc_base + GPMC_PREFETCH_STATUS;
719 reg->gpmc_ecc_config = gpmc_base + GPMC_ECC_CONFIG;
720 reg->gpmc_ecc_control = gpmc_base + GPMC_ECC_CONTROL;
721 reg->gpmc_ecc_size_config = gpmc_base + GPMC_ECC_SIZE_CONFIG;
722 reg->gpmc_ecc1_result = gpmc_base + GPMC_ECC1_RESULT;
723 reg->gpmc_bch_result0 = gpmc_base + GPMC_ECC_BCH_RESULT_0;
724 }
725
726 int gpmc_get_client_irq(unsigned irq_config)
727 {
728 int i;
729
730 if (hweight32(irq_config) > 1)
731 return 0;
732
733 for (i = 0; i < GPMC_NR_IRQ; i++)
734 if (gpmc_client_irq[i].bitmask & irq_config)
735 return gpmc_client_irq[i].irq;
736
737 return 0;
738 }
739
740 static int gpmc_irq_endis(unsigned irq, bool endis)
741 {
742 int i;
743 u32 regval;
744
745 for (i = 0; i < GPMC_NR_IRQ; i++)
746 if (irq == gpmc_client_irq[i].irq) {
747 regval = gpmc_read_reg(GPMC_IRQENABLE);
748 if (endis)
749 regval |= gpmc_client_irq[i].bitmask;
750 else
751 regval &= ~gpmc_client_irq[i].bitmask;
752 gpmc_write_reg(GPMC_IRQENABLE, regval);
753 break;
754 }
755
756 return 0;
757 }
758
759 static void gpmc_irq_disable(struct irq_data *p)
760 {
761 gpmc_irq_endis(p->irq, false);
762 }
763
764 static void gpmc_irq_enable(struct irq_data *p)
765 {
766 gpmc_irq_endis(p->irq, true);
767 }
768
769 static void gpmc_irq_noop(struct irq_data *data) { }
770
771 static unsigned int gpmc_irq_noop_ret(struct irq_data *data) { return 0; }
772
773 static int gpmc_setup_irq(int gpmc_irq)
774 {
775 int i;
776 u32 regval;
777
778 if (!gpmc_irq)
779 return -EINVAL;
780
781 gpmc_irq_start = irq_alloc_descs(-1, 0, GPMC_NR_IRQ, 0);
782 if (IS_ERR_VALUE(gpmc_irq_start)) {
783 pr_err("irq_alloc_descs failed\n");
784 return gpmc_irq_start;
785 }
786
787 gpmc_irq_chip.name = "gpmc";
788 gpmc_irq_chip.irq_startup = gpmc_irq_noop_ret;
789 gpmc_irq_chip.irq_enable = gpmc_irq_enable;
790 gpmc_irq_chip.irq_disable = gpmc_irq_disable;
791 gpmc_irq_chip.irq_shutdown = gpmc_irq_noop;
792 gpmc_irq_chip.irq_ack = gpmc_irq_noop;
793 gpmc_irq_chip.irq_mask = gpmc_irq_noop;
794 gpmc_irq_chip.irq_unmask = gpmc_irq_noop;
795
796 gpmc_client_irq[0].bitmask = GPMC_IRQ_FIFOEVENTENABLE;
797 gpmc_client_irq[1].bitmask = GPMC_IRQ_COUNT_EVENT;
798
799 for (i = 0; i < GPMC_NR_IRQ; i++) {
800 gpmc_client_irq[i].irq = gpmc_irq_start + i;
801 irq_set_chip_and_handler(gpmc_client_irq[i].irq,
802 &gpmc_irq_chip, handle_simple_irq);
803 set_irq_flags(gpmc_client_irq[i].irq,
804 IRQF_VALID | IRQF_NOAUTOEN);
805 }
806
807 /* Disable interrupts */
808 gpmc_write_reg(GPMC_IRQENABLE, 0);
809
810 /* clear interrupts */
811 regval = gpmc_read_reg(GPMC_IRQSTATUS);
812 gpmc_write_reg(GPMC_IRQSTATUS, regval);
813
814 return request_irq(gpmc_irq, gpmc_handle_irq, 0, "gpmc", NULL);
815 }
816
817 static void __init gpmc_mem_init(void)
818 {
819 int cs;
820 unsigned long boot_rom_space = 0;
821
822 /* never allocate the first page, to facilitate bug detection;
823 * even if we didn't boot from ROM.
824 */
825 boot_rom_space = BOOT_ROM_SPACE;
826 /* In apollon the CS0 is mapped as 0x0000 0000 */
827 if (machine_is_omap_apollon())
828 boot_rom_space = 0;
829 gpmc_mem_root.start = GPMC_MEM_START + boot_rom_space;
830 gpmc_mem_root.end = GPMC_MEM_END;
831
832 /* Reserve all regions that has been set up by bootloader */
833 for (cs = 0; cs < GPMC_CS_NUM; cs++) {
834 u32 base, size;
835
836 if (!gpmc_cs_mem_enabled(cs))
837 continue;
838 gpmc_cs_get_memconf(cs, &base, &size);
839 if (gpmc_cs_insert_mem(cs, base, size) < 0)
840 BUG();
841 }
842 }
843
844 static int __init gpmc_init(void)
845 {
846 u32 l;
847 int ret = -EINVAL;
848 int gpmc_irq;
849 char *ck = NULL;
850
851 if (cpu_is_omap24xx()) {
852 ck = "core_l3_ck";
853 if (cpu_is_omap2420())
854 l = OMAP2420_GPMC_BASE;
855 else
856 l = OMAP34XX_GPMC_BASE;
857 gpmc_irq = 20 + OMAP_INTC_START;
858 } else if (cpu_is_omap34xx()) {
859 ck = "gpmc_fck";
860 l = OMAP34XX_GPMC_BASE;
861 gpmc_irq = 20 + OMAP_INTC_START;
862 } else if (cpu_is_omap44xx() || soc_is_omap54xx()) {
863 /* Base address and irq number are same for OMAP4/5 */
864 ck = "gpmc_ck";
865 l = OMAP44XX_GPMC_BASE;
866 gpmc_irq = 20 + OMAP44XX_IRQ_GIC_START;
867 }
868
869 if (WARN_ON(!ck))
870 return ret;
871
872 gpmc_l3_clk = clk_get(NULL, ck);
873 if (IS_ERR(gpmc_l3_clk)) {
874 printk(KERN_ERR "Could not get GPMC clock %s\n", ck);
875 BUG();
876 }
877
878 gpmc_base = ioremap(l, SZ_4K);
879 if (!gpmc_base) {
880 clk_put(gpmc_l3_clk);
881 printk(KERN_ERR "Could not get GPMC register memory\n");
882 BUG();
883 }
884
885 clk_prepare_enable(gpmc_l3_clk);
886
887 l = gpmc_read_reg(GPMC_REVISION);
888 printk(KERN_INFO "GPMC revision %d.%d\n", (l >> 4) & 0x0f, l & 0x0f);
889 /* Set smart idle mode and automatic L3 clock gating */
890 l = gpmc_read_reg(GPMC_SYSCONFIG);
891 l &= 0x03 << 3;
892 l |= (0x02 << 3) | (1 << 0);
893 gpmc_write_reg(GPMC_SYSCONFIG, l);
894 gpmc_mem_init();
895
896 ret = gpmc_setup_irq(gpmc_irq);
897 if (ret)
898 pr_err("gpmc: irq-%d could not claim: err %d\n",
899 gpmc_irq, ret);
900 return ret;
901 }
902 postcore_initcall(gpmc_init);
903
904 static int __init omap_gpmc_init(void)
905 {
906 struct omap_hwmod *oh;
907 struct platform_device *pdev;
908 char *oh_name = "gpmc";
909
910 oh = omap_hwmod_lookup(oh_name);
911 if (!oh) {
912 pr_err("Could not look up %s\n", oh_name);
913 return -ENODEV;
914 }
915
916 pdev = omap_device_build(DEVICE_NAME, -1, oh, NULL, 0, NULL, 0, 0);
917 WARN(IS_ERR(pdev), "could not build omap_device for %s\n", oh_name);
918
919 return IS_ERR(pdev) ? PTR_ERR(pdev) : 0;
920 }
921 postcore_initcall(omap_gpmc_init);
922
923 static irqreturn_t gpmc_handle_irq(int irq, void *dev)
924 {
925 int i;
926 u32 regval;
927
928 regval = gpmc_read_reg(GPMC_IRQSTATUS);
929
930 if (!regval)
931 return IRQ_NONE;
932
933 for (i = 0; i < GPMC_NR_IRQ; i++)
934 if (regval & gpmc_client_irq[i].bitmask)
935 generic_handle_irq(gpmc_client_irq[i].irq);
936
937 gpmc_write_reg(GPMC_IRQSTATUS, regval);
938
939 return IRQ_HANDLED;
940 }
941
942 #ifdef CONFIG_ARCH_OMAP3
943 static struct omap3_gpmc_regs gpmc_context;
944
945 void omap3_gpmc_save_context(void)
946 {
947 int i;
948
949 gpmc_context.sysconfig = gpmc_read_reg(GPMC_SYSCONFIG);
950 gpmc_context.irqenable = gpmc_read_reg(GPMC_IRQENABLE);
951 gpmc_context.timeout_ctrl = gpmc_read_reg(GPMC_TIMEOUT_CONTROL);
952 gpmc_context.config = gpmc_read_reg(GPMC_CONFIG);
953 gpmc_context.prefetch_config1 = gpmc_read_reg(GPMC_PREFETCH_CONFIG1);
954 gpmc_context.prefetch_config2 = gpmc_read_reg(GPMC_PREFETCH_CONFIG2);
955 gpmc_context.prefetch_control = gpmc_read_reg(GPMC_PREFETCH_CONTROL);
956 for (i = 0; i < GPMC_CS_NUM; i++) {
957 gpmc_context.cs_context[i].is_valid = gpmc_cs_mem_enabled(i);
958 if (gpmc_context.cs_context[i].is_valid) {
959 gpmc_context.cs_context[i].config1 =
960 gpmc_cs_read_reg(i, GPMC_CS_CONFIG1);
961 gpmc_context.cs_context[i].config2 =
962 gpmc_cs_read_reg(i, GPMC_CS_CONFIG2);
963 gpmc_context.cs_context[i].config3 =
964 gpmc_cs_read_reg(i, GPMC_CS_CONFIG3);
965 gpmc_context.cs_context[i].config4 =
966 gpmc_cs_read_reg(i, GPMC_CS_CONFIG4);
967 gpmc_context.cs_context[i].config5 =
968 gpmc_cs_read_reg(i, GPMC_CS_CONFIG5);
969 gpmc_context.cs_context[i].config6 =
970 gpmc_cs_read_reg(i, GPMC_CS_CONFIG6);
971 gpmc_context.cs_context[i].config7 =
972 gpmc_cs_read_reg(i, GPMC_CS_CONFIG7);
973 }
974 }
975 }
976
977 void omap3_gpmc_restore_context(void)
978 {
979 int i;
980
981 gpmc_write_reg(GPMC_SYSCONFIG, gpmc_context.sysconfig);
982 gpmc_write_reg(GPMC_IRQENABLE, gpmc_context.irqenable);
983 gpmc_write_reg(GPMC_TIMEOUT_CONTROL, gpmc_context.timeout_ctrl);
984 gpmc_write_reg(GPMC_CONFIG, gpmc_context.config);
985 gpmc_write_reg(GPMC_PREFETCH_CONFIG1, gpmc_context.prefetch_config1);
986 gpmc_write_reg(GPMC_PREFETCH_CONFIG2, gpmc_context.prefetch_config2);
987 gpmc_write_reg(GPMC_PREFETCH_CONTROL, gpmc_context.prefetch_control);
988 for (i = 0; i < GPMC_CS_NUM; i++) {
989 if (gpmc_context.cs_context[i].is_valid) {
990 gpmc_cs_write_reg(i, GPMC_CS_CONFIG1,
991 gpmc_context.cs_context[i].config1);
992 gpmc_cs_write_reg(i, GPMC_CS_CONFIG2,
993 gpmc_context.cs_context[i].config2);
994 gpmc_cs_write_reg(i, GPMC_CS_CONFIG3,
995 gpmc_context.cs_context[i].config3);
996 gpmc_cs_write_reg(i, GPMC_CS_CONFIG4,
997 gpmc_context.cs_context[i].config4);
998 gpmc_cs_write_reg(i, GPMC_CS_CONFIG5,
999 gpmc_context.cs_context[i].config5);
1000 gpmc_cs_write_reg(i, GPMC_CS_CONFIG6,
1001 gpmc_context.cs_context[i].config6);
1002 gpmc_cs_write_reg(i, GPMC_CS_CONFIG7,
1003 gpmc_context.cs_context[i].config7);
1004 }
1005 }
1006 }
1007 #endif /* CONFIG_ARCH_OMAP3 */
1008
1009 /**
1010 * gpmc_enable_hwecc - enable hardware ecc functionality
1011 * @cs: chip select number
1012 * @mode: read/write mode
1013 * @dev_width: device bus width(1 for x16, 0 for x8)
1014 * @ecc_size: bytes for which ECC will be generated
1015 */
1016 int gpmc_enable_hwecc(int cs, int mode, int dev_width, int ecc_size)
1017 {
1018 unsigned int val;
1019
1020 /* check if ecc module is in used */
1021 if (gpmc_ecc_used != -EINVAL)
1022 return -EINVAL;
1023
1024 gpmc_ecc_used = cs;
1025
1026 /* clear ecc and enable bits */
1027 gpmc_write_reg(GPMC_ECC_CONTROL,
1028 GPMC_ECC_CTRL_ECCCLEAR |
1029 GPMC_ECC_CTRL_ECCREG1);
1030
1031 /* program ecc and result sizes */
1032 val = ((((ecc_size >> 1) - 1) << 22) | (0x0000000F));
1033 gpmc_write_reg(GPMC_ECC_SIZE_CONFIG, val);
1034
1035 switch (mode) {
1036 case GPMC_ECC_READ:
1037 case GPMC_ECC_WRITE:
1038 gpmc_write_reg(GPMC_ECC_CONTROL,
1039 GPMC_ECC_CTRL_ECCCLEAR |
1040 GPMC_ECC_CTRL_ECCREG1);
1041 break;
1042 case GPMC_ECC_READSYN:
1043 gpmc_write_reg(GPMC_ECC_CONTROL,
1044 GPMC_ECC_CTRL_ECCCLEAR |
1045 GPMC_ECC_CTRL_ECCDISABLE);
1046 break;
1047 default:
1048 printk(KERN_INFO "Error: Unrecognized Mode[%d]!\n", mode);
1049 break;
1050 }
1051
1052 /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
1053 val = (dev_width << 7) | (cs << 1) | (0x1);
1054 gpmc_write_reg(GPMC_ECC_CONFIG, val);
1055 return 0;
1056 }
1057 EXPORT_SYMBOL_GPL(gpmc_enable_hwecc);
1058
1059 /**
1060 * gpmc_calculate_ecc - generate non-inverted ecc bytes
1061 * @cs: chip select number
1062 * @dat: data pointer over which ecc is computed
1063 * @ecc_code: ecc code buffer
1064 *
1065 * Using non-inverted ECC is considered ugly since writing a blank
1066 * page (padding) will clear the ECC bytes. This is not a problem as long
1067 * no one is trying to write data on the seemingly unused page. Reading
1068 * an erased page will produce an ECC mismatch between generated and read
1069 * ECC bytes that has to be dealt with separately.
1070 */
1071 int gpmc_calculate_ecc(int cs, const u_char *dat, u_char *ecc_code)
1072 {
1073 unsigned int val = 0x0;
1074
1075 if (gpmc_ecc_used != cs)
1076 return -EINVAL;
1077
1078 /* read ecc result */
1079 val = gpmc_read_reg(GPMC_ECC1_RESULT);
1080 *ecc_code++ = val; /* P128e, ..., P1e */
1081 *ecc_code++ = val >> 16; /* P128o, ..., P1o */
1082 /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
1083 *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
1084
1085 gpmc_ecc_used = -EINVAL;
1086 return 0;
1087 }
1088 EXPORT_SYMBOL_GPL(gpmc_calculate_ecc);
1089
1090 #ifdef CONFIG_ARCH_OMAP3
1091
1092 /**
1093 * gpmc_init_hwecc_bch - initialize hardware BCH ecc functionality
1094 * @cs: chip select number
1095 * @nsectors: how many 512-byte sectors to process
1096 * @nerrors: how many errors to correct per sector (4 or 8)
1097 *
1098 * This function must be executed before any call to gpmc_enable_hwecc_bch.
1099 */
1100 int gpmc_init_hwecc_bch(int cs, int nsectors, int nerrors)
1101 {
1102 /* check if ecc module is in use */
1103 if (gpmc_ecc_used != -EINVAL)
1104 return -EINVAL;
1105
1106 /* support only OMAP3 class */
1107 if (!cpu_is_omap34xx()) {
1108 printk(KERN_ERR "BCH ecc is not supported on this CPU\n");
1109 return -EINVAL;
1110 }
1111
1112 /*
1113 * For now, assume 4-bit mode is only supported on OMAP3630 ES1.x, x>=1.
1114 * Other chips may be added if confirmed to work.
1115 */
1116 if ((nerrors == 4) &&
1117 (!cpu_is_omap3630() || (GET_OMAP_REVISION() == 0))) {
1118 printk(KERN_ERR "BCH 4-bit mode is not supported on this CPU\n");
1119 return -EINVAL;
1120 }
1121
1122 /* sanity check */
1123 if (nsectors > 8) {
1124 printk(KERN_ERR "BCH cannot process %d sectors (max is 8)\n",
1125 nsectors);
1126 return -EINVAL;
1127 }
1128
1129 return 0;
1130 }
1131 EXPORT_SYMBOL_GPL(gpmc_init_hwecc_bch);
1132
1133 /**
1134 * gpmc_enable_hwecc_bch - enable hardware BCH ecc functionality
1135 * @cs: chip select number
1136 * @mode: read/write mode
1137 * @dev_width: device bus width(1 for x16, 0 for x8)
1138 * @nsectors: how many 512-byte sectors to process
1139 * @nerrors: how many errors to correct per sector (4 or 8)
1140 */
1141 int gpmc_enable_hwecc_bch(int cs, int mode, int dev_width, int nsectors,
1142 int nerrors)
1143 {
1144 unsigned int val;
1145
1146 /* check if ecc module is in use */
1147 if (gpmc_ecc_used != -EINVAL)
1148 return -EINVAL;
1149
1150 gpmc_ecc_used = cs;
1151
1152 /* clear ecc and enable bits */
1153 gpmc_write_reg(GPMC_ECC_CONTROL, 0x1);
1154
1155 /*
1156 * When using BCH, sector size is hardcoded to 512 bytes.
1157 * Here we are using wrapping mode 6 both for reading and writing, with:
1158 * size0 = 0 (no additional protected byte in spare area)
1159 * size1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
1160 */
1161 gpmc_write_reg(GPMC_ECC_SIZE_CONFIG, (32 << 22) | (0 << 12));
1162
1163 /* BCH configuration */
1164 val = ((1 << 16) | /* enable BCH */
1165 (((nerrors == 8) ? 1 : 0) << 12) | /* 8 or 4 bits */
1166 (0x06 << 8) | /* wrap mode = 6 */
1167 (dev_width << 7) | /* bus width */
1168 (((nsectors-1) & 0x7) << 4) | /* number of sectors */
1169 (cs << 1) | /* ECC CS */
1170 (0x1)); /* enable ECC */
1171
1172 gpmc_write_reg(GPMC_ECC_CONFIG, val);
1173 gpmc_write_reg(GPMC_ECC_CONTROL, 0x101);
1174 return 0;
1175 }
1176 EXPORT_SYMBOL_GPL(gpmc_enable_hwecc_bch);
1177
1178 /**
1179 * gpmc_calculate_ecc_bch4 - Generate 7 ecc bytes per sector of 512 data bytes
1180 * @cs: chip select number
1181 * @dat: The pointer to data on which ecc is computed
1182 * @ecc: The ecc output buffer
1183 */
1184 int gpmc_calculate_ecc_bch4(int cs, const u_char *dat, u_char *ecc)
1185 {
1186 int i;
1187 unsigned long nsectors, reg, val1, val2;
1188
1189 if (gpmc_ecc_used != cs)
1190 return -EINVAL;
1191
1192 nsectors = ((gpmc_read_reg(GPMC_ECC_CONFIG) >> 4) & 0x7) + 1;
1193
1194 for (i = 0; i < nsectors; i++) {
1195
1196 reg = GPMC_ECC_BCH_RESULT_0 + 16*i;
1197
1198 /* Read hw-computed remainder */
1199 val1 = gpmc_read_reg(reg + 0);
1200 val2 = gpmc_read_reg(reg + 4);
1201
1202 /*
1203 * Add constant polynomial to remainder, in order to get an ecc
1204 * sequence of 0xFFs for a buffer filled with 0xFFs; and
1205 * left-justify the resulting polynomial.
1206 */
1207 *ecc++ = 0x28 ^ ((val2 >> 12) & 0xFF);
1208 *ecc++ = 0x13 ^ ((val2 >> 4) & 0xFF);
1209 *ecc++ = 0xcc ^ (((val2 & 0xF) << 4)|((val1 >> 28) & 0xF));
1210 *ecc++ = 0x39 ^ ((val1 >> 20) & 0xFF);
1211 *ecc++ = 0x96 ^ ((val1 >> 12) & 0xFF);
1212 *ecc++ = 0xac ^ ((val1 >> 4) & 0xFF);
1213 *ecc++ = 0x7f ^ ((val1 & 0xF) << 4);
1214 }
1215
1216 gpmc_ecc_used = -EINVAL;
1217 return 0;
1218 }
1219 EXPORT_SYMBOL_GPL(gpmc_calculate_ecc_bch4);
1220
1221 /**
1222 * gpmc_calculate_ecc_bch8 - Generate 13 ecc bytes per block of 512 data bytes
1223 * @cs: chip select number
1224 * @dat: The pointer to data on which ecc is computed
1225 * @ecc: The ecc output buffer
1226 */
1227 int gpmc_calculate_ecc_bch8(int cs, const u_char *dat, u_char *ecc)
1228 {
1229 int i;
1230 unsigned long nsectors, reg, val1, val2, val3, val4;
1231
1232 if (gpmc_ecc_used != cs)
1233 return -EINVAL;
1234
1235 nsectors = ((gpmc_read_reg(GPMC_ECC_CONFIG) >> 4) & 0x7) + 1;
1236
1237 for (i = 0; i < nsectors; i++) {
1238
1239 reg = GPMC_ECC_BCH_RESULT_0 + 16*i;
1240
1241 /* Read hw-computed remainder */
1242 val1 = gpmc_read_reg(reg + 0);
1243 val2 = gpmc_read_reg(reg + 4);
1244 val3 = gpmc_read_reg(reg + 8);
1245 val4 = gpmc_read_reg(reg + 12);
1246
1247 /*
1248 * Add constant polynomial to remainder, in order to get an ecc
1249 * sequence of 0xFFs for a buffer filled with 0xFFs.
1250 */
1251 *ecc++ = 0xef ^ (val4 & 0xFF);
1252 *ecc++ = 0x51 ^ ((val3 >> 24) & 0xFF);
1253 *ecc++ = 0x2e ^ ((val3 >> 16) & 0xFF);
1254 *ecc++ = 0x09 ^ ((val3 >> 8) & 0xFF);
1255 *ecc++ = 0xed ^ (val3 & 0xFF);
1256 *ecc++ = 0x93 ^ ((val2 >> 24) & 0xFF);
1257 *ecc++ = 0x9a ^ ((val2 >> 16) & 0xFF);
1258 *ecc++ = 0xc2 ^ ((val2 >> 8) & 0xFF);
1259 *ecc++ = 0x97 ^ (val2 & 0xFF);
1260 *ecc++ = 0x79 ^ ((val1 >> 24) & 0xFF);
1261 *ecc++ = 0xe5 ^ ((val1 >> 16) & 0xFF);
1262 *ecc++ = 0x24 ^ ((val1 >> 8) & 0xFF);
1263 *ecc++ = 0xb5 ^ (val1 & 0xFF);
1264 }
1265
1266 gpmc_ecc_used = -EINVAL;
1267 return 0;
1268 }
1269 EXPORT_SYMBOL_GPL(gpmc_calculate_ecc_bch8);
1270
1271 #endif /* CONFIG_ARCH_OMAP3 */
This page took 0.080805 seconds and 5 git commands to generate.